(完整版)基于热敏电阻的数字温度计
数字温度计原理
数字温度计原理数字温度计是一种利用数字信号来表示温度值的温度测量仪器,它是现代工业和生活中常用的一种温度测量设备。
数字温度计的原理是基于热敏元件的电阻值随温度变化而变化的特性,通过测量电阻值的变化来确定温度值。
下面我们将详细介绍数字温度计的工作原理。
数字温度计的核心部件是热敏元件,常用的热敏元件有热敏电阻、热电偶和半导体温度传感器等。
其中,热敏电阻是一种电阻值随温度变化而变化的元件,它的电阻值随温度的升高而减小。
数字温度计利用热敏电阻的这一特性来实现温度测量。
当热敏电阻与电路连接后,其电阻值会随温度的变化而发生变化,通过测量电阻值的变化,就可以确定所测温度的数值。
数字温度计通常还包括一个模拟-数字转换器(ADC)和微处理器。
热敏电阻的电阻值的变化会转化为模拟信号,ADC负责将这个模拟信号转换为数字信号,然后微处理器对这个数字信号进行处理,最终将其显示为温度数值。
通过这样的一系列过程,数字温度计实现了对温度的精确测量和显示。
除了热敏电阻,数字温度计还可能采用其他类型的热敏元件,比如热电偶和半导体温度传感器。
热电偶是利用两种不同金属导体在不同温度下产生的热电势来测量温度的元件,而半导体温度传感器是利用半导体材料的电阻随温度变化而变化的特性来测量温度的元件。
不同类型的热敏元件在数字温度计中的应用原理略有不同,但基本的测温原理是相似的,都是利用热敏元件的特性来实现温度测量。
总的来说,数字温度计的原理是利用热敏元件的电阻值随温度变化而变化的特性,通过测量电阻值的变化来确定温度值,然后将其转化为数字信号进行显示。
不同类型的热敏元件在数字温度计中的应用原理略有不同,但基本的测温原理是相似的。
数字温度计在工业生产、医疗卫生、环境监测等领域有着广泛的应用,其原理的了解对于正确选择和使用数字温度计具有重要意义。
热敏电阻数字温度计的设计实验报告
热敏电阻数字温度计的设计实验报告
本次实验旨在设计一种基于热敏电阻的数字温度计,通过实验验证其可行性和精确性。
实验过程中,我们首先购买了一些热敏电阻和其他所需的元器件,包括电容、电阻、运放等。
然后按照电路图设计,进行了实际的电路连接和调试。
在调试过程中,我们需要注意电路的稳定性和输入电压的范围,以免影响实验结果。
在完成电路搭建和调试后,我们通过连接计算机和显示器,测试了温度计的输出精确度和稳定性。
实验结果表明,该数字温度计具有较高的精确度和稳定性,可满足实际应用的需求。
综上所述,基于热敏电阻的数字温度计设计实验成功完成,并且具有较高的精确度和稳定性,为实际应用提供了可靠的参考数据。
- 1 -。
基于热敏电阻的数字温度计设计
目录1 课程设计的目的 (1)2 课程设计的任务和要求 (1)3 设计方案与论证 (1)4 电路设计 (2)4.1 温度测量电路 (3)4.2 单片机最小系统 (6)4.3 LED数码显示电路 (8)5 系统软件设计 (9)6 系统调试 (9)7 总结 (11)参考文献 (13)附录1:总体电路原理图 (14)附录2:元器件清单 (15)附录3:实物图 (16)附录4:源程序 (17)1 课程设计的目的(1)掌握单片机原理及应用课程所学的理论知识;(2)了解使用单片机设计的基本思想和方法,学会科学分析和解决问题;(3)学习单片机仿真、调试、测试、故障查找和排除的方法、技巧;(4)培养认真严谨的工作作风和实事求是的工作态度;(5)锻炼自己的动手动脑能力,以提高理论联系实际的能力。
2 课程设计的任务和要求(1)采用LED数码管显示温度;(2)测量温度范围为-10℃~110℃;(3)测量精度误差小于0.5℃。
3 设计方案与论证方案一:本方案主要是在温度检测部分利用了一款新型的温度检测芯片DS18B20,这个芯片大大简化了温度检测模块的设计,它无需A/D 转换,可直接将测得的温度值以二进制形式输出。
该方案的原理框图如图3-1所示。
DS18B20是美国达拉斯半导体公司生产的新型温度检测器件,它是单片结构,无需外加A/D即可输出数字量,通讯采用单线制,同时该通讯线还可兼作电源线,即具有寄生电源模式。
它具有体积小、精度易保证、无需标定等特点,特别适合与单片机合用构成智能温度检测及控图3-1方案一系统框图方案二:温度检测部分采用传统的热敏电阻,热敏电阻的阻值随环境温度变化而变化,将热敏电阻与固定电阻串联后分压,经A/D转换器将其转换为单片机可识别得二进制数字量,然后根据程序查表得到温度值,单片机主要控制LED显示器显示正确的温度值,并根据设置的上下限控制继电器动作,从而控制外部负载。
该方案的原理框图如图3-2所示。
基于热敏电阻的数字体温计
了一种高 精度低 功耗便携 式数字体 温计 。 详细介绍 了该系 统原理框架 ,N T C热敏 电阻特性 ,A D 温 度采样 原理,l 6位 ∑一△ 模 数转换器和软件的实现 。 在 实际应 用中 以高精度 、 低功耗 、 测量时间短、 方便携带等优点替代传统的水银体温计 。
关键 词 : 高精度 ; 低功耗 ; 便携式 ; 热敏 电阻 ; 数字体温计 中图分类号 :T H 8 1 1 . 1 文献标识码 :B
p o r t a bl e d i g i t al t h e r m o m e t e r . F r a me w o r k a r e i n t r o d u c e d i n d e t a i 1 t h e s y s t e m p r i n c i p l e , t h e N T C t h e r mi s t o r s
