2016年上海虹口区数学一模试卷附答案
2016年上海中考数学一模试卷和答案含奉贤,浦东,青浦,静安,闸北,嘉定,宝山,虹口,黄浦9区试卷和答案
![2016年上海中考数学一模试卷和答案含奉贤,浦东,青浦,静安,闸北,嘉定,宝山,虹口,黄浦9区试卷和答案](https://img.taocdn.com/s3/m/ca760409a76e58fafab003a0.png)
2016年奉贤区调研测试九年级数学2016.01(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)1.用一个4倍放大镜照△ABC ,下列说法错误的是(▲) A .△ABC 放大后,∠B 是原来的4倍; B .△ABC 放大后,边AB 是原来的4倍; C .△ABC 放大后,周长是原来的4倍; D .△ABC 放大后,面积是原来的16倍2.抛物线()212y x =-+的对称轴是(▲)A .直线2x =;B .直线2x =-;C .直线1x =;D .直线1x =-.3.抛物线223y x x =--与x 轴的交点个数是(▲) A . 0个 ; B .1个; C . 2个 ; D . 3个.4.在△ABC 中,点D 、E 分别是边AB 、AC 上的点,且有12AD AE DB EC ==,BC =18,那么DE 的值为(▲)A .3 ;B .6 ;C .9 ;D .12. 5.已知△ABC 中,∠C =90°,BC =3,AB =4,那么下列说法正确的是(▲) A .3sin 5B =; B . 3cos 4B = ; C .4tan 3B =; D .3cot 4B =6.下列关于圆的说法,正确的是(▲) A .相等的圆心角所对的弦相等;B .过圆心且平分弦的直线一定垂直于该弦;C .经过半径的端点且垂直于该半径的直线是圆的切线;D .相交两圆的连心线一定垂直且平分公共弦.二.填空题:(本大题共12题,每题4分,满分48分) 7.已知3x =2y ,那么xy=▲; . 8.二次函数342+=x y 的顶点坐标为▲;9. 一条斜坡长4米,高度为2米,那么这条斜坡坡比i =▲;10.如果抛物线k x k y -+=2)2(的开口向下,那么k 的取值范围是▲;11.从观测点A 处观察到楼顶B 的仰角为35°,那么从楼顶B 观察观测点A 的俯角为▲; 12.在以O 为坐标原点的直角坐标平面内有一点A (-1,3),如果AO 与y 轴正半轴的夹角为α,那么角α的余弦值为▲;13.如图,△ABC 中,BE 平分∠ABC ,DE//BC ,若DE =2AD ,AE=2,那么EC =▲; 14.线段AB 长10cm ,点P 在线段AB 上,且满足BP APAP AB=,那么AP 的长为▲cm ;. 15.⊙O 1的半径11r =,⊙O 2的半径22r =,若此两圆有且仅有一个交点,那么这两圆的圆心距d =▲;16.已知抛物线(4)y ax x =+,经过点A (5,9)和点B (m,9),那么m =▲;17.如图,△ABC 中,AB =4,AC =6,点D 在BC 边上,∠DAC =∠B ,且有AD =3,那么BD的长为▲;18.如图,已知平行四边形ABCD 中,AB=AD =6,cotB =21,将边AB 绕点A 旋转,使得点B 落在平行四边形ABCD 的边上,其对应点为B ’(点B ’不与点B 重合),那么 sin ∠CAB ’=▲. 三、解答题(本大题共7题,满分78分) 19.(本题满分10分)计算:︒+︒--︒+︒60sin 260tan 2130cos 45sin 422.第13题图BA DC E第17题图B ADC第18题图B20.(本题满分10分,每小题5分)如图,已知AB//CD//EF ,AB:CD:EF=2:3:5,=. (1)=BD (用a 来表示);(2)求作向量AE 在AB 、BF 方向上的分向量. (不要求写作法,但要指出所作图中表示结论的向量)21.(本题满分10分,每小题5分)为方便市民通行,某广场计划对坡角为30°,坡长为60米的斜坡AB 进行改造,在斜坡中点D 处挖去部分坡体(阴影表示),修建一个平行于水平线CA 的平台DE 和一条新的斜坡BE .(1)若修建的斜坡BE 的坡角为36°,则平台DE 的长约为多少米?(2)在距离坡角A 点27米远的G 处是商场主楼,小明在D 点测得主楼顶部H 的仰角为30°,那么主楼GH 高约为多少米?(结果取整数,参考数据:sin 36°=0.6,cos 36°=22.(本题满分10分,每小题5分)如图,在⊙O 中,AB 为直径,点B 为CD 的中点,CD =AE =5. (1)求⊙O 半径r 的值;(2)点F 在直径AB 上,联结CF ,当∠FCD =∠DOB 时,求AF 的长.E AB F第20题图CD第21题图F E ABOCD23.(本题满分12分,第(1)小题6分,第(2)小题6分) 已知:在梯形ABCD 中,AD //BC ,AB ⊥BC ,∠AEB =∠ADC . (1)求证:△ADE ∽△DBC ;(2)联结EC,若2CD AD BC =⋅,求证:∠DCE =∠ADB .24.(本题满分12分,第(1)小题4分,第(2)小题8分)如图,二次函数2y x bx c =++图像经过原点和点A (2,0),直线AB 与抛物线交于点B , 且∠BAO =45°.(1)求二次函数解析式及其顶点C 的坐标; (2)在直线AB 上是否存在点D ,使得△BCD为直角三角形.若存在,求出点D 的坐标, 若不存在,说明理由.25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) 已知:如图,Rt △ABC 中,∠ACB =90°,AB =5,BC =3,点D 是斜边AB 上任意一点,联结DC ,过点C 作CE ⊥CD ,垂足为点C ,联结DE ,使得∠EDC =∠A ,联结BE . (1)求证:AC BE BC AD ⋅=⋅;(2)设AD =x ,四边形BDCE 的面积为S ,求S 与x 之间的函数关系式及x 的取值范围; (3)当ABC BDE S S ∆=41△时,求tan ∠BCE 的值.EA B第20题图CDAE第25题备用图A2016学年九年级第一学期期末测试参考答案与评分标准 2016.01一、选择题:(本大题共6题,每题4分,满分24分)1.A ; 2.C ; 3.C ; 4.B ; 5.B ; 6.D . 二、填空题:(本大题共12题,每题4分,满分48分)7.23; 8.(0,3);9.2k <-; 10.1 11.35°; 12.10103; 13.4; 14.5; 15.1或3; 16.-9; 17.72; 18.1010或2.三、解答题:(本大题共7题,满分78分)19.(1)原式=2+24222⎛⨯ ⎝⎭...................................(4分)=(13+244-+(4分) = -1 .......................(2分) 20.解:(1)13a …………………………………………………(5分)(2)向量AE 在AB 、BF 方向上的分向量分别为GE 、AG.图形准确……………………………………………(3分) 结论正确……………………………………………(2分)21.解:(1)由题意得,AB =60米,∠BAC =30°,∠BEF =36°,FM//CG∵点D 是AB 的中点 ∴BD =AD =12AB =30................................................(1分) ∵DF//AC 交BC 、HG 分别于点F 、M , ∴∠BDF =∠A=30°,∠BFE =∠C=90° 在Rt △BFD 中,∠BFD =90°,cos BDF DF BD ∠=,30DF =, 25.5DF =≈............(1分) sin BF BDF BD∠=1230BF =. 15BF =…………………………(1分)在Rt △BFE 中,∠BFE =90°,tan BEF BFEF ∠=,0.715EF =,EF =21.4………(1分) ∴DE=DF-EF =25.5-21.4=4.1≈4(米)答:平台DE 的长约为4米. ………………………………………………………(1分)(2)由题意得,∠HDM =30°,AG =27米,过点D 作DN ⊥AC 于点N在Rt △DNA 中,∠DNA =90°cos DAC AN AD ∠=30AN =AN =(1分)sin DN DAN AD∠= 1230DN = 15DN =...................(1分)∴27DM NG AN AG ==+=……………………………………(1分)在Rt △HMD 中,∠HMD =90° tan HDM HMDM ∠=15HM =+453930153915≈+=++=+=MG HM HG 米…(1分)答:主楼GH 的高约为45米………………………………………………………(1分) 22.解:(1) ∵OB 是半径,点B 是CD 的中点∴OB ⊥CD ,CE=DE =12CD =…(2分)∴222ODED OE =+ ∴()()2225-5r r =+ 解得 r =3…………(3分)(2) ∵OB ⊥CD ∴∠OEC=∠OED =90°……………………………………………(1分) 又∵∠FCE=∠DOE ∴△FCE ∽△DOE ∴EF CEED OE=…………………………(2分)= 得52EF =……………………………………………………(1分)∴ 52AF AE EF =-=……………………………………………………………(1分) 23.(1)证明:∵AD ∥BC ∴∠ADB =∠DBC ………………………………………(2分) ∵ ∠ADC+∠C=180° ∠AEB+∠AED=180°又∵∠AEB =∠ADC ∴∠C =∠AED …………………………………………(2分) ∴△ADE ∽△DBC ……………………………………………………………(2分) (2) ∵△ADE ∽△DBC∴AD DBDE BC =∴AD BC DB DE ⋅=⋅…………………………………………(1分) ∵2CD AD BC =⋅ ∴2CD DB DE =⋅∴CD DEDB CD =………………………………………………………………………(1分) ∵∠CDB =∠CDE∴△CDE ∽△BDC ………………………………………………………………(2分) ∴ ∠DCE =∠DBC ………………………………………………………………(1分) ∵∠ADB =∠DBC∴∠DCE =∠ADB ………………………………………………………………(1分)24.解:(1)将原点(0,0)和点A (2,0)代入2y x bx c =++中0042cb c=⎧⎨=++⎩ 解得20b c =-⎧⎨=⎩ 22y x x =-………………………(3分)∴顶点C 的坐标为(1,﹣1(2)过点B 作BG ⊥x 轴,垂足为点G ∵∠BGA =90°,∠A =45° ∴∠GBA=45° 设点A (x ,22x x -) 则22x x -=2-x ∴点B (-1,3设直线AB : 0y kx b k =+≠() 将点A (2,0)、B (-1,3)代入203k b k b +=⎧⎨-+=⎩解得12k b =-⎧⎨=⎩ 直线AB :y =设点D (x ,2x -+)则BC =CD =BD 若△BCD 为直角三角形①∠BCD =90° ∴222BC CD BD += 即(222+= 解得73x =∴7133D ⎛⎫⎪⎝⎭点,-……………………………………………(2分)② ∠BDC =90°∴222BDCD BC += 即(222+=解得 1221x x ==-,(舍去) ∴点D (2,0)…………………(2分)综上所述:()712,033D ⎛⎫ ⎪⎝⎭点,-或25.解:(1)∵CE ⊥CD ∴∠DCE =∠BCA =90︒∵∠EDC =∠A ∴△EDC ∽△BAC ∴EC BCDC AC=……………(2分) ∵∠DCE =∠BCA ∴∠DCE -∠BCD =∠BCA -∠BCD 即∠BCE=∠DCA ……(1分)∵ECBCDC AC = ∴△BCE ∽△ACD ………………………………(1分)∴BCACBEAD= 即AC BE BC AD ⋅=⋅………………………………………(1分) (2)∵△BCE ∽△ACD ∴∠CBE =∠A ∵∠BCA=90° ∴4AC ,∠ABC+∠A=90°∴∠CBE+∠ABC=90°即∠DBE=90°……………………(1分)∴DE ==∵BC AC BE AD =,34BE x = ∴ 3=4BE x ()2113153==52248BDE x x S BD BE x x ∆-⋅-⋅=……………………………………(1分) ∵ △CDE ∽△CAB ∴22121165CDE ABC S DE x x S AB ∆∆⎛⎫==-+ ⎪⎝⎭ ∵11==43=622ABC S BC AC ∆⋅⨯⨯ ∴2312=685CDE S x x ∆-+……………………(1分) 即()21=S 60540BDE CDE S S x x ∆∆+=-<<……………………………(2分) (3)11==43=622ABC S BC AC ∆⋅⨯⨯ 由14ABC S S ∆=得 21531684x x -=⨯ ∴2540x x -+=1214x x ==,…………………………(1分)过点D 作DF ⊥AC 于点F ∴∠DFA=∠BCA =90°∴ DF ∥BC ∴DF AD AFBC AB AC == 当x =1时,3455DF AF ==,,165CF AC AF =-=………………………………(1分) 在Rt △DFC 中,∠DFC =90° t a n 3DF DCF ==∠∵∠BCE=∠DCA ∴3an 16t BCE =∠当x =4时,得121655DF AF ==, CF =3tan DCF DFCF∠==,即tan ∠∴综上所述:6an 331t BCE =∠或.2016浦东一模一. 选择题1. 如果两个相似三角形对应边之比是1:4,那么它们的对应边上的中线之比是( ) A. 1:2; B. 1:4; C. 1:8; D. 1:16;2. 在Rt △ABC 中,90C ︒∠=,若5AB =,4BC =,则sin A 的值为( )A.34; B. 35; C. 45; D. 43; 3. 如图,点D 、E 分别在AB 、AC 上,以下能推得DE ∥BC 的条件是( ) A. ::AD AB DE BC =; B. ::AD DB DE BC =; C. ::AD DB AE EC =; D. ::AE AC AD DB =;4. 已知二次函数2y ax bx c =++的图像如图所示,那么a 、b 、c 的符号为( ) A. 0a <,0b <,0c >; B. 0a <,0b <,0c <; C. 0a >,0b >,0c >; D. 0a >,0b >,0c <;5. 如图,Rt △ABC 中,90ACB ︒∠=,CD AB ⊥于点D ,下列结论中错误的是( )A. 2AC AD AB =⋅;B. 2CD CA CB =⋅; C. 2CD AD DB =⋅; D. 2BC BD BA =⋅; 6. 下列命题是真命题的是( )A. 有一个角相等的两个等腰三角形相似;B. 两边对应成比例且有一个角相等的两个三角形相似;C. 四个内角都对应相等的两个四边形相似;D. 斜边和一条直角边对应成比例的两个直角三角形相似;二. 填空题7. 已知13x y =,那么x x y =+ ; 8. 计算:123()3a ab -+=;9. 上海与杭州的实际距离约200千米,在比例尺为1:5000000的地图上,上海与杭州的图 上距离约 厘米;10. 某滑雪运动员沿着坡比为100米,则运动员下降的垂直高度为 米;11. 将抛物线2(1)y x =+向下平移2个单位,得到新抛物线的函数解析式是 ; 12. 二次函数2y ax bx c =++的图像如图所示,对称轴为直线2x =,若此抛物线与x 轴的 一个交点为(6,0),则抛物线与x 轴的另一个交点坐标是 ;13. 如图,已知AD 是△ABC 的中线,点G 是△ABC 的重心,AD a = ,那么用向量a表示向量AG为 ;14. 如图,△ABC 中,6AC =,9BC =,D 是△ABC 的边BC 上的点,且CAD B ∠=∠, 那么CD 的长是 ;15. 如图,直线1AA ∥1BB ∥1CC ,如果13AB BC =,12AA =,16CC =,那么线段1BB 的 长是 ;16. 如图是小明在建筑物AB 上用激光仪测量另一建筑物CD 高度的示意图,在地面点P 处 水平放置一平面镜,一束激光从点A 射出经平面镜上的点P 反射后刚好射到建筑物CD 的 顶端C 处;已知AB BD ⊥,CD BD ⊥,且测得15AB =米,20BP =米,32PD =米,B 、P 、D 在一条直线上,那么建筑物CD 的高度是 米;17. 若抛物线2y ax c =+与x 轴交于点(,0)A m 、(,0)B n ,与y 轴交于点(0,)C c ,则称 △ABC 为“抛物三角形”;特别地,当0mnc <时,称△ABC 为“正抛物三角形”;当0mnc > 时,称△ABC 为“倒抛物三角形”;那么,当△ABC 为“倒抛物三角形”时,a 、c 应分 别满足条件 ;18. 在△ABC 中,5AB =,4AC =,3BC =,D 是边AB 上的一点,E 是边AC 上的 一点(D 、E 均与端点不重合),如果△CDE 与△ABC 相似,那么CE = ;三. 解答题19. 456tan302cos30︒︒︒+-;20. 二次函数2y ax bx c =++的变量x 与变量y 的部分对应值如下表:(1)求此二次函数的解析式; (2)写出抛物线顶点坐标和对称轴;21. 如图,梯形ABCD 中,AD ∥BC ,点E 是边AD 的中点,联结BE 并延长交CD 的延 长线于点F ,交AC 于点G ;(1)若2FD =,13ED BC =,求线段DC 的长; (2)求证:EF GB BF GE ⋅=⋅;22. 如图,l 为一条东西方向的笔直公路,一辆小汽车在这段限速为80千米/小时的公路上 由西向东匀速行驶,依次经过点A 、B 、C ,P 是一个观测点,PC l ⊥,PC =60米,4tan 3APC ∠=,45BPC ︒∠=,测得该车从点A 行驶到点B 所用时间为1秒; (1)求A 、B 两点间的距离;(2)试说明该车是否超过限速;23. 如图,在△ABC 中,D 是BC 边的中点,DE BC ⊥交AB 于点E ,AD AC =,EC 交AD 于点F ;(1)求证:△ABC ∽△FCD ; (2)求证:3FC EF =;24. 如图,抛物线22y ax ax c =++(0)a >与x 轴交于(3,0)A -、B 两点(A 在B 的左侧), 与y 轴交于点(0,3)C -,抛物线的顶点为M ;(1)求a 、c 的值; (2)求tan MAC ∠的值;(3)若点P 是线段AC 上一个动点,联结OP ; 问是否存在点P ,使得以点O 、C 、P 为顶点的 三角形与△ABC 相似?若存在,求出P 点坐标; 若不存在,请说明理由;25. 如图,在边长为6的正方形ABCD 中,点E 为AD 边上的一个动点(与点A 、D 不重合),45EBM ︒∠=,BE 交对角线AC 于点F ,BM 交对角线AC 于点G ,交CD 于点M ;(1)如图1,联结BD ,求证:△DEB ∽△CGB ,并写出DECG的值; (2)联结EG ,如图2,设AE x =,EG y =,求y 关于x 的函数解析式,并写出定义域; (3)当M 为边DC 的三等分点时,求EGF S 的面积;21、22、23、24、25、2016青浦、静安一模一. 选择题 1.的相反数是( )A.B. C.2; D. 2-; 2. 下列方程中,有实数解的是( )A. 210x x -+=; B. 1x =-;C.210x x x -=-; D. 211xx x-=-; 3. 化简11(1)x ---的结果是( ) A.1x x -; B. 1xx -; C. 1x -; D. 1x -; 4. 如果点(2,)A m 在抛物线2y x =上,将此抛物线向右平移3个单位后,点A 同时平移到 点A ',那么A '坐标为( )A. (2,1);B. (2,7);C. (5,4);D. (1,4)-;5. 在Rt △ABC 中,90C ∠=︒,CD 是高,如果AD m =,A α∠=,那么BC 的长为( )A. tan cos m αα⋅⋅;B. cot cos m αα⋅⋅;C.tan cos m αα⋅; D. tan sin m αα⋅;6. 如图,在△ABC 与△ADE 中,BAC D ∠=∠,要使△ABC 与△ADE 相似,还需满 足下列条件中的( )A. AC AB AD AE =;B. AC BC AD DE =;C. AC AB AD DE =;D. AC BCAD AE=;二. 填空题7. 计算:23(2)a -= ; 8. 函数3()2x f x x -=+的定义域为 ;9. 1x =-的根为 ;10. 如果函数(3)1y m x m =-+-的图像经过第二、三、四象限,那么常数m 的取值范围为 ;11. 二次函数261y x x =-+的图像的顶点坐标是 ;12. 如果抛物线225y ax ax =-+与y 轴交于点A ,那么点A 关于此抛物线对称轴的对称点坐标是 ;13. 如图,已知D 、E 分别是△ABC 的边AB 和AC 上的点,DE ∥BC ,BE 与CD 相交于点F ,如果1AE =,2CE =,那么:EF BF 等于 ;14. 在Rt △ABC 中,90C ∠=︒,点G 是重心,如果1sin 3A =,2BC =,那么GC 的长 等于 ;15. 已知在梯形ABCD 中,AD ∥BC ,2BC AD =,设AB a = ,BC b = ,那么CD =(用向量a 、b的式子表示);16. 在△ABC 中,点D 、E 分别在边AB 、AC 上,AED B ∠=∠,6AB =,5BC =,4AC =,如果四边形DBCE 的周长为10,那么AD 的长等于 ;17. 如图,在平行四边形ABCD 中,AE BC ⊥,垂足为E ,如果5AB =,8BC =,4sin 5B =,那么tan CDE ∠= ; 18. 将平行四边形ABCD (如图)绕点A 旋转后,点D 落在边AB 上的点D ',点C 落到C ',且点C '、B 、C 在一直线上,如果13AB =,3AD =,那么A ∠的余弦值为 ;三. 解答题19. 化简:222266942x x x x x x x---++--,并求当123x =时的值;20. 用配方法解方程:22330x x --=;21. 如图,直线43y x =与反比例函数的图像交于点(3,)A a ,第一象限内的点B 在这个反比 例函数图像上,OB 与x 轴正半轴的夹角为α,且1tan 3α=:(1)求点B 的坐标;(2)求OAB ∆的面积;22. 如图,从地面上的点A 看一山坡上的电线杆PQ ,测得杆顶端点P 的仰角是26.6°,向 前走30米到达B 点,测得杆顶端点P 和杆底端点Q 的仰角分别是45°和33.7°,求该电 线杆PQ 的高度(结果精确到1米);(备用数据:sin 26.60.45︒=,cos 26.60.89︒=,tan 26.60.50︒=,cot 26.6 2.00︒=,sin 33.70.55︒=,cos33.70.83︒=,tan 33.70.67︒=,cot 33.7 1.50︒=)23. 已知,如图,在△ABC 中,点D 、E 分别在边BC 、AB 上,BD AD AC ==,AD 与CE 相交于点F ,2AE EF EC =⋅; (1)求证:ADC DCE EAF ∠=∠+∠;(2)求证:AF AD AB EF ⋅=⋅;2124. 如图,直线112y x =+与x 轴、y 轴分别相交于点A 、B ,二次函数的图像与y 轴相 交于点C ,与直线112y x =+相交于点A 、D ,CD ∥x 轴,CDA OCA ∠=∠;(1)求点C 的坐标;(2)求这个二次函数的解析式;25. 已知:在梯形ABCD 中,AD ∥BC ,10AC BC ==,4cos 5ACB ∠=,点E 在对角 线AC 上,且CE AD =,BE 的延长线与射线AD 、射线CD 分别相交于点F 、G ,设AD x =,△AEF 的面积为y ;(1)求证:DCA EBC ∠=∠;(2)如图,当点G 在线段CD 上时,求y 关于x 的函数解析式,并写出它的定义域; (3)如果△DFG 是直角三角形,求△AEF 的面积;22静安区2015学年第一学期期末教学质量调研 九年级数学试卷参考答案及评分说明2016.1一、选择题:1.D ; 2.D ; 3.A ; 4.C ; 5.C ; 6.C . 二、填空题:7.68a -; 8.2-≠x ; 9.4=x ; 10.31<<m ; 11.(3, -8); 12.(2, 5); 13.31; 14.2; 15.b a 21--; 16.2; 17.21; 18.135. 三、解答题:19.解:原式= )2()3()2)(2()3)(2(2--÷-+-+x x x x x x x ············································································ (4分) =)3()2()2)(2()3)(2(--⋅-+-+x x x x x x x ··············································································· (1分) =3-x x. ········································································································ (2分) 当3321==x时,原式=231311333+-=-=-. ································· (3分) 20.解:023232=--x x , ····································································································· (1分) 23232=-x x , ············································································································ (1分) 16923)43(2322+=+-x x , ······················································································· (2分) 1633)43(2=-x , ·········································································································· (2分) 43343±=-x , ········································································································· (2分)433231+=x ,433232-=x . ·············································································· (2分)2321.