切线长定理及三角形的内切圆
切线长定理及三角形内切圆

例2 PA、PB是☉O的两条切线,A,B是切点,OA=3. (1)若AP=4,则OP= 5 ; (2)若∠BPA=60 °,则OP= 6 .
A
O
P
B
二、三角形的内切圆及作法
思考
图是一块三角形的铁片,如何在它上面截下一块圆形的用料,并且使 截下来的圆与三角形的三条边都相切?
思路引导:半径为 r 的☉I 与△ABC 的三 边都相切,圆心 I 到三角形三边的距离相 等,都等于 r.
B
C
F O
由BD+CD=BC,可得(13-x)+(9-x)=14.
B
D
C
解得x=4.
因此AF=4,BD=5,CE=9.
归纳总结
你学会了吗?
求三角形内切圆的问题,一般的作辅助线的方法为: 一是连顶点、内心产生角平分线; 二是连切点、内心产生半径及垂直条件.
小试牛刀
1.下列说法错误的是( C ) A.三角形有且只有一个内切圆 B.等腰三角形的内心一定在它的底边的高上 C.三角形的内心不一定都在三角形的内部 D.若I是△ABC的内心,则AI平分∠BAC
24.2.2.3 切线长定理及 三角形内切圆
九年级上
学习目标
1.探索并证明切线长定理. 重点
2.了解三角形内切圆、内心的概念,对比区分内切圆与外接圆的区别
与联系. 难点 3.会运用切线长定理进行计算与证明. 难点
4.能用尺规作图:作三角形的外接圆.
Байду номын сангаас 新课引入
前面我们已经学习了切线的判定和性质,已知⊙O和⊙O外一点P,你能 过点P画出⊙O的切线吗?
A
☉I是△ABC的内切圆,点I是
I
△ABC的内心,△ABC是☉I的外
24.2.2切线长定理和三角形的内切圆(教案)

(五)总结回顾(用时5分钟)
今天的学习,我们了解了切线长定理和三角形内切圆的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
三角形内切圆的部分,学生们在小组讨论和实验操作中表现出了很高的热情。通过实际操作,他们能够更好地掌握内切圆半径的计算方法,这也证明了实践活动在数学教学中的重要性。今后,我会继续加大实践环节的比重,让学生在实践中学习和探索。
在小组讨论环节,我发现有些学生较为内向,不太愿意主动表达自己的观点。为了鼓励他们积极参与,我会在今后的教学中更加关注这些学生,多给予他们肯定和鼓励,提高他们的自信心。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“切线长定理和三角形内切圆在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
24.2.2切线长定理和三角形的内切圆(教案)
一、教学内容
本节课选自教材24.2.2节,主要内容包括:
1.切线长定理:探讨圆的切线与半径的关系,推导并掌握切线长定理,即从圆外一点引圆的两条切线,切线长相等。
2.三角形的内切圆:介绍三角形内切圆的概念,探讨内切圆的半径与三角形面积的关系,掌握内切圆半径的计算公式。
切线长定理及三角形的内切圆—知识讲解(基础)

切线长定理及三角形的内切圆—知识讲解(基础)责编:常春芳【学习目标】1.了解切线长定义;理解三角形的内切圆及内心的定义;2.掌握切线长定理;利用切线长定理解决相关的计算和证明.【要点梳理】要点一、切线长定理1.切线长:经过圆外一点能够作圆的两条切线,切线上这一点到切点间的线段长叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理:从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.要点诠释:切线长定理包含两个结论:线段相等和角相等.要点二、三角形的内切圆1.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫作圆的外切三角形.三角形的内心到三角形的三边距离相等.2.三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心是这个三角形的三条角平分线的交点.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).名称确定方法图形性质外心(三角形外接圆的圆心) 三角形三边中垂线的交点(1)OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心) 三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;(3)内心在三角形内部.【典型例题】类型一、切线长定理1.(2015秋•湛江校级月考)已知PA、PB分别切⊙O于A、B,E为劣弧AB上一点,过E点的切线交PA于C、交PB于D.(1)若PA=6,求△PCD的周长.(2)若∠P=50°求∠DOC.【答案与解析】解:(1)连接OE,∵PA、PB与圆O相切,∴PA=PB=6,同理可得:AC=CE,BD=DE,△PCD的周长=PC+PD+CD=PC+PD+CE+DE=PA+PB=12;(2)∵PA PB与圆O相切,∴∠OAP=∠OBP=90°∠P=50°,∴∠AOB=360°﹣90°﹣90°﹣50°=130°,在Rt△AOC和Rt△EOC中,,∴Rt△AOC≌Rt△EOC(HL),∴∠AOC=∠COE,同理:∠DOE=∠BOD,∴∠COD=∠AOB=65°.【总结升华】本题考查的是切线长定理和全等三角形的判定和性质,掌握切线长定理是解题的关键.2.如图,△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于D,E为BC中点.求证:DE是⊙O切线.3421OFD CB A【答案与解析】证明:连结OD 、CD ,AC 是直径,∴OA=OC=OD ,∴∠OCD=∠ODC ,∠ADC=90°,∴△CDB 是直角三角形.∵E 是BC 的中点,∴DE=EB=EC ,∴∠ECD=∠EDC ,∠ECD+∠OCD=90°, ∴∠EDC+∠ODC=90°,即OD ⊥ED , ∴DE 是⊙O 切线.【总结升华】自然连接OD ,可证OD ⊥DE. 举一反三:【变式】已知:如图,⊙O 为ABC ∆的外接圆,BC 为⊙O 的直径,作射线BF ,使得BA 平分CBF ∠,过点A 作AD BF ⊥于点D .求证:DA 为⊙O 的切线.OFD CBA【答案】证明:连接AO .∵ AO BO =,∴ 23∠=∠.∵ BA CBF ∠平分,∴ 12∠=∠. ∴ 31∠=∠ . ∴ DB ∥AO .∵ AD DB ⊥,∴ 90BDA ∠=︒.∴ 90DAO ∠=︒. ∵ AO 是⊙O 半径,∴ DA 为⊙O 的切线.3.如图,正方形ABCD 边长为4cm ,以正方形的一边BC 为直径在正方形ABCD 内作半圆,过A 作半圆的切线,与半圆相切于F 点,与DC 相交于E 点,则△ADE 的面积( )A.12B.24C.8D.6【答案】D;【解析】解:∵AE与圆O切于点F,显然根据切线长定理有AF=AB=4cm,EF=EC,设EF=EC=xcm,则DE=(4﹣x)cm,AE=(4+x)cm,在三角形ADE中由勾股定理得:(4﹣x)2+42=(4+x)2,∴x=1cm,∴CE=1cm,∴DE=4﹣1=3cm,∴S△ADE=AD•DE÷2=3×4÷2=6cm2.【总结升华】此题主要考查圆的切线长定理,正方形的性质和勾股定理等知识,解答本题关键是运用切线长定理得出AB=AF,EF=EC.类型二、三角形的内切圆4.(2015•靖江市校级二模)如图,在△ABC中,I是内心,O是AB边上一点,⊙O经过B点且与AI相切于I点.(1)求证:AB=AC;(2)若BC=16,⊙O的半径是5,求AI的长.【解题思路】(1)延长AI交BC于D,连结OI,如图,根据内心的性质得∠OBI=∠DBI,则可证明OI∥BD,再根据切线的性质得OI⊥AI,则BD⊥AD,加上AI平分∠BAC,所以△ABC为等腰三角形,得到AB=AC;(2)由OI∥BC,得到△AOI∽△ABD,得到比例式,再根据勾股定理求得2232 3AB BD-=,于是就可得.【答案与解析】解:(1)延长AI交BC于D,连结OI,如图,∵I是△ABC的内心,OCBA∴BI 平分∠ABC,即∠OBI=∠DBI, ∵OB=OI,∴∠OBI=∠OIB, ∴∠DBI=∠OIB, ∴OI∥BD,∵AI 为⊙O 的切线, ∴OI⊥AI, ∴BD⊥AD,∵AI 平分∠BAC,∴△ABC 为等腰三角形, ∴AB=AC;(2)∵OI∥BC, ∴△AOI∽△ABD, ∴==,∴=, ∴AB=,∴AD=22323AB BD -=, ∴AI=•AD=×=.【总结升华】本题考查了三角形的内切圆与内心,等腰三角形的判定和性质,相似三角形的判定和性质等,正确的作出辅助线是解题的关键. 举一反三:【变式】已知如图,△ABC 中,∠C=90°,BC=4,AC=3,求△ABC 的内切圆⊙O 的半径r.OCBA【答案】解:连结OA 、OB 、OC ,∵△ABC 中,∠C=90°,BC=4,AC=3,∴AB=5. 则S △AOB +S △COB +S △AOC =S △ABC ,即11115+4+3=34=12222r r r r ⨯⨯⨯⨯⨯,。
切线长定理及三角形内切圆