p r a c t i c a l a p p l i c a t i o n w i t h h i g h p r e c i s i o n , l o w p o w e r c o n s u m p t i o n , s h o r t m e a s u r e m e n t t i m e , t h e a d v a n t a g e s o f
0 引言
目前 , 测体温 广泛采用 的是水银 体温计 。 水银体温 计具有测 量精度高 , 测量温度保持 的优点。 然而 , 水银体温计有携 带不方便 、 容易损坏 、 水银漏 出处理不当造成环境污染 , 在使用时需要预设温 度、 测量时间长 、 冬天使用冰冷 、 读数 困难等缺点 。 为 了克服水银体 温计 的缺 点, 本文介绍 了一种基 于 N T C热敏 电阻的数字体温计 。 该 数字 体温计充分利用 了 N T C热敏 电阻的高温度 系数和 M S P 4 3 0系 列单 片机 片上资源丰富及低功耗 的特 点, 使得数字体温计具有和 水银 体温计 同样 的测量精度 、 温度保持 的优 点, 同时测量时 间短 、 成本低 、 使用和携带方便并且具有测环境温度 的特点。
用NTC热敏电阻设计制作体温计
用NTC热敏电阻设计制作体温计设计制作体温计需要以下步骤:1.了解NTC热敏电阻的原理和特性:NTC热敏电阻是一种随温度变化而变化阻值的电阻器件。
随着温度升高,NTC热敏电阻的阻值会逐渐减小。
这种特性可以用来测量温度。
2.确定设计参数:首先,确定设计的温度范围。
然后,选择合适的NTC热敏电阻,其阻值应在所选温度范围内变化适当。
一般来说,常见的NTC热敏电阻有10K欧姆和100K欧姆等。
3.进行电路设计:根据所选的NTC热敏电阻和测量范围,设计一个合适的电路。
一种简单的电路方案是将NTC热敏电阻与一个固定的电阻器组成一个电压分压电路,并将其输出连接到一个模拟电压输入引脚。
好的设计应该考虑到温度的准确性、响应速度和电路可靠性等方面。
4.制作电路原型:根据设计的电路图,制作一个原型电路板。
可以使用普通的白板、面包板或PCB进行制作。
在制作过程中,要确保电路连接正确且紧凑。
5.进行实验验证:将体温计放入不同温度下进行测试,并记录每个温度下的电压输出。
校准温度和电压之间的关系。
为了提高准确性,可以使用一个标准温度测量设备进行参考。
6.编写程序:根据电路输出的电压值和预先校准的数据,编写一个程序来计算和显示温度值。
可以使用微控制器或单片机等进行编程。
7.制作外壳和显示:将电路和显示装置封装在一个合适的外壳中,使其便于使用。
可以选择液晶显示器、数码管或LED等显示温度值。
总结:设计制作体温计需要了解NTC热敏电阻的原理和特性,确定设计参数,进行电路设计,制作电路原型,实验验证,编写程序以及制作外壳和显示。
通过这个过程,就可以设计制作出一个简单但准确的体温计。
热敏电阻数字温度计及设计与制作
热敏电阻数字温度计及设计与制作一、热敏电阻介绍热敏电阻(Thermistor)是一种特殊类型的电阻元件,也被称为温度传感器或温度电阻。
它由原材料包括硅、聚苯乙烯等制成,一般构成为由特殊陶瓷物质制成的金属杆支撑的微型电阻片,它的电阻值会随温度的变化而发生量级的变化,应用范围广泛,同时也具有非线性特性。
二、原理介绍热敏电阻可以因温度的变化而改变其电阻值,电路中施加的电压,将发生变化的电阻作用的电流,其特性一般是冷端温度为25°C时,电阻值最小,随着温度的增加,电阻值也增加。
热敏电阻具有很强的非线性特性,温度噪声小,因而对温度测量后级电路要求较低,这种特性使热敏电阻更加容易把输入的温度信号转变为数字信号。
三、数字温度计的介绍数字温度计(Digital Thermometer)是一种使用热敏电阻来测量温度的设备,可以检测温度并以数字方式显示温度变化,常用于家用、工业和其它科学测量等领域。
数字温度计利用热敏电阻这种特性,可以把温度信号变换为数字信号,然后再在显示分辨率与可调量程内显示出来。
要设计并制作一台数字温度计,需要用到热敏电阻、运算放大器、A/D转换器、晶体管、多路复用器和显示器等元件。
(1)热敏电阻。
用来检测温度变化,通过将温度变化映射成电阻变化。
(2)运算放大器。
它将检测到的电阻变化信号发送至A/D转换器,用以进一步进行信号转换处理,从而获取准确的温度数值。
(5)多路复用器。
它用来将晶体管处理出的信号发送至显示器,并选择正确的显示模式,以便正确显示温度数值。
五、结论热敏电阻及其特性使其能够非常精确地测量、检测温度变化。
数字温度计设计与制作主要使用热敏电阻以及相关电路元件,它可以把温度信号变换为数字信号,从而在对精度进行严格控制的情况下,准确地显示出温度信息。
利用型热敏电阻设计温度计
3
三、实验原理
热敏电阻的阻值具有随温度变化而变化的性质
我们可以将热敏电阻作为一个感温原件以阻值的变化来体现环境温度的变化。但是阻值的 变化量以直接测量的方式获得可能存在较大的误差,因此要将其转化为一个对外部条件变 化更加敏感的物理量;本实验中选择的是电流,通过电桥可以将电阻阻值的变化转化为电 流(电压)的变化
