第17章 分子标记辅助选择
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– Select for breeding values summed across many markers without
estimation of QTL
(1) selection without test crossing or a progeny test;
(2) selection independent of environments;
2、Most suitable for MAS
Useful if conventional screening methods are laborious, costly, or environmentally dependent
– Selections for disease and insect resistance can be made in the
来提高育种的选择效率与育种预见性。遗传标记包
括形态学标记、细胞学标记、生化标记与分子标记 。
以DNA多态性为基础的分子标记,目前已在作 物遗传图谱构建、重要农艺性状基因的标记定位、 种质资源的遗传多样性分析与品种指纹图谱及纯度 鉴定等方面得到广泛应用,尤其是分子标记辅助选 择(molecular marker-assisted selection , MAS )育种更受到人们的重视。
absence of the pathogen or pest – Greatest potential advantage over phenotypic selection for traits with low penetrance or low heritability
May reduce population sizes needed for phenotypic selection
种实践中希望在早期选择; ○ 除目标性状外,还需对遗传背景进行选择; ○ 质量-数量性状的选择。
1、标记辅助选择的基本方法 1)前景选择(foreground selection) ——对目标基因的选择 ●单标记
可靠性:取决于标记与目标基因间连锁的紧密程度。如, 标记座位M/m与目标基因座位Q/q连锁,重组率为r,则在F2
disease resistance may provide a higher level of resistance and/or more durable resistance to changes in the pathogen population – MAS may promote deployment of fewer resistance genes
Pyramid genes for a single trait that could not otherwise be distinguished at the phenotypic level
– Accumulating multiple quantitative trait loci (QTL) for
根据标记基因型M/M获得目标基因型Q/Q的概率为
p=(1-r)2。 选择正确率随重组率增加而迅速降低。
★ 如要求正确率在90%以上,则标记与目标基因间的重
组率必须<5%。
Genotypes of F2 plants for Xa-21 gene as determined by a PCR marker and progeny tests
– May permit selection of individual plants
May speed up the breeding process
– May be effective for early generation testing – Selections at the seedling stage can be a great advantage in crops
1) Phenotypic selection (PS)
– based on phenotypic value
2) Marker-based selection (MBS)
– from markers that represent QTL or are linked to QTL
3) Marker-assisted selection (MAS)
第十七章 分子标记辅助选择
第一节 分子标记辅助选择的基本原理
第二节 质量性状的标记辅助选择
第三节 数量性状的标记辅助选择
第四节 分子标记辅助选择的挑战与发展策略
传统的育种主要是根据植株的表现型进行选
择,而环境条件、基因间互作、基因型与环境互作
等多种因素都会影响表型选择效率。
育种者在长期的实践中不断探索运用遗传标记
1)How tightly it is linked to genes controlling important traits. 2) The relative importance of those genes in determining the phenotype.
3)The consistency of linkage disequilibrium between the
PCR analysis
Genotype No. of plants
F3 progency test
Genotype No. of plants
Accuracy(%)
RR
34
RR
– from a combination of phenotypic value and marker information
4) Marker-assisted backcrossing (MABC) 5) Marker-assisted recurrent selection (MARS) 6) Genomic Selection or Genome-wide Selection (GS or GWS)
共显 DNA 记的 助选 原理
性 标 辅 择
m R
M S
F1中的标记带型 × F2群体中3种标记带型
RR
RS 2r(1-r) 0.095
SS r2 0.0025
(1-r)2
0.9025
当 r=0.05 时 , 根 据 标 记 基 因 型 mm选择目的基因型RR,选错的 概率约为0.10
Definitions
Validation of QTL in breeding materials
– Multiple markers in vicinity of QTL desirable
Simple, quick, inexpensive protocols for tissue sampling, DNA extraction, genotyping, and data collection Efficient data tracking, management, and integration with phenotypic data Decision support tools for breeders
(3) selection without laborious fieldwork or intensive laboratory work; (4) selection at an earlier breeding stage; (5) selection for multiple genes and/or multiple traits; (6) whole genome selection.