如图,一圆内切于四边形ABCD, 且AB=16,CD=10,则四边形 ABCD的周长为
12.已知:如图,⊙O内切于△ABC,∠BOC=105°,
∠ACB=90°,AB=20cm.求BC、AC的长.
15.已知:如图,⊙O是Rt△ABC的内切圆,∠C=90°. (1)若AC=12cm,BC=9cm,求⊙O的半径r; (2)若AC=b,BC=a,AB=c,求⊙O的半径r.
B
PA = PB
∠OPA=∠OPB
O
。
P
A 证明:∵PA,PB与⊙O相切,点A,B是切点 ∴OA⊥PA,OB⊥PB 即∠OAP=∠OBP=90°
试用文字语言 叙述你所发现 的结论
∵ OA=OB,OP=OP ∴Rt△AOP≌Rt△BOP(HL) ∴ PA = PB ∠OPA=∠OPB
切线长定理 从圆外一点引圆的两条切线,它
解:∵ AB,BC,CD,DA都与⊙O相切, P L,M,N,P是切点,
D N
C
M
∴AL=AP,LB=MB, DN=DP,NC=MC
O A L
∴AL+ LB+ DN+ NC = AP+ MB+DP+MC
B
即 AB+ CD = AD+BC 圆的外切四边形的两组对边的和相等(可做定理用)
练 习: 1、已知⊙O的半径为3cm,点P 和圆心O的距离为6cm,经过点 P P有⊙O的两条切线,则切线长 为______cm。这两条切线的夹 60 度。 角为_____ 2、已知圆外切四边形ABCD 中,AB:BC:CD=4:3:2, 它的周长为24cm。则 AB= 8cm ,BC= 6cm ; CD= 4cm ,DA= 6cm 。
切线长定理与三角形内切圆

基础知识点(一)知识点一:切线长定理1.切线长的概念: 在经过圆外一点的切线上,这一点和切点之间的线段的长叫做这点到圆的切线长 2. 切线和切线长是两个不同的概念切线是一条与圆相切的直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量。
3. 定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
注:切线长定理为证明线段相等、角相等提供新的方法4. 方法总结解决有关圆的切线长问题时,往往需要我们构建基本图形。
(1)分别连结圆心和切点(2)连结两切点(3)连结圆心和圆外一点5. 切线,常有六性质1、切线和圆只有一个公共点;2、切线和圆心的距离等于圆的半径; 3切线垂直于过切点的半径; 4、经过圆心垂直于切线的直线必过切点; 5、经过切点垂直于切线的直线必过圆心。
6、从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
6.示例讲解例1如图,四边形 ABCD 的边AB 、BC 、CD DA 和圆O O 分别相切于点 L 、M 、N 、P ,求证: AD+BC=AB+CD 例2如图,卩是00外一点t PA.PB 分别和00切于点=4 c 叫是箱上任意•点,过点作O"的切线分 别交PA.PB 于点D&求;(I ) A PDE 的周长;例3(2014,云歯曲靖中考・23题* 10分)如图是GO 的切线胡/为切点是OO 的直径,GPR 的延长线相 交丁点“<1)若Z.1-20%求LAPB 的度数.(2)当"为多少度时请说明理由.(二)知识点二:三角形的内切圆1.问题:怎样做三角形内切圆2.方法:作角平分线1.作/ ABC 、 / ACB 的平分线 BM 和CN ,交点为I. ID 为半径作O I. O I 就是所求的圆.3. 定义和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。
初中:切线长定理及三角形的内切圆—知识讲解(基础)