为了减小温度测量误差,需要对NTC热敏电阻进行温度补偿。一种常见的温度补偿方法是使用一个电阻网 络和一个稳定的电源电压,通过改变电阻网络中的电阻值来补偿NTC热敏电阻的电阻-温度特性
具体原理为:在NTC热敏电阻电路中,将NTC热敏电阻与一个固定的电阻串联,并以稳定的电源电压为电 路供电。当电路中有电流通过时,根据欧姆定律,电阻越大,电流越小。通过改变串联电阻的取值,可 以调整整个电路的总电阻值,从而得到所需要的电流值
PART 4
四、实验步骤
4
四、实验步骤
测出所选择的热敏电阻Rt-t曲线(或由实验室给出) 将NTC热敏电阻和一个固定电阻串联进电路中,在基准温度下, 使用DHT-2型热学实验仪测量NTC热敏电阻的电阻值,并记录下 来 在其他温度下,同样使用DHT-2型热学实验仪测量NTC热敏电阻 的电阻值,然后使用串联电阻网络调整整个电路的总电阻值 使电流值保持在基准温度时的电流值,这样就实现了温度补偿, 使得NTC热敏电阻在不同温度下表现出稳定的电阻值 总之,NTC热敏电阻温度补偿原理是通过改变串联电阻的取值, 调整整个电路的总电阻值,使得NT样可以减小温度测量误差,提高测量精度
2.了解电阻的温度特性和伏安 特性
4.提高设计、创新能力
PART 2
二、实验仪器
2
二、实验仪器
实验所需仪器
DHT-2型热学实验仪、NTC热敏电阻、直流稳压电源(电压调节范围0-30V两路输出) 、电阻箱(阻值调节范围0-99999.9Ω、额定功率0.25W)、微安表、万用表、导线
基于热敏电阻的数字温度计课程设计.doc
基于热敏电阻的数字温度计课程设计. .目录1 绪论12 系统硬件电路设计32.1 测温电桥电路32.2 信号放大电路................................................................................62.3 AD转换电路...................................................................................72.4 控制电路........................................................................................92.5 声光报警电路 (102).6 显示电路..........................................................................................112.7 电源电路..........................................................................................123 系统软件设计154 总结与展望 (1)6参考文献……………………………………………………………..……………………………..171概述随着以知识经济为特征的信息化时代的到来人们对仪器仪表的认识更加深入,温度作为一个重要的物理量,是工业生产过程中最普遍,最重要的工艺参数之一。
随着工业的不断发展,对温度的测量的要求也越来越高,而且测量的范围也越来越广,对温度的检测技术的要求也越来越高,因此,温度测量及其测量技术的研究也是一个很重要的课题。
目前温度计按测使用的温度计种类繁多,应用范围也比较广泛,大致可以包括以下几种方法:1,利用物体热胀冷缩原理制成的温度计2,利用热电效应技术制成的温度检测元件3,利用热阻效应技术制成的温度计4,利用热辐射原理制成的高温计5,利用声学原理进行温度测量本系统的温度测量采用的就是热阻效应。
基于NTC热敏电阻简易快速智能体温计的设计
第39卷第3期曲靖师范学院学报Vol.39No.3 2020年5月JOURNAL OF QUJING NORMAL UNIVERSITY May.2020基于NTC热敏电阻简易快速智能体温计的设计杨清志1,张运芝2(1.亳州职业技术学院智能工程系,安徽亳州236800;2.亳州市青云小学分校,安徽亳州236800)摘要:随着《关于汞的水俣公约》的生效,目前最常用的水银体温计因含汞有毒将退出市场,电子体温计又因价格高寿命有限而不便推广使用.针对这种情况设计了一种利用NTC热敏电阻采集温度,MSP430单片机进行功能处理的简易、快速智能体温计,能快速测温并实现异常温度智能报警,具有较高的实用价值.关键词:NTC;体温;MSP430;报警中图分类号:TP212.3;R318.6文献标识码:A文章编号:1009-8879(2020)03-0058-050引言体温是人体重要的生理参数,体温检测是判断病人健康状况最简单而有效的方法之一.目前用于体温检测的温度计有水银体温计和电子体温计等.传统的水银体温计因价格低读数可靠而被普遍使用,但水银体温计含汞有毒存在安全隐患.2013年10月我国加入《关于汞的水俣公约》,该公约于2017年8月16日起生效.条约规定:2020年起,淘汰未申请豁免的添汞产品生产、进口和出口⑴.这就意味着水银体温计将逐步退出市场,被电子体温计取而代之•按国家标准GB/T21416-2008(医用电子体温计》第4条规定,医用电子体温计除了精度要求之外,还应有温度异常提示报警以及数据存储记忆等功能⑵.调查发现,目前市场上很多廉价的电子温度计并不符合标准,而正规厂家生产的符合标准的电子体温计价格都较高,且寿命有限,其推广和使用受到了极大的限制.