解:(1)∵直线x y 34=与反比例函数的图像交于点A (3,a ), ∴334⨯=a =4,∴点的坐标A (3,4). ······························································ (1分) 设反比例函数解析式为xky =, ············································································· (1分)∴12,34==k k ,∴反比例函数解析式为xy 12=. ··········································· (1分)过点B 作BH ⊥x 轴,垂足为H , 由31tan ==OB BH α,设BH =m ,则OB =m 3,∴B (m 3,m ) ························ (1分) ∴mm 312=,2±=m (负值舍去), ······································································ (1分) ∴点B 的坐标为(6,2). ······················································································ (1分)(1) ····································· 过点A 作AE ⊥x 轴,垂足为E ,OBH AEHB OAE OAB S S S S ∆∆∆-+=梯形············································································ (1分) =BH OH EH BH AE OE AE ⋅-⋅++⋅21)(2121 ··············································· (1分) ==⨯⨯-⨯++⨯⨯26213)24(2143219. ······················································ (2分)22.解:延长PQ 交直线AB 于点H ,由题意得.由题意,得PH ⊥AB ,AB =30,∠PAH =26 .6°,∠PBH =45°,∠Q BH =33.7°, 在Rt △QBH 中,50.1cot ==∠QHBHQBH ,设QH =x ,BH =x 5.1, ···················· (2分) 在Rt △PBH 中,∵∠PBH =45°,∴PH = BH =x 5.1,··············································· (2分) 在Rt △PAH 中,00.2cot ==∠PHAHPAH ,AH =2PH =x 3, ··································· (2分) ∵AH –BH =AB ,∴305.13=-x x ,20=x . ························································· (2分) ∴PQ =PH –QH =105.05.1==-x x x . ····································································· (1分) 答:该电线杆PQ 的高度为10米. ················································································· (1分)2423.证明:(1)∵EC EF AE ⋅=2,∴AEECEF AE =. ·························································· (1分) 又∵∠AEF =∠CEA ,∴△AEF ∽△CEA . ······················································· (2分) ∴∠EAF =∠ECA , ··························································································· (1分) ∵AD =AC ,∴∠ADC =∠ACD , ······································································· (1分) ∵∠ACD =∠DCE +∠ECA =∠DCE +∠EAF . ····················································· (1分)(2)∵△AEF ∽△CEA ,∴∠AEC =∠ACB . ······························································· (1分)∵DA =DB ,∴∠EAF =∠B . ················································································ (1分) ∴△EAF ∽△CBA . ····························································································· (1分)∴ACEFBA AF =. ··································································································· (1分) ∵AC =AD ,∴ADEFBA AF =. ················································································ (1分) ∴EF AB AD AF ⋅=⋅. ···················································································· (1分)24.解:(1)∵直线121+=x y 与x 轴、y 轴分别相交于点A 、B , ∴A (–2,0)、B (0,1).∴OA =2,OB =1. ······················································ (2分) ∵CD //x 轴,∴∠OAB =∠CDA ,∵∠CDA =∠OCA ,∴∠OAB =∠OCA . ············· (1分) ∴tan ∠OAB =tan ∠OCA , ························································································· (1分) ∴OCOA OA OB =,∴OC 221=, ·················································································· (1分) ∴4=OC ,∴点C 的坐标为(0,4). ································································ (1分) (2)∵CD //x 轴,∴BOBCAO CD =. ················································································· (1分) ∵BC =OC –OB=4–1=3,∴132=CD ,∴CD =6,∴点D (6,4). ························ (1分) 设二次函数的解析式为42++=bx ax y , ···························································· (1分)⎩⎨⎧++=+-=,46364,4240b a b a ………………(1分) ⎪⎩⎪⎨⎧=-=.23,41b a ········································· (1分) ∴这个二次函数的解析式是423412++-=x x y . ················································· (1分)25.解:(1)∵AD ∥BC ,∴∠DAC =∠ECB . ········································································ (1分)又∵AD =CE ,AC =CB ,∴△DAC ≌△ECB . ······························································ (2分) ∴∠DCA =∠EBC . ··································································································· (1分) (2)过点E 作EH ⊥BC ,垂足为H .AE =AC –CE =x -10.。
虹口区高三一模试卷数学答案
![虹口区高三一模试卷数学答案](https://img.taocdn.com/s3/m/68ec6eff90c69ec3d4bb7549.png)
虹口区2016学年度第一学期期终教学质量监控测试高三数学试卷(时间120分钟,满分150分)2016.12一、填空题(1〜6题每小题4分,7〜12题每小题5分,本大题满分54分) 1、 已知集合 A = {1,2,4,6,8 }, B ={xx =2k,k^ A},则 A C B= _____________ .2、 已知一Z2 i ,贝【J 复数z 的虚部为1 -i3、 _____________________________________________________________ 设函数 f (x ) = sin x -cosx ,且 f (二)=1,则 sin2二= ________________________________ .Qx + d y = G勺 一 1 「4、 已知二元一次方程组丿的增广矩阵是,则此方程组的解是a 2x+b 2y=C 2J 1 3 /(填“充分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一)2 _7、 若双曲线 X 2 -占-1的一个焦点到其渐近线的距离为2 .2,则该双曲线的焦距等b于 _________ .8、 若正项等比数列:满足:33 3^ 4,则34的最大值为 ___________________ . 9、一个底面半径为2的圆柱被与其底面所成角是 60的平面所截, 截面是一个椭圆,则该椭圆的焦距等于 _______________________________________ .r 6 x5、数列玄?是首项为1,公差为2的等差数列,SS n是它前n 项和,则⑴孟——6、 已知角A 是ABC 的内角,则 cosA J2是“ sin A 二_3 2_________________ 条件x_1-1则当xH 时,则f[f (x )]表11、点M(20, 40),抛物线y2=2px(p . 0)的焦点为F ,若对于抛物线上的任意点P , 10、设函数f (x)=」’—2x—1达式的展开式中含x2项的系数是11、点M (20, 40),抛物线y 2 =2px (p . 0)的焦点为F ,若对于抛物线上的任意点 P ,PM + PF 的最小值为41,则p 的值等于 ____________________ .12、 当实数x, y 满足x 2+y 2=1时,x+2y + a + 3 -x —2y 的取值与x, y 均无关,则实 数a 的取范围是 _________________________ .二、选择题(每小题 5分,满分20分)13、 在空间,:-表示平面,m , n 表示二条直线,则下列命题中错误的是( )A. 若m//〉,m 、n 不平行,则n 与〉不平行B. 若m//〉,m 、n 不垂直,则n 与〉不垂直C. 若m_: - , m 、n 不平行,则n 与:•不垂直D. 若m 」二,m 、n 不垂直,则 n 与〉不平行14、 已知函数f (x ) =sin (2x )在区间1.0, al (其中a 0)上单调递增,则实数 a 的B. 0 ::: a 一12取值范围是()•11、点M (20, 40),抛物线y 2 =2px (p . 0)的焦点为F ,若对于抛物线上的任意点 P ,JTC. a = k ,k N12 D. 2k 二::a 乞 2k ,k N 1215、如图,在圆C 中,点A 、B 在圆上,则AB AC 的值(A.只与圆C 的半径有关.B.既与圆C 的半径有关,又与弦 AB 的长度有关.C.只与弦AB 的长度有关.D.是与圆C 的半径和弦AB 的长度均无关的定值. 16、定义f (x ) (其中〈X?表示不小于x 的最小整数)为“取上整函数”,例如〈2.心=3,U>4 •以下关于“取上整函数”性质的描述,正确的是()•① f(2x)= 2f (x);②若 f (X 1)= f (X 2),则 X 1 一 X 2 ::1_ 1 ③任意 x 1, x< R , f (捲 x 2) - f (为)f (x 2):④ f (x) f (x ) = f (2x) •A.①②B.①③C.②③D.②④三、解答题(本大题满分 76 分) 17、(本题满分12分)在正三棱锥P-ABC 中,已知底面等边三角形的边长为 6,侧棱长为4.(1) 求证:PA_BC ;(2) 求此三棱锥的全面积和体积.船正东18海里处.(1)求此时该外国船只与 D 岛的距离; (2)观测中发现,此外国船只正以每小时4海里的速度沿正南方航行•为了将该船拦截在离 D 岛12海里的E 处 (E 在B 的正南方向),不让其进入D 岛12海里内的 海域,试确定海监船的航向,并求其速度的最小值 (角度精确到0.1,速度精确到0.1海里/小时).19、(本题满分16分)已知二次函数 f(x)二ax 2-4x c 的值域为〔0,亠―I (1) 判断此函数的奇偶性,并说明理由; (2) 判断此函数在 2,= 的单调性,并用单调性的定义证明你的结论;_a(3)求出f (x)在[1,-:)上的最小值g(a),并求g(a)的值域.18、(本题满分14分)如图,我海监船在D 岛海域例行维权巡航,某时刻航行至 A 处,此时测得其北偏东 30方向与它相距20海里的B 处有一外国船只,且 D 岛位于海监C2 220、(本题满分16分)椭圆C :笃•爲=1(a ■ b ■ 0)过点M(2, 0),且右焦点为F(1, 0),a b过F的直线I与椭圆C相交于A、B两点.设点P(4, 3),记PA、PB的斜率分别为k,和k2.(1)求椭圆C的方程;(2)如果直线I的斜率等于-1,求出k, k2的值;(3)探讨k, k2是否为定值?如果是,求出该定值; 如果不是,求出k, k2的取值范围.21、(本题满分18分)已知函数f(x)=2x + 2 — x + 1,无穷数列{a j的首项a, =a .(〔)如果a n=f(n) ( N ),写出数列{a n}的通项公式;(2)如果a n = f(a n」)(n = N*且n A 2),要使得数列l a j是等差数列,求首项a的取值范围;(3)如果a n = f(a n4)( n^N*且n 32),求出数列{a j的前n项和S n.虹口区2016学年度第一学期高三年级数学学科期终教学质量监控测试题答案、填空题(1〜6题每小题4分,7〜12题每小题5分,本大题满分54分)1、「2,4&;2、1;3、0;x =24、;l y=〔5、1;4 6、充分非必要;7、6; 8、2;9、4、3 ;10、60; 11、42 或22 ;12、『再「:);_、选择题(每小题5分,满分20分)13、A; 14、B ;15、C ;16、C三、解答题(本大题满分76 分)17、(12分)解:(1)取BC的中点M,连AM、BM .ABC是等边三角形,.AM_BC.PM _ BC . AM PM = MBC _ 平面PAM , PA _ BC . ................... 5 分(2)记O是等边三角形的中心•则PO _平面ABC .v MBC是边长为6的等边三角形,AO = — AM = — 6 3 = 2、, 3 . - PO = PA2 - AO2= 2 ,3 3 2PM »;PB2 - BM 27 ............ 8 分:S AB* 93,—=打PO=6、ES全=S«+S" 9 3 3—6……12 分18、(14 分)解:(1)依题意,在ABD中,/ DAB -60,由余弦定理得DB2二AD2AB2-2A D UAB_COS60、182 202-2 18 15 cos60, 364 即此时该外国船只与D岛的距离为2 91海里.4(2)过点B 作BC _ AD 于点C在 RtiABC 中,AC =10,所以 CD = AD - AC = 8 ................................ 7 分 以D 为圆心,12为半径的圆交BC 于点E ,连结AE 、DE在 Rt DEC 中,CE =、ED 2 —CD 2 =4.5,所以 BE =10、3 -4 .5外国船只到达点E 的时间t 二匹=5^一2 ‘5 : 2.09 (小时)4 2所以海监船的速度v _竺—656.4 (海里/小时)t 5 丽-2^52又 90; -41.81; =48.2;,故海监船的航向为北偏东 48.2:,速度的最小值为6.4海里/小时 .... ........... 14分(2)另解:建立以点 A 为坐标原点,AD 为x 轴,过点A 往正北作垂直的y 轴。
09-16年上海虹口区数学一模考点汇编及试卷
![09-16年上海虹口区数学一模考点汇编及试卷](https://img.taocdn.com/s3/m/50dc48877375a417876f8f90.png)
14 平面向量
相似三角形的判定与性质;平行四边形的性质
15 三角形的重心
相似三角形的判定与性质;平行四边形的性质
16 解直角三角形
三角形的重心
17 相似三角形的判定与性质
解直角三角形
18 相似三角形的判定与性质;平行四边形的性质 翻折变换(折叠问题);解直角三角形
解答题
19 特殊角的三角函数值
特殊角的三角函数值
二次函数的三种形式;二次函数的性质
21 垂径定理;解直角三角形
相似三角形的判定与性质
解答题
22 一次函数的应用
解直角三角形的应用-坡度坡角问题
菱形的判定;全等三角形的判定与性质;正方
23
相似三角形的判定与性质
形的性质
24 二次函数综合题
二次函数综合题
25 相似形综合题
相似形综合题
2015 年上海市虹口区中考数学一模试卷 2016 年上海市虹口区中考数学一模试卷
填空题 13 平行线分线段成比例;比例的性质
相似三角形的性质
14 相似三角形的判定与性质;平行四边形的性质 相似三角形的性质
15 含 30 度角的直角三角形 16 根据实际问题列二次函数关系式 17 解直角三角形的应用-坡度坡角问题
18 相似三角形的性质
19 特殊角的三角函数值 20 平行线分线段成比例 21 解直角三角形的应用-仰角俯角问题
7 比例的性质
比例的性质
8 二次函数图象上点的坐标特征
平面向量
9 二次函数图象与几何变换
二次函数的性质
10 二次函数的性质
二次函数图象上点的坐标特征
11 二次函数的性质
二次函数图象上点的坐标特征
填空题
2016年上海市各区县中考数学一模压轴题图文解析第24、25题
![2016年上海市各区县中考数学一模压轴题图文解析第24、25题](https://img.taocdn.com/s3/m/f0f5305431b765ce04081417.png)
2016年上海市各区县中考数学一模压轴题图文解析目录第一部分第24、25题图文解析2016年上海市崇明县中考数学一模第24、25题/ 22016年上海市奉贤区中考数学一模第24、25题/ 52016年上海市虹口区中考数学一模第24、25题/ 82016年上海市黄浦区中考数学一模第24、25题/ 112016年上海市嘉定区中考数学一模第24、25题/ 142016年上海市静安区青浦区中考数学一模第24、25题/ 172016年上海市闵行区中考数学一模第24、25题/ 202016年上海市浦东新区中考数学一模第24、25题/ 242016年上海市普陀区中考数学一模第24、25题/ 282016年上海市松江区中考数学一模第24、25题/ 312016年上海市徐汇区中考数学一模第24、25题/ 342016年上海市杨浦区中考数学一模第24、25题/ 382016年上海市闸北区中考数学一模第24、25题/ 412016年上海市长宁区金山区中考数学一模第24、25题/ 452016年上海市宝山区中考数学一模第25、26题/ 48如图1,在直角坐标系中,一条抛物线与x轴交于A、B两点,与y轴交于点C,其中B(3, 0),C(0, 4),点A在x轴的负半轴上,OC=4OA.(1)求这条抛物线的解析式,并求出它的顶点坐标;(2)联结AC、BC,点P是x轴正半轴上的一个动点,过点P作PM//BC交射线AC于M,联结CP,若△CPM的面积为2,则请求出点P的坐标.图1动感体验请打开几何画板文件名“16崇明一模24”,拖动点P在x轴的正半轴上运动,可以体验到,有两个时刻,△CPM的面积为2.满分解答(1)由C(0, 4),OC=4OA,得OA=1,A(-1, 0).设抛物线的解析式为y=a(x+1)(x-3),代入点C(0, 4),得4=-3a.解得43a=-.所以244(1)(3)(23)33y x x x x=-+-=---2416(1)33x=--+.顶点坐标为16 (1)3,.(2)如图2,设P(m, 0),那么AP=m+1.所以S△CP A=12AP CO⋅=1(1)42m+⨯=2m+2.由PM//BC,得CM BPCA BA=.又因为CPMCPAS CMS CA=△△,所以S△CPM =(22)BPmBA+.①如图2,当点P在AB上时,BP=3-m.解方程3(22)4mm-+=2,得m=1.此时P(1, 0).②如图3,当点P在AB的延长线上时,BP=m-3.解方程3(22)4mm-+=2,得1m=±P(1+.图2 图3如图1,已知矩形ABCD 中,AB =6,BC =8,点E 是BC 边上一点(不与B 、C 重合),过点E 作EF ⊥AE 交AC 、CD 于点M 、F ,过点B 作BG ⊥AC ,垂足为G ,BG 交AE 于点H .(1)求证:△ABH ∽△ECM ; (2)设BE =x ,EHEM=y ,求y 关于x 的函数解析式,并写出定义域; (3)当△BHE 为等腰三角形时,求BE 的长.图1 备用图动感体验请打开几何画板文件名“16崇明一模25”,拖动点E 在BC 上运动,可以体验到,有三个时刻,△BHE 可以成为为等腰三角形.满分解答(1)如图2,因为∠1和∠2都是∠BAC 的余角,所以∠1=∠2. 又因为∠BAH 和∠CEM 都是∠AEB 的余角,所以∠BAH =∠CEM . 所以△ABH ∽△ECM .图2 图3(2)如图3,延长BG 交AD 于N .在Rt △ABC 中,AB =6,BC =8,所以AC =10. 在Rt △ABN 中,AB =6,所以AN =AB tan ∠1=34AB =92,BN =152. 如图2,由AD //BC ,得92AH AN EH BE x ==. 由△ABH ∽△ECM ,得68AH AB EM EC x ==-. 所以y =EHEM=AH AH EM EH ÷=6982x x ÷-=12729x x -. 定义域是0<x <8.(3)如图2,由AD//BC,得92NH ANBH BE x==.所以292BN xBH x+=.所以215292xBHx=⨯+=1529xx+.在△BHE中,BE=x,cos∠HBE=35,1529xBHx=+.分三种情况讨论等腰三角形BHE:①如图4,当BE=BH时,解方程1529xxx=+,得x=3.②如图5,当HB=HE时,1cos2BE BH B=⋅∠.解方程11532295xxx=⨯+,得92x=.③如图6,当EB=EH时,1cos2BH BE B=⋅∠.解方程11532295xxx⨯=+,得74x=.图4 图5 图6如图1,二次函数y=x2+bx+c的图像经过原点和点A(2, 0),直线AB与抛物线交于点B,且∠BAO=45°.(1)求二次函数的解析式及顶点C的坐标;(2)在直线AB上是否存在点D,使得△BCD为直角三角形,若存在,求出点D的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“16奉贤一模24”,可以体验到,以BC为直径的圆恰好经过点A,直角三角形BCD存在两种情况.满分解答(1)因为抛物线y=x2+bx+c与x轴交于O、A(2, 0)两点,所以y=x(x-2)=(x-1)2-1.顶点C的坐标为(1,-1).(2)如图2,作BH⊥x轴于H.设B(x, x2-2x).由于∠BAH=45°,所以BH=AH.解方程x2-2x=2-x,得x=-1,或x=2.所以点B的坐标为(-1, 3).图2①∠BDC=90°.如图3,由A(2, 0)、C(1,-1),可得∠CAO=45°.因此∠BAC=90°.所以当点D与点A(2, 0)重合时,△BCD是直角三角形.②∠BCD=90°.由A(2, 0)、B(-1, 3),可得直线AB的解析式为y=-x+2.【解法一】如图4,过点C作BC的垂线与直线AB交于点D.设D(m,-m+2 ).由BD2=BC2+CD2,得(m+1)2+(-m-1)2=22+42+(m-1)2+(-m+3)2.解得73m=.此时点D的坐标为71(,)33-.【解法二】构造△BMC∽△CND,由BM CNMC ND=,得4123mm-=-+.解得73m=.图2 图3 图4如图1,在Rt △ABC 中,∠ACB =90°,AB =5,BC =3,点D 是斜边AB 上任意一点,联结DC ,过点C 作CE ⊥CD ,联结DE ,使得∠EDC =∠A ,联结BE .(1)求证:AC ·BE =BC ·AD ;(2)设AD =x ,四边形BDCE 的面积为S ,求S 与x 之间的函数关系式,并写出定义域;(3)当S △BDE =14S △ABC 时,求tan ∠BCE 的值.图1 备用图动感体验请打开几何画板文件名“16奉贤一模25”,拖动点E 在AD 边上运动,可以体验到,△ABC 与△DEC 保持相似,△ACD 与△BCE 保持相似,△BDE 是直角三角形.满分解答(1)如图2,在Rt △BAC 和Rt △EDC 中,由tan ∠A =tan ∠EDC ,得BC ECAC DC=. 如图3,已知∠ACB =∠DCE =90°,所以∠1=∠2. 所以△ACD ∽△BCE .所以AC BCAD BE=.因此AC ·BE =BC ·AD .图2 图3(2)在Rt △ABC 中,AB =5,BC =3,所以AC =4.所以S △ABC =6.如图3,由于△ABC 与△ADC 是同高三角形,所以S △ADC ∶S △ABC =AD ∶AB =x ∶5. 所以S △ADC =65x .所以S △BDC =665x -. 由△ADC ∽△BEC ,得S △ADC ∶S △BEC =AC 2∶BC 2=16∶9.所以S △BEC =916S △ADC =96165x ⨯=2740x . 所以S =S 四边形BDCE =S △BDC +S △BEC =6276540x x -+=21640x -+.定义域是0<x <5.(3)如图3,由△ACD ∽△BCE ,得AC BCAD BE=,∠A =∠CBE . 由43x BE =,得BE =34x . 由∠A =∠CBE ,∠A 与∠ABC 互余,得∠ABE =90°(如图4).所以S △BDE =1133(5)(5)2248BD BE x x x x ⋅=-⨯=--. 当S △BDE =14S △ABC =13642⨯=时,解方程33(5)82x x --=,得x =1,或x =4.图4 图5 图6作DH ⊥AC 于H .