第一节 分子标记辅助选择的基本原理
1、概念: 通过基因定位找到与目标基因紧密连锁的分子标记后, 可通过该分子标记间接地对目标性状进行选择。此法称 分子标记辅助选择(Molecular Assistant Selection, MAS )。
MAS 是育种中的一个诱人领域, 将给传统的育种研
究带来革命性的变化。MAS 主要应用在有利基因的转移
– If phenotypes are poor indicators of genotypes, you cannot map
QTL for use in MAS – If phenotypic data are good, you don‟t need MAS
3. The utility of a marker depends on
with a long generation time – Reduce number of generations in a backcrossing program by selecting for recovery of the recurrent parent genome as well as genes of interest from the donor parent
和基因的累加等方面。
Tester M & Langridge Breeding technologies to increase crop production in a changing world. Science,2010,V 327:818-822
抗性供体
m R
受体
×
M S
目的基因与标记连锁(交换值为r) 亲本中的标记带型
Genes for multiple traits of interest may also be combined in one cultivar with relative efficiency Marker technologies provide the potential to understand the underlying causes of epistasis and GXE, which could greatly improve selection efficiency
– optimal design of selection strategies – accurate selection of genotypes
第二节 质量性状的标记辅助选择
大多数情况下,质量性状无需借助于分子标记,但采
用分子标记辅助选择可提高选择效率:
○ 表现型测定难度大或费用太高;
ຫໍສະໝຸດ Baidu
○ 表现型只能在个体发育后期才能测量,而育
Paradox of MAS
Qualitative traits and quantitative traits with high heritability are more amenable to MAS than quantitative traits with low heritability, which is generally the case for phenotypic selection as well. Epistasis (or effect of genetic background) and genotype by environment interactions (GXE) can confound progress from MAS just as they do in conventional selection schemes. Efforts to improve the precision of QTL estimation through increased replication and multilocational testing will also increase the efficiency of phenotypic selection, thereby reducing the gains that may be attained through MAS. Catch 22:
marker and QTL 4) The frequency of the QTL (MAS will be more beneficial when the QTL is in low frequency)
Requirements for wide-scale application of MAS
estimation of QTL
(1) selection without test crossing or a progeny test;
(2) selection independent of environments;
2、Most suitable for MAS
Useful if conventional screening methods are laborious, costly, or environmentally dependent
– Selections for disease and insect resistance can be made in the
来提高育种的选择效率与育种预见性。遗传标记包
括形态学标记、细胞学标记、生化标记与分子标记 。
以DNA多态性为基础的分子标记,目前已在作 物遗传图谱构建、重要农艺性状基因的标记定位、 种质资源的遗传多样性分析与品种指纹图谱及纯度 鉴定等方面得到广泛应用,尤其是分子标记辅助选 择(molecular marker-assisted selection , MAS )育种更受到人们的重视。
absence of the pathogen or pest – Greatest potential advantage over phenotypic selection for traits with low penetrance or low heritability
May reduce population sizes needed for phenotypic selection
种实践中希望在早期选择; ○ 除目标性状外,还需对遗传背景进行选择; ○ 质量-数量性状的选择。
1、标记辅助选择的基本方法 1)前景选择(foreground selection) ——对目标基因的选择 ●单标记
可靠性:取决于标记与目标基因间连锁的紧密程度。如, 标记座位M/m与目标基因座位Q/q连锁,重组率为r,则在F2
disease resistance may provide a higher level of resistance and/or more durable resistance to changes in the pathogen population – MAS may promote deployment of fewer resistance genes
Pyramid genes for a single trait that could not otherwise be distinguished at the phenotypic level
– Accumulating multiple quantitative trait loci (QTL) for
根据标记基因型M/M获得目标基因型Q/Q的概率为
p=(1-r)2。 选择正确率随重组率增加而迅速降低。
★ 如要求正确率在90%以上,则标记与目标基因间的重
组率必须<5%。
Genotypes of F2 plants for Xa-21 gene as determined by a PCR marker and progeny tests
– May permit selection of individual plants
May speed up the breeding process
– May be effective for early generation testing – Selections at the seedling stage can be a great advantage in crops
1) Phenotypic selection (PS)
– based on phenotypic value
2) Marker-based selection (MBS)
– from markers that represent QTL or are linked to QTL
3) Marker-assisted selection (MAS)
第十七章 分子标记辅助选择
第一节 分子标记辅助选择的基本原理
第二节 质量性状的标记辅助选择
第三节 数量性状的标记辅助选择
第四节 分子标记辅助选择的挑战与发展策略
传统的育种主要是根据植株的表现型进行选
择,而环境条件、基因间互作、基因型与环境互作
等多种因素都会影响表型选择效率。
育种者在长期的实践中不断探索运用遗传标记
1)How tightly it is linked to genes controlling important traits. 2) The relative importance of those genes in determining the phenotype.