目前电子温度计主要有热电阻温度计、红外温度计、遥测温度装置及智能温度计等•热电阻温度计采用热电阻(钳电阻或热敏电阻等)采集温度,通过电路转化为电压,放大后进行A/D转化•这类温度计功耗小成本最低,但不能实现GB/T21416-2008(医用电子体温计》所要求的报警和数据存储记忆功能,一般用于宠物温度计.红外温度计有红外耳温计、红外额温计和红外成像仪等•红外温度计采用红外传感器收集温度信息(人体体温37弋左右对应波长10|jim的远红外线),再经转化电路转化为电压信息进行处理MT.红外温度计测量迅速,且无需与病人接触清洁卫生•但容易受到环境干扰,精度难保证.且转化电路复杂,成本较高•遥测温度装置采用温度传感器采集温度,通过无线传输模块将温度信息输送至较远终端处理•遥测温度装置除了测温探头微型化外终端可以不受体积限制,功能齐全•但成本高,不能实现便携式•智能温度计采用微型单片机作为处理芯片,把温度传感器采集的温度信息根据需要进行选择性处理一叫目前这种智能温度计随着微型单片机的发展而迅速占领市场.本设计要求满足GB/T21416-2008《医用电子体温计》的标准,精度要求并不特别高,但应降低成本,且要微型化便于携带、使用.通过对各种电子温度计的比较研究,我们查阅了相关资收稿日期:2019-11-08基金项目:安徽堵教育厅质量工程项目“机电一体化专业建设创新团队”(2019cxtd050);亳州职业技术学院重点教学研究项目“物理学在医药专业应用的研究,,(2017bzjyxm38);亳州职业技术学院重点科研项目“中药饮片生产过程监控系统设计”(BKY1717).作者简介:杨清志,亳州职业技术学院智能工程系副教授,主要从事传感器及自动化研究.・58・杨清志,张运芝:基于NTC 热敏电阻简易快速智能体温计的设计料,通过仿真,设计了一种简易、快速的智能体温 计•本设计用NTC 热敏电阻进行温度采集,经转化电路转化为电压后送入MSP430单片机处理, 再由LCD 液晶进行温度显示,蜂鸣器进行温度 异常报警•相比于同类产品价格低廉寿命较长, 且使用方便,能很好地满足测量需要,具有较高的实用价值.1 系统设计本设计由NTC 热敏电阻探头、电桥电路、放大电路、MSP430单片机、LCD 液晶显示器及报警器等组成,其结构框图如图1所示.「测温探头;-转化电路[[控制部分:> 输出部分[:MSP430f4250 :一 [ LCD 显刁攝上)单片机『葫^懿邛< t ' ! ;]|电源11詁盘11 ;电桥_____期电路图1系统结构图实现步骤:首先由NTC 热敏电阻测温探头探测温度,将温度变化转化为电阻阻值的变化, 然后通过电桥电路将电阻阻值变化转化为电压 输出,再经放大后输入MSP430f4250单片机进行数据处理,通过LCD 液晶显示器显示温度,并对 异常温度(发烧)进行报警提示.MSP430f4250单 片机自带A/D 转换和液晶驱动,所以外围电路非常简洁,便于设计小型化,方便使用.2硬件选择与设计2. 1 NTC 热敏电阻NTC ( Negative Temperature Coe 伍cient )热敏电阻是负温度系数型半导体电阻,其阻值随着温度的升高而减小,如(1)式所示⑼•R 严R°e 姑咼(1)式中叨一材料系数,一般在2000 ~ 6000 K之间;仏一参考温度,一般取25弋,即298. 15K (也有的取0弋,);7」工作时实际温度(均以K为单位,T = t +273. 15);他一冷电阻,即温度T°时的电阻;乩一温度卩时的实际电阻.由于0、仏、 他均为已知量,故乩是卩的单值函数,只要知道热敏电阻阻值代就可以算出对应温度T.由于NTC 热敏电阻热惯性小测温快,因此特别适合制作快速体温计•但是乩与卩是指数函数,并非线 性关系,还需要进一步进行数据处理.本设计我们选用日本石塚(SEMITEC )的503ET 热敏电阻.该电阻R25弋=5OkQ±3%,0值:4055K ± 1%,额定功率3. 5mW,时间常数3.4s,测温范围:-40-100^,最大直径1.5mm,功耗低体积小响应快,非常适合作为体温探头[⑹•2.2转换电路转换电路由电桥电路和放大电路组成,如图2所示.J R9图2转换电路IN- VCC-图中&、尽、堆、人4和乩组成电桥,将NTC 进行分析可得:热敏电阻Rt 的阻值变化转化为电压输出.但输T/V ref|/ 二------------------x 出电压较小,还要经过OP07放大器放大.对电路0UT+ R1 +&//(& +尼)・59・第3期曲靖师范学院学报第39卷人2 •人7〃(人6 +尼) (2)R] +人2〃(人6 +尼)(丿£空V R 3 R 5x (R 6 +尼)°ut +V 0UT _ = 3 J ; 6 ]7 丿——(3)--+-- +------恳他血+乩V ()UT =(才 + ] ) R + R “OUT + _ 才 V ()UT 一( 4 )由(2)、(3)、(4)式可以算出输出电压%ut ,然后送入单片机进行处理.2.3单片机及其外围电路考虑到低功耗、小型化兼顾智能化设计要 求,综合比较各种微控器,本设计我们选用TI 公司(美国德州仪器)的MSP430F4250单片机作为 微控器•该单片机是一款超低功耗单片机,外围尺寸 15. 75mm X 10. 03mm x 2. 