切线长定理及三角形的内切圆一知识讲解〈基础)【学习目标】l.了解切线长定义:理解三角形的内切圆及内心的定义:2.掌握切线长定理:利用切线长定理解决相关的计算和证明.【要点梳理】要点一、切线长定理1.切线长:经过圆外一点能够作圆的两条切线,切线上这一点到切点间的线段长叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段.2.切线长定理z从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.要点诠释:切线长定理包含两个结论:线段相等和角相等.要点二、三角形的内切圆1.三角形的内切圆z与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫作圆的外切三角形.三角形的内心到三角形的三边距离相等.2.三角形的内心z三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.三角形的内心是这个三角形的三条角平分线的交点.要点诠释z(1)任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形:(2)解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积户即S=;Pr (S 7'J 三角形的面积P为三角形的周长r为内切圆阳)(3)三角形的外心与内心的区别:名称|确定方法|图形|性质外心(三角形|三角形三边中垂线的外接圆的圆|交点心)AB(1)OA=OB=OC: (2)外心不一定在三角形内部内心(三角形三角形三条角平分线内切圆的圆的交点心)【典型例题】类型一、切线长定理B c(1)到三角形三边距离相等:(2) O A、OB、oc分别平分L'.'.BAC、ζABC、丘ACB:(3)内心在三角形内部.。
1.(2叫湛江校级脚己知PA,PB :5t别切。
于A、B E为劣弧础上一点过E,#,1¥Ji;JJ�交PA于C、交PB于D.(1)若PA吨,求6PCD的周长.(2)若ζP=50°求ζDOC.p【答案与解析】解:(1)连接OE,..PA、PB与圆0相切,:.PA=PB=6,同理可得:AC=CE,BD=DE,6PCD的周长=PC+PD+CD=PC+PD+CE+DE=PA+PB=12: (2)γPA PB与圆O相切,二ζOAP=ζOBP=90。
3第2课时 切线长定理与三角形的内切圆

【学习目标】1. 知识技能(1)理解圆的切线的有关性质并能灵活运用.(2)理解切线长及切线长定理.(3)体验并理解三角形内切圆的性质.2. 解决问题通过例题的教学, 培养学生解决实际问题的能力和应用数学的意识.3. 数学思考(1)通过动手操作、合作交流, 经历圆的切线的性质定理的产生过程.(2)体验切线长定理, 并能正确、灵活地运用.(3)通过作图操作, 经历三角形内切圆的产生过程.4. 情感态度通过动手操作, 反复尝试, 合作交流, 培养探索精神和合作意识.【学习重难点】1. 重点: (1)切线的性质定理、切线长定理.(2)三角形的内切圆.2. 难点:切线性质的灵活运用.课前延伸切线的判定方法:(1)和圆________公共点的直线是圆的切线.(2)和圆心距离等于________的直线是圆的切线.(3)经过________且________的直线是圆的切线.课内探究一、课内探究:1. 如图27-2-131, AB为⊙O的直径, C为⊙O上一点, AD和过点C的切线互相垂直,垂足为D.求证: AC平分∠DAB.2.如图27-2-132, △ABC的内切圆⊙O与BC, CA, AB分别相切于点D, E, F, 且AB =9 cm, BC=14 cm, CA=13 cm, 求AF、BD、CE的长.图27-2-131图27-2-132 图27-2-1333. 如图27-2-133所示, △ABC的内心为I, ∠A=50°, O为△ABC的外心, 求∠BOC 和∠BIC的度数.二、课堂反馈训练1. 如图27-2-134, PA切⊙O于点A, 该圆的半径为3, PO=5, 则PA的长等于________.2.如图27-2-135, ⊙O的半径为5, PA切⊙O于点A, ∠APO=30°, 则切线长PA为________.(结果保留根号)图27-2-134图27-2-135 图27-2-1363.如图27-2-136所示, PA, PB, DE分别切⊙O于点A, B, C, 如果PA=8 cm, 求△PDE的周长.。
切线长定理和三角形的内切圆

切线长定理和三角形的内切圆切线长定理和三角形的内切圆,这俩玩意儿看上去有点高深莫测,但其实嘛,真没那么复杂,大家来轻松聊聊。
想象一下,你在一个阳光明媚的下午,跟朋友们一起聚会,话题从生活琐事聊到数学,大家哈哈大笑,结果你一不小心提到了这两样东西。
你朋友们肯定会瞪大眼睛,疑惑地问:“这是什么鬼?”别急,让我来给你解解惑。
切线长定理就像是数学界的小秘密。
啥意思呢?就是在一个圆外,如果你画一条切线,这条线跟圆的交点只有一个,那就有点意思了。
这条切线的长度与从圆心到切线的距离有关。
大家可能会想,听起来好像没啥用。
切线长定理就像生活中的一条真理,适用性非常广。
举个例子,如果你想用一根绳子围住一个圆,绳子长短跟你离这个圆的远近有直接关系。
这种简单的道理其实在很多地方都能找到,比如你在超市排队,越靠近收银台,越容易看到商品,哈哈,明白了吗?说到内切圆,它就像是三角形里的小秘密武器。
内切圆的意思就是一个圆,它刚好能碰到三角形的三条边。
听上去是不是很神奇?这就好比你想象一下,一个小朋友在玩捉迷藏,躲在一个房间的正,四周都有墙壁,但它总能找到一个最舒服的位置,这就是内切圆的感觉。
三角形的每一条边都可以算得上是“朋友”,而这个内切圆就像是它们的聚会地点。
更妙的是,内切圆的半径跟三角形的面积和周长有着密不可分的关系。
这就像是你在聚会中,跟朋友们聊得开心的同时,气氛越好,大家就越会聚在一起,形成一种共鸣。
再说切线长定理和内切圆的关系。
这俩玩意儿就像是一对黄金搭档。
在三角形里,如果我们在三角形的每一边画切线,切线的长度与内切圆的半径又有妙不可言的联系。
简而言之,切线的长度告诉你这个圆有多大,而内切圆又是三角形的灵魂。
大家可以想象,内切圆就像是三角形的情感核心,而切线则是把这情感包围起来的纽带。
它们互相依存,缺一不可。
我们可以通过简单的图形来理解这一切。
想象一下,一个大三角形,中间有一个小圆,圆正好包裹住三角形的每一条边。
你站在三角形的某个顶点,伸出手,发现能碰到内切圆的点。
24.切线长定理及三角形的内切圆课件