①如图5,当x =AD =1时,在Rt △ADH 中,DH =35AD =35,AH =45AD =45. 在Rt △CDH 中,CH =AC -AH =416455-=,所以tan ∠HCD =DHCH =316.②如图6,当x =AD =4时,在Rt △ADH 中,DH =35AD =125,AH =45AD =165.在Rt △CDH 中,CH =AC -AH =164455-=,所以tan ∠HCD =DHCH=3. 综合①、②,当S △BDE =14S △ABC 时, tan ∠BCE 的值为316或3.如图1,在平面直角坐标系中,抛物线y =ax 2+bx +3与x 轴分别交于点A (2, 0)、点B (点B 在点A 的右侧),与y 轴交于点C ,tan ∠CBA =12. (1)求该抛物线的表达式;(2)设该抛物线的顶点为D ,求四边形ACBD 的面积; (3)设抛物线上的点E 在第一象限,△BCE 是以BC 为一条直角边的直角三角形,请直接写出点E 的坐标.图1动感体验请打开几何画板文件名“16虹口一模24”,可以体验到,以BC 为直角边的直角三角形BCE 有2个.满分解答(1)由y =ax 2+bx +3,得C (0, 3),OC =3. 由tan ∠CBA =OC OB =12,得OB =6,B (6, 0). 将A (2, 0)、B (6, 0)分别代入y =ax 2+bx +3,得4230,36630.a b a b ++=⎧⎨++=⎩解得14a =,b =-2.所以221123(4)144y x x x =-+=--. (2)如图2,顶点D 的坐标为(4,-1).S 四边形ACBD =S △ABC +S △ABD =1123+2122⨯⨯⨯⨯=4.(3)如图3,点E 的坐标为(10, 8)或(16, 35).思路如下:设E 21(,23)4x x x -+. 当∠CBE =90°时,过点E 作EF ⊥x 轴于F ,那么2EF BOBF CO==.所以EF =2BF . 解方程21232(4)4x x x -+=-,得x =10,或x =4.此时E (10, 8). 当∠BCE =90°时,EF =2CF . 解方程21224x x x -=,得x =16,或x =0.此时E (16, 35).图2 图3如图1,在平行四边形ABCD 中,E 为BC 的中点,F 为线段AE 上一点,联结BF 并延长交边AD 于点G ,过点G 作AE 的平行线,交射线DC 于点H .设AD EFx AB AF==. (1)当x =1时,求AG ∶AB 的值; (2)设GDHEBAS S △△=y ,求y 关于x 的函数关系式,并写出x 的取值范围; (3)当DH =3HC 时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16虹口一模25”,拖动点B 可以改变平行四边形的邻边比,可以体验到,当菱形ABCD 时,G 是AD 的中点,△GDH 与△EBA 保持相似.还可以体验到,DH =3HC 存在两种情况.满分解答(1)如图2,当x =1时,AD =AB ,F 是AE 的中点. 因为AD //CB ,所以AG =BE =12BC =12AD =12AB . 所以AG ∶AB =1∶2.(2)如图3,已知AD EF x AB AF ==,设AB =m ,那么AD =xm ,BE =12xm . 由AD //BC ,得BE EFx AG AF ==.所以12BE AG m x ==.所以DG =12xm m -.图2 图3 图4 如图4,延长AE 交DC 的延长线于M . 因为GH //AE ,所以△GDH ∽△ADM . 因为DM //AB ,所以△EBA ∽△ADM . 所以△GDH ∽△EBA .所以y =GDH EBA S S △△=2()DG BE =2211()()22xm m xm -÷=22(21)x x -. (3)如图5,因为GH //AM ,所以11()2122DH DG xm m m x HM GA ==-÷=-. 因为DM //AB ,E 是BC 的中点,所以MC =AB =DC . DH =3HC 存在两种情况:如图5,当H 在DC 上时,35DH HM =.解方程3215x -=,得45x =. 如图6,当H 在DC 的延长线上时,3DH HM =.解方程213x -=,得45x =.图5 图6如图1,在平面直角坐标系中,抛物线y =ax 2-3ax +c 与x 轴交于A (-1, 0)、B 两点(点A 在点B 左侧),与y 轴交于点C (0, 2).(1)求抛物线的对称轴及点B 的坐标; (2)求证:∠CAO =∠BCO ;(3)点D 是射线BC 上一点(不与B 、C 重合),联结OD ,过点B 作BE ⊥OD ,垂足为△BOD 外一点E ,若△BDE 与△ABC 相似,求点D 的坐标.图1动感体验请打开几何画板文件名“16黄浦一模24”,拖动点D 在射线BC 上运动,可以体验到,当点E 在△BOD 外时,有两个时刻,Rt △BDE 的两条直角边的比为1∶2.满分解答(1)由y =ax 2-3ax +c ,得抛物线的对称轴为直线32x =. 因此点A (-1, 0)关于直线32x =的对称点B 的坐标为(4, 0). (2)如图2,因为tan ∠CAO =2CO AO =,tan ∠BCO =2BOCO=,所以∠CAO =∠BCO .(3)由B (4, 0)、C (0, 2),得直线BC 的解析式为122y x =-+.设D 1(,2)2x x -+.以∠ABC (∠OBC )为分类标准,分两种情况讨论:①如图3,当∠OBC =∠DBE 时,由于∠OBC 与∠OCB 互余,∠DBE 与∠ODC 互余,所以∠OCB =∠ODC .此时OD =OC =2.根据OD 2=4,列方程221+(2)42x x -+=.解得x =0,或85x =.此时D 86(,)55. ②如图4,当∠OBC =∠EDB 时,OD =OB =4. 根据OD 2=16,列方程221+(2)162x x -+=.解得x =4,或125x =-.此时D 1216(,)55-.图2 图3 图4如图1,已知直线l1//l2,点A是l1上的点,B、C是l2上的点,AC⊥BC,∠ABC=60°,AB=4,O是AB的中点,D是CB的延长线上的点,将△DOC沿直线CO翻折,点D与点D′重合.(1)如图1,当点D落在直线l1上时,求DB的长;(2)延长DO交直线l1于点E,直线OD′分别交直线l1、l2于点M、N.①如图2,当点E在线段AM上时,设AE=x,DN=y,求y关于x的解析式及定义域;②若△DON AE的长.图1 图2动感体验请打开几何画板文件名“16黄浦一模25”,拖动点D在CB的延长线上运动,可以体验到,CD′与AB保持平行,△BON与△BDO保持相似.还可以体验到,有两个时刻DN=3.满分解答(1)如图3,在Rt△ABC中,∠ABC=60°,AB=4,O是AB的中点,所以△OBC是边长为2的等边三角形.又因为△DOC与△D′OC关于CO对称,所以∠BCD′=120°,CD′=CD.所以AB//D′C.当点D′ 落在直线l1上时,AD′//BC.所以四边形ABCD′是平行四边形.所以CD′=BA=4.此时BD=CD-CB=CD′-CB=4-2=2.图3(2)①如图4,由于AE//BD,O是AB的中点,所以AE=BD=x.因为AB//D′C,所以∠AOM=∠2.又因为∠AOM=∠BON,∠2=∠1,所以∠BON=∠1.又因为∠OBN=∠DBO,所以△BON∽△BDO.所以BO BDBN BO=.因此22xx y=+.于是得到24xyx-=.定义域是0<x≤2.②在△DON中,DN当S△DON DN=3.有两种情形:情形1,如图4,当D在BN上时,DN=24xyx-==3,解得x=1,或x=-4.此时AE=1.情形2,如图5,当D在BN的延长线上时,由BO BDBN BO=,得22xx y=-.于是得到24xyx-=.当DN=24xyx-==3时,解得x=4,或x=-1.此时AE=4.图4 图5如图1,在平面直角坐标系中,抛物线212y x bx c =++经过点A (4, 0)、点C (0,-4),点B 与点A 关于这条抛物线的对称轴对称.(1)用配方法求这条抛物线的顶点坐标; (2)联结AC 、BC ,求∠ACB 的正弦值;(3)点P 是这条抛物线上的一个动点,设点P 的横坐标为m (m >0),过点P 作y 轴的垂线PQ ,垂足为Q ,如果∠QPO =∠BCO ,求m 的值.图1动感体验请打开几何画板文件名“16嘉定一模24”,可以体验到,QO ∶QP =OB ∶OC .满分解答(1)将A (4, 0)、C (0,-4)分别代入212y x bx c =++,得840,4.b c c ++=⎧⎨=-⎩解得b =-1,c =-4.所以2142y x x =--=1(2)(4)2x x +-=219(1)22x --. 点B 的坐标是(-2, 0),顶点坐标是9(1,)2-.(2)由A (4, 0)、B (-2, 0)、C (0,-4),得AC =BC =AB =6,CO =4. 作BH ⊥AC 于H .由S △ABC =12AB CO ⋅=12AC BH ⋅.得AB CO BH AC ⋅==因此sin ∠ACB =BH BC .(3)点P 的坐标可以表示为21(,4)2m m m --. 由tan ∠QPO =tan ∠BCO ,得12QO OB QP OC ==. 所以QP =2QO .解方程212(4)2m m m =--,得m =图2所以点P 的横坐标m .如图1,已知△ABC 中,∠ABC =90°,tan ∠BAC =12.点D 在AC 边的延长线上,且DB 2=DC ·DA .(1)求DCCA的值; (2)如果点E 在线段BC 的延长线上,联结AE ,过点B 作AC 的垂线,交AC 于点F ,交AE 于点G .①如图2,当CE =3BC 时,求BFFG的值; ②如图3,当CE =BC 时,求BCDBEGS S △△的值.图1动感体验请打开几何画板文件名“16嘉定一模25”,拖动点E 运动,可以体验到,当CE =3BC 时,BD //AE ,BG 是直角三角形ABE 斜边上的中线.当CE =BC 时,△ABF ≌△BEH ,AF =2EH =4CF .满分解答(1)如图1,由DB 2=DC ·DA ,得DB DADC DB=. 又因为∠D 是公共角,所以△DBC ∽△DAB .所以DB BC CDDA AB BD==. 又因为tan ∠BAC =BC AB =12,所以12CD BD =,12BD DA =.所以14CD DA =.所以13DCCA=. (2)①如图4,由△DBC ∽△DAB ,得∠1=∠2. 当BF ⊥CA 时,∠1=∠3,所以∠2=∠3.因为13DC CA =,当CE =3BC 时,得DC BCCA CE =.所以BD //AE . 所以13BD EA =,∠2=∠E .所以∠3=∠E .所以GB =GE .于是可得G B 是Rt △ABE 斜边上的中线.所以23BD GA =.所以23BF BD FG GA ==.②如图5,作EH⊥BG,垂足为H.当CE=BC时,CF是△BEH的中位线,BF=FH.设CF=m.由tan∠1=tan∠3=12,得BF=2m,AF=4m.所以FH=2m,EH=2m,DC=1533CA m=.因此422FG AF mHG EH m===.所以2433FG FH m==.所以103BG m=.于是5121321102323BCDBEGm mDC BFSS BG EH m m⨯⋅===⋅⨯△△.图4 图5如图1,直线121+=x y 与x 轴、y 轴分别相交于点A 、B ,二次函数的图像与y 轴相交于点C ,与直线121+=x y 相交于点A 、D ,CD //x 轴,∠CDA =∠OCA . (1)求点C 的坐标;(2)求这个二次函数的解析式.图1动感体验请打开几何画板文件名“16静安青浦一模24”,可以体验到,△AOB 与△COA 相似.满分解答(1)由121+=x y ,得A (-2, 0),B (0, 1).所以OA =2,OB =1. 由于CD //x 轴,所以∠CDA =∠1.又已知∠CDA =∠OCA ,所以∠1=∠OCA . 由tan ∠1=tan ∠OCA ,得OB OAOA OC=. 所以122OC=. 解得OC =4.所以C (0, 4).(2)因为CD //x 轴,所以y D =y C =4. 图2 解方程1142x +=,得x =6.所以D (6, 4). 所以抛物线的对称轴为直线x =3.因此点A (-2, 0)关于直线x =3的对称点为(8, 0). 设抛物线的解析式为y =a (x +2)(x -8).代入点C (0, 4),得4=-16a . 解得14a =-.所以2113(2)(8)4442y x x x x =-+-=-++.如图1,在梯形ABCD 中,AD //BC ,AC =BC =10,cos ∠ACB =45,点E 在对角线AC 上,且CE =AD ,BE 的延长线与射线AD 、射线CD 分别相交于点F 、G .设AD =x ,△AEF 的面积为y .(1)求证:∠DCA =∠EBC ;(2)当点G 在线段CD 上时,求y 关于x 的函数解析式,并写出它的定义域; (3)如果△DFG 是直角三角形,求△AEF 的面积.图1动感体验请打开几何画板文件名“16静安青浦一模25”,拖动点D 运动,可以体验到,直角三角形DFG 存在两种情况.满分解答(1)如图2,因为AD //BC ,所以∠DAC =∠ECB .又因为AC =CB ,AD =CE ,所以△ADC ≌△CEB .所以∠DCA =∠EBC . (2)如图3,作EH ⊥BC 于H . 在Rt △EHC 中,CE =x ,cos ∠ECB =45,所以CH =45x ,EH =35x . 所以S △CEB =12BC EH ⋅=131025x ⨯⨯=3x . 因为AD //BC ,所以△AEF ∽△CEB .所以2()AEF CEB S AE S CE=△△. 所以22103(10)()3AEF x x y S x x x--==⨯=△.定义域是0<x≤5. 定义域中x=5的几何意义如图4,D 、F 重合,根据AD AECB CE=,列方程1010x xx-=.图2 图3 图4(3)①如图5,如果∠FGD=90°,那么在Rt△BCG和Rt△BEH中,tan∠GBC=335104504xGC HE xGB HB x x ===--.由(1)得∠ACD=∠CBE.由cos∠ACD=cos∠CBE,得GC GBCE BC=.所以10GC CE xGB BC==.因此350410x xx=-.解得x=5.此时S△AEF=23(10)15xyx-==.②如图6,如果∠FDG=90°,那么在Rt△ADC中,AD=AC cos∠CAD=4105⨯=8.此时S△AEF=23(10)32xyx-==.图5 图6例 2016年上海市闵行区中考一模第24题如图1,在平面直角坐标系中,二次函数y =x 2+bx +c 的图像与x 轴交于A 、B 两点,点B 的坐标为(3, 0),与y 轴交于点C (0,-3),点P 是直线BC 下方的抛物线上的任意一点.(1)求这个二次函数的解析式;(2)联结PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP ′C ,如果四边形POP ′C 为菱形,求点P 的坐标;(3)如果点P 在运动过程中,使得以P 、C 、B 为顶点的三角形与△AOC 相似,请求出此时点P 的坐标.图1动感体验请打开几何画板文件名“16闵行一模24”,拖动点P 在直线BC 下方的抛物线上运动,可以体验到,当四边形POP ′C 为菱形时,PP ′垂直平分OC .还可以体验到,当点P 与抛物线的顶点重合时,或者点P 落在以BC 为直径的圆上时,△PCB 是直角三角形.满分解答(1)将B (3, 0)、C (0,-3)分别代入y =x 2+bx +c ,得930,3.b c c ++=⎧⎨=-⎩.解得b =-2,c =-3.所以二次函数的解析式为y =x 2-2x -3.(2)如图2,如果四边形POP ′C 为菱形,那么PP ′垂直平分OC ,所以y P =32-.解方程23232x x --=-,得22x =.所以点P 的坐标为23()22-.图2 图3 图4(3)由y =x 2-2x -3=(x +1)(x -3)=(x -1)2-4,得A (-1, 0),顶点M (1,-4). 在Rt △AOC 中,OA ∶OC =1∶3.分两种情况讨论△PCB 与△AOC 相似:①如图3,作MN⊥y轴于N.由B(3, 0)、C(0,-3),M(1,-4),可得∠BOC=∠MCN=45°,所以∠BCM=90°.又因为CM∶CB=1∶3,所以当点P与点M(1,-4)重合时,△PCB∽△AOC.②如图4,当∠BPC=90°时,构造△AEP∽△PFB,那么CE PF EP FB=.设P(x, x2-2x-3),那么22(3)(23)3(23)x x xx x x-----=---.化简,得1(2)1xx--=+.解得x=.此时点P的横坐标为x=.而2(23)32CB NB x xxCP MP x x---===-++是个无理数,所以当∠BPC=90°时,△PCB与△AOC不相似.例 2016年上海市闵行区中考一模第25题如图1,在直角梯形ABCD 中,AB //CD ,∠ABC =90°,对角线AC 、BD 交于点G ,已知AB =BC =3,tan ∠BDC =12,点E 是射线BC 上任意一点,过点B 作BF ⊥DE ,垂足为F ,交射线AC 于点M ,交射线DC 于点H .(1)当点F 是线段BH 的中点时,求线段CH 的长;(2)当点E 在线段BC 上时(点E 不与B 、C 重合),设BE =x ,CM =y ,求y 关于x 的函数解析式,并指出x 的取值范围;(3)联结GF ,如果线段GF 与直角梯形ABCD 中的一条边(AD 除外)垂直时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16闵行一模25”,拖动点E 在射线BC 上运动,可以体验到,点G 是BD 的一个三等分点,CH 始终都有CE 的一半.还可以体验到,GF 可以与BC 垂直,也可以与DC 垂直.满分解答(1)在Rt △BCD 中,BC =3,tan ∠BDC =BC DC =12,所以DC =6,DB =.如图2,当点F 是线段BH 的中点时,DF 垂直平分BH ,所以DH =DB =.此时CH =DB -DC =6.图2 图3(2)如图3,因为∠CBH 与∠CDE 都是∠BHD 的余角,所以∠CBH =∠CDE . 由tan ∠CBH =tan ∠CDE ,得CH CE CB CD =,即336CH x-=. 又因为CH //AB ,所以CH MC AB MA =,即3CH =.因此36x -=.整理,得)3x y x -=+.x 的取值范围是0<x <3. (3)如图4,不论点E 在BC 上,还是在BC 的延长线上,都有12BG AB GD DC ==, 12CH CE =. ①如图5,如果GF ⊥BC 于P ,那么AB //GF //DH .所以13BP PF BG BC CH BD ===.所以BP =1,111(3)366PF CH CE x ===-. 由PF //DC ,得PF PE DC CE =,即12(3)(3)363x x x---=-. 整理,得242450x x -+=.解得21x =±21BE =- ②如图6,如果GF ⊥DC 于Q ,那么GF //BE . 所以23QF DQ DG CE DC DB ===.所以DQ =4,2(3)3QF x =-. 由QF //BC ,得QF QH BC CH =,即21(3)2(3)3213(3)2x x x ---=-. 整理,得223450x x --=.解得x =34BE +=.图4 图5 图6如图1,抛物线y =ax 2+2ax +c (a >0)与x 轴交于A (-3,0)、B 两点(A 在B 的左侧),与y 轴交于点C (0,-3),抛物线的顶点为M .(1)求a 、c 的值; (2)求tan ∠MAC 的值;(3)若点P 是线段AC 上的一个动点,联结OP .问:是否存在点P ,使得以点O 、C 、P 为顶点的三角形与△ABC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“16浦东一模24”,拖动点P 在线段AC 上运动,可以体验到,△COP 与△ABC 相似存在两种情况.满分解答(1)将A (-3,0)、C (0,-3)分别代入y =ax 2+2ax +c ,得960,3.a a c c -+=⎧⎨=-⎩解得a =1,c =-3.(2)由y =x 2+2x -3=(x +1)2-4,得顶点M 的坐标为(-1,-4). 如图2,作MN ⊥y 轴于N .由A (-3,0)、C (0,-3)、M (-1,-4),可得OA =OC =3,NC =NM =1.所以∠ACO =∠MCN =45°,AC =MC . 所以∠ACM =90°.因此tan ∠MAC =MC AC=13. (3)由y =x 2+2x -3=(x +3)(x -1),得B (1, 0).所以AB =4.如图3,在△COP 与△ABC 中,∠OCP =∠BAC =45°,分两种情况讨论它们相似:当CP ABCO AC =时,3CP =CP =P 的坐标为(-2,-1).当CP AC CO AB =时,3CP =CP =.此时点P 的坐标为93(,)44--.图2 图3如图1,在边长为6的正方形ABCD 中,点E 为AD 边上的一个动点(与A 、D 不重合),∠EBM =45°,BE 交对角线AC 于点F ,BM 交对角线于点G ,交CD 于点M .(1)如图1,联结BD ,求证:△DEB ∽△CGB ,并写出DECG的值; (2)如图2,联结EG ,设AE =x ,EG =y ,求y 关于x 的函数解析式,并写出函数的定义域;(3)当M 为边DC 的三等分点时,求S △EGF 的面积.图1 图2动感体验请打开几何画板文件名“16浦东一模25”,拖动点E 在AD 边上运动,可以体验到, △EBD 与△GBC 保持相似,△EBG 保持等腰直角三角形.满分解答(1)如图3,因为∠EBM =∠DBC =45°,所以∠1=∠2. 又因为∠EDB =∠GCB =45°,所以△DEB ∽△CGB .因此DE DBCG CB==图3 图4(2)如图3,由△DEB ∽△CGB ,得EB DBGB CB=. 又因为∠EBM =∠DBC =45°,所以△EBG ∽△DBC (如图4). 所以△EBG 是等腰直角三角形.如图4,在Rt △ABE 中,AB =6,AE =x ,所以BE所以y =EG =2BE . 定义域是0<x <6.(3)如图5,由于S △EGB =12EG 2=2364x +,EGF EGB S EF S EB =△△, 所以2364EGFEF x S EB +=⨯△. 由(1)知,DE,所以 x =AE =AD -DE=6.①如图6,当13CM CD =时,13CG CM AG AB ==.所以1144CG CA ==⨯此时x =AE=6-=3.所以3162EF AE BF CB ===.所以13EF EB =.所以2364EGF EF x S EB +=⨯△=2133634+⨯=154. ②如图7,当23CM CD =时,23CG CM AG AB ==.所以2255CG CA ==⨯=此时x =AE=6-=65.所以61655EF AE BF CB ==÷=.所以16EF EB =.所以2364EGFEF x S EB +=⨯△=26()361564+⨯=3925.图5 图6 图7第(2)题也可以这样证明等腰直角三角形EBG : 如图8,作GH ⊥EB 于H ,那么△GBH 是等腰直角三角形.一方面2GB CB EB DB ==,另一方面cos 452HB GB =︒=,所以GB HBEB GB=. 于是可得△EBG ∽△GBH .所以△EBG 是等腰直角三角形. 如图9,第(2)题也可以构造Rt △EGN 来求斜边EG =y : 在Rt △AEN 中,AE =x ,所以AN =ENx . 又因为CG)x -,所以GN =AC -AN -CG=所以y=EG.如图10,第(2)题如果构造Rt△EGQ和Rt△CGP,也可以求斜边EG=y:由于CG)x-,所以CP=GP=1(6)2x-=132x-.所以GQ=PD=16(3)2x--=132x+,EQ=16(3)2x x---=132x-.所以y=EG.图8 图9 图10如图1,已知二次函数273y ax x c =-+的图像经过A (0, 8)、B (6, 2)、C (9, m )三点,延长AC 交x 轴于点D .(1)求这个二次函数的解析式及m 的值; (2)求∠ADO 的余切值;(3)过点B 的直线分别与y 轴的正半轴、x 轴、线段AD 交于点P (点A 的上方)、M 、Q ,使以点P 、A 、Q 为顶点的三角形与△MDQ 相似,求此时点P的坐标. 图1动感体验请打开几何画板文件名“16普陀一模24”,拖动点Q 在线段AD 上运动,可以体验到,△APQ 与△MDQ 相似只存在一种情况.满分解答(1)将A (0, 8)、B (6, 2)分别代入273y ax x c =-+,得8,3614 2.c a c =⎧⎨-+=⎩ 解得29a =,c =8.所以二次函数的解析式为227893y x x =-+. 所以227(9)818218593m f x x ==-+=-+=.(2)由A (0, 8)、C (9, 5),可得直线AC 的解析式为183y x =-+.所以D (24, 0).因此cot ∠ADO =OD OA =248=3.(3)如图2,如果△APQ 与△MDQ 相似,由于∠AQP =∠MQD ,∠P AQ 与∠DMQ 是钝角,因此只存在一种情况,△APQ ∽△MDQ .因此∠APQ =∠D .作BN ⊥y 轴于N ,那么∠BPN =∠D .因此cot ∠BPN =cot ∠D =3.所以PN =3BN =18.此时点P 的坐标为(0, 20).图2如图1,已知锐角∠MBN 的正切值等于3,△PBD 中,∠BDP =90°,点D 在∠MBN 的边BN 上,点P 在∠MBN 内,PD =3,BD =9.直线l 经过点P ,并绕点P 旋转,交射线BM 于点A ,交射线DN 于点C ,设CAx CP=. (1)求x =2时,点A 到BN 的距离;(2)设△ABC 的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域; (3)当△ABC 因l 的旋转成为等腰三角形时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16普陀一模25”,拖动点C 运动,可以体验到,AH 与BH 的比值=tan ∠B =3为定值,AH 与PD 的比值=CA ∶CP =x .满分解答(1)如图2,作AH ⊥BC 于H ,那么PD //AH . 因此2AH CAx PD CP===. 所以AH =2PD =6,即点A 到BN 的距离为6.图2 图3(2)如图3,由AH CAx PD CP ==,得AH =xPD =3x . 又因为tan ∠MBN =AHBH =3,所以BH =x .设BC =m .由CH CA x CD CP ==,得9m xx m -=-.整理,得81xm x =-.所以y =S △ABC =12BC AH ⋅=18321xx x ⨯⨯-=2121x x -. 定义域是0<x ≤9.x =9的几何意义是点C 与点H 重合,此时CA =27,CP =3.(3)在△ABC 中,BA ,cos ∠ABC BC =81x x -.①如图4,当BA =BC 81x x =-,得1x = ②如图5,当AB =AC 时,BC =2BH .解方程821xx x =-,得x =5.③如图6,当CA =CB 时,由cos ∠ABC ,得12AB =.解方程1821x x =-,得135x =.图4 图5 图6如图1,已知抛物线y =ax 2+bx -3与x 轴交于A 、B 两点,与y 轴交于点C ,O 是坐标原点,已知点B 的坐标是(3, 0),tan ∠OAC =3.