79mm,运行电压1.8 ~ 3.6V ,待机模式下工作电流1. gA ,睡眠模式下仅O.ljjiA.自带D/A 转换器和LCD 驱动器等,外围电路简单,运行速度快,唤醒时间小于6阴,非常适合本设计[⑴.单片机及其外围电路图见图3.如图3所示,由转换电路输出的电压送至单 片机,单片机根据设定的电压值进行比较,把对应的温度信息送至LCD 进行显示.为了降低功 耗,本设计采用4位8段数码管,测量完成后如 无其他操作会自动延时关闭.如果检测到发烧, 则发出报警信号触发报警器进行声音报警•为了方便使用和延长使用寿命,设计采用可更换的3.0V 纽扣电池供电.247d歸$8'10Cl f图3单片机及其外围电路険沁 i iiiiirF54/COM3i 養1潇縫—ii 誇iilllliiiiliili 讼;lliiiliiiP5.2/COM1势曲 i lliiiiili COMOlllllllll 绝iMBiF 1fillFFFFFFFFFFFFFF 1liiiiiiiiilil#...................................爰 i Mililiii :..............AVSSF15/$gF 1fill FFFFFFFFFFFFFF 1iiiiiiiiii 璇 l iii .............痙ii 蠢i絆鲨gr 心严切S5F5.5/S3P63/M-P5..5/S21 敕P5.1./S0llllliiitliOil 1 喩 i illllllllll 「iliOlliiil]]PLO/TAGFL.6/A2-P1J/W/MCLK 內③T ACLKMCXKMg+m 広TA L 泓恥3 程序设计本设计的基本原理是:温度变化-电阻变化-电压输出,所以单片机获取电压信息后可以根 据(1)、(2)、(3)、(4)式计算出温度.但测试发 现,理论计算和仿真所得数值与实际测试值有一定的偏差,这主要是由于电阻阻值不标准以及电路板中存在漏电阻和等效电容等的影响,为提高测量精度,本系统设计不采用函数计算,而是用 修正后的温度与电压对应值进行标定.人体体温测量值与测量部位有关,正常情况 下腋窝平均温度36.代,口腔平均温度37. 0弋, 直肠平均温度37. 3弋.同时不同人群体温也略・60・杨清志,张运芝:基于NTC 热敏电阻简易快速智能体温计的设计有不同,儿童体温比成人约低0.2弋.体温测量 基本上都选择腋窝测量,一般认为超过37. 3弋 就是发烧,其中37. 4 ~ 38弋为低烧,38. 1 ~ 39弋为中度发烧,39.1 ~41弋为高烧,41弋以上为超 高烧.按GB/T 21416 -2008(医用电子体温计》第4. 3条规定,医用电子体温计的测温范围不小于35弋~41弋,测量精度应该满足表1要求.根据表1要求,我们对规定的测温范围作非均匀划分,实验测试所得温度、热敏电阻阻值和 输出电压的对应值(部分)如表2所示.表1医用电子体温计精度要求温度(咒)范围低于35. 335.3 〜36. 937.0 〜39.039. 1 〜41.0高于41.0允许误差±0.3±0.2±0. 1±0.2±0.3表2测量温度与热敏电阻和输出电压对应关系测量温度(咒)353637 37.338 3940 4142NTC 电阻(Q )32. 6731.3530. 09 29. 7428. 88 27. 7326. 63 25. 5724. 57输出电压(V )0. 620.91 1.201.31 1.501.792. 07 2. 37 2. 65工作时,首先通过启动按键唤醒单片机,单 片机开始读取由转换电路输入的电压,与机内的 设定值进行比较,输出温度值•如果温度异常则触发报警器报警.由于热敏电阻变化快,为避免 取出温度计时读数变化,本设计设定测量时间150s,从按启动键开始计时,150s 时输出并保留测量信息,此时会通过蜂鸣器发出“嘀——” 一 声提示音,提示测量结束•如果继续测量只需按 一下复位键即可•如果检测到低烧(即温度37.3弋以上),单片机会发出连续脉冲信号(“嘀——嘀——”)报警;如果是中高烧(即温度39弋以上,问题相对严重),单片机会输出一个连续电压信号触发报警,可以按键取消•如无其他操作系统会延时60s 自动关机,并保存最近一次测量数据(保存数据条数可根据需要设定)•系 统程序设计如图4所示.4 测试结果为检验本设计的可靠性,我们在亳州市青云小学分校随机抽取了 50名学生进行实际体温测 试,测量结果与相同条件下测量精度较高的水银体温计测量结果作比较•学生体温测量结果均正常,为了扩大检测范围,我们用温水来模拟“发 热”和“低温”的温度检测与报警测试,测试结果表明,温度误差±0. 1弋,报警器工作正常,误报 率为0.图4体温测量程序5 总结本设计基于NCT 热敏电阻的体温计,测量 迅速准确•采用M430F4250超低功耗单片机作 为微控器,体积小寿命长使用方便,能很好地满 足GB/T 21416 -2008(医用电子体温计》第4条的测量精度和提示报警、数据记忆、自动关机等 功能要求•随着水银体温计因《关于汞的水俣公 约》的生效而退出市场,这种简易快速的智能体• 61•第3期曲靖师范学院学报第39卷温计具有极大的推广价值.同时,本设计采用单片机作为处理核心,可以通过编程进行功能拓展,便于进一步开发研究.参考文献:[1]全国人大.关于汞的水俣公约[EB/OL].http:///wxzl/gongbao/2016-07/11/content _1994472.htm.