作法:
M
1. 作∠ABC 和∠ACB 的平分线
BM 和 CN,交点为 O.
O
2. 过点 O 作OD⊥BC,垂足为 D.
3. 以O为圆心,OD为半径作圆O.
D
CC ☉O 就是所求的圆.
24.2.4切线长定理及三角形的内切圆
知识要点
1. 与三角形三边都相切的圆叫做三角形的内切圆.
2. 三角形内切圆的圆心叫做这个三角形的内心.
问题2 PA 为☉O 的一条切线,沿着直线 PO 对折,设圆上与
点 A 重合的点为 B.
➢ OB 是☉O 的一条半径吗?
A
➢ PB 是☉O 的切线吗?
O
P
➢ PA、PB 有何关系? B
➢∠APO 和∠BPO 有何关系?
(利用图形轴对称性解释)
24.2.4切线长定理及三角形的内切圆
A
要点归纳
切线长定理:
∴PA = PB ,∠OPA=∠OPB.
∴PC=PC.
∴ △PCA ≌ △PCB,
∴AC=BC.
24.2.4切线长定理及三角形的内切圆
典例精析
例1 已知:如图,四边形 ABCD 的边 AB、BC、CD、
DA 与 ⊙O 分别相切于点 E、F、G、H.
D
求证:AB + CD = AD + BC.
G C
解:连接 IB,IC.
A
∵ 点 I 是△ABC 的内心,
∴ BI,CI 分别平分∠ABC,∠ACB.
I
在△IBC 中,
B
C
BIC 180° (IBC ICB)
180° 1 (ABC ACB) 180° 1 (43° 61°)
2
切线长定理及三角形的内切圆—知识讲解(提高)

切线长定理及三角形的内切圆—知识讲解(提高)责编:常春芳【学习目标】1.了解切线长定义;理解三角形的内切圆及内心的定义;2.掌握切线长定理;利用切线长定理解决相关的计算和证明.【要点梳理】要点一、切线长定理1.切线长:经过圆外一点能够作圆的两条切线,切线上这一点到切点间的线段长叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理:从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.要点诠释:切线长定理包含两个结论:线段相等和角相等.要点二、三角形的内切圆1.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫作圆的外切三角形.三角形的内心到三角形的三边距离相等.2.三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心是这个三角形的三条角平分线的交点.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).名称确定方法图形性质外心(三角形外接圆的圆心) 三角形三边中垂线的交点(1)OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心) 三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;(3)内心在三角形内部.【典型例题】类型一、切线长定理1.(2015•常德)已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为3,∠EAC=60°,求AD的长.【答案与解析】证明:(1)如图1,连接FO,∵F为BC的中点,AO=CO,∴OF∥AB,∵AC是⊙O的直径,∴CE⊥AE,∵OF∥AB,∴OF⊥CE,∴OF所在直线垂直平分CE,∴FC=FE,OE=OC,∴∠FEC=∠FCE,∠0EC=∠0CE,∵∠ACB=90°,即:∠0CE+∠FCE=90°,∴∠0EC+∠FEC=90°,即:∠FEO=90°,∴FE为⊙O的切线;(2)如图2,∵⊙O的半径为3,∴AO=CO=EO=3,∵∠EAC=60°,OA=OE,∴∠EOA=60°,∴∠COD=∠EOA=60°,∵在Rt△OCD中,∠COD=60°,OC=3,∴CD=,∵在Rt△ACD中,∠ACD=90°,CD=,AC=6,∴AD=.【总结升华】本题是一道综合性很强的习题,考查了切线的判定和性质,三角形的中位线的性质,勾股定理,线段垂直平分线的性质等,熟练掌握定理是解题的关键.举一反三:【变式】已知:如图,在梯形 ABCD中,AB∥DC,∠B=90°,AD=AB+DC,AD是⊙O的直径.求证:BC和⊙O相切.【答案】作OE⊥BC,垂足为E,∵ AB∥DC,∠B=90°,∴ OE∥AB∥DC,∵ OA=OD,∴ EB=EC,∴ BC是⊙O的切线.2.已知:如图,AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD,求证:DC是⊙O的切线.【答案与解析】解:连接OD.∵ OA=OD,、∴∠1=∠2.∵ AD∥OC,∴∠1=∠3,∠2=∠4.∴∠3=∠4.又∵ OB=OD,OC=OC,∴△OBC≌△ODC.∴∠OBC=∠ODC.∵BC是⊙O的切线,∴∠OBC=90°,∴∠ODC=90°,∴ DC是⊙O的切线.【总结升华】因为AB是直径,BC切⊙O于B,所以BC⊥AB.要证明DC是⊙O的切线,而DC和⊙O有公共点D,所以可连接OD,只要证明DC⊥OD.也就是只要证明∠ODC=∠OBC.而这两个角分别是△ODC和△OBC的内角,所以只要证△ODC≌△OBC.这是不难证明的.举一反三:【变式】已知:∠MAN=30°,O 为边AN 上一点,以O 为圆心、2为半径作⊙O ,交AN 于D 、E 两点,设AD=x ,⑴如图⑴当x 取何值时,⊙O 与AM 相切;⑵如图⑵当x 为何值时,⊙O 与AM 相交于B 、C 两点,且∠BOC=90°.【答案】解:(1)设AM 与⊙O 相切于点B ,连接OB ,则OB ⊥AB ;在Rt △AOB 中,∠A=30°, 则AO=2OB=4, ∴ AD=AO-OD , 即AD=2.x=AD=2. (2)过O 点作OG⊥AM 于G∵OB=OC=2,∠BOC=90°,∴BC=22 ∵OG⊥BC,2,2,在Rt △OAG 中,∠A=30°∴OA=2OG=22,MNEDO图(1).MANEDBCO图(2)∴x=AD=22-23.(2014•高港区二模)矩形ABCD中,AB=4,AD=3,以AB为直径在矩形内作半圆.DE切⊙O于点E(如图),则tan∠CDF的值为()A.B.C.D.【答案】B;【解析】解:如图,设FC=x,AB的中点为O,连接DO、OE.∵AD、DE都是⊙O的切线,∴DA=DE=3.又∵EF、FB都是⊙O的切线,∴EF=FB=3﹣x.∴在Rt△DCF中,由勾股定理得,(6﹣x)2=x2+42,解得,x=,则tan∠CDF===.故选B.类型二、三角形的内切圆4.(2015•西青区二模)已知四边形ABCD中,AB∥CD,⊙O为内切圆,E为切点.(Ⅰ)如图1,求∠AOD的度数;(Ⅱ)如图1,若AO=8cm,DO=6cm,求AD、OE的长;(Ⅲ)如图2,若F是AD的中点,在(Ⅱ)中条件下,求FO的长.OCBA【答案与解析】解:(Ⅰ)∵⊙O 为四边形ABCD 的内切圆, ∴AD、AB 、CD 为⊙O 的切线, ∴OD 平分∠ADC,OA 平分∠BAD, 即∠O DA=∠ADC,∠OAD=∠BAC, ∵AB∥CD,∴∠ADC+∠BAC=180°, ∴∠ODA+∠OAD=90°, ∴∠AOD=90°;(Ⅱ)在Rt△AOD 中,∵AO=8cm,DO=6cm , ∴AD==10(cm ),∵AD 切⊙O 于E ,∴OE⊥AD, ∴OE•AD=OD•OA, ∴OE==(cm );(Ⅲ)∵F 是AD 的中点, ∴FO=AD=×10=5(cm ).【总结升华】本题考查了三角形的内切圆与内心,也考查了切线长定理. 举一反三:【变式】如图,△ABC 中,∠C=90°,BC=4,AC=3,⊙O 内切与△ABC ,则△ABC 去除⊙O 剩余阴影部分的面积为( )A.12-πB. 12-2πC. 14-4πD. 6-π【答案】D.。
人教版九年级数学上册24.2.2切线长定理及三角形的内切圆(教案)