(1)求该抛物线的函数表达式;(2)点P 在x 轴上方的抛物线上,且∠P AB =∠CAB ,求点P 的坐标;(3)点D 是y 轴上的一动点,若以D 、C 、B 为顶点的三角形与△ABC 相似,求出符合条件的点D 的坐标.图1动感体验请打开几何画板文件名“16松江一模24”,拖动点D 在y 轴正半轴上运动,可以体验到,△BCD 与△ABC 相似存在两种情况.满分解答(1)由y =ax 2+bx -3,得C (0,-3),OC =3. 由tan ∠OAC =3,得OA =1,A (-1, 0).因为抛物线与x 轴交于A (-1, 0)、B (3, 0)两点,设y =a (x +1)(x -3). 代入点C (0,-3),得a =1.所以y =(x +1)(x -3)=x 2-2x -3. (2)如图2,作PH ⊥x 轴于H .设P (x , (x +1)(x -3)). 由tan ∠P AB =tan ∠CAB ,得3PH CO AH AO ==.所以(1)(3)31x x x +-=+. 解得x =6.所以点P 的坐标为(6, 21).(3)由A (-1, 0)、B (3, 0)、C (0,-3),得BA =4,BC =ABC =∠BCO =45°. 当点D 在点C 上方时,∠ABC =∠BCD =45°.分两种情况讨论△BCD 与△ABC 相似: 如图3,当CD BACB BC=时,CD =BA =4.此时D (0, 1).如图4,当CD BCCB BA =4=92CD =.此时D 3(0,)2.图2 图3 图4已知等腰梯形ABCD 中,AD //BC ,∠B =∠BCD =45°,AD =3,BC =9,点P 是对角线AC 上的一个动点,且∠APE =∠B ,PE 分别交射线AD 和射线CD 于点E 和点G .(1)如图1,当点E 、D 重合时,求AP 的长;(2)如图2,当点E 在AD 的延长线上时,设AP =x ,DE =y ,求y 关于x 的函数解析式,并写出它的定义域;(3)当线段DG 时,求AE 的长.图1 图2动感体验请打开几何画板文件名“16松江一模25”,拖动点P 在AC 上运动,可以体验到,DGDE 也存在两种情况.满分解答(1)如图3,作AM ⊥BC ,DN ⊥BC ,垂足分别为M 、N ,那么MN =AD =3.在Rt △ABM 中,BM =3,∠B =45°,所以AM =3,AB =在Rt △AMC 中,AM =3,MC =6,所以CA = 如图4,由AD //BC ,得∠1=∠2.又因为∠APE =∠B ,当E 、D 重合时,△APD ∽△CBA .所以AP CBAD CA =.因此3AP =AP =5. (2)如图5,设(1)中E 、D 重合时点P 的对应点为F . 因为∠AFD =∠APE =45°,所以FD //PE .所以AF AD AP AE =33y=+.因此33y x =-.定义域是5<x ≤.图3 图4 图5(3)如图6,因为CA =AF =,所以FC =.由DF //PE ,得13FP DG FC DC ===.所以FP =.由DF //PE ,9552AD AF DE FP ==÷=.所以2293DE AD ==. ①如图6,当P 在AF 的延长线上时,233AE AD DE =+=. ②如图7,当P 在AF 上时,123AE AD DE =-=.图6 图7例 2016年上海市徐汇区中考一模第24题如图1,在Rt △AOB 中,∠AOB =90°,已知点A (-1,-1),点B 在第二象限,OB=抛物线235y x bx c =++经过点A 和B . (1)求点B 的坐标; (2)求抛物线235y x bx c =++的对称轴; (3)如果该抛物线的对称轴分别和边AO 、BO 的延长线交于点C 、D ,设点E 在直线AB 上,当△BOE 和△BCD 相似时,直接写出点E 的坐标.图1动感体验请打开几何画板文件名“16徐汇一模24”,拖动点E 在射线BA 上运动,可以体验到,△BOE 和△BCD 相似存在两种情况.满分解答(1)由A (-1,-1),得OA 与x 轴负半轴的夹角为45°.又因为∠AOB =90°,所以OB 与x 轴负半轴的夹角也为45°. 当OB=B 到x 轴、y 轴的距离都为2. 所以点B 的坐标为(-2,2).(2)将A (-1,-1)、B (-2,2)分别代入235y x bx c =++,得31,5122 2.5b c b c ⎧-+=-⎪⎪⎨⎪-+=⎪⎩解得65b =-,145c =-.所以23614555y x x =--.抛物线的对称轴是直线x =1.(3)如图2,由A (-1,-1)、B (-2,2)、C (1, 1)、D (1,-1),以及∠AOB =90°,可得BO 垂直平分AC ,BO=,BA =BCBD=如图3,过点A 、E 作y 轴的平行线,过点B 作y 轴的垂线,构造Rt △ABM 和Rt △EBN ,那么BA BM MA BE BN NE==. 设点E 的坐标为(x , y )1322x y==+-.图2 图3当点E 在射线BA 上时,∠EBO =∠DBC .分两种情况讨论相似:①当BE BCBO BD ==BE =1322x y==+-.解得x =43-,y =0.所以E 4(,0)3-(如图4).②当BE BDBO BC ==BE =1322x y==+-.解得x =45-,y =85-.所以E 48(,)55--(如图5).图4 图5例 2016年上海市徐汇区中考一模第25题如图1,四边形ABCD 中,∠C =60°,AB =AD =5,CB =CD =8,点P 、Q 分别是边AD 、BC 上的动点,AQ 与BP 交于点E ,且∠BEQ =90°-12∠BAD .设A 、P 两点间的距离为x .(1)求∠BEQ 的正切值; (2)设AEPE=y ,求y 关于x 的函数解析式及定义域; (3)当△AEP 是等腰三角形时,求B 、Q 两点间的距离.图1动感体验请打开几何画板文件名“16徐汇一模25”,拖动点P 在AD 边上运动,可以体验到, ∠AEP =∠BEQ =∠ABH =∠ADH ,△ABF ∽△BEF ∽△BDP ,△AEP ∽△ADF .满分解答(1)如图2,联结BD 、AC 交于点H .因为AB =AD ,CB =CD ,所以A 、C 在BD 的垂直平分线上. 所以AC 垂直平分BD .因此∠BAH =12∠BAD . 因为∠BEQ =90°-12∠BAD , 所以∠BEQ =90°-∠BAH =∠ABH .在Rt △ABH 中,AB =5,BH =4,所以AH =3. 所以tan ∠BEQ =tan ∠ABH =34. 图2 (2)如图3,由于∠BEQ =∠ABH ,∠BEQ =∠AEP ,∠ABH =∠ADH , 所以∠AEP =∠BEQ =∠ABH =∠ADH .图3 图4 图5如图3,因为∠BF A 是公共角,所以△BEF ∽△ABF . 如图4,因为∠DBP 是公共角,所以△BEF ∽△BDP .所以△ABF ∽△BDP .所以AB BD BF DP =.因此585BF x=-. 所以5(5)8BF x =-.所以518(5)(539)88FD BD BF x x =-=--=+.如图5,因为∠DAF 是公共角,所以△AEP ∽△ADF . 所以5401539(539)8AE AD y PE FD x x ====++.定义域是0≤x ≤5. (3)分三种情况讨论等腰△AEP :①当EP =EA 时,由于△AEP ∽△ADF ,所以DF =DA =5(如图6). 此时BF =3,HF =1. 作QM ⊥BD 于M .在Rt △BMQ 中,∠QBM =60°,设BQ =m ,那么12BM m =,QM =. 在Rt △FMQ 中,132FM m =-,tan ∠MFQ =tan ∠HF A =3,所以QM =3FM .13(3)2m =-,得BQ =m=9- ②如图7,当AE =AP 时,E 与B 重合,P 与D 重合,此时Q 与B 重合,BQ =0. ③不存在PE =P A 的情况,因为∠P AE >∠P AH >∠AEP .图6 图7如图1,在平面直角坐标系中,抛物线212y x bx c =-++与x 轴交于A 、B 两点,与y轴交于点C ,直线y =x +4经过A 、C 两点.(1)求抛物线的表达式;(2)如果点P 、Q 在抛物线上(点P 在对称轴左边),且PQ //AO ,PQ =2AO ,求点P 、Q 的坐标;(3)动点M 在直线y =x +4上,且△ABC 与△COM相似,求点M 的坐标. 图1动感体验请打开几何画板文件名“16杨浦一模24”,拖动点M 在射线CA 上运动,可以体验到,△ABC 与△COM 相似存在两种情况.满分解答(1)由y =x +4,得A (-4, 0),C (0, 4). 将A (-4, 0)、C (0, 4)分别代入212y x bx c =-++,得840,4.b c c --+=⎧⎨=⎩ 解得b =-1,c =4.所以抛物线的表达式为2142y x x =--+. (2)如图2,因为PQ //AO ,所以P 、Q 关于抛物线的对称轴对称. 因为抛物线的对称轴是直线x =-1,PQ =2AO =8,所以x P =-5,x Q =3.当x =3时,2142y x x =--+=72-.所以P 7(5,)2--,Q 7(3,)2-. (3)由2114(4)(2)22y x x x x =--+=-+-,得B (2, 0).由A (-4, 0)、B (2, 0)、C (0, 4),得AB =6,AC =,CO =4.当点M 在射线CA 上时,由于∠MCO =∠BAC =45°,所以分两种情况讨论相似:①当CM ABCO AC =时,4CM =CM =M (-3, 1)(如图3).②当CM AC CO AB =时,46CM =CM =M 84(,)33-(如图4).图2 图3 图4如图1,已知菱形ABCD的边长为5,对角线AC的长为6,点E为边AB上的动点,点F在射线AD上,且∠ECF=∠B,直线CF交直线AB于点M.(1)求∠B的余弦值;(2)当点E与点A重合时,试画出符合题意的图,并求BM的长;(3)当点M在AB的延长线上时,设BE=x,BM=y,求y关于x的函数解析式,并写出定义域.图1 备用图动感体验请打开几何画板文件名“16杨浦一模25”,拖动点E在AB上慢慢运动,可以体验到,∠1=∠2=∠3,△MCE与△MBC保持相似.满分解答(1)如图2,作AN⊥BC于N,联结BD交AC于O,那么BO垂直平分AC.在Rt△ABO中,AB=5,AO=3,所以BO=4.因为S菱形ABCD=12AC BD⋅=BC AN⋅,所以64=5AN⨯⨯.解得AN=245.在Rt△ABN中,AB=5,AN=245,所以BN=75.因此cos∠B=BNAB=725.(2)如图3,当点E与点A重合时,由于∠ECF=∠B,∠FEC=∠1,所以△ECF∽△ABC.所以EF ACEC AB=,即665EF=.解得365EF=.由BC//AF,得AM AFBM BC=,即53625BMBM+=.解得12511BM=.图2 图3(3)如图4,因为∠ECF =∠ABC ,根据等角的邻补角相等,得∠MCE =∠MBC . 如图5,因为∠M 是公共角,所以△MCE ∽△MBC . 所以MC MBME MC=.因此22()MC MB ME y x y xy y =⋅=+=+. 作MH ⊥BC ,垂足为H .在Rt △MBH 中,MB =y ,cos ∠MBH =725,所以BH =725y ,MH =2425y .在Rt △MCH 中,根据勾股定理,得MC 2=MH 2+CH 2.因此222247()(5)2525xy y y y +=++. 整理,得125514y x =-.定义域是145<x ≤5.定义域中x =145的几何意义如图6所示,此时D 、F 重合,AB //CF .由CF =CE ,CF =CB ,得CE =CB . 所以1cos 2BE BC B =⋅.解得BE =72525⨯⨯=145.图4 图5 图6例 2016年上海市闸北区中考一模第24题如图1,在平面直角坐标系中,已知抛物线与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0, 2),对称轴为直线x =1,对称轴交x 轴于点E .(1)求该抛物线的表达式,并写出顶点D 的坐标;(2)设点F 在抛物线上,如果四边形AEFD 是梯形,求点F 的坐标;(3)联结BD ,设点P 在线段BD 上,若△EBP 与△ABD 相似,求点P 的坐标.图1动感体验请打开几何画板文件名“16闸北一模24”,梯形AEFD 只存在一种情况.拖动点P 在BD 边上运动,可以体验到,△EBP 与△ABD 相似存在两种情况.满分解答(1)点A (-1,0)关于直线x =1的对称点B 的坐标为(3, 0).设抛物线的解析式为y =a (x +1)(x -3),代入点C (0, 2),得2=-3a . 解得23a =-.所以2222428(1)(3)2(1)33333y x x x x x =-+-=-++=--+. 顶点D 的坐标为8(1,)3. (2)过△ADE 的三个顶点分别画对边的平行线,只有经过点E 的直线与抛物线有另外的交点,在第一象限内的交点就是梯形AEFD 的顶点F .设F 224(,2)33x x x -++. 作FH ⊥x 轴于H ,那么∠FEH =∠DAE . 由tan ∠FEH =tan ∠DAE ,得43FH DE EH AE ==.所以43FH EH =.解方程22442(1)333x x x -++=-,得x =F .图2 图3 图4。
虹口区中考数学第一次模试卷含答案解析
![虹口区中考数学第一次模试卷含答案解析](https://img.taocdn.com/s3/m/e4fc7b9e852458fb770b56fc.png)
上海市虹口区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.1.已知α为锐角,如果sinα=,那么α等于( )A.30°B.45°C.60°D.不确定2.把二次函数y=x2﹣4x+1化成y=a(x+m)2+k的形式是( )A.y=(x﹣2)2+1B.y=(x﹣2)2﹣1C.y=(x﹣2)2+3D.y=(x﹣2)2﹣33.若将抛物线平移,得到新抛物线y=(x+3)2,则下列平移方法中,正确的是( ) A.向左平移3个单位B.向右平移3个单位C.向上平移3个单位D.向下平移3个单位4.若坡面与水平面的夹角为α,则坡度i与坡角α之间的关系是( )A.i=cosαB.i=sinαC.i=cotαD.i=tanα5.如图,▱ABCD对角线AC与BD相交于点O,如果=,=,那么下列选项中,与向量(+)相等的向量是( )A.B.C.D.6.如图,点A、B、C、D的坐标分别是(1,7)、(1,1)、(4,1)、(6,1),若▱CDE与▱ABC相似,则点E的坐标不可能是( )A.(4,2)B.(6,0)C.(6,4)D.(6,5)二、填空题(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.若x:y=5:2,则(x+y):y的值是__________.8.计算:﹣3(﹣2)=__________.9.二次函数y=x2﹣2x的图象的对称轴是直线__________.10.如果抛物线y=﹣x2+3x﹣1+m经过原点,那么m=__________.11.已知点A(x1,y1)、B(x2,y2)为二次函数y=(x﹣1)2图象上的两点,若x1<x2<1,则y1__________y2.(填“>”、“<”或“=”)12.用“描点法”画二次函数y=ax2+bx+c的图象时,列出了下面的表格:x (2)101…y…﹣11﹣21﹣2…根据表格上的信息回答问题:当x=2时,y=__________.13.如果两个相似三角形的周长的比为1:4,那么周长较小的三角形与周长较大的三角形对应角平分线的比为__________.14.如图,在▱ABCD中,E是边BC上的点,分别联结AE、BD相交于点O,若AD=5,=,则EC=__________.15.如图,正方形DEFG的边EF在▱ABC的边BC上,顶点D、G分别在边AB、AC 上.若▱ABC的边BC长为40厘米,高AH为30厘米,则正方形DEFG的边长为__________厘米.16.如图,在▱ABC中,▱ACB=90°,若点G是▱ABC的重心,cos▱BCG=,BC=4,则CG=__________.17.如图,在四边形ABCD中,▱B=▱D=90°,AB=3,BC=2,tanA=,则CD=__________.18.如图,在矩形ABCD中,AB=6,AD=10,点E是边BC的中点,联结AE,若将▱ABE沿AE翻折,点B落在点F处,联结FC,则cos▱ECF=__________.三、解答题(本大题共7题,满分78分)19.计算:cos245°+tan60°•cos30°﹣3cot260°.20.已知一个二次函数的图象经过A(0,﹣3)、B(2,﹣3)、C(﹣1,0)三点.(1)求这个二次函数的解析式;(2)将这个二次函数图象平移,使顶点移到点P(0,﹣3)的位置,求所得新抛物线的表达式.21.如图,DC▱EF▱GH▱AB,AB=12,CD=6,DE:EG:GA=3:4:5.求EF和GH的长.22.如图,已知楼AB高36米,从楼顶A处测得旗杆顶C的俯角为60°,又从该楼离地面6米的一窗口E处测得旗杆顶C的仰角为45°,求该旗杆CD的高.(结果保留根号)23.如图,点E是四边形ABCD的对角线BD上的一点,▱BAE=▱CBD=▱DAC.(1)求证:DE•AB=BC•AE;(2)求证:▱AED+▱ADC=180°.24.在平面直角坐标系xOy中,抛物线与x轴分别交于点A(2,0)、点B(点B在点A 的右侧),与轴交于点C,tan▱CBA=.(1)求该抛物线的表达式;(2)设该抛物线的顶点为D,求四边形ACBD的面积;(3)设抛物线上的点E在第一象限,▱BCE是以BC为一条直角边的直角三角形,请直接写出点E的坐标.25.(14分)如图,在▱ABCD中,E为边BC的中点,F为线段AE上一点,联结BF并延长交边AD于点G,过点G作AE的平行线,交射线DC于点H.设==x.(1)当x=1时,求AG:AB的值;(2)设=y,求关于x的函数关系式,并写出x的取值范围;(3)当DH=3HC时,求x的值.上海市虹口区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.1.已知α为锐角,如果sinα=,那么α等于( )A.30°B.45°C.60°D.不确定【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值求解.【解答】解:▱α为锐角,sinα=,▱α=45°.故选B.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.2.把二次函数y=x2﹣4x+1化成y=a(x+m)2+k的形式是( )A.y=(x﹣2)2+1B.y=(x﹣2)2﹣1C.y=(x﹣2)2+3D.y=(x﹣2)2﹣3【考点】二次函数的三种形式.【分析】运用配方法把二次函数的一般式化为顶点式即可.【解答】解:y=x2﹣4x+1=x2﹣4x+4﹣3=(x﹣2)2﹣3,故选:D.【点评】本题考查的是二次函数的三种形式,正确运用配方法把二次函数的一般式化为顶点式是解题的关键.3.若将抛物线平移,得到新抛物线y=(x+3)2,则下列平移方法中,正确的是( ) A.向左平移3个单位B.向右平移3个单位C.向上平移3个单位D.向下平移3个单位【考点】二次函数图象与几何变换.【分析】先确定抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(﹣3,0),然后利用顶点的平移情况确定抛物线的平移情况.【解答】解:抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(﹣3,0),因为点(0,0)向左平移3个单位长度后得到(﹣3,0),所以把抛物线y=x2向左平移3个单位得到抛物线y=(x+3)2.故选A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.4.若坡面与水平面的夹角为α,则坡度i与坡角α之间的关系是( )A.i=cosαB.i=sinαC.i=cotαD.i=tanα【考点】解直角三角形的应用-坡度坡角问题.【分析】利用把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i==tanα.【解答】解:如图所示:i=tanα.故选:D.【点评】此题主要考查了解直角三角形的应用﹣坡度坡角的定义,正确把握坡角的定义是解题关键.5.如图,▱ABCD对角线AC与BD相交于点O,如果=,=,那么下列选项中,与向量(+)相等的向量是( )A.B.C.D.【考点】*平面向量.【分析】由四边形ABCD是平行四边形根据平行四边形法则,可求得==,然后由三角形法则,求得与,继而求得答案.【解答】解:▱四边形ABCD是平行四边形,▱==,▱=+=+,=﹣=﹣,▱=﹣=﹣(+),==(+),=﹣=﹣(﹣),==(﹣).故选C.【点评】此题考查了平面向量的知识以及平行四边形的性质.注意掌握三角形法则与平行四边形法则的应用是解此题的关键.6.如图,点A、B、C、D的坐标分别是(1,7)、(1,1)、(4,1)、(6,1),若▱CDE与▱ABC相似,则点E的坐标不可能是( )A.(4,2)B.(6,0)C.(6,4)D.(6,5)【考点】相似三角形的判定;坐标与图形性质.【分析】根据相似三角形的判定:两边对应成比例且夹角相等的两三角形相似即可判断.【解答】解:▱ABC中,▱ABC=90°,AB=6,BC=3,AB:BC=2.A、当点E的坐标为(4,2)时,▱CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,▱CDE▱▱ABC,故本选项不符合题意;B、当点E的坐标为(6,0)时,▱CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,▱CDE▱▱ABC,故本选项不符合题意;C、当点E的坐标为(6,4)时,▱CDE=90°,CD=2,DE=3,则AB:BC≠DE:CD,▱EDC与▱ABC不相似,故本选项符合题意;D、当点E的坐标为(6,5)时,▱CDE=90°,CD=2,DE=4,则AB:BC=CD:DE,▱CDE▱▱ABC不相似,故本选项不符合题意;故选:C.【点评】本题考查了相似三角形的判定,难度中等.牢记相似三角形的判定定理是解题的关键.二、填空题(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.若x:y=5:2,则(x+y):y的值是.【考点】比例的性质.【分析】根据合比性质:=⇒=,可得答案.【解答】解:由合比性质,得==,故答案为:.【点评】本题考查了比例的性质,利用合比性质是解题关键.8.计算:﹣3(﹣2)=﹣+6.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解:﹣3(﹣2)=﹣3+6=﹣+6.故答案为:﹣+6.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.9.二次函数y=x2﹣2x的图象的对称轴是直线x=1.【考点】二次函数的性质.【分析】先把二次函数y=x2﹣2x写成顶点坐标式y=(x﹣1)2﹣1,进而写出图象的对称轴方程.【解答】解:▱y=x2﹣2x,▱y=(x﹣1)2﹣1,▱二次函数的图象对称轴为x=1.故答案为x=1.【点评】本题主要考查了二次函数的性质,解答本题的关键是把二次函数写出顶点坐标式,此题难度不大.10.如果抛物线y=﹣x2+3x﹣1+m经过原点,那么m=1.【考点】二次函数图象上点的坐标特征.【专题】计算题.【分析】把原点坐标代入y=﹣x2+3x﹣1+m中得到关于m的一次方程,然后解一次方程即可.【解答】解:▱抛物线y=﹣x2+3x﹣1+m经过点(0,0),▱﹣1+m=0,▱m=1.故答案为1.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.11.已知点A(x1,y1)、B(x2,y2)为二次函数y=(x﹣1)2图象上的两点,若x1<x2<1,则y1>y2.(填“>”、“<”或“=”)【考点】二次函数图象上点的坐标特征.【专题】计算题.【分析】先利用顶点式得到抛物线的对称轴为直线x=1,由于抛物线开口向上,在对称轴左侧,y随x的增大而减小,于是可判断y1与y2的大小.【解答】解:▱二次函数y=(x﹣1)2图象的对称轴为直线x=1,而x1<x2<1,▱y1>y2.故答案为>.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.解决本题的关键是运用二次函数的性质比较y1与y2的大小.12.用“描点法”画二次函数y=ax2+bx+c的图象时,列出了下面的表格:x (2)101…y…﹣11﹣21﹣2…根据表格上的信息回答问题:当x=2时,y=﹣11.【考点】二次函数的性质.【分析】首先根据表格数据得到二次函数图象的对称轴为x=0,然后求出当x=2时y的值.【解答】解:由表格数据可知:当x=﹣1,y=﹣2;x=1,y=﹣2,则二次函数的图象对称轴为x=0,又知x=﹣2和x=2关于x=0对称,当x=﹣2时,y=﹣11,即当x=2时,y=﹣11.故答案为﹣11.【点评】本题主要考查了二次函数的性质的知识,解答本题的关键是根据表格数据得到二次函数图象的对称轴为x=0,此题难度不大.13.如果两个相似三角形的周长的比为1:4,那么周长较小的三角形与周长较大的三角形对应角平分线的比为1:4.【考点】相似三角形的性质.【分析】根据相似三角形周长的比等于相似比、相似三角形对应角平分线的比等于相似比解答即可.【解答】解:▱两个相似三角形的周长的比为1:4,▱两个相似三角形的相似比为1:4,▱周长较小的三角形与周长较大的三角形对应角平分线的比为1:4,故答案为:1:4.【点评】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比、相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比是解题的关键.14.如图,在▱ABCD中,E是边BC上的点,分别联结AE、BD相交于点O,若AD=5,=,则EC=2.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质得到AD▱BC,AD=BC,推出▱BE0▱▱DAO,根据相似三角形的性质得到,求得BE=3,即可得到结论.【解答】解:▱四边形ABCD是平行四边形,▱AD▱BC,AD=BC,▱▱BE0▱▱DAO,▱,▱AD=5,▱BE=3,▱CE=5﹣3=2,故答案为:2.【点评】此题考查了平行四边形的性质以及相似三角形的判定与性质.熟练掌握相似三角形的判定和性质是解题的关键.15.如图,正方形DEFG的边EF在▱ABC的边BC上,顶点D、G分别在边AB、AC 上.若▱ABC的边BC长为40厘米,高AH为30厘米,则正方形DEFG的边长为厘米.【考点】相似三角形的判定与性质;正方形的性质.【分析】由DG▱BC得▱ADG▱▱ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:设正方形的边长为x.由正方形DEFG得,DG▱EF,即DG▱BC,▱AH▱BC,▱AP▱DG.由DG▱BC得▱ADG▱▱ABC▱=.▱PH▱BC,DE▱BC▱PH=ED,AP=AH﹣PH,即,由BC=40,AH=30,DE=DG=x,得,解得x=.故正方形DEFG的边长是.故答案为:.【点评】本题考查了相似三角形的判定与性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.