[2]GB/T21416-2008(医用电子体温计》[S].北京:中国标准出版社,2008.[3]丁岩.红外体温测量管理系统的设计[D].呼和浩特:内蒙古大学,2017.[4]葛泽勋.医用红外测温仪及其关键技术研究[D].长春:长春理工大学,2019.[5]黄鑫.穿戴式动态体温监测系统的设计与实现[D].成都:电子科技大学,2018.[6]胡良文.基于温度传感器阵列和深度学习的体温实时监测系统[D].成都:西南交通大学,2018.[7]郑英,李香菊,王迷迷,等.基于NTC和ZigBee技术的病房病人体温监测系统设计[J].现代电子技术,2016(4):26-28.[8]杨清志,王杰.基于S17053的智能数字体温计的设计[J].黑河学院学报,2016(3):123-125.[9]陈安宇.医用传感器(第二版)[M].北京:科学出版社,2015:107-111.[10]SEMITEC503ET参数[Z].http:///cntpqe_brand_special,asp?xid=5&brid=30&cpid=721&kcid=2763.[11]msp430£4250技术参数[Z].http:///cn/lit/gpn/msp430£4250.Design of a Simple and Fast IntelligentThermometer Based on NTC ThermistorYang Qingzhi1,Zhang Yunzhi2(1.Bozhou Vocational and Technical College,Bozhou Anhui236800,China;2.Branch Campus of Bozhou Qingyun Primary School,Bozhou Anhui236800,China) Abstract:With the entry into force of The Minamata Convention on Mercury,the most commonly used mercury thermometers will be withdrawn from the market due to mercury toxicity,and electronic thermometers are inconvenient to be popularized and used due to their high price and limited life.In view of this situation, a simple and fast intelligent thermometer is designed,which uses NTC thermistor to collect temperature and MSP430single一chip microcomputer to process function,can measure temperature quickly and realize intelligent alarm of abnormal temperature,it has high practical value.Key words:NTC;Body temperature;MSP430;Alarm[责任编辑:崔萍]・62・。
基于单片机的热敏电阻温度计的设计
基于单片机的热敏电阻温度计的设计引言:热敏电阻是一种根据温度变化而产生变阻的元件,其电阻值与温度成反比变化。
热敏电阻广泛应用于温度测量领域,其中基于单片机的热敏电阻温度计具有精度高、控制方便等特点,因此被广泛应用于各个领域。
本文将介绍基于单片机的热敏电阻温度计的设计,并通过实验验证其测量精度和稳定性。
一、系统设计本系统设计使用STC89C52单片机作为控制核心,热敏电阻作为测量元件,LCD1602液晶显示屏作为温度显示设备。
1.系统原理图2.功能模块设计(1)温度采集模块:温度采集模块主要由热敏电阻和AD转换模块组成。
热敏电阻是根据温度变化而改变阻值的元件,它与AD转换模块相连,将电阻变化转换为与温度成正比的电压信号。
(2)AD转换模块:AD转换模块将热敏电阻的电压信号转换为数字信号,并通过串口将转换结果传输给单片机。
在该设计中,使用了MCP3204型号的AD转换芯片。
(3)驱动显示模块:驱动显示模块使用单片机的IO口来操作LCD1602液晶显示屏,将温度数值显示在屏幕上。
(4)温度计算模块:温度计算模块是通过单片机的计算功能将AD转换模块传输过来的数字信号转换为对应的温度值。
根据热敏电阻的特性曲线,可以通过查表或采用数学公式计算获得温度值。
二、系统实现1.硬件设计(1)单片机电路设计单片机电路包括单片机STC89C52、晶振、电源电路等。
根据需要,选用合适的外部晶振进行时钟信号的驱动。
(2)AD转换电路设计AD转换电路采用了MCP3204芯片进行温度信号的转换。
根据芯片的datasheet,进行正确的连接和电路设计。
(3)LCD显示电路设计LCD显示电路主要由单片机的IO口控制,根据液晶显示模块的引脚定义,进行正确的连接和电路设计。
(4)温度采集电路设计温度采集电路由热敏电阻和合适的电阻组成,根据不同的热敏电阻特性曲线,选择合适的电阻和连接方式。
2.软件设计(1)初始化设置:单片机开机之后,需要进行一系列的初始化设置,包括对IO口、串口和LCD液晶显示屏的初始化设置。