(1)对于切线长定理的证明,教师可以采用构造辅助线、利用相似三角形等方法,逐步引导学生理解证明过程,降低难度。
(2)在讲解内切圆半径计算时,可以针对不同类型的三角形,给出具体的计算步骤和方法,让学生通过练习逐步掌握。
(3)针对解决实际问题时思路的拓展,教师可以设置一些具有挑战性的题目,引导学生运用所学知识,培养学生的问题分析和解决能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“切线长定理及内切圆在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-解决实际问题的能力培养:通过典型例题,重点训练学生运用切线长定理和内切圆性质解决实际问题的能力。
举例解释:
(1)在讲解切线长定理时,可以通过图形演示和实际测量,让学生直观地理解切线长的概念,并掌握切线长的计算方法。
(2)对于三角形内切圆的性质,通过构造具体的三角形模型,让学生观察内切圆与三角形各边的关系,理解并掌握内切圆半径的计算方法。
2.教学难点
-切线长定理的证明:对于定理的证明过程,学生可能难以理解,需要教师通过直观演示和逐步引导,帮助学生突破这一难点。
-内切圆半径的计算:学生在计算内切圆半径时,可能会对涉及到的几何关系和代数运算感到困惑,需要教师详细讲解并举例说明。
-解决实际问题时思路的拓展:学生在面对复杂的几何问题时,可能会缺乏解题思路,教师需要指导学生如何将问题转化为切线长定理和内切圆性质的应用。
四、教学流程
切线长定理及三角形内切圆

《切线长定理及三角形内切圆》学习目标:理解三角形内切圆相关概念,掌握切线长定理并会用定理解决相关问题。
一、导学探究问题1:如图纸上有一⊙O ,PA 为⊙O 的一切线,沿着直线PO 将纸对折,设圆上与点A 重合的点为B ,这时,OB 是⊙O 的半径吗?利用图形的轴对称,说明图中的PA 与PB ,∠APO 与∠BPO 有什么关系?概念: 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长。
归纳:切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
问题2:如图是一张三角形的铁皮,如何在它上面截下一块圆形的用料,并且使圆的面积尽可能大呢?概念:与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心。
二、精讲多动例题讲解:例1:如图,△ABC 的内切圆⊙O 与BC ,CA ,AB.分别相切于点D ,E ,F 且AB =9cm ,BC =14cm ,CA=13cm ,求AF ,BD ,CE 的长学生仿解:(2009年广西钦州)如图,P A 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、AB CPB 于点E 、F ,切点C 在AB 上,若P A 长为2,则△PEF 的周长是 .例题讲解:例1:已知⊙I 和三角形ABC 的三条边分别相切于D 、E 、F ,⊙I 的半径为r ,三角形ABC 三条边长分别为a ,b ,c ,△ABC 的面积S ,试用含a ,b ,c ,S 的式子表示△ABC 的内切圆的半径r 。
学生仿解:已知⊙O 为直角三角形ABC 的内切圆,切点为D ,E ,F ,半径为r ,∠C =90°,AB ,BC ,AC 的长分别为c ,a ,b ,试用含a ,b ,c 的式子表示内切圆的半径r 。
三、优选精练★基础演练1、(2007湖北孝感课改,3分)如图,AM 、AN 分别切⊙O 于M 、N 两点,点B 在⊙O 上,且∠MBN =70°,则A ∠= .2、(08年江苏省宿迁市)已知直角三角形两条直角边的长是和,则其内切圆的半径是______.3、(09湖北荆门)Rt △ABC 中,9068C AC BC ∠===°,,.则△ABC 的内切圆半径r =______.4、(2007四川成都)如图,O 内切于ABC △,切点分别为D E F ,,.已知50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,那么EDF ∠等于( ) A.40° B.55° C.65° D.70°第1题图 第3题图 第4题图 第5题图DO AFCE•A B P C E F •O5、(2009年济宁市)如图,⊙A 和⊙B 都与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x=的图象上,则图中阴影部分的面积等于 . 6、(2009年新疆)如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .7、如图,⊙O 的半径为3cm ,B 为⊙O 外一点,OB 交⊙O 于点A ,AB=OA ,动点P 从点A 出发,以πcm/s 的速度在⊙O 上按逆时针方向运动一周回到点A 立即停止。
专题8切线长定理及三角形的内切圆-重难点题型