如图,在▱ABC中,▱ACB=90°,若点G是▱ABC的重心,cos▱BCG=,BC=4,则CG=2.【考点】三角形的重心.【分析】延长CG交AB于D,作DE▱BC于E,根据重心的概念得到点D为AB的中点,根据直角三角形的性质得到DC=DB,根据等腰三角形的三线合一得到CE=2,根据余弦的概念求出CD,根据三角形的重心的概念得到答案.【解答】解:延长CG交AB于D,作DE▱BC于E,▱点G是▱ABC的重心,▱点D为AB的中点,▱DC=DB,又DE▱BC,▱CE=BE=BC=2,又cos▱BCG=,▱CD=3,▱点G是▱ABC的重心,▱CG=CD=2,故答案为:2.【点评】本题考查的是三角形的重心的概念和性质以及锐角三角函数的定义,掌握三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.17.如图,在四边形ABCD中,▱B=▱D=90°,AB=3,BC=2,tanA=,则CD=.【考点】解直角三角形.【分析】延长AD和BC交于点E,在直角▱ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角▱CDE中利用三角函数的定义求解.【解答】解:延长AD和BC交于点E.▱在直角▱ABE中,tanA==,AB=3,▱BE=4,▱EC=BE﹣BC=4﹣2=2,▱▱ABE和▱CDE中,▱B=▱EDC=90°,▱E=▱E,▱▱DCE=▱A,▱直角▱CDE中,tan▱DCE=tanA==,▱设DE=4x,则DC=3x,在直角▱CDE中,EC2=DE2+DC2,▱4=16x2+9x2,解得:x=,则CD=.故答案是:.【点评】此题考查了相似三角形的判定与性质,含30度直角三角形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.18.如图,在矩形ABCD中,AB=6,AD=10,点E是边BC的中点,联结AE,若将▱ABE沿AE翻折,点B落在点F处,联结FC,则cos▱ECF=.【考点】翻折变换(折叠问题);解直角三角形.【分析】由矩形的性质得出▱B=90°,BC=AD=10,由勾股定理求出AE,由翻折变换的性质得出▱AFE▱▱ABE,得出▱AEF=▱AEB,EF=BE=5,因此EF=CE,由等腰三角形的性质得出▱EFC=▱ECF,由三角形的外角性质得出▱AEB=▱ECF,cos▱ECF=cos▱AEB=,即可得出结果.【解答】解:如图所示:▱四边形ABCD是矩形,▱▱B=90°,BC=AD=10,▱E是BC的中点,▱BE=CE=BC=5,▱AE===,由翻折变换的性质得:▱AFE▱▱ABE,▱▱AEF=▱AEB,EF=BE=5,▱EF=CE,▱▱EFC=▱ECF,▱▱BEF=▱EFC+▱ECF,▱▱AEB=▱ECF,▱cos▱ECF=cos▱AEB===.故答案为:.【点评】本题考查了矩形的性质、勾股定理、翻折变换的性质、等腰三角形的判定与性质、三角形的外角性质、三角函数;熟练掌握矩形的性质和翻折变换的性质,证出▱AEB=▱ECF是解决问题的关键.三、解答题(本大题共7题,满分78分)19.计算:cos245°+tan60°•cos30°﹣3cot260°.【考点】特殊角的三角函数值.【分析】将特殊角的三角函数值代入求解.【解答】解:原式=()2+×﹣3×()2=1.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.20.已知一个二次函数的图象经过A(0,﹣3)、B(2,﹣3)、C(﹣1,0)三点.(1)求这个二次函数的解析式;(2)将这个二次函数图象平移,使顶点移到点P(0,﹣3)的位置,求所得新抛物线的表达式.【考点】二次函数图象与几何变换;待定系数法求二次函数解析式.【专题】计算题.【分析】(1)利用待定系数法求抛物线解析式;(2)利用顶点式写出所得新抛物线的表达式.【解答】解:(1)设所求二次函数的解析式为y=ax2+bx+c,由题意得,解得.所以这个二次函数的解析式为y=x2﹣2x﹣3;(2)因为新抛物线是由抛物线y=x2﹣2x﹣3平移得到,而新抛物线的顶点坐标是(0,﹣3),所以新抛物线的解析式为y=x2﹣3.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.21.如图,DC▱EF▱GH▱AB,AB=12,CD=6,DE:EG:GA=3:4:5.求EF和GH的长.【考点】平行线分线段成比例.【专题】计算题.【分析】过C作CQ▱AD,交GH于N,交EF于M,交AB于Q,则可判断四边形AQCD 为平行四边形,所以AQ=CD=6,同理可得EM=EM=CD=6,则BQ=AB﹣AQ=6,再利用平行线分线段成比例定理得到DE:EG:GA=CF:HF:HB=3:4:5,然后根据平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例得到MF:BQ=CF:CB=3:(3+4+5),NH:BQ=CH:CB=(3+4):(3+4+5),则可计算出MF和NH,从而得到GH和EF的长【解答】解:过C作CQ▱AD,交GH于N,交EF于M,交AB于Q,如图,▱CD▱AB,▱四边形AQCD为平行四边形,▱AQ=CD=6,同理可得GN=EM=CD=6,▱BQ=AB﹣AQ=6,▱DC▱EF▱GH▱AB,▱DE:EG:GA=CF:HF:HB=3:4:5,▱MF▱NH▱BQ,▱MF:BQ=CF:CB=3:(3+4+5),NH:BQ=CH:CB=(3+4):(3+4+5),▱MF=×6=1.5,NH=×6=3.5,▱EM=EM+MF=6+1.5=7.5,HG=GN+NH=6+3.5=9.5.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.22.如图,已知楼AB高36米,从楼顶A处测得旗杆顶C的俯角为60°,又从该楼离地面6米的一窗口E处测得旗杆顶C的仰角为45°,求该旗杆CD的高.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】过点C作CG▱AE,垂足为点G,由题意得▱CEF=45°=▱CEG,▱ACG=60°,设CG=x,在Rt▱ACG中,AG=CG•tan▱ACG=x,在Rt▱ECG中,EG=CG•cot▱CEG=x,根据AG+EG=AE,列方程=36﹣6,得到CF=EG=15﹣15,于是得到结论.【解答】解:过点C作CG▱AE,垂足为点G,由题意得▱CEF=45°=▱CEG,▱ACG=60°,设CG=x,在Rt▱ACG中,AG=CG•tan▱ACG=x,在Rt▱ECG中,EG=CG•cot▱CEG=x,▱AG+EG=AE,▱=36﹣6,解得:x=15﹣15,▱CF=EG=15﹣15,▱CD=15﹣15+6=15﹣9.答:该旗杆CD的高为(15﹣9)米.【点评】此题主要考查了仰角与俯角问题,正确应用锐角三角函数关系是解题关键.23.如图,点E是四边形ABCD的对角线BD上的一点,▱BAE=▱CBD=▱DAC.(1)求证:DE•AB=BC•AE;(2)求证:▱AED+▱ADC=180°.【考点】相似三角形的判定与性质.【专题】证明题.【分析】(1)根据已知条件得到▱BAC=▱EAD,根据三角形额外角的性质得到▱ABC=▱AED,推出▱ABC▱▱AED,根据三角形的外角的性质得到结论;(2)根据相似三角形的性质得到,推出▱ABE▱▱ACD,根据相似三角形的性质得到▱AEB=▱ADC,等量代换即可得到结论.【解答】证明:(1)▱▱BAE=▱DAC,▱▱BAE+▱EAC=▱DAC+▱EAC,即▱BAC=▱EAD,▱▱ABC=▱ABE+▱CBD,▱AED=▱ABE+▱BAE,▱▱CBD=▱BAE,▱▱ABC=▱AED,▱▱ABC▱▱AED,▱,▱DE•AB=BC•AE;(2)▱▱ABC▱▱AED,▱,即,▱▱BAE=▱DAC▱▱ABE▱▱ACD,▱▱AEB=▱ADC,▱▱AED+▱AEB=180°,▱▱AED+▱ADC=180°.【点评】本题考查了相似三角形的性质和判定,邻补角的定义,三角形外角的性质,熟练掌握相似三角形的判定和性质是解题的关键.24.在平面直角坐标系xOy中,抛物线与x轴分别交于点A(2,0)、点B(点B在点A 的右侧),与轴交于点C,tan▱CBA=.(1)求该抛物线的表达式;(2)设该抛物线的顶点为D,求四边形ACBD的面积;(3)设抛物线上的点E在第一象限,▱BCE是以BC为一条直角边的直角三角形,请直接写出点E的坐标.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【分析】(1)由抛物线解析式和已知条件得出C和B的坐标,(0,3),OC=3,把A(2,0)、B(6,0)分别代入y=ax2+bx+3得出方程组,解方程即可;(2)把抛物线解析式化成顶点式得出顶点坐标,四边形ACBD的面积=▱ABC的面积+▱ABD的面积,即可得出结果;(3)设点E的坐标为(x,x2﹣2x+3),分两种情况:①当▱CBE=90°时;②当▱BCE=90°时;分别由三角函数得出方程,解方程即可.【解答】解:(1)▱当x=0时,▱C(0,3),OC=3,在Rt▱COB中,▱tan▱CBA=,▱=,▱OB=2OC=6,▱点B(6,0),把A(2,0)、B(6,0)分别代入y=ax2+bx+3,得:,解得:▱该抛物线表达式为y=x2﹣2x+3;(2)▱y=x2﹣2x+3=(x﹣4)2﹣1▱顶点D(4,﹣1),▱四边形ACBD的面积=▱ABC的面积+▱ABD的面积=×4×3+×4×1=8;(3)设点E的坐标为(x,x2﹣2x+3),分两种情况:①当▱CBE=90°时,作EM▱x轴于M,如图所示:则▱BEM=▱CBA,▱=tan▱BEM=tan▱CBA=,▱EM=2BM,即2(x﹣6)=x2﹣2x+3,解得:x=10,或x=6(不合题意,舍去),▱点E坐标为(10,8);②当▱BCE=90°时,作EN▱y轴于N,如图2所示:则▱ECN=▱CBA,▱=tan▱ECN=tan▱CBA=,▱CN=2EN,即2x=x2﹣2x+3﹣3,解得:x=16,或x=0(不合题意,舍去),▱点E坐标为(16,35);综上所述:点E坐标为(10,8)或(16,35).【点评】本题考查了抛物线与x轴的交点、抛物线解析式的求法、三角函数的应用、解方程等知识;本题综合性强,有一定难度,求出抛物线解析式是解决问题的关键.25.(14分)如图,在▱ABCD中,E为边BC的中点,F为线段AE上一点,联结BF并延长交边AD于点G,过点G作AE的平行线,交射线DC于点H.设==x.(1)当x=1时,求AG:AB的值;(2)设=y,求关于x的函数关系式,并写出x的取值范围;(3)当DH=3HC时,求x的值.【考点】相似形综合题.【专题】综合题;图形的相似.【分析】(1)由平行四边形ABCD,得到AD与BC平行且相等,由两直线平行得到两对内错角相等,进而确定出三角形BEF与三角形AGF相似,由相似得比例,把x=1代入已知等式,结合比例式得到AG=BE,AD=AB,即可求出所求式子的值;(2)设AB=1,根据已知等式表示出AD与BE,由AD与BC平行,得到比例式,表示出AG与DG,利用两角相等的三角形相似得到三角形GDH与三角形ABE相似,利用相似三角形面积之比等于相似比的平方列出y与x的函数解析式,并求出x的范围即可;(3)分两种情况考虑:①当点H在边DC上时,如图1所示;②当H在DC的延长线上时,如图2所示,分别利用相似得比例列出关于x的方程,求出方程的解即可得到x的值.【解答】解:(1)在▱ABCD中,AD=BC,AD▱BC,▱▱BEF=▱GAF,▱EBF=▱AGF,▱▱BEF▱▱GAF,▱=,▱x=1,即==1,▱==1,▱AD=AB,AG=BE,▱E为BC的中点,▱BE=BC,▱AG=AB,则AG:AB=;(2)▱==x,▱不妨设AB=1,则AD=x,BE=x,▱AD▱BC,▱==x,▱AG=,DG=x﹣,▱GH▱AE,▱▱DGH=▱DAE,▱AD▱BC,▱▱DAE=▱AEB,▱▱DGH=▱AEB,在▱ABCD中,▱D=▱ABE,▱▱GDH▱▱EBA,▱=()2,▱y=()2=(x>);(3)分两种情况考虑:①当点H在边DC上时,如图1所示:▱DH=3HC,▱=,▱=,▱▱GDH▱▱EBA,▱==,即=,解得:x=;②当H在DC的延长线上时,如图2所示:▱DH=3HC,▱=,▱=,▱▱GDH▱▱EBA,▱==,即=,解得:x=2,综上所述,可知x的值为或2.【点评】此题属于相似型综合题,涉及的知识有:平行四边形的性质,相似三角形的判定与性质,以及平行线的性质,熟练掌握相似三角形的判定与性质是解本题的关键.。
上海市虹口区2016年中考数学一模试题(含解析)
![上海市虹口区2016年中考数学一模试题(含解析)](https://img.taocdn.com/s3/m/3969056fe45c3b3567ec8b29.png)
上海市虹口区2016年中考数学一模试题一、选择题(本大题共6题,每题4分,满分24分)下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.1.已知α为锐角,如果sinα=,那么α等于( )A.30° B.45° C.60° D.不确定2.把二次函数y=x2﹣4x+1化成y=a(x+m)2+k的形式是( )A.y=(x﹣2)2+1 B.y=(x﹣2)2﹣1 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣33.若将抛物线平移,得到新抛物线y=(x+3)2,则下列平移方法中,正确的是( ) A.向左平移3个单位 B.向右平移3个单位C.向上平移3个单位 D.向下平移3个单位4.若坡面与水平面的夹角为α,则坡度i与坡角α之间的关系是( )A.i=cosαB.i=sinαC.i=cotαD.i=tanα5.如图,▱ABCD对角线AC与BD相交于点O,如果=,=,那么下列选项中,与向量(+)相等的向量是( )A.B.C.D.6.如图,点A、B、C、D的坐标分别是(1,7)、(1,1)、(4,1)、(6,1),若△CDE与△ABC相似,则点E的坐标不可能是( )A.(4,2)B.(6,0)C.(6,4)D.(6,5)二、填空题(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.若x:y=5:2,则(x+y):y的值是__________.8.计算:﹣3(﹣2)=__________.9.二次函数y=x2﹣2x的图象的对称轴是直线__________.10.如果抛物线y=﹣x2+3x﹣1+m经过原点,那么m=__________.11.已知点A(x1,y1)、B(x2,y2)为二次函数y=(x﹣1)2图象上的两点,若x1<x2<1,则y1__________y2.(填“>”、“<”或“=”)2+bx+c的图象时,列出了下面的表格:x=2时,y=__________.13.如果两个相似三角形的周长的比为1:4,那么周长较小的三角形与周长较大的三角形对应角平分线的比为__________.14.如图,在▱ABCD中,E是边BC上的点,分别联结AE、BD相交于点O,若AD=5,=,则EC=__________.15.如图,正方形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上.若△ABC 的边BC长为40厘米,高AH为30厘米,则正方形DEFG的边长为__________厘米.16.如图,在△ABC中,∠ACB=90°,若点G是△ABC的重心,cos∠BCG=,BC=4,则CG=__________.17.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=,则CD=__________.18.如图,在矩形ABCD中,AB=6,AD=10,点E是边BC的中点,联结AE,若将△ABE沿AE 翻折,点B落在点F处,联结FC,则cos∠ECF=__________.三、解答题(本大题共7题,满分78分)19.计算:cos245°+tan60°•cos30°﹣3cot260°.20.已知一个二次函数的图象经过A(0,﹣3)、B(2,﹣3)、C(﹣1,0)三点.(1)求这个二次函数的解析式;(2)将这个二次函数图象平移,使顶点移到点P(0,﹣3)的位置,求所得新抛物线的表达式.21.如图,DC∥EF∥GH∥AB,AB=12,CD=6,DE:EG:GA=3:4:5.求EF和GH的长.22.如图,已知楼AB高36米,从楼顶A处测得旗杆顶C的俯角为60°,又从该楼离地面6米的一窗口E处测得旗杆顶C的仰角为45°,求该旗杆CD的高.(结果保留根号)23.如图,点E是四边形ABCD的对角线BD上的一点,∠BAE=∠CBD=∠DAC.(1)求证:DE•AB=BC•AE;(2)求证:∠AED+∠ADC=180°.24.在平面直角坐标系xOy中,抛物线与x轴分别交于点A(2,0)、点B(点B在点A的右侧),与轴交于点C,tan∠CBA=.(1)求该抛物线的表达式;(2)设该抛物线的顶点为D,求四边形ACBD的面积;(3)设抛物线上的点E在第一象限,△BCE是以BC为一条直角边的直角三角形,请直接写出点E的坐标.25.(14分)如图,在▱ABCD中,E为边BC的中点,F为线段AE上一点,联结BF并延长交边AD于点G,过点G作AE的平行线,交射线DC于点H.设==x.(1)当x=1时,求AG:AB的值;(2)设=y,求关于x的函数关系式,并写出x的取值范围;(3)当DH=3HC时,求x的值.2016年上海市虹口区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.1.已知α为锐角,如果sinα=,那么α等于( )A.30° B.45° C.60° D.不确定【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值求解.【解答】解:∵α为锐角,sinα=,∴α=45°.故选B.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.2.把二次函数y=x2﹣4x+1化成y=a(x+m)2+k的形式是( )A.y=(x﹣2)2+1 B.y=(x﹣2)2﹣1 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数的三种形式.【分析】运用配方法把二次函数的一般式化为顶点式即可.【解答】解:y=x2﹣4x+1=x2﹣4x+4﹣3=(x﹣2)2﹣3,故选:D.【点评】本题考查的是二次函数的三种形式,正确运用配方法把二次函数的一般式化为顶点式是解题的关键.3.若将抛物线平移,得到新抛物线y=(x+3)2,则下列平移方法中,正确的是( ) A.向左平移3个单位 B.向右平移3个单位C.向上平移3个单位 D.向下平移3个单位【考点】二次函数图象与几何变换.【分析】先确定抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(﹣3,0),然后利用顶点的平移情况确定抛物线的平移情况.【解答】解:抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(﹣3,0),因为点(0,0)向左平移3个单位长度后得到(﹣3,0),所以把抛物线y=x2向左平移3个单位得到抛物线y=(x+3)2.故选A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.4.若坡面与水平面的夹角为α,则坡度i与坡角α之间的关系是( )A.i=cosαB.i=sinαC.i=cotαD.i=tanα【考点】解直角三角形的应用-坡度坡角问题.【分析】利用把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i==tanα.【解答】解:如图所示:i=tanα.故选:D.【点评】此题主要考查了解直角三角形的应用﹣坡度坡角的定义,正确把握坡角的定义是解题关键.5.如图,▱ABCD对角线AC与BD相交于点O,如果=,=,那么下列选项中,与向量(+)相等的向量是( )A.B.C.D.【考点】*平面向量.【分析】由四边形ABCD是平行四边形根据平行四边形法则,可求得==,然后由三角形法则,求得与,继而求得答案.【解答】解:∵四边形ABCD是平行四边形,∴==,∴=+=+,=﹣=﹣,∴=﹣=﹣(+),==(+),=﹣=﹣(﹣),==(﹣).故选C.【点评】此题考查了平面向量的知识以及平行四边形的性质.注意掌握三角形法则与平行四边形法则的应用是解此题的关键.6.如图,点A、B、C、D的坐标分别是(1,7)、(1,1)、(4,1)、(6,1),若△CDE与△ABC 相似,则点E的坐标不可能是( )A.(4,2)B.(6,0)C.(6,4)D.(6,5)【考点】相似三角形的判定;坐标与图形性质.【分析】根据相似三角形的判定:两边对应成比例且夹角相等的两三角形相似即可判断.【解答】解:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.A、当点E的坐标为(4,2)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;C、当点E的坐标为(6,4)时,∠CDE=90°,CD=2,DE=3,则AB:BC≠DE:CD,△EDC与△ABC不相似,故本选项符合题意;D、当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=CD:DE,△CDE∽△ABC 不相似,故本选项不符合题意;故选:C.【点评】本题考查了相似三角形的判定,难度中等.牢记相似三角形的判定定理是解题的关键.二、填空题(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.若x:y=5:2,则(x+y):y的值是.【考点】比例的性质.【分析】根据合比性质:=⇒=,可得答案.【解答】解:由合比性质,得==,故答案为:.【点评】本题考查了比例的性质,利用合比性质是解题关键.8.计算:﹣3(﹣2)=﹣+6.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解:﹣3(﹣2)=﹣3+6=﹣+6.故答案为:﹣+6.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.9.二次函数y=x2﹣2x的图象的对称轴是直线x=1.【考点】二次函数的性质.【分析】先把二次函数y=x2﹣2x写成顶点坐标式y=(x﹣1)2﹣1,进而写出图象的对称轴方程.【解答】解:∵y=x2﹣2x,∴y=(x﹣1)2﹣1,∴二次函数的图象对称轴为x=1.故答案为x=1.【点评】本题主要考查了二次函数的性质,解答本题的关键是把二次函数写出顶点坐标式,此题难度不大.10.如果抛物线y=﹣x2+3x﹣1+m经过原点,那么m=1.【考点】二次函数图象上点的坐标特征.【专题】计算题.【分析】把原点坐标代入y=﹣x2+3x﹣1+m中得到关于m的一次方程,然后解一次方程即可.【解答】解:∵抛物线y=﹣x2+3x﹣1+m经过点(0,0),∴﹣1+m=0,∴m=1.故答案为1.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.11.已知点A(x1,y1)、B(x2,y2)为二次函数y=(x﹣1)2图象上的两点,若x1<x2<1,则y1>y2.(填“>”、“<”或“=”)【考点】二次函数图象上点的坐标特征.【专题】计算题.【分析】先利用顶点式得到抛物线的对称轴为直线x=1,由于抛物线开口向上,在对称轴左侧,y随x的增大而减小,于是可判断y1与y2的大小.【解答】解:∵二次函数y=(x﹣1)2图象的对称轴为直线x=1,而x1<x2<1,∴y1>y2.故答案为>.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.解决本题的关键是运用二次函数的性质比较y1与y2的大小.2+bx+c的图象时,列出了下面的表格:x=2时,y=﹣11.【考点】二次函数的性质.【分析】首先根据表格数据得到二次函数图象的对称轴为x=0,然后求出当x=2时y的值.【解答】解:由表格数据可知:当x=﹣1,y=﹣2;x=1,y=﹣2,则二次函数的图象对称轴为x=0,又知x=﹣2和x=2关于x=0对称,当x=﹣2时,y=﹣11,即当x=2时,y=﹣11.故答案为﹣11.【点评】本题主要考查了二次函数的性质的知识,解答本题的关键是根据表格数据得到二次函数图象的对称轴为x=0,此题难度不大.13.如果两个相似三角形的周长的比为1:4,那么周长较小的三角形与周长较大的三角形对应角平分线的比为1:4.【考点】相似三角形的性质.【分析】根据相似三角形周长的比等于相似比、相似三角形对应角平分线的比等于相似比解答即可.【解答】解:∵两个相似三角形的周长的比为1:4,∴两个相似三角形的相似比为1:4,∴周长较小的三角形与周长较大的三角形对应角平分线的比为1:4,故答案为:1:4.【点评】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比、相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比是解题的关键.14.如图,在▱ABCD中,E是边BC上的点,分别联结AE、BD相交于点O,若AD=5,=,则EC=2.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质得到AD∥BC,AD=BC,推出△BE0∽△DAO,根据相似三角形的性质得到,求得BE=3,即可得到结论.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△BE0∽△DAO,∴,∵AD=5,∴BE=3,∴CE=5﹣3=2,故答案为:2.【点评】此题考查了平行四边形的性质以及相似三角形的判定与性质.熟练掌握相似三角形的判定和性质是解题的关键.15.如图,正方形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上.若△ABC的边BC长为40厘米,高AH为30厘米,则正方形DEFG的边长为厘米.【考点】相似三角形的判定与性质;正方形的性质.【分析】由DG∥BC得△ADG∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:设正方形的边长为x.由正方形DEFG得,DG∥EF,即DG∥BC,∵AH⊥BC,∴AP⊥DG.由DG∥BC得△ADG∽△ABC∴=.∵PH⊥BC,DE⊥BC∴PH=ED,AP=AH﹣PH,即,由BC=40,AH=30,DE=DG=x,得,解得x=.故正方形DEFG的边长是.故答案为:.【点评】本题考查了相似三角形的判定与性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.如图,在△ABC中,∠ACB=90°,若点G是△ABC的重心,cos∠BCG=,BC=4,则CG=2.【考点】三角形的重心.【分析】延长CG交AB于D,作DE⊥BC于E,根据重心的概念得到点D为AB的中点,根据直角三角形的性质得到DC=DB,根据等腰三角形的三线合一得到CE=2,根据余弦的概念求出CD,根据三角形的重心的概念得到答案.【解答】解:延长CG交AB于D,作DE⊥BC于E,∵点G是△ABC的重心,∴点D为AB的中点,∴DC=DB,又D E⊥BC,∴CE=BE=BC=2,又cos∠BCG=,∴CD=3,∵点G是△ABC的重心,∴CG=CD=2,故答案为:2.【点评】本题考查的是三角形的重心的概念和性质以及锐角三角函数的定义,掌握三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.17.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=,则CD=.【考点】解直角三角形.