3)The consistency of linkage disequilibrium between the
PCR analysis
Genotype No. of plants
F3 progency test
Genotype No. of plants
Accuracy(%)
RR
34
RR
– from a combination of phenotypic value and marker information
4) Marker-assisted backcrossing (MABC) 5) Marker-assisted recurrent selection (MARS) 6) Genomic Selection or Genome-wide Selection (GS or GWS)
共显 DNA 记的 助选 原理
性 标 辅 择
m R
M S
F1中的标记带型 × F2群体中3种标记带型
RR
RS 2r(1-r) 0.095
SS r2 0.0025
(1-r)2
0.9025
当 r=0.05 时 , 根 据 标 记 基 因 型 mm选择目的基因型RR,选错的 概率约为0.10
Definitions
Validation of QTL in breeding materials
– Multiple markers in vicinity of QTL desirable
Simple, quick, inexpensive protocols for tissue sampling, DNA extraction, genotyping, and data collection Efficient data tracking, management, and integration with phenotypic data Decision support tools for breeders
(3) selection without laborious fieldwork or intensive laboratory work; (4) selection at an earlier breeding stage; (5) selection for multiple genes and/or multiple traits; (6) whole genome selection.
第一节 分子标记辅助选择的基本原理
1、概念: 通过基因定位找到与目标基因紧密连锁的分子标记后, 可通过该分子标记间接地对目标性状进行选择。此法称 分子标记辅助选择(Molecular Assistant Selection, MAS )。
MAS 是育种中的一个诱人领域, 将给传统的育种研
究带来革命性的变化。MAS 主要应用在有利基因的转移
– If phenotypes are poor indicators of genotypes, you cannot map
QTL for use in MAS – If phenotypic data are good, you don‟t need MAS
3. The utility of a marker depends on
with a long generation time – Reduce number of generations in a backcrossing program by selecting for recovery of the recurrent parent genome as well as genes of interest from the donor parent
和基因的累加等方面。
Tester M & Langridge Breeding technologies to increase crop production in a changing world. Science,2010,V 327:818-822
抗性供体
m R
受体
×
M S
目的基因与标记连锁(交换值为r) 亲本中的标记带型
Genes for multiple traits of interest may also be combined in one cultivar with relative efficiency Marker technologies provide the potential to understand the underlying causes of epistasis and GXE, which could greatly improve selection efficiency
– optimal design of selection strategies – accurate selection of genotypes
第二节 质量性状的标记辅助选择
大多数情况下,质量性状无需借助于分子标记,但采
用分子标记辅助选择可提高选择效率:
○ 表现型测定难度大或费用太高;
ຫໍສະໝຸດ Baidu
○ 表现型只能在个体发育后期才能测量,而育
Paradox of MAS
Qualitative traits and quantitative traits with high heritability are more amenable to MAS than quantitative traits with low heritability, which is generally the case for phenotypic selection as well. Epistasis (or effect of genetic background) and genotype by environment interactions (GXE) can confound progress from MAS just as they do in conventional selection schemes. Efforts to improve the precision of QTL estimation through increased replication and multilocational testing will also increase the efficiency of phenotypic selection, thereby reducing the gains that may be attained through MAS. Catch 22:
marker and QTL 4) The frequency of the QTL (MAS will be more beneficial when the QTL is in low frequency)
Requirements for wide-scale application of MAS