专题2.3 切线长定理及三角形的内切圆-重难点题型【知识点1 切线长定理及三角形的内切圆】(1)切线长定理:过圆外一点所画的圆的两条切线长相等,这一点和圆心的连线平分两条切线的夹角(2)三角形内切圆【题型1 切线长定理(周长问题)】【例1】(2021•永定区模拟)如图,P A、PB切⊙O于点A、B,直线FG切⊙O于点E,交P A于F,交PB于点G,若P A=8cm,则△PFG的周长是()A.8cm B.12cm C.16cm D.20cm【变式1-1】(2020秋•龙凤区期末)如图,四边形ABCD是⊙O的外切四边形,且AB=9,CD=15,则四边形ABCD 的周长为.【变式1-2】(2020秋•崇川区月考)如图,以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点F,交AD边于点E,若△CDE的周长为12,则直角梯形ABCE周长为.【变式1-3】(2020秋•锡山区校级月考)如图,P是⊙O外的一点,P A、PB分别与⊙O相切于点A、B,C是AB̂上的任意一点,过点C的切线分别交P A、PB于点D、E.若P A=4,求△PED的周长.【例2】(2020秋•张店区期末)如图,在Rt△ABC中,∠C=90°,BC=3,AB=5,⊙O是Rt△ABC的内切圆,则⊙O的半径为()A.1B.√3C.2D.2√3【变式2-1】(2020秋•新丰县期末)已知一个直角三角形的两直角边长分别为4、3,则其内切圆的半径为.【变式2-2】(2020秋•东台市期末)在Rt△ABC中,AB=6,BC=8,则这个三角形的内切圆的半径是()A.5B.2C.5或2D.2或√7−1【变式2-3】(2020秋•江岸区校级月考)如图,△ABC中,AB=13,AC=15,BC=14,则△ABC的内切圆半径为.【题型3 三角形的内切圆(求面积)】【例3】(2019秋•遵化市期末)如图,在Rt△ABC中,∠ACB=90°,⊙O是△ABC的内切圆,三个切点分别为D、E、F,若BF=2,AF=3,则△ABC的面积是()A.6B.7C.7√3D.12【变式3-1】(2020•河北模拟)如图,⊙O内切于正方形ABCD,O为圆心,作∠MON=90°,其两边分别交BC,CD于点N,M,若CM+CN=4,则⊙O的面积为()A.πB.2πC.4πD.0.5π【变式3-2】(2021•荆门一模)如图,点O为△ABC的内心,∠A=60°,OB=2,OC=4,则△OBC的面积是()A.4√3B.2√3C.2D.4【变式3-3】(2020秋•黄冈期中)如图,边长为1的正方形ABCD的边AB是⊙O的直径,CF是⊙O的切线,E 为切点,F点在AD上,BE是⊙O的弦,求△CDF的面积.【例4】(2021•莱芜区三模)如图,锐角△ABC内接于⊙O,I为△ABC内心,已知∠OAB=50°,则∠AIB的度数为()A.110°B.125°C.130°D.135°【变式4-1】(2020秋•夏津县期末)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,I是△ABC的内心,则∠BIA的度数是.【变式4-2】(2020秋•龙岩期末)如图,P A、PB、CD分别切⊙O于A、B、E,CD交P A、PB于C、D两点,若∠P=40°,则∠P AE+∠PBE的度数为()A.50°B.62°C.66°D.70°【变式4-3】(2020春•沙坪坝区校级月考)如图,⊙O是四边形ABCD的内切圆,连接OA、OB、OC、OD.若∠AOB=108°,则∠COD的度数是.。
切线长定理和三角形的内切圆(讲义和练习)

【点知讲解】
1. 切线长定理
对于切线长定理,应明确:①若已知圆的两条切线相交,则切线长相等;②若已知两条切线平行,则
圆上两个切点的连线为直径;③经过圆外一点引圆的两条切线,连接两个切点可得到一个等腰三角形;④
经过圆外一点引圆的两条切线,切线的夹角与过切点的两个
A
半径的夹角互补;⑤圆外一点与圆心的连线,平分过这点向圆引的两条切
A. 3 A
E
F
O
B
DC
第 2 题图
B. 4 AE D
O
F
B
C
第 3 题图
C. 2 + 2
A
D
F E
BO C 第 4 题图
D. 2 2
AE
D
PH
G
O
F
B
C
第 5 题图
4. 如图,以正方形 ABCD 的 BC 边为直径作半圆 O,过点 D 作直线切半圆于点 F,交 AB 边于点 E,则
△ADE 和直角梯形 EBCD 周长之比为( )
.
9. 如图,在△ABC 中,∠C=90°,∠A 和∠B 的平分线相交于 P 点,又 PE⊥AB 于点 E,若 BC=2,AC
=3,则 AE·EB=
.
AD
10. 如图,在梯形 ABCD 中,AD∥BC,∠ABC=90°,以 AB 为直径的半圆 O 切
M
CD 于点 M,若这个梯形的面积是 10cm2,周长是 14cm,则半圆 O 的半径等 O
于
cm.
B
C
11. 已知⊙O 中,AC 为直径,MA,MB 分别切⊙O 于点 A,B. (1)如图 1,若∠BAC=25°,求∠AMB 的大小; (2)如图 2,过点 B 作 BD⊥AC 于点 E,交⊙O 于点 D,若 BD=MA,求∠AMB 的大小.
切线长定理和三角形的内切圆(复习)