【分析】延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角△CDE中利用三角函数的定义求解.【解答】解:延长AD和BC交于点E.∵在直角△ABE中,tanA==,AB=3,∴BE=4,∴EC=BE﹣BC=4﹣2=2,∵△ABE和△CDE中,∠B=∠EDC=90°,∠E=∠E,∴∠DCE=∠A,∴直角△CDE中,tan∠DCE=tanA==,∴设DE=4x,则DC=3x,在直角△CDE中,EC2=DE2+DC2,∴4=16x2+9x2,解得:x=,则CD=.故答案是:.【点评】此题考查了相似三角形的判定与性质,含30度直角三角形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.18.如图,在矩形ABCD中,AB=6,AD=10,点E是边BC的中点,联结AE,若将△ABE沿AE翻折,点B落在点F处,联结FC,则cos∠ECF=.【考点】翻折变换(折叠问题);解直角三角形.【分析】由矩形的性质得出∠B=90°,BC=AD=10,由勾股定理求出AE,由翻折变换的性质得出△AFE≌△ABE,得出∠AEF=∠AEB,EF=BE=5,因此EF=CE,由等腰三角形的性质得出∠EFC=∠ECF,由三角形的外角性质得出∠AEB=∠ECF,cos∠ECF=cos∠AEB=,即可得出结果.【解答】解:如图所示:∵四边形ABCD是矩形,∴∠B=90°,BC=AD=10,∵E是BC的中点,∴BE=CE=BC=5,∴AE===,由翻折变换的性质得:△AFE≌△ABE,∴∠AEF=∠AEB,EF=BE=5,∴EF=CE,∴∠EFC=∠ECF,∵∠BEF=∠EFC+∠ECF,∴∠AEB=∠ECF,∴cos∠ECF=cos∠AEB===.故答案为:.【点评】本题考查了矩形的性质、勾股定理、翻折变换的性质、等腰三角形的判定与性质、三角形的外角性质、三角函数;熟练掌握矩形的性质和翻折变换的性质,证出∠AEB=∠ECF 是解决问题的关键.三、解答题(本大题共7题,满分78分)19.计算:cos245°+tan60°•cos30°﹣3cot260°.【考点】特殊角的三角函数值.【分析】将特殊角的三角函数值代入求解.【解答】解:原式=()2+×﹣3×()2=1.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.20.已知一个二次函数的图象经过A(0,﹣3)、B(2,﹣3)、C(﹣1,0)三点.(1)求这个二次函数的解析式;(2)将这个二次函数图象平移,使顶点移到点P(0,﹣3)的位置,求所得新抛物线的表达式.【考点】二次函数图象与几何变换;待定系数法求二次函数解析式.【专题】计算题.【分析】(1)利用待定系数法求抛物线解析式;(2)利用顶点式写出所得新抛物线的表达式.【解答】解:(1)设所求二次函数的解析式为y=ax2+bx+c,由题意得,解得.所以这个二次函数的解析式为y=x2﹣2x﹣3;(2)因为新抛物线是由抛物线y=x2﹣2x﹣3平移得到,而新抛物线的顶点坐标是(0,﹣3),所以新抛物线的解析式为y=x2﹣3.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.21.如图,DC∥EF∥GH∥AB,AB=12,CD=6,DE:EG:GA=3:4:5.求EF和GH的长.【考点】平行线分线段成比例.【专题】计算题.【分析】过C作CQ∥AD,交GH于N,交EF于M,交AB于Q,则可判断四边形AQCD为平行四边形,所以AQ=CD=6,同理可得EM=EM=CD=6,则BQ=AB﹣AQ=6,再利用平行线分线段成比例定理得到DE:EG:GA=CF:HF:HB=3:4:5,然后根据平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例得到MF:BQ=CF:CB=3:(3+4+5),NH:BQ=CH:CB=(3+4):(3+4+5),则可计算出MF和NH,从而得到GH和EF的长【解答】解:过C作CQ∥AD,交GH于N,交EF于M,交AB于Q,如图,∵CD∥AB,∴四边形AQCD为平行四边形,∴AQ=CD=6,同理可得GN=EM=CD=6,∴BQ=AB﹣AQ=6,∵DC∥EF∥GH∥AB,∴DE:EG:GA=CF:HF:HB=3:4:5,∵MF∥NH∥BQ,∴MF:BQ=CF:CB=3:(3+4+5),NH:BQ=CH:CB=(3+4):(3+4+5),∴MF=×6=1.5,NH=×6=3.5,∴EM=EM+MF=6+1.5=7.5,HG=GN+NH=6+3.5=9.5.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.22.如图,已知楼AB高36米,从楼顶A处测得旗杆顶C的俯角为60°,又从该楼离地面6米的一窗口E处测得旗杆顶C的仰角为45°,求该旗杆CD的高.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】过点C作CG⊥AE,垂足为点G,由题意得∠CEF=45°=∠CEG,∠ACG=60°,设CG=x,在Rt△ACG中,AG=CG•tan∠ACG=x,在Rt△ECG中,EG=CG•cot∠CEG=x,根据AG+EG=AE,列方程=36﹣6,得到CF=EG=15﹣15,于是得到结论.【解答】解:过点C作CG⊥AE,垂足为点G,由题意得∠CEF=45°=∠CEG,∠ACG=60°,设CG=x,在Rt△ACG中,AG=CG•tan∠ACG=x,在Rt△ECG中,EG=CG•cot∠CEG=x,∵AG+EG=AE,∴=36﹣6,解得:x=15﹣15,∴CF=EG=15﹣15,∴CD=15﹣15+6=15﹣9.答:该旗杆CD的高为(15﹣9)米.【点评】此题主要考查了仰角与俯角问题,正确应用锐角三角函数关系是解题关键.23.如图,点E是四边形ABCD的对角线BD上的一点,∠BAE=∠CBD=∠DAC.(1)求证:DE•AB=BC•AE;(2)求证:∠AED+∠ADC=180°.【考点】相似三角形的判定与性质.【专题】证明题.【分析】(1)根据已知条件得到∠BAC=∠EAD,根据三角形额外角的性质得到∠ABC=∠AED,推出△ABC∽△AED,根据三角形的外角的性质得到结论;(2)根据相似三角形的性质得到,推出△ABE∽△ACD,根据相似三角形的性质得到∠AEB=∠ADC,等量代换即可得到结论.【解答】证明:(1)∵∠BAE=∠DAC,∴∠BAE+∠EAC=∠DAC+∠EAC,即∠BAC=∠EAD,∵∠ABC=∠ABE+∠CBD,∠AED=∠ABE+∠BAE,∵∠CBD=∠BAE,∴∠ABC=∠AED,∴△ABC∽△AED,∴,∴DE•AB=BC•AE;(2)∵△ABC∽△AED,∴,即,∵∠BAE=∠DAC∴△ABE∽△ACD,∴∠AEB=∠ADC,∵∠AED+∠AEB=180°,∴∠AED+∠ADC=180°.【点评】本题考查了相似三角形的性质和判定,邻补角的定义,三角形外角的性质,熟练掌握相似三角形的判定和性质是解题的关键.24.在平面直角坐标系xOy中,抛物线与x轴分别交于点A(2,0)、点B(点B在点A的右侧),与轴交于点C,tan∠CBA=.(1)求该抛物线的表达式;(2)设该抛物线的顶点为D,求四边形ACBD的面积;(3)设抛物线上的点E在第一象限,△BCE是以BC为一条直角边的直角三角形,请直接写出点E的坐标.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【分析】(1)由抛物线解析式和已知条件得出C和B的坐标,(0,3),OC=3,把A(2,0)、B(6,0)分别代入y=ax2+bx+3得出方程组,解方程即可;(2)把抛物线解析式化成顶点式得出顶点坐标,四边形ACBD的面积=△ABC的面积+△ABD 的面积,即可得出结果;(3)设点E的坐标为(x,x2﹣2x+3),分两种情况:①当∠CBE=90°时;②当∠BCE=90°时;分别由三角函数得出方程,解方程即可.【解答】解:(1)∵当x=0时,∴C(0,3),OC=3,在Rt△COB中,∵tan∠CBA=,∴=,∴OB=2OC=6,∴点B(6,0),把A(2,0)、B(6,0)分别代入y=ax2+bx+3,得:,解得:∴该抛物线表达式为y=x2﹣2x+3;(2)∵y=x2﹣2x+3=(x﹣4)2﹣1∴顶点D(4,﹣1),∴四边形ACBD的面积=△ABC的面积+△ABD的面积=×4×3+×4×1=8;(3)设点E的坐标为(x,x2﹣2x+3),分两种情况:①当∠CBE=90°时,作EM⊥x轴于M,如图所示:则∠BEM=∠CBA,∴=tan∠BEM=tan∠CBA=,∴EM=2BM,即2(x﹣6)=x2﹣2x+3,解得:x=10,或x=6(不合题意,舍去),∴点E坐标为(10,8);②当∠BCE=90°时,作EN⊥y轴于N,如图2所示:则∠ECN=∠CBA,∴=tan∠ECN=tan∠CBA=,∴CN=2EN,即2x=x2﹣2x+3﹣3,解得:x=16,或x=0(不合题意,舍去),∴点E坐标为(16,35);综上所述:点E坐标为(10,8)或(16,35).【点评】本题考查了抛物线与x轴的交点、抛物线解析式的求法、三角函数的应用、解方程等知识;本题综合性强,有一定难度,求出抛物线解析式是解决问题的关键.25.(14分)如图,在▱ABCD中,E为边BC的中点,F为线段AE上一点,联结BF并延长交边AD于点G,过点G作AE的平行线,交射线DC于点H.设==x.(1)当x=1时,求AG:AB的值;(2)设=y,求关于x的函数关系式,并写出x的取值范围;(3)当DH=3HC时,求x的值.【考点】相似形综合题.【专题】综合题;图形的相似.【分析】(1)由平行四边形ABCD,得到AD与BC平行且相等,由两直线平行得到两对内错角相等,进而确定出三角形BEF与三角形AGF相似,由相似得比例,把x=1代入已知等式,结合比例式得到AG=BE,AD=AB,即可求出所求式子的值;(2)设AB=1,根据已知等式表示出AD与BE,由AD与BC平行,得到比例式,表示出AG 与DG,利用两角相等的三角形相似得到三角形GDH与三角形ABE相似,利用相似三角形面积之比等于相似比的平方列出y与x的函数解析式,并求出x的范围即可;(3)分两种情况考虑:①当点H在边DC上时,如图1所示;②当H在DC的延长线上时,如图2所示,分别利用相似得比例列出关于x的方程,求出方程的解即可得到x的值.【解答】解:(1)在▱ABCD中,AD=BC,AD∥BC,∴∠BEF=∠GAF,∠EBF=∠AGF,∴△BEF∽△GAF,∴=,∵x=1,即==1,∴==1,∴AD=AB,AG=BE,∵E为BC的中点,∴BE=BC,∴AG=AB,则AG:AB=;(2)∵==x,∴不妨设AB=1,则AD=x,BE=x,∵AD∥BC,∴==x,∴AG=,DG=x﹣,∵GH∥AE,∴∠DGH=∠DAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠DGH=∠AEB,在▱ABCD中,∠D=∠ABE,∴△GDH∽△EBA,∴=()2,∴y=()2=(x>);(3)分两种情况考虑:①当点H在边DC上时,如图1所示:∵DH=3HC,∴=,∴=,∵△GDH∽△EBA,∴==,即=,解得:x=;②当H在DC的延长线上时,如图2所示:∵DH=3HC,∴=,∴=,∵△GDH∽△EBA,∴==,即=,解得:x=2,综上所述,可知x的值为或2.【点评】此题属于相似型综合题,涉及的知识有:平行四边形的性质,相似三角形的判定与性质,以及平行线的性质,熟练掌握相似三角形的判定与性质是解本题的关键.。
【配套K12】高考数学一模试卷(含解析)1
![【配套K12】高考数学一模试卷(含解析)1](https://img.taocdn.com/s3/m/62b8d73a14791711cc7917d3.png)
2016年上海市虹口区高考数学一模试卷一、填空题(本大题满分56分)本大题共14题,只要求在答题纸相应题号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.函数f(x)=2x+1的反函数f﹣1(x)= .2.设全集U=R,若集合A={x||x﹣1|>1},则∁U A= .3.若复数z满足(i为虚数单位),则复数z= .4.在二项式的展开式中,常数项的值为.(结果用数字表示)5.行列式的最大值为.6.在等差数列{a n}中,a1+a3+a5=9,a2+a4+a6=15,则数列{a n}的前10项的和等于.7.如图,已知双曲线C的右焦点为F,过它的右顶点A作实轴的垂线,与其一条渐近线相交于点B;若双曲线C的焦距为4,△OFB为等边三角形(O为坐标原点,即双曲线C的中心),则双曲线C的方程为.8.已知数据x1,x2,…,x8的方差为16,则数据2x1+1,2x2+1,…,2x8+1的标准差为.9.已知抛物线x2=8y的弦AB的中点的纵坐标为4,则|AB|的最大值为.10.如图所示,半径R=2的球O中有一内接圆柱,当圆柱的侧面积最大时,球的表面积与圆柱的侧面积之差等于.11.锅中煮有肉馅、三鲜馅、菌菇馅的水饺各5个,这三种水饺的外形完全相同.从中任意舀取4个水饺,则每种水饺都至少取到1个的概率为.(结果用最简分数表示)12.设等比数列{a n}的前n项和为S n,若a1a2a3=64,且,则a n= .13.在由正整数构成的无穷数列{a n}中,对任意的n∈N*,都有a n≤a n+1,且对任意的k∈N*,数列{a n}中恰有k个k,则a2016= .14.若函数恰有两个零点,则实数a 的取值范围是.二、选择题(本大题共4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应题号上,将所选答案的代号涂黑,选对得5分,否则一律零分.15.设α、β为两个不同平面,若直线l在平面α内,则“α⊥β”是“l⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件16.已知直线是函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)图象的两条相邻的对称轴,则φ的值为()A.B.C.D.17.已知均为单位向量,且.若,则的取值范围是()A.B.[3,5] C.[3,4] D.18.设函数若关于x的方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则x3(x1+x2)+的取值范围是()A.(﹣3,+∞) B.(﹣∞,3)C.[﹣3,3)D.(﹣3,3]三、解答题(本大题共5题,满分74分)解答下列各题必须在答题纸的规定区域内写出必要的步骤.19.如图,在正三棱柱ABC﹣A1B1C1中,已知它的底面边长为10,高为20.(1)求正三棱柱ABC﹣A1B1C1的表面积与体积;(2)若P、Q分别是BC、CC1的中点,求异面直线PQ与AC所成角的大小(结果用反三角函数表示).20.已知△ABC的面积为S,且.(1)求sinA,cosA,tan2A的值;(2)若,求△ABC的面积S.21.对于函数,定义.已知偶函数g(x)的定义域为(﹣∞,0)∪(0,+∞),g(1)=0;当x>0,且x≠1时,g(x)=f2015(x).(1)求f2(x),f3(x),f4(x),并求出函数y=g(x)的解析式;(2)若存在实数a,b(a<b)使得函数g(x)在[a,b]上的值域为[mb,ma],求实数m的取值范围.22.已知数列{a n}的前n项和为S n,且S2=0,2S n+n=na n(n∈N*).(1)计算a1,a2,a3,a4,并求数列{a n}的通项公式;(2)若数列{b n}满足b1+3b2+5b3+…+(2n﹣1)b n=2n•a n+3,求证:数列{b n}是等比数列;(3)由数列{a n}的项组成一个新数列{c n}:c1=a1,c2=a2+a3,c3=a4+a5+a6+a7,…,,….设T n为数列{c n}的前n项和,试求的值.23.已知椭圆C: +=1(a>b>0)的左焦点为F,短轴的两个端点分别为A,B,且|AB|=2,△ABF为等边三角形.(1)求椭圆C的方程;(2)如图,点M在椭圆C上且位于第一象限内,它关于坐标原点O的对称点为N;过点M作x轴的垂线,垂足为H,直线NH与椭圆C交于另一点J,若•=﹣,试求以线段NJ为直径的圆的方程;(3)已知l1,l2是过点A的两条互相垂直的直线,直线l1与圆O:x2+y2=4相交于P,Q两点,直线l2与椭圆C交于另一点R,求△PQR面积最大值时,直线l2的方程.2016年上海市虹口区高考数学一模试卷参考答案与试题解析一、填空题(本大题满分56分)本大题共14题,只要求在答题纸相应题号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.函数f(x)=2x+1的反函数f﹣1(x)= log2x﹣1(x>0).【考点】反函数.【专题】计算题;函数思想;数学模型法;函数的性质及应用.【分析】由原函数解析式求解x,然后把x,y互换得答案.【解答】解:由y=f(x)=2x+1,得x+1=log2y,∴x=log2y﹣1(y>0),x,y互换可得:f﹣1(x)=log2x﹣1(x>0).故答案为:log2x﹣1(x>0).【点评】本题考查函数的反函数的求法,关键是注意反函数的定义域是原函数的值域,是基础题.2.设全集U=R,若集合A={x||x﹣1|>1},则∁U A= [0,2] .【考点】补集及其运算.【专题】计算题;集合思想;定义法;集合.【分析】求出集合A,利用集合的基本运算即可得到结论.【解答】解:|x﹣1|>1,∴x﹣1>1或x﹣1<﹣1,∴x>2或x<0,∴A=(﹣∞,0)∪(2,+∞),∴∁U A=[0,2],故答案为:=[0,2].【点评】本题主要考查集合的基本运算,比较基础.3.若复数z满足(i为虚数单位),则复数z= 2 .【考点】复数代数形式的混合运算.【专题】计算题;方程思想;数学模型法;数系的扩充和复数.【分析】利用虚数单位i的运算性质化简,再由复数代数形式的乘法运算得答案.【解答】解:∵ =﹣i+1,∴z=(1﹣i)(1+i)=12﹣i2=2.故答案为:2.【点评】本题考查复数代数形式的混合运算,考查了虚数单位i的运算性质,是基础题.4.在二项式的展开式中,常数项的值为28 .(结果用数字表示)【考点】二项式系数的性质.【专题】对应思想;定义法;二项式定理.【分析】根据二项式的展开式通项公式,求出常数项的值即可.【解答】解:二项式的展开式中,通项公式为:T r+1=••=(﹣1)r••,令=0,解得r=2;∴常数项的值为(﹣1)2•=28.故答案为:28.【点评】本题考查了二项式展开式的通项公式的应用问题,是基础题目.5.行列式的最大值为13 .【考点】二阶矩阵;三角函数的化简求值.【专题】计算题;转化思想;综合法;矩阵和变换.【分析】利用二阶行列式展开式法则和三角函数性质及诱导公式求解.【解答】解:=12cos()cot(π﹣x)﹣5cosxtanx=12(﹣sinx)(﹣cotx)﹣5sinx=12cosx﹣5sinx=13sin(x+θ)≤13,∴行列式的最大值为13.故答案为:13.【点评】本题考查二阶行列式的最大值的求法,是基础题,解题时要认真审题,注意二阶行列式展开式法则和三角函数性质及诱导公式的合理运用.6.在等差数列{a n}中,a1+a3+a5=9,a2+a4+a6=15,则数列{a n}的前10项的和等于80 .【考点】等差数列的前n项和.【专题】方程思想;综合法;等差数列与等比数列.【分析】由题意可求出数列的首项和公差,代入求和公式计算可得.【解答】解:∵在等差数列{a n}中a1+a3+a5=9,a2+a4+a6=15,∴a1+a3+a5=3a3=9,a2+a4+a6=3a4=15,∴a3=3,a4=5,公差d=5﹣3=2,a1=3﹣2×2=﹣1,∴前10项的和S10=10×(﹣1)+×2=80,故答案为:80.【点评】本题考查等差数列的求和公式,求出数列的首项和公差是解决问题的关键,属基础题.7.如图,已知双曲线C的右焦点为F,过它的右顶点A作实轴的垂线,与其一条渐近线相交于点B;若双曲线C的焦距为4,△OFB为等边三角形(O为坐标原点,即双曲线C的中心),则双曲线C的方程为.【考点】双曲线的标准方程.【专题】计算题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】由已知设双曲线方程为,由题意得a=OA===1,由此能求出双曲线方程.【解答】解:∵双曲线C的右焦点为F,过它的右顶点A作实轴的垂线,与其一条渐近线相交于点B,双曲线C的焦距为4,∴由已知设双曲线方程为,∵△OFB为等边三角形(O为坐标原点,即双曲线C的中心),∴a=OA===1,∴双曲线方程为:.故答案为:.【点评】本题考查双曲线方程的求法,是基础题,解题时要认真审题,注意双曲线的性质的合理运用.8.已知数据x1,x2,…,x8的方差为16,则数据2x1+1,2x2+1,…,2x8+1的标准差为8 .【考点】极差、方差与标准差;众数、中位数、平均数.【专题】计算题;转化思想;综合法;概率与统计.【分析】由方差的性质先求出数据2x1+1,2x2+1,…,2x8+1的方差,再求出数据2x1+1,2x2+1,…,2x8+1的标准差.【解答】解:∵数据x1,x2,…,x8的方差为16,∴由方差的性质得:数据2x1+1,2x2+1,…,2x8+1的方差为:S2=22×16=64,∴数据2x1+1,2x2+1,…,2x8+1的标准差为:S==8.故答案为:8.【点评】本题考查数据的标准差的求法,是基础题,解题时要认真审题,注意方差性质的合理运用.9.已知抛物线x2=8y的弦AB的中点的纵坐标为4,则|AB|的最大值为12 .【考点】抛物线的简单性质.【专题】计算题;转化思想;圆锥曲线的定义、性质与方程.【分析】设A(x1,y1),B(x2,y2),由A、B中点的纵坐标为4,知y1+y2=8,由|AB|=y1+y2+p,能求出弦AB的长度.【解答】解:设A(x1,y1),B(x2,y2),∵A、B中点的纵坐标为4,∴y1+y2=8,|AB|=y1+y2+p=8+4=12.故答案为:12.【点评】本题考查抛物线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.10.如图所示,半径R=2的球O中有一内接圆柱,当圆柱的侧面积最大时,球的表面积与圆柱的侧面积之差等于8π.【考点】球的体积和表面积;旋转体(圆柱、圆锥、圆台).【专题】计算题;方程思想;综合法;立体几何.【分析】设出圆柱的上底面半径为r,球的半径与上底面夹角为α,求出圆柱的侧面积表达式,求出最大值,计算球的表面积,即可得到两者的差值.【解答】解:设圆柱的上底面半径为r,球的半径与上底面夹角为α,则r=2cosα,圆柱的高为4sinα,圆柱的侧面积为:8πsin2α,当且仅当α=时,sin2α=1,圆柱的侧面积最大,圆柱的侧面积为:8π,球的表面积为:4πR2=16π,所以球的表面积与该圆柱的侧面积之差是:8π.故答案为:8π【点评】本题是基础题,考查球的内接圆柱的知识,球的表面积,圆柱的侧面积的最大值的求法,考查计算能力,常考题型.11.锅中煮有肉馅、三鲜馅、菌菇馅的水饺各5个,这三种水饺的外形完全相同.从中任意舀取4个水饺,则每种水饺都至少取到1个的概率为.(结果用最简分数表示)【考点】列举法计算基本事件数及事件发生的概率.【专题】计算题;方程思想;综合法;概率与统计.【分析】先求出从中任意舀取4个水饺,基本事件总数,再求出每种水饺都至少取到1个,包含的基本事件个数,由此能求出每种水饺都至少取到1个的概率.【解答】解:∵锅中煮有肉馅、三鲜馅、菌菇馅的水饺各5个,这三种水饺的外形完全相同,∴从中任意舀取4个水饺,基本事件总数n=,每种水饺都至少取到1个,包含的基本事件个数m=,∴每种水饺都至少取到1个的概率p==.故答案为:.【点评】本题考查概率的求法,是中档题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.12.设等比数列{a n}的前n项和为S n,若a1a2a3=64,且,则a n= 4n﹣1.【考点】等比数列的前n项和.【专题】计算题;转化思想;综合法;等差数列与等比数列.【分析】利用等比数列的性质结合已知条件求解.【解答】解:∵等比数列{a n}的前n项和为S n,a1a2a3=64,且,∴利用等比数列的性质可得,a1a2a3=a23=64,即a2=4,∵S2n=5(a1+a3+…+a2n﹣1)∴n=1时有,S2=a1+a2=5a1,解得a1=1,q=4,∴a n=4n﹣1.故答案为:4n﹣1.【点评】本题考查等比数列的通项公式的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.13.在由正整数构成的无穷数列{a n}中,对任意的n∈N*,都有a n≤a n+1,且对任意的k∈N*,数列{a n}中恰有k个k,则a2016= 63 .【考点】等比数列的通项公式.【专题】计算题;函数思想;试验法;等差数列与等比数列.【分析】利用已知条件,判断出数列中的各项特点,判断出第2016项所在的组,求出第2016项.【解答】解:∵对任意的正整数k,该数列中恰有k个k,∴数列是1;2,2,;3,3,3;4,4,4,4;…则当n=62,1+2+3+…+62==1953<2016.当n=63,1+2+3+…+63==2016.∴a2016在第63组中,故a2016=63.故答案为:63.【点评】本题考查数列的函数特性.解答关键是利用已知条件,判断出数列具有的函数性质,利用函数性质求出特定项,是中档题.14.若函数恰有两个零点,则实数a的取值范围是.【考点】函数零点的判定定理.【专题】函数思想;综合法;函数的性质及应用.【分析】①当a≤0时,f(x)>0恒成立,②当a>0时,由2x﹣a=0讨论,再由f(x)=(x ﹣a)(x﹣2a)讨论,从而确定方程的根的个数.【解答】解:①当a≤0时,f(x)>0恒成立,故函数f(x)没有零点;②当a>0时,2x﹣a=0,解得,x=log2a,又∵x<1;∴当a∈(0,2)时,log2a<1,故2x﹣a=0有解x=log2a;当a∈(2,+∞)时,log2a≥1,故2x﹣a=0在(﹣∞,1)上无解;∵(x﹣a)(x﹣3a),∴当a∈(0,]时,方程(x﹣a)(x﹣3a)=0在(1,+∞)上无解;当a∈(,1]时,方程(x﹣a)(x﹣3a)=0在(1,+∞)上有且仅有一个解;当a∈(1,+∞)时,方程(x﹣a)(x﹣3a)=0在(1,+∞)上有且仅有两个解;综上所述,当a∈(,1]或a∈(2,+∞)时,函数f(x)恰有2个零点,故答案为:【点评】本题考查了分段函数的性质的应用及分类讨论的思想应用.二、选择题(本大题共4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应题号上,将所选答案的代号涂黑,选对得5分,否则一律零分.15.设α、β为两个不同平面,若直线l在平面α内,则“α⊥β”是“l⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】定义法;空间位置关系与距离;简易逻辑.【分析】根据充分条件和必要条件的定义结合面面垂直的判定定理进行判断即可.【解答】解:面面平行的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.因为直线l⊂α,且l⊥β所以由判断定理得α⊥β.所以直线l⊂α,且l⊥β⇒α⊥β若α⊥β,直线l⊂α则直线l⊥β,或直线l∥β,或直线l与平面β相交,或直线l在平面β内.所以“α⊥β”是“l⊥β”的必要不充分条件.故选:B.【点评】本题主要考查充分条件和必要条件的判断,利用空间面面垂直的判定定理和性质定理是解决本题的关键.16.已知直线是函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)图象的两条相邻的对称轴,则φ的值为()A.B.C.D.【考点】正弦函数的图象.【专题】转化思想;综合法;三角函数的图像与性质.