数字温度计原理
数字温度计原理数字温度计是一种用于测量温度的电子设备,它可以将温度转换成数字信号,方便人们进行读数和记录。
数字温度计的原理是基于热敏电阻、半导体温度传感器或红外线技术等原理,通过不同的传感器来实现温度的测量和转换。
本文将从数字温度计的原理入手,为您详细介绍数字温度计的工作原理和应用。
热敏电阻是数字温度计中常用的传感器之一,它的电阻值随温度的变化而变化。
当温度升高时,热敏电阻的电阻值会减小;当温度降低时,电阻值会增加。
数字温度计通过测量热敏电阻的电阻值,再根据预先设定的温度-电阻值关系曲线,将电阻值转换成对应的温度数值。
这样就可以实现温度的数字化显示和记录。
另一种常见的数字温度计原理是利用半导体温度传感器。
半导体温度传感器是一种基于半导体材料特性的温度传感器,它可以通过测量半导体材料的特定特性来确定温度。
数字温度计通过采集半导体温度传感器输出的信号,再经过一系列的信号处理和转换,最终将温度数值显示在数字屏幕上。
除了热敏电阻和半导体温度传感器,数字温度计还可以采用红外线技术来实现温度的测量。
红外线温度计是一种非接触式的温度测量设备,它通过接收物体发出的红外线辐射能量,并将其转换成温度数值。
数字温度计利用红外线技术可以实现对不同物体表面温度的快速测量,非常适用于一些特殊环境或需要远距离测温的场合。
总的来说,数字温度计的原理是通过不同的传感器来感知温度变化,再通过信号处理和转换,将温度转换成数字信号进行显示和记录。
数字温度计具有测量精度高、响应速度快、使用方便等优点,广泛应用于工业生产、医疗保健、环境监测等领域。
希望通过本文的介绍,您对数字温度计的原理有了更深入的了解。
基于热敏电阻的数字温度计的设计-基于热敏电阻的数字温度计
毕业设计说明书毕业设计评阅书题目:基于热敏电阻的数字温度计设计信息系电气工程及其自动化专业姓名设计时间:2014年03月25日~2014年06月15日评阅意见:成绩:指导教师:(签字)职务:201年月日太原理工大学阳泉学院毕业设计答辩记录卡信息系电气工程及其自动化专业姓名答辩内容记录员:(签名)成绩评定注:评定成绩为100分制,指导教师为30%,答辩组为70%。
专业答辩组组长:(签名)201年月日摘要温度计量是计量学的一个重要分支,它在国民经济各领域中占有重要的地位。
人们的日常生活、工农业生产和科学实验等许多方面都与温度测量有着十分密切的关系。
1871年,西门子(Sir william Siemens)发现了铂电阻测温原理,制造出第一支铂电阻温度计。
1887年,卡伦德(Hugh Callendar)改进了铂电阻温度计的工艺和研制测温电桥并得到了著名的卡伦德公式。
之后,铂电阻温度计成为国际温标的标准仪器,并一直沿用至今。
本文在查阅、分析了现有的几种不同的测温原理,分析确定了热敏电阻测温,并对基于热敏电阻pt100的数字温度计的设计进行了深入探讨和研究。
该系统分为测温模块、信号放大模块、A/D转换模块和控制显示模块,并分别对其进行方案分析,最终确定数字温度计系统的系统构架和设计方案;在硬件电路中,详细阐述了各模块电路的工作原理,分析了以AT89C51单片机为主控单元的系统硬件和软件设计,并对该系统进行误差分析,使我们对于系统的各种性能有了进一步认识。
本文用protues进行仿真,采用at89c51单片机作为处理的核心部分;用pt100作为温度传感器,把采集到的温度经放大后送到adc0804进行A/D转换,经过at89c51单片机处理后送到显示器,显示器将显示采集的温度。
关键字:at89c51单片机,热敏电阻pt100,数码显示,protuesABSTRACTTemperature metrology, a major branch of metrology, plays an important role in every field of national economy . For example, people's daily life, industrial and agricultural production,scientific experiments and many other aspects are all connected closely to the temperature metrology. In 1871, Sir william Siemens discovered the principle of temperature measurement of platinum resistor and created the first platinum resistance thermometer in the world. , The platinum resistance thermometer technics was improved by Hugh Callendar in 1887 . At the same time he developed bridge for measuring temperature and made out the famous Callendar's formula. From then on Callendar's thermometer has been used as a standard