∴AB = AC 2 - BC 2 = 2 2 - 12 = 3 , ∴△P AB 的周长为 3 3 .
数学
人教版九年级上册
课件目录
首
页
末
页
6.如图 24-2-37, 已知 AB 为☉O 的直径, P A, P C 是☉O 的切 线, A, C 为切点, ∠B AC =30°. ( 1) 求∠P 的大小; ( 2) 若 AB =2, 求 P A 的长( 结果保留根号) .
图 24-2-28
数学
人教版九年级上册
课件目录
首
页
末
页
2.[2012·扬州]如图 24-2-29, P A, P B 是☉O 的切线, 切点分 别为 A, B, 点 C 在☉O 上, 如果∠AC B =70°, 那么∠P 的度 数是
40
度.
图 24-2-29
数学
人教版九年级上册
课件目录
首
页
末
页
【解析】 连接 O A, O B, 如图所示. ∵P A, P B 是☉O 的切线, ∴O A ⊥P A, O B ⊥B P , ∴∠O AP =∠O B P =90°. 又∵∠AC B =70°, ∴∠AO B =2∠AC B =140°, ∴∠P =360°-( 90°+90°+140°) =40°.
图24-2-26
数学
人教版九年级上册
课件目录
首
页
末
页
解: (1)∵P A, PB, E F 是☉O 的切线, ∴P A =P B , E A =E Q , F Q =F B .∴△P E F 的周长 =P E +P F +E Q +F Q =P E +E A +P F +F B =P A +P B =24 cm. (2)∵P A, PB, E F 是☉O 的切线, ∴P A ⊥O A, P B ⊥O B , E F ⊥O Q , ∠AE O =∠Q E O , ∠Q F O =∠B F O . ∴∠AO E =∠Q O E , ∠Q O F =∠B O F , ∠AO B =180°-∠
人教版九年级上册24.第3课时切线长定理和三角形的内切圆课件

A
E OCD
P
B
(2)图中与∠OAC和∠AOC相等的角: ∠OAC=∠OBC=∠APC=∠BPC. ∠AOC=∠BOC=∠PAC=∠PBC
(4)图中所有的全等三角形: △AOP≌ △BOP, △AOC≌ △BOC, △ACP≌ △BCP.
(3)图中所有的相等的线段: PA=PB,AC =BC,OA =OB.
D
G C
H O· F
∴ AE=AH,BE=BF,CG=CF,DG=DH.
A
EB
∴ AE+BE+CG+DG=AH+BF+CF+DH.
∴AB+CD=AD+BC.
24.2.2 第3课时 切线长定理和三角形的内切圆
获取新知
知识点二:三角形的内切圆
思考 李师傅在一家木料厂上班,工作之余想对厂里的三角形废料进 行加工:裁下一块圆形用料,且使圆的面积最大.下图是他的几种设计, 请同学们帮他确定一下.
∴AF=18-9=9,
∴BD=BF=AB-AF=13-9=4,
∴CE=CD=BC-BD=9-4=5.
A E
Or
C
F
D
B
24.2.2 第3课时 切线长定理和三角形的内切圆
随堂演练
1.下列说法正确的是( C ) A.过任意一点总可以作圆的两条切线 B.圆的切线长就是圆的切线的长度 C.过圆外一点所画的圆的两条切线长相等 D.过圆外一点所画的圆的切线长一定大于圆的半径
求AF、BD和CE的长。
A E
Or
C
F
D
B
24.2.2 第3课时 切线长定理和三角形的内切圆
解:因为△ABC的内切圆分别和BC、AC、AB
九年级数学切线长定理与三角形内切圆知识点讲解及练习

九年级数学切线长定理与三角形内切圆知识点讲解及练习【知识点精讲】(一)知识要点----切线长定理1.切线长:经过圆外一点的圆的切线上,这点和切点之间线段的长,叫做这点到圆的切线长。
如图,PA,PB即为P点到圆的切线长。
2.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
(二)知识要点----三角形内切圆1.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心。
练习1.已知:如图,AB 为⊙O 的直径,PA 、PC 是⊙O 的切线,A 、C 为切点,∠BAC =30. (1)求∠P 的大小;(2)若AB =6,求PA 的长.【总结】切线长定理包括线段相等和角相等两个结论,利用切线长定理可以证明线段相等、角相等、弧相等以及垂直关系等。
2.如图,已知AB 是⊙O 的直径,点P 在BA 的延长线上,PD 切⊙O 于点D ,过点B 作BE ⊥PD ,交PD 的延长线于点C ,连接AD 并延长,交BE 于点E .(1)求证:AB=BE ;(2)连结OC ,如果PD=∠ABC=,求OC 的长.603.如图,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于D,过C 作CG∥AE交BA的延长线于点G.(1)求证:CG是⊙O的切线;4.如图,在平面直角坐标系xOy中,点A在第一象限,点B在x轴的正半轴上,∠OAB=90°.⊙P1是△OAB的内切圆,且P1的坐标为(3,1).(1)OA的长为__________,OB的长为__________;(2)点C在OA的延长线上,CD∥AB交x轴于点D.将⊙P1沿水平方向向右平移2个单位得到⊙P2,将⊙P2沿水平方向向右平移2个单位得到⊙P3,按照同样的方法继续操作,依次得到⊙P4,…⊙Pn.若⊙P1,⊙P2,…⊙Pn均在△OCD的内部,且⊙Pn恰好与CD相切,则此时OD的长为__________.(用含n的式子表示)【总结】三角形内切圆的圆心是三角形三条角平分线的交点,它到三角形三条边的距离都相等。
切线长定理及三角形的内切圆