【分析】由条件利用正弦函数的图象的周期性求得ω的值,再利用图象的对称性求得φ的值,可得函数的解析式.【解答】解:由题意可得﹣==,∴ω=1,故f(x)=sin(x+φ).故f()=sin(+φ)=1,f()=sin(+φ)=﹣1 ①;或 f()=sin(+φ)=﹣1,f()=sin(+φ)=1 ②.根据0<φ<π,由①求得φ=,由②求得φ无解,故选:A.【点评】本题主要考查正弦函数的图象的周期性以及图象的对称性,属于基础题.17.已知均为单位向量,且.若,则的取值范围是()A.B.[3,5] C.[3,4] D.【考点】平面向量数量积的运算.【专题】计算题;转化思想;数形结合法;平面向量及应用.【分析】由题意建立平面直角坐标系,得到的坐标,设出的坐标,代入,由其几何意义可得的终点的轨迹,再由的几何意义求得取值范围.【解答】解:∵均为单位向量,且.∴设,再设,代入,得.即(x ,y )到A (4,0)和B (0,3)的距离和为5,∴的终点轨迹是点(4,0)和(0,3)之间的线段,=,表示M (﹣1,0)到线段AB 上点的距离,最小值是点(﹣1,0)到直线3x+4y ﹣12=0的距离.∴=.最大值为|MA|=5.∴的取值范围是[3,5].故选:B .【点评】本题考查了向量的坐标运算、两点之间的距离公式,点到直线的距离等,关键是利用坐标法解答,属中档题.18.设函数若关于x的方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则x3(x1+x2)+的取值范围是()A.(﹣3,+∞) B.(﹣∞,3)C.[﹣3,3)D.(﹣3,3]【考点】根的存在性及根的个数判断;分段函数的应用.【专题】计算题;作图题;函数思想;数形结合法;函数的性质及应用.【分析】作函数的图象,从而可得x1+x2=﹣4,x3x4=1,≤x3<1,从而解得.【解答】解:作函数的图象如下,,结合图象,A,B,C,D的横坐标分别为x1,x2,x3,x4,故x1+x2=﹣4,x3x4=1,故=﹣4x3,∵0<﹣log2x3≤2,∴≤x3<1,∴﹣3<﹣4x3≤3,故选:D.【点评】本题考查了分段函数的应用及数形结合的思想应用.三、解答题(本大题共5题,满分74分)解答下列各题必须在答题纸的规定区域内写出必要的步骤.19.如图,在正三棱柱ABC﹣A1B1C1中,已知它的底面边长为10,高为20.(1)求正三棱柱ABC﹣A1B1C1的表面积与体积;(2)若P、Q分别是BC、CC1的中点,求异面直线PQ与AC所成角的大小(结果用反三角函数表示).【考点】异面直线及其所成的角;棱柱、棱锥、棱台的侧面积和表面积;棱柱、棱锥、棱台的体积.【专题】计算题;转化思想;综合法;立体几何.【分析】(1)由,能求出正三棱柱ABC ﹣A1B1C1的表面积,再由底面积乘高能求出正三棱柱ABC﹣A1B1C1的体积.(2)连结BA1,BC1,则BC1∥PQ,A1C1∥AC,从而∠BC1A1等于异面直线PQ与AC所成角,由此能求出异面直线PQ与AC所成角的大小.【解答】(本题满分12分)本题共2个小题,每小题.解:(1),……(2)连结BA1,BC1,则BC1∥PQ,又A1C1∥AC,故∠BC1A1等于异面直线PQ与AC所成角.…由已知得,故.于是异面直线PQ与AC所成角的大小为.…【点评】本题考查正三棱柱的体积和表面积的求法,考查异面直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.20.已知△ABC的面积为S,且.(1)求sinA,cosA,tan2A的值;(2)若,求△ABC的面积S.【考点】平面向量数量积的运算.【专题】方程思想;综合法;平面向量及应用.【分析】(1)把S=代入,解出A,(2)c=||=||=6,求出sinC,使用正弦定理求出b,代入面积公式.【解答】解:(1)∵,∴b•c•cosA=bcsinA,∴tanA=2,A∈(0,).∵sin2A+cos2A=1,∴sinA=,cosA=,tan2A==.(2)||=||=6,即c=6.sinC=sin(A+B)=sinAcosB+cosAsinB==.由正弦定理得:,∴b==2.∴S=bcsinA==12.【点评】本题考查了平面向量在解三角形中的应用,属于中档题.21.对于函数,定义.已知偶函数g(x)的定义域为(﹣∞,0)∪(0,+∞),g(1)=0;当x>0,且x≠1时,g(x)=f2015(x).(1)求f2(x),f3(x),f4(x),并求出函数y=g(x)的解析式;(2)若存在实数a,b(a<b)使得函数g(x)在[a,b]上的值域为[mb,ma],求实数m的取值范围.【考点】函数奇偶性的性质;函数解析式的求解及常用方法.【专题】数形结合;转化法;函数的性质及应用.【分析】(1)根据函数关系进行求解即可.(2)根据函数奇偶性的性质,结合函数的值域关系进行求解即可.【解答】解:(1)因为,故对任意的n∈N•,有f3n+i(x)=f i(x)(i=2,3,4),于是;..由g(x)为偶函数,..…(2)由于y=g(x)的定义域为(﹣∞,0)∪(0,+∞),又a<b,mb<ma,可知a与b同号,且m<0;进而g(x)在[a,b]递减,且a<b<0.…函数y=g(x)的图象,如图所示.由题意,有…故a,b是方程的两个不相等的负实数根,即方程mx2﹣x﹣1=0在(﹣∞,0)上有两个不相等的实根,于是…综合上述,得:实数m的取值范围为.…注:若采用数形结合,得出直线y=mx与曲线有两个不同交点,并进行求解也可.最新K12教育教案试题 【点评】本题主要考查函数解析式的求解以及函数奇偶性的应用,考查学生的运算和推理能力.22.已知数列{a n }的前n 项和为S n ,且S 2=0,2S n +n=na n (n ∈N *).(1)计算a 1,a 2,a 3,a 4,并求数列{a n }的通项公式;(2)若数列{b n }满足b 1+3b 2+5b 3+…+(2n ﹣1)b n =2n •a n +3,求证:数列{b n }是等比数列;(3)由数列{a n }的项组成一个新数列{c n }:c 1=a 1,c 2=a 2+a 3,c 3=a 4+a 5+a 6+a 7,…,,….设T n 为数列{c n }的前n项和,试求的值.【考点】数列的求和;等比关系的确定.【专题】计算题;方程思想;作差法;等差数列与等比数列.【分析】(1)通过计算出前几项的值,猜想通项公式,进而利用数学归纳法证明;(2)通过b 1+3b 2+5b 3+…+(2n ﹣1)b n =2n •a n +3与b 1+3b 2+5b 3+…+(2n ﹣3)b n ﹣1=2n ﹣1•a n ﹣1+3作差,进而计算即得结论;(3)通过(2),利用分组法求和,进而计算可得结论.【解答】(1)解:当n=1时,由2S 1+1=a 1,得a 1=﹣1;由S 2=a 1+a 2=0,得a 2=1;当n=3时,由2S 3+3=2a 3+3=3a 3,得a 3=3;当n=4时,由2S 4+4=2a 4+10=4a 4,得a 4=5;猜想:.下面用数学归纳法证明:①当n=2时,a 2=1,结论显然成立;②假设当n=k≥2时,a k =2k ﹣3,由条件知2S n =na n ﹣n ,故2a k+1=2S k+1﹣2S k。
上海市2016虹口区初三数学一模试卷(含答案)
![上海市2016虹口区初三数学一模试卷(含答案)](https://img.taocdn.com/s3/m/fd22045aee06eff9aff80754.png)
C OD 第5题图第6题图 虹口区2015学年第一学期期终教学质量监控测试初三数学 试卷(满分150分,考试时间100分钟) 2016.1考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效; 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]1.已知α为锐角,如果sin α=α等于 A .30︒; B .45︒; C .60︒; D .不确定. 2.把二次函数241y x x =-+化成2()y a x m k =++的形式是A .2(2)1y x =-+;B .2(2)1y x =--;C .2(2)3y x =-+;D .2(2)3y x =--. 3.若将抛物线平移,得到新抛物线2(3)y x =+,则下列平移方法中,正确的是 A .向左平移3个单位; B .向右平移3个单位; C .向上平移3个单位; D .向下平移3个单位. 4.若坡面与水平面的夹角为α,则坡度i 与坡角α之间的关系是A .cos i α=;B .sin i α=;C .cot i α=;D .tan i α=.5.如图,□ABCD 对角线AC 与BD 相交于点O ,如果AB m =,AD n =,那么下列选项中,与向量1()2m n +相等的向量是A .OA ;B .OB ;C .OC ;D .OD .6.如图,点A 、B 、C 、D 的坐标分别是(1,7)、(1,1与 △ABC 相似,则点E 的坐标不可能是 A .(4,2); B .(6,0); C .( 二、填空题(本大题共12题,每题4分,满分48分) [请将结果直接填入答题纸的相应位置]7.若:5:2x y =,则():x y y +的值是 ▲ . 8. 计算:13(2)2a ab --= ▲ . 9.二次函数22y x x =-的图像的对称轴是直线 ▲ . 10. 如果抛物线231y x x m =-+-+经过原点,那么m = ▲ .11.已知点11(,)A x y 、22(,)B x y 为二次函数图像上的两点,若,则▲ .(填“>”、“<”或“=”)122y ax bx c =++的图像时,列出了下面的表格:= ▲ .13.如果两个相似三角形的周长的比为,那么周长较小的三角形与周长较大的三角形对应角平分线的比为 ▲ . 14. 如图,在□ABCD 中,E 是边BC 上的点,分别联结AE 、BD 相交于点O ,若AD =5,,则= ▲ .15.如图,正方形DEFG 的边EF 在△ABC 的边BC 上,顶点D 、G 若△ABC 的边BC 长为40厘米,高AH 为30厘米,则正方形DEFG 16.如图,在△ABC 中,∠ACB =90°,若点G 是△ABC 的重心,cos ∠= ▲. 17中,∠B =∠D =90°,AB =3,CD = ▲ .18AB =6,AD =10,点E 是边,若将△ABE 沿AE F 处,联结FC ,则cos ∠题,满分78分)19.(本题满分10分) 计算:. 20.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)已知一个二次函数的图像经过A (0,-3)、B (2,-3)、C (-1,0)三点. (1)求这个二次函数的解析式;(2)将这个二次函数图像平移,使顶点移到点P (0,-3)的位置,求所得新抛物线的表达式. 21.(本题满分10分)如图,DC //EF //GH //AB ,AB =12,CD =6,DE ∶EG ∶GA =3∶4∶5. 求EF 和GH 的长.22.(本题满分10分)如图,已知楼AB 高36米,从楼顶A 处测得旗杆顶C 又从该楼离地面6米的一窗口E 处测得旗杆顶C 的仰角为45CD 的高.(结果保留根号) 23.(本题满分12分,第(1)小题满分6分,第(26分)如图,点E 是四边形ABCD 的对角线BD 上的一点,∠CBD=∠DAC .(1)求证:DE AB BC AE ⋅=⋅;(2)求证:∠AED +∠ADC =180°. 24.(本题满分12分,第(1)小题满分4分,第(2在平面直角坐标系xOy 中,抛物线与轴分别交于点A (2于点C ,1tan 2CBA ∠=. (1)求该抛物线的表达式;(2)设该抛物线的顶点为D ,求四边形ACBD 的面积; (3)设抛物线上的点E 在第一象限,△BCE 是以BC 为一条直角边的直角三角形,请直接写出点E 的坐标.25.(本题满分14分,第(1)小题满分4分,第(2如图,在□ABCD 中,E 为边BC 的中点,F 为线段G ,过点G 作AE 的平行线,交射线DC 于点H .设ADEFAB AF=(1)当1x =时,求:AG AB 的值;(2)设GDH EBAS y S ∆∆=,求关于x (3)当3DH HC =时,求x 的值.2016.1第17题图第18题图 B C D EO16题图 A说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题若无特别说明,每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做对这一步应得分数;4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半; 5.评分时,给分或扣分均以1分为基本单位.一、选择题(本大题共6题,每题4分,满分24分)1、B2、D3、A4、D5、C6、C 二、填空题本大题共12题,每题4分,满分48分)7、728、562a b -+ 9、1x = 10、1 11、> 12、 11-13、1:4 14、2 15、1207 16、2 17、 65 18三、解答题(本大题共7题,满分78分) 19.解:原式=223-⨯……………………………………………(8分)=1 ……………………………………………………………………………(2分)20.解:(1)设所求二次函数的解析式为:2(0)y ax bx c a =++≠,由题意得:3,423,0.c a b c a b c =-⎧⎪++=-⎨⎪-+=⎩………………………………………………………(3分)解得:1,2,3.a b c =⎧⎪=-⎨⎪=-⎩…………………………………………………………………(2分)∴这个二次函数的解析式为223y x x =--………………………………………(1分)(2)∵新抛物线是由二次函数223y x x =--的图像平移所得∴a=1………………………………………………………………………………(2分) 又∵顶点坐标是(0,-3)∴23y x =-………………………………………………………………………(2分)21.解:过点D 作CB 的平行线,分别交EF 、GH 、AB 于点I 、J 、K ………………(1分) ∵DC ∥AB ∴KB =DC =6∴AK =6………………………………………………………………………………(1分)∵EF ∥AB ∴EI DEAK DA= ………………………………………………………(1分) ∵DE ∶EG ∶GA =3∶4∶5 ∴31124DE DA == ……………………………………………………………………(1分) ∴164EI = ∴32EI = …………………………………………………………(2分) 同理:7612GJ = ∴72GJ =………………………………………………………(2分)∴315622EF =+=, ………………………………………………………………(1分) 719622GH =+=. ………………………………………………………………(1分)22.解:过点C 作CG ⊥AE ,垂足为点G ………………………………………………(1分)由题意得∠CEF=45°=∠CEG ,∠ACG=60°………………………………………(1分) 设CG=x ,在Rt △ACG 中,tan AG CG ACG =⋅∠= ……………………………………(1分) 在Rt △ECG 中, cot EG CG CEG x =⋅∠= ………………………………………(1分) ∵AG+EG=AE366x +=-……………………………………………………………………(2分)解得:15x = …………………………………………………………………(2分) 又可求得:CF=EG=15∴1569CD =+=……………………………………………………(1分) 答:该旗杆CD的高为(9)米.……………………………………………(1分) 23.证明:(1)∵∠BAE=∠DAC ∴∠BAE+∠EAC =∠DAC+∠EAC即∠BAC=∠EAD …………………………………………………………………(2分)∵∠ABC=∠ABE +∠CBD ∠AED=∠ABE +∠BAE ∵∠CBD=∠BAE∴∠ABC=∠AED …………………………………………………………………(2分) ∴△ABC ∽△AED …………………………………………………………………(1分)∴AB BCAE DE= ∴ DE AB BC AE ⋅=⋅ …………………………………………(1分) (2)∵△ABC ∽△AED∴AB AC AE AD = 即AB AEAC AD=…………………………………………………………(2分) ∵∠BAE=∠DAC∴△ABE ∽△ACD ……………………………………………………………………(1分) ∴∠AEB=∠ADC ……………………………………………………………………(2分) ∵∠AED +∠AEB =180°∴∠AED+∠ADC=180°……………………………………………………………(1分) 24.解:(1)∵当0x =时,3y =,∴C (0,3)…………………………………………(1分)在Rt △COB 中,∵1tan 2CBA ∠=∴12COOB =∴6OB =∴点B (6,0)…………………………………………………………………………(1分) 把A (2,0)、B (6,0)分别代入23y ax bx =++,得:得4230,36630.a b a b ++=⎧⎨++=⎩…………………………………………………………………(1分)解得:1;42.a b ⎧=⎪⎨⎪=-⎩∴该抛物线表达式为21234y x x =-+………………………………………………(1分)(2)∵221123(4)144y x x x =-+=--∴顶点D (4,-1)………………………………………………………………………(2分) ∴628ABC ABD ACBD S S S ∆∆=+=+=四边形……………………………………………(2分) (3)点E 的坐标是(10,8)或(16,35) ………………………………………(2分,2分) 25.解:(1)在□ABCD 中,AD =BC , AD ∥BC∴BE EF AG AF= ………………………………………………………………………(1分) ∵ x=1,即1AD EF AB AF == ∴ 1AD BEAB AG==∴ AD=AB ,AG=BE …………………………………………………………………(1分)∵ E 为BC 的中点 ∴ 12BE BC =∴12AG AB = 即1:2AG AB = …………………………………………………(2分)(2)∵ AD EFx AB AF==∴ 不妨设AB=1,则AD=x ,2xBE = ……………………………………………(1分)∵ AD ∥BC ∴ BE EFx AG AF ==∴ 12AG =,12DG x =- …………………………………………………………(1分)∵ GH ∥AE ∴ ∠ DGH=∠DAE ∵ AD ∥BC ∴ ∠ DAE =∠AEB ∴ ∠DGH =∠AEB在□ABCD 中,∠D =∠ABE∴△GDH ∽△EBA ………………………………………………………………(1分)∴ 2()GDH EBA S DG S BE∆∆= ……………………………………………………………(1分) ∴ 212()2x y x -= ∴ 22441x x y x -+=1()2x > ………………………(1分,1分) (3)① 当点H 在边DC 上时,∵ DH =3HC ∴ 34DH DC = ∴ 34DH AB =∵△GDH ∽ △EBA ∴ 34DG DH BE AB ==∴13242x x -= 解得45x =…………………………………………………………(2分) ②当H 在DC 的延长线上时,∵ DH =3HC ∴32DH DC = ∴ 32DH AB = ∵△GDH ∽ △EBA ∴ 32DG DH BE AB ==∴13222xx-=解得2x=…………………………………………………………(2分)综上所述,可知x的值为45或2.。
虹口区春季高考模拟考试数学试卷
![虹口区春季高考模拟考试数学试卷](https://img.taocdn.com/s3/m/54feba86f90f76c661371aa5.png)
虹口区2016年春季高考模拟考试数学试卷(2015年12月)(本试卷共26题,满分150分 考试时间:130分钟)一、填空题(本大题共15题,每题3分,满分45分)1、复数3z i =-,i 为虚数单位,则z z ⋅=____________.2、已知集合{}M x x a =≤,{}2,0,1N =-,若{}2,0M N ⋂=-,则实数a 的取值范围是___________.3、5(12)x -的展开式中3x 项的系数为_____________.(用数字表示)4、若抛物线22(0)y px p =>的准线经过双曲线221x y -=的左顶点,则p =__________. 5、在ABC ∆中,4cos 5A =,则sin()4A π+=_____________. 6、已知20152016tan 12i i i θ=+(其中i 为虚数单位), 则cos θ=___________. 7、直线(2m 1)10mx y +-+=和直线330x my ++=垂直,则实数m 的值为__________.8、双曲线2221(0)y x b b-=>的一条渐近线方程为y =,则双曲线的焦点为________.9、某小区有7个连在一起的车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法有_____________种.(用数字作答) 10、若数列{}n a 的前n 项和为n S ,且21n n S a =+,则n a =_____________.11、在棱长为a 的正四面体BCD A -中,M 是棱AB 的中点,则CM 与底面BCD 所成 的角的正弦值是_____________. 12、若函数(1)0()()0ax x x f x x a x x +≥⎧=⎨-<⎩为奇函数,则满足(1)(2)f t f t -<的实数t 的取值范围是_____________.13、在圆225x y x +=内,过点53,22()有n 条弦的长度成等差数列,最小弦长为数列首 项1a ,最大弦长为n a ,若公差11[,]63d ∈,那么n 的可能取值为_____________.14、已知函数[]()(1)0x x x f x f x x ⎧-≥=⎨+<⎩,其中[]x 表示不超过x 的最大整数,若直线(1)y k x =+(0)k >与函数()y f x =的图像恰有三个不同的交点,则实数k 的取值范围是____________.15、已知向量序列:1a ,2a ,3a ,···n a ,····满足如下条件:1=2a ,24d =,121a d ⋅=-,且1n n a a d --=(2,3,4,n = ),则1a ,2a ,3a ,···,n a ,····中第_____________项最小. 二、选择题(本大题共5题,每题5分,满分25分) 16、“0,0a b >>”是“曲线221ax by +=为椭圆”的()A .充分且不必要条件B .必要且不充分条件C .充分必要条件D .既不充分也不必要条件17、如图所示,为了测量某湖泊两侧A 、B选定了与A 、B 不共线的一点C ,然后给出了三种测量方案: (ABC ∆的角A 、B 、C 所对的边分别记为a 、b 、c ):① 测量A 、C 、b ;② 测量a 、b 、C ;③ 测量A 、B 、a则一定能够确定A 、B 间距离的所有方案的序号为 ( ) A .①②B .②③C .①③D .①②③18、已知函数()log (2)1m f x x =-+(0m >且1m ≠)的图像恒过点P ,且点P 在直线1ax by +=(0,0a b >>)上,则ab 的 ()A .最小值为14B .最大值为14 C .最大值为12D .最小值为1219、不共面的三条直线1l 、2l 、3l 互相平行,点A 在1l 上,点B 在2l 上,C 、D 两点在3l 上, 若CD a =(定值),则三棱锥A BCD -的体积 ( )A .为定值B .由B 点的变化而变化C .有最大值,无最小值D .由A 点的变化而变化20、若函数()cos(sin )sin(cos )=-f x a x b x 没有零点,则22+a b 的取值范围是( )A .[0,1)B .2[0,)πC .2[0,)4πD .[0,)π三、解答题21、(本题满分10分) 本题共2个小题,第1小题5分,第2小题5分. 已知函数()sin cos cos 2f x a x x x =-的图像过点(,0)8π,(1)求函数()y f x =的单调减区间;(2)求函数()y f x =在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.22、(本题满分10分) 本题共2个小题,第1小题4分,第2小题6分.某甜品店制作一种蛋筒冰激凌,其上部分是半球形,下半部分呈圆锥形(如图),现把半径为10cm 的圆形蛋皮等分成5个扇形蛋皮,用一个扇形蛋皮围成圆锥的侧面(蛋皮的厚度忽略不计).(1)求该蛋筒冰激凌的高度;(2)求该蛋筒冰激凌的体积(精确到30.01cm ).23、(本题满分12分) 本题共2个小题,每小题6分. 已知函数()31xf x =-的反函数1()y f x -=,9()log (31)g x x =+(1)若1()()fx g x -≤,求x 的取值范围D ;(2)设函数11()()()2H x g x f x -=-,当x D ∈时,求()H x 的值域.24、(本题满分14分) 本题共2个小题,第1小题4分,第2小题10分.已知椭圆C :22221x y a b+=(0a b >>)的长轴为4,且过点A(1)求椭圆C 的方程;(2)设点O 为原点,若点P 在曲线C 上,点Q 在直线2y =上,且OP OQ ⊥,试判断直线PQ 与圆222x y +=的位置关系,并证明你的结论.25、(本题满分16分) 本题共3个小题,第1小题4分,第2小题4分,第3小题8分. 已知1x 、2x 是函数2()f x x mx t =++的两个零点,其中常数m 、t Z ∈, 记1nini xx x x ==+++∑L ,设120nn r rn r T x x -==∑(n N *∈). (1)用m 、t 表示1T 、2T ; (2)求证:543T mT tT =--; (3)求证:对任意的n N *∈,n T Z ∈.26、(本题满分18分) 本题共3个小题,第1小题4分,第2小题6分,第2小题8分. 已知函数2()21g x ax ax b =-++(0a >)在区间[2,3]上的最大值为4,最小值为1, 记()(||)f x g x =(1)求实数a 、b 的值;(2)若不等式23(log )()2f k f >成立,求实数k 的取值范围; (3)对于任意满足0121n n p x x x x x q -=<<<<<=(n N ∈,3n ≥)的自变量0121,,,,,n n x x x x x -,如果存在一个常数0M >,使得定义在区间[,]p q 上的一个函数()m x ,有10211|()()||()()||()()|n n m x m x m x m x m x m x M --+-++-≤恒成立,则称()m x 为区间[,]p q 上的有界变差函数,试判断()f x 是否区间[0,3]上的有界变差函数,若是,求出M 的最小值;若不是,请说明理由.。
2016年上海市虹口区中考数学一模试卷带解析答案
![2016年上海市虹口区中考数学一模试卷带解析答案](https://img.taocdn.com/s3/m/7d5b5322cc175527072208ce.png)
12. (4 分)用“描点法”画二次函数 y=ax2+bx+c 的图象时,列出了下面的表格: x … ﹣2 ﹣1 0 1 …
y … ﹣11 ﹣2 1 ﹣2 … 根据表格上的信息回答问题:当 x=2 时,y= .
ቤተ መጻሕፍቲ ባይዱ
13. (4 分)如果两个相似三角形的周长的比为 1:4,那么周长较小的三角形与 周长较大的三角形对应角平分线的比为 .
第 4 页(共 23 页)
(3)设抛物线上的点 E 在第一象限,△BCE 是以 BC 为一条直角边的直角三角 形,请直接写出点 E 的坐标.
25. (14 分)如图,在▱ ABCD 中,E 为边 BC 的中点,F 为线段 AE 上一点,联 结 BF 并延长交边 AD 于点 G, 过点 G 作 AE 的平行线, 交射线 DC 于点 H. 设 = =x.
A.向左平移 3 个单位 C.向上平移 3 个单位
4. (4 分)若坡面与水平面的夹角为 α,则坡度 i 与坡角 α 之间的关系是( A.i=cosα B.i=sinα C.i=cotα D.i=tanα = ,
5. (4 分)如图,▱ ABCD 对角线 AC 与 BD 相交于点 O,如果 那么下列选项中,与向量 ( + )相等的向量是( )
9. (4 分)二次函数 y=x2﹣2x 的图象的对称轴是直线
10. (4 分)如果抛物线 y=﹣x2+3x﹣1+m 经过原点,那么 m=
11. (4 分)已知点 A(x1,y1) 、B(x2,y2)为二次函数 y=(x﹣1)2 图象上的 两点,若 x1<x2<1,则 y1 y2. (填“>” 、 “<”或“=” )
= ,
A.
B.
C.
2016学年上海虹口区初三数学一模试卷含答案.
![2016学年上海虹口区初三数学一模试卷含答案.](https://img.taocdn.com/s3/m/c05a3d9d71fe910ef12df857.png)
虹口区2016学年度第一学期期终教学质量监控测试初三数学试卷一、选择题(本大题共6题,每题4分,满分24分1、如图,在Rt ABC ∆中,=90C ︒∠,A ∠、B ∠和C ∠的对边分别是a 、b 和c ,下列锐角三角比中,值为bc 的是(.sin A A .cos B A .t a n C A .c o t D A2、如图,在点 B 处测得点A 处的俯角是 (.1A ∠ .B ∠2 .C ∠3 .D ∠43、计算 23(a a b --的结果是(.3A a b -- .3B a b -+ .C a b - .D a b -+4、抛物线2(24y x =+- 顶点的坐标是( .(2,4A .(2,4B - .(2,4C - .(2,4D -- 5、抛物线上221y x =-+有两点11(,x y 、22(,x y ,下列说法中,正确的是( A .若12x x <,则 12y y > .B 若12x x >,则12y y >.C 若120x x <<,则 12y y < .D 若120x x >>,则12y y >6、如图,在ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F 若3DEF S ∆= ,则BC F S ∆为(.3A .6B .9C .12D二、填空题(本大题共12题,每题4分,满分48分7、已知线段4a cm = ,1c cm = ,则线段 a 和c 的比例中项_____b cm =小学初中培优竞赛试题一套都是最新教案可以加我 468 453 607 w e i136********8、如果向量a 与单位向量e 方向相反,且长度为2,那么用向量 e表示_____a =9、如果抛物线2(3y a x =- 开口向下,那么a 的取值范围是_______ 10、如果抛物线21y x m =+- 经过点(0,1,那么_________m = 11、若将抛物线22(1y x =-向左平移3个单位所得到的新抛物线表达式为_________12、如图,抛物线2y x bx c =-++ 对称轴为直线3x = ,如果点(0,4A 为此抛物线上的一点,那么当6x =时,____y =13、已知,111ABC A BC ∆∆∽顶点AB C 、、分别111A B C 、、与对应,11BE B E 、分别是B ∠、 1B ∠的对应角平分线,如果11:2:3AB A B = ,那么11:_____BE B E =14、如图,在ABC ∆中,=90C ︒∠,如果13,5AB AC == ,那么tan ____A = 15、如图,123l l l ∥∥ ,如果4518AF FB CD ===,, ,那么___CE =16、如图,已知点O 为ABC ∆内一点,点D 、E 分别在边AB 和AC 上,且12AD BD =,设,OB b OC c == ,用b 、c向量表示=____DE17、如图,在ABC ∆中,如果AB AC = ,边BC 、AC 上的中线AD 、BE 相交于点G ,如果41cot 3DG C ==, ,那么___ABC S ∆=18、如图,在梯形中ABCD ,1,3AD BC AB BC AD BC ==∥,⊥, ,点P 是边AB 上一点,如果把BCP ∆ 沿折痕CP 向上翻折,点B 恰好与点D 重合,那么sin ADP ∠为_____ 三、解答题(本大题共7题,满分78分 19、(本题满分10分计算:22cot 304sin 452cos 30cos 60︒-︒︒-︒20.(本题满分10分,第(1小题满分6分,第(2小题满分4分已知二次函数c bx ax y ++=2的图像经过(0,1A 、(16,1-B 、(10,0C 三点. (1求该函数解析式;(2用配方法将该函数解析式化为(k m x a y ++=2的形式.21.(本题满分10分如图,在ABCD 中,点G 在边BC 的延长线上,AG 与边CD 交于点E ,与对角线BD 交于点F .求证:2AF EF FG =22.(本题满分10分如图,在大楼AB 的正前方有一斜坡CD 长为13米,坡度为512:1,高为DE ,在斜坡底的点C 处测得楼顶B 的仰角为︒64,在斜坡顶的点D 处测得楼顶B 的仰角为︒45,其中点A 、C 、E 在同一直线上,求斜坡DE 的高与大楼AB 的高度.(参考数据:264tan ,9.064sin ≈︒≈︒23.(本题满分12分,第(1小题满分6分,第(2小题满分6分如图,在ABC ∆中,点D 、E 分别在边AB 、AC 上,AD AEAC AB =,BAC ∠的平分线AG 分别交线段DE BC 、于点F G 、(1求证:ADF ACG ∆∆(2联结DG ,若,1246AGD B AB AD AE ∠=∠===,,,求AG 与AF 的长.24、(本题满分12分,第(1小题4分,第(2小题满分4分,第(3小题满分4分如图,抛物线25y x bx =++与x 轴交于点A 与(5,0B 点,与y 轴交于点C ,抛物线的顶点为点P . (1求抛物线的表达式并写出顶点P 的坐标 (2在x 轴上方的抛物线上有一点D ,若ABD ABP ??,试求点D 的坐标(3设在直线BC 下方的抛物线上有一点Q ,若15BCQ S D =,试写出点Q 坐标25、(本题满分14分,第(1小题4分,第(2小题满分6分,第(3小题满分4分如图在Rt ABC 中,90ACB°?,4,3AC BC ==,点D 为边BC 上一动点,(不与点B 、C 重合,联结AD ,过点C 作CF AD ⊥,分别交AB AD 、于点E F 、,设DC x =,AEyBE =,(1当1x =时,求tan BCE Ð的值(2)求 y 与 x 的函数关系式,并写出 x 的取值范围(3)当 x = 1 时,在边AC 上取点 G ,联结 BG ,分别交 CE、AD 于点 M 、N ,当 MNF ABC时,请直接写出 AG 的长。
虹口区2016年高考模拟数学试卷 全省一等奖
![虹口区2016年高考模拟数学试卷 全省一等奖](https://img.taocdn.com/s3/m/b4228e45fd0a79563d1e72da.png)
虹口区2016年高考模拟数学试卷(理科)适用年级:高三建议时长:0分钟试卷总分:150.0分一、填空题(本大题满分56分)本大题共14题。
1.设集合,,则 M∪N=____.(4.0分)2.已知虚数1+2i是方程的一个根,则a+b=____.(4.0分)3.在报名的5名男生和4名女生中,选取5人参加志愿者服务,要求男、女生都有,则不同的选取方式的种数为____(结果用数值表示). (4.0分)4.已知复数Z在复平面上对应的点在曲线上运动,则|Z|的最小值等于____. (4.0分)5.已知函数f(x)的对应关系如下表:若函数f(x)不存在反函数,则实数m的取值集合为____. (4.0分)6.在正项等比数列中,,,则____.(4.0分)7.已知f(x)=2sinwx(w>0)在单调递增,则实数w的最大值为____. (4.0分)8.若行列式中的元素4的代数余子式的值等于,则实数x的取值集合为____. (4.0分)9.若二项式展开式中的第5项为常数项,则展开式中各项的二项式系数之和为____. (4.0分)10.已知A、B是球的球面O上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O-ABC体积的最大值为,则球O的表面积为____. (4.0分)11.如图, A、B为椭圆的两个顶点,过椭圆的右焦点F作x轴的垂线,与其交于点C.若AB∥OC(O为坐标原点),则直线AB的斜率为____. (4.0分)12.若经过抛物线焦点的直线l与圆相切,则直线l的方程为____. (4.0分)13.假设某10张奖券中有一等奖1张,奖品价值100元;有二等奖3张,每份奖品价值50元;其余6张没有奖. 现从这10张奖券中任意抽取2张,获得奖品的总价值不少于其数学期望的概率为____. (4.0分)14.已知对任意的x∈(-∞,0)∪(0,+∞),y∈[-1,1] ,不等式恒成立,则实数a的取值范围为____. (4.0分)二、选择题(本大题共4题,满分20分)每题有且只有一个正确答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
虹口区2016学年度第一学期初三年级数学学科期终教学质量监控测试题(满分150分,考试时间100分钟) 2017.1考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效; 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) [下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.] 1.下列二次函数解析式中,其图像与y 轴的交点在x 轴下方的是A .23y x =+ ; B .23y x =- ; C .23y x =-+; D .2y x =. 2.关于二次函数221y x =-+的图像,下列说法中,正确的是A .开口向上;B .对称轴是直线1x =;C .有最高点(0,1);D .是中心对称图形. 3.在Rt ABC ∆中,90A ∠=︒,5AC =,12AB =,那么sin B 的值是A .125 ; B .512; C .1312; D .135. 4.若a 、b 均为非零向量,且a ∥b,则在下列结论中,一定正确的是A .(0)a mb m =≠; B .a b =± ; C .a b = ; D .a b =- .5.如图,分别以下列选项作为一个已知条件,其中不一定...能得到△AOB ∽△COD 的是 A .∠BAC =∠BDC ; B .∠ABD =∠ACD ; C .AO DO COBO=; D .AO OD OBCO=.6.如图,已知EF ∥CD ,DE ∥BC ,下列结论中,不一定...正确是 A .AF AD ADAB=; B .AE AF ADAC=; C .DE EF BCCD=; D .AB AC ADAE=.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.实数2与0.5的比例中项是 ▲ .8.抛物线22(1)3y x =-+的顶点坐标为 ▲ .9.将抛物线22y x =-向右平移4个单位,再向上平移3个单位得到的抛物线表达式是 ▲ .10.已知向量a r 、b r 、x r 满足关系式3()20a x b --=r r rr ,那么用向量a r 、b r 表示向量x r = ▲ .11.已知:2sin(15)α+= α= ▲ .A 第6题图BC DEFA B C O D 第5题图CO第12题图DBA12.如图,若3AD AO =,则当:CO BO 的值为 ▲ 时,有AB ∥CD 成立.13.如果△ABC 的三边长分别为3、4、5,与其相似的△A ’B ’C ’的最长边为15,那么△A ’B ’C ’的周长▲ .14.如图,在△ABC 中, BC=3,点G 是△ABC 的重心,如果DG ∥BC ,那么DG= ▲ . 15.如图,某商场开业,要为一段楼梯铺上红地毯,已知楼梯高AB =6m ,坡面AC 的坡度41:3i =,则至少需要红地毯 ▲ m .16.已知点()11A y -,、()2B y 2,与()3C y 4,是抛物线上223y x x =-++的三点,则1y 、2y 、3y 的大小是 ▲ .(用“﹤”连接)17.如图,在Rt △ABC 中,90ACB ∠=°,3BC =,4AC =,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为 ▲ .18.已知△ABC 中,AB AC m ==,72ABC ∠=︒,1BB 平分ABC ∠交AC 于1B ,过1B 作12B B //BC 交AB于2B ,作23B B 平分21AB B ∠交AC 于3B ,过3B 作34//B B BC 交AB 于4B ,则线段34B B 的长度为 ▲ .(用含有m 的代数式表示)三、解答题(本大题共7题,满分78分) 19.(本题满分10分)计算:2cos 45tan 60tan 30cos60︒+︒︒⋅︒. 20.(本题满分10分,第(1)小题满分6分,第(2已知二次函数215322y x x =-+-.(1(2)在平面直角坐标系中画出该函数的大致图像.AB C第15题图CG第14题图DBAC 第18题图 B 1 B AB 2 B 3 B 4 第17题图第23题图21.(本题满分10分)已知:如图,AB =AC ,∠DAE =∠B .求证:△ABE ∽△DCA .22.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)如图是某货站传送货物的平面示意图, AD 与地面的夹角为60°.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°成为37°, 因此传送带的落地点由点B 到点C 向前移动了2米.(1)求点A 与地面的高度;(2)如果需要在货物着地点C 的左侧留出2米,那么请判断距离D 点14米的货物Ⅱ是否需要挪走,并说明理由.(参考数据:sin37°取0.6,cos37°取0.8,tan37°取0.75 1.73)23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,在Rt ACB △中,90ACB ∠=°,点D 在边AB 上,DE 平分CDB ∠交边BC 于点E ,EM 是线段BD 的垂直平分线.(1)求证:CD BEBC BD =; (2)若410cos 5AB B ==,,求CD 的长.24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(1)小题满分5分)如图,在平面直角坐标系xOy 中,已知抛物线2y x bx c =++经过(0,3)A ,(1,0)B 两点,顶点为M . (1)求b 、c 的值;(2)将OAB △绕点B 顺时针旋转90°后,点A 落到点C 的位置,该抛物线沿y 轴上下平移后经过点C ,求平移后所得抛物线的表达式;(3)设(2)中平移后所得的抛物线与y 轴的交点为1A ,顶点为1M ,若点P 在平移后的抛物线上,且满足△1PMM 的面积是△1PAA 面积的3倍,求点P 的坐标.A B D E C 第21题图第22题图25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图,已知梯形ABCD ,AD ∥BC ,AB =AD =5,3tan 4DBC ∠=.E 为射线BD 上一动点,过点E 作EF ∥DC 交射线BC 于点F .联结EC ,设BE = x ,ECF BDC Sy S ∆∆=.(1)求BD 的长;(2)当点E 在线段BD 上时,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)联结DF ,若△BDF 与△BDA 相似,试求BF 的长.虹口区2011学年第一学期初三年级数学学科期终教学质量监控测试卷参考答案及评分建议2012.1说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题若无特别说明,每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做对这一步应得分数;4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半;5.评分时,给分或扣分均以1分为基本单位.BC E 第25题图 A DB C A D 备用图一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.C ; 3.D ; 4.A ; 5.C ; 6.B .二、填空题:(本大题共12题,每题4分,满分48分)7. 1± ; 8. (1,3) ; 9. 2(4)1y x =-+ ;10.23a b -; 11.45° ; 12.2 ;13.36 ; 14.1 ; 15.14 ;16.312y y y <<; 17.76; 18. 312m ⎛⎫- ⎪⎝⎭2m -)三、解答题(本大题共7题,满分78分)19.(本题满分10分)24分)=4分)=2分) 20.(本题满分10分)解:(1)经配方得:2322y x =--+1()…………………………………………………(2分) ∴顶点坐标为(3,2),对称轴为直线3x =,………………………………(2分,2分) (2)画图正确.…………………………………………………………………………(4分) 21.(本题满分10分) 证明:∵AB =AC ,∴B C ∠=∠.……………………………………………………………………(3分) ∵BAE BAD D AE ∠=∠+∠,CDA BAD B ∠=∠+∠, 又DAE B ∠=∠,∴BAE CDA ∠=∠.……………………………………………………………(5分) 又∵B C ∠=∠,∴△ABE ∽△DCA .……………………………………………………………(2分)22.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分) 解:(1)作AE ⊥BC 于点E , ……………………………………………………(1分)设AE x =,在Rt △ACE 中,4cot 3CE AE ACE x =⋅∠=,……………………………………(1分) 在Rt △ABE 中, cot BE AE ABE x =⋅∠=,……………………………………(1分)∵BC=CE-BE ,423x x -= 解得6x =.………………………………………………………(2分) 答:点A 与地面的高度为6米.……………………………………………………(1分) (2)结论:货物Ⅱ不用挪走. ………………………………………………………(1分)在Rt △ADE 中,cot 6ED AE ADE =⋅∠== ……………………(1分) c o t 8C E A E A C E =⋅∠=…………………………………………………………(1分)∴CD=CE+ED =811.46+≈1411.46 2.542-=>……………………………………………………………(1分) ∴货物Ⅱ不用挪走.23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分) (1)证明:∵EM 是线段BD 的垂直平分线, ∴ED =EB ,∴∠EDB =∠B .∵DE 平分CDB ∠, ∴∠CDE =∠EDB .∴∠CDE =∠B .……………………………………………………………(2分) 又∵∠DCE =∠BCD , ∴△CDE ∽△CBD .………………………………(1分)∴CD DEBC BD=, 又由ED =EB , 得CD BEBC BD=……………………………………………(2分) (2)解:∵90ACB ∠=°,410cos 5AB B ==, ∴68AC BC ==,.…………………………………………………………(1分)∵EM 是线段BD 的垂直平分线, ∴DM =BM∴2CD BE BEBC BD BM ==.………………………………………………………(2分) ∴82CD BE BM =, 即4BECD BM= …………………………………………(1分) 4cos 5BM B BE == ∴5454CD =⨯=.……………………………………(2分)24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 解:(1)已知抛物线2y x bx c =++经过(0,3)(1,0)A B ,,∴3,01.c b c =⎧⎨=++⎩ …………………………………………………………………(2分)解得4,3.b c =-⎧⎨=⎩……………………………………………………………………(1分)∴b 、c 的值分别为-4,3.(2)(0,3)A ,(1,0)B ,∴31OA OB ==,,可得旋转后C 点的坐标为(41),.……………………………………………………(2分) 当4x =时,由243y x x =-+得3y =,可知抛物线243y x x =-+过点(43),. ∴将原抛物线沿y 轴向下平移2个单位后过点C .∴平移后的抛物线解析式为:241y x x =-+.…………………………………(2分)(3) 点P 在241y x x =-+上,可设P 点坐标为2000(41)x x x -+,,将241y x x =-+配方得()223y x =--,∴其对称轴为2x =.……………(1分)113PMM PAA S S = △△ 112MM AA == ∴02x <.①当002x <<时,113PMM PAA S S = △△,∴()0011223222x x ⨯⨯-=⨯⨯⨯, ∴012x = , 此时2003414x x -+=-.∴P 点的坐标为13()24-,.…………………………………………………………(2分) ②当00x <时,同理可得()00112232()22x x ⨯⨯-=⨯⨯⨯-,∴01x =- , 此时200416x x -+=.∴点P 的坐标为(16)-,.……………………………………………………………(2分) 综上述,可知:点P 的坐标为13()24-,或(16)-,. 25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分) 解:(1)过点A 作AH ⊥BD 于点H ,∵AD ∥BC ,AB =AD =5∴∠ABD =∠ADB=∠DBC , BH =HD ……………………………………………(1分) 在Rt △ABH 中,∵3tan tan 4ABD DBC ∠=∠=, ∴4cos 5BH ABD AB ∠==…………………………………………………………(1分) ∴BH=DH=4, ……………………………………………………………………(1分) ∴BD =8 ……………………………………………………………………………(1分)(2)∵EF ∥DC ∴8FC DE xBF BE x-==, ∵△EFC 与△EFB 同高,∴8EFC EFB S FC xS BF x∆∆-==…………………………………(2分) 由EF ∥DC 可得:△FEB ∽△CDB∴222()()864FEB CDB S BE x x S BD ∆∆===……………………………………………………(1分) ∴2281164648EFC EFC EFB BDC EFB BDC S S S x x y x x S S S x ∆∆∆∆∆∆-==⋅=⋅=-+,(08)x <<……(2分,1分)(3)∵AD ∥BC ∴∠ADB=∠DBC , ∵△BDF 与△BDA 相似 ①∠BFD=∠A ,可证四边形ABFD 是平行四边形∴BF =AD=5.…………………………………………………………………………(2分) ②∠BFD=∠ABD ,∴DB=DF.可求得:BF=645.……………………………………………………………………(2分)综上所述,当△BDF与△BDA相似时,BF的长为5或645.。