切线长定理及三角形的内切圆一知识回顾1. 定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长。
注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量。
2. 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
3. 常用辅助线已知PA,PB切⊙O于A,B。
(1)(2)(3)(4)图(1)中,有什么结论?(PA=PB)图(2)中,连结AB,增加了什么结论?(增加了∠PAB=∠PBA)图(3)中,再连结OP,增加了什么结论?(增加了∠OPA=∠OPB,OP⊥AB,AC=BC,)。
图(4)中,再连结OA,OB。
又增加了什么结论?(增加∠OAP=∠OBP=90°,∠AOB+∠APB=180°,以及三角形全等)4. 和三角形的各边都相切的圆和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。
注意:“接”与“切”是说明三角形顶点和边与圆的关系,顶点都在圆上的叫做“接”,各边都与圆相切的叫做“切”。
二典型例题例1. 已知:如图,P为⊙O外一点,PA,PB为⊙O的切线,A和B是切点,BC是直径。
求证:AC∥OP。
(一题多解)例2.已知PA、PB分别切⊙O于A、B,E为劣弧AB上一点,过E点的切线交PA于C、交PB于D。
(1)若PA = 6,求△PCD的周长。
(2)若∠P = 50°求∠DOC例3. 已知,如图,从两个同心圆O的大圆上一点A,作弦AB切小⊙O于C点,AD切小⊙O 于E点。
求证:AB=AD.例4.已知:AB为⊙O直径,AD∥BC,∠B = 90°,DC切⊙O于E求证:(1)CD = AD + BC(2)∠COD = 90°1例5如图,△ABC中,∠A=α,O是△ABC的内心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
切?角平分线的判定和性质是什么?
如图,已知⊙O外一点P,你能作几条直线 与⊙O相切?
用尺规过作图 A
o
· o′
p
B
通过作图你能发现什么呢?
1.过圆外一点作圆的切线可以作两条 2、A、B关于直线PO对称。
PO=13, • OB=5,∠AOB=150°,则∠APO= ,
PA= 。
3. 三角形的内切圆
• ①内切圆相关概念 • 如图3,与三角形各边都 的圆叫做三角 • 形的 ,三角形的内切圆的圆心叫 • 做三角形的 . • 这个三角形叫做圆的 .三角形的内
心就是三角形三条内角 的交点. • 即:如图3,如果⊙I与△ABC的三边 , • 则⊙I叫做△ABC的 ,圆心I叫做
如图,P为⊙O 外一点,PA、PB分别切⊙O于A、B两点,
OP交 ⊙O于C,若PA=6,PC=2 ,求3 ⊙O的半径OA
及两切线PA、PB的夹角。
解:连接OA,则OA⊥AP
A
在Rt△AOP中,设OA=x 则OP= x+2 3
O· c
·P
∴OA2+PA2=OP2
即 x2+62=(x+2 3)2
B
解得x=2 3 ,即OA=OC=2 3
CD的长。
y4
• 小结: • 1、切线长定理:从圆外一点可以引
圆的两条切线,切线长相等。这一点
• 与圆心连线平分两条切线的夹角。 • 2、三角形的内切的内心是三角形三条
角平分线的交点,它到三角形三条边
• 的距离相等。
∴OP⊥AB,且OP平分AB
A⌒D与B⌒D 相等吗?
从圆外一点引圆的两条切线,圆心和这一 点的连线垂直平分切点所成的弦;平分切 点所成的弧。
例1
已知,如图,PA、PB是⊙O的两条切线,A、B为切点. 直线 OP 交 ⊙O 于点 D、E,交 AB 于 C.
(1)写出图中所有的垂直关系;
(2)写出图中所有的全等三角形.
∴OP=4 3 在Rt△AOP中,OP=2OA ∴∠APO=30° ∵PA、PB是⊙O的切线
∴∠APB=2∠APO=60°
∴⊙O的半径为2 3,两 切线的夹角为60°
例2 如图,已知:在△ABC中,∠B=90°,O是 AB上一点,以O为圆心,OB为半径的圆交AB
于点E,与AC交于点D。求证:DE∥OC C
②内切圆的作法
• 已知△ABC,画它的内切圆⊙O • 作法: • 1、分别作∠A,∠B的 ,两平分线交
于点O • 2、过点O作AB的垂线段,交AB于D • 3、以点 为圆心,以 的长为半径,画
圆
• 例1:△ABC 的内切圆⊙O 与AC、AB、 BC分别相切于点D、E、F,且AB=5厘 米,
• BC=9厘米,AC=6厘米, 求AE、BF和
(3)如果 PA = 4 cm , PD = 2 cm , 求半径 OA 的长.
解:(1) OA⊥PA , OB⊥PB , OP⊥AB
A
(2) △OAP ≌△ OBP , △OCA≌△OCB
△ACP≌△BCP.
E
O
D
C
P
(3) 设 OA = x cm , 则 PO = PD + x = 2 + x (cm)
在 Rt△OAP 中,由勾股定理,得
B
PA 2 + OA 2 = OP 2
即 4 2 + x 2 = (x + 2 ) 2
解得 x = 3 cm
所以,半径 OA 的长为 3 cm.
2: 问题 (1)若PO与圆相分别交于C、D,连接 AB于PO交于点E,图中有哪些相等的线 段?有哪些相等的角,有哪些相等的 弧?有哪些互相垂直的线段?有哪些 全等的三角形。 (2)你能说说在什么情况下适用切线 长定理?
经过圆外一点作圆的。
从圆外一点引圆的两条切线,切线长相等以及这一点与圆心 的连线平分两条切线的夹角
∵ PA、PB是⊙O的切线,
A
A、B为切点
∴OA⊥PA,OB⊥PB
o
·
p
又∵OA=OB,OP=OP
∴Rt△AOP≌Rt△BOP
B
∴PA=PB,∠APO=∠BPO
证明:连接BD.
∵∠ABC=90°,OB为⊙O的半径
12
D
∴CB是⊙O的切线
∵AC是⊙O的切线,D是切点
· A E O B
∴CD=CB,∠1=∠2
∴OC⊥BD
∵BE是⊙O的直径
∴∠BDE=90°,即DE⊥BD
∴DE∥OC
练习:
• 1、如右图,PA,PB分别为⊙O为的切线, PA=3cm,
• ∠APB=60°,则∠APO= ,PB= , • ∠AOP= • 2、如图,PA,PB分别为⊙O为的切线,
切线长定理:
从圆外一点可以引圆的两条切线,切线长相等, 这一点和圆心的连线平分两条切线的夹角。
A
∵ PA、PB是⊙O的切线, A、B为切点
o
·C D
p
∴PA=PB,∠APO=∠BPO
B
如图,若连接AB,则OP与AB有什么关系?
∵ PA、PB是⊙O的切线, A、B为切点
∴PA=PB,∠APO=∠BPO