instrument to international temperature scale.Based on the inspection, analysis of the existing several different measurement principle, the analysis determined the thermistor temperature measurement, and a digital thermometer pt100 thermistor-based design in-depth study and research. The temperature measurement system is divided into modules, the signal amplification module, A / D converter module and a control module, and its solutions were analyzed to determine the final design of the system architecture and digital thermometer system; hardware circuit, elaborated Each module circuit works, and analyzes to AT89C51 main control unit of the system hardware and software design and error analysis of the system, so that our systems for a variety of performance has been further understanding.In this paper, protues simulation, using at89c51 microcontroller as the core part of the process; using pt100 as a temperature sensor, the temperature of the collected adc0804 after amplification to the A / D conversion, after treatment at89c51 microcontroller to monitor, the display will show acquisition of temperature.Keywords: at89c51 microcontroller, thermistor pt100, digital display, protues目录第一章绪言 (1)第一节课题背景 (1)第二节国内外研究的发展及现状 (2)一、温度传感器的的概述及发展现状 (2)二、传感器检测技术概述及发展现状 (3)三、数据采集技术概述及发展现状 (5)第三节本课题研究的内容 (5)第二章系统的硬件设计 (6)第一节总体设计方案 (6)第二节单片机 (6)一、AT89C51简介 (6)二、管脚说明 (7)三、振荡器特性: (9)四、芯片擦除: (9)第三节温度传感模块 (9)一、PT100介绍 (9)二、PT100测温原理 (10)第四节模数转换模块 (10)一、A/D转换概念: (10)二、分辨率概念: (11)三、ADC0804引脚功能: (11)四、ADC0804工作过程 (12)五、A/D转换电路设计 (14)第五节放大模块 (15)一、Lm324简介 (15)二、Lm324放大电路设计 (16)第六节数码管显示模块 (16)一、LED显示原理 (16)二、LED显示器的显示方式 (18)第三章程序设计 (20)第一节程序流程图 (20)第二节程序设计 (21)一、函数声明和管脚定义 (21)二、启动AD转换子程序 ....................................................... 错误!未定义书签。
基于热敏电阻的数字温度计
电子信息工程学院电子设计应用软件训练任务训练任务】:1 、熟练掌握PROTEUS 软件的使用;2、按照设计要求绘制电路原理图;3、能够按要求对所设计的电路进行仿真;基本要求及说明】:1、按照设计要求自行定义电路图纸尺寸;2、设计任务如下:基于热敏电阻的数字温度计设计要求使用热敏电阻类的温度传感器件利用其感温效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来:测量温度范围-50弋〜110 C。
精度误差小于0.5 C。
LED 数码直读显示。
本题目使用铂热电阻PT100 ,其阻值会随着温度的变化而改变。
PT 后的100即表示它在0C时阻值为100欧姆,在100 C时它的阻值约为138.5欧姆。
厂家提供有PT100 在各温度下电阻值值的分度表,在此可以近似取电阻变化率为0.385 Q/C。
向PT100输入稳恒电流,再通过A/D转换后测PT100 两端电压,即得到PT100 的电阻值,进而算出当前的温度值。
采用 2.55mA 的电流源对PT100 进行供电,然后用运算放大器LM324 搭建的同相放大电路将其电压信号放大10 倍后输入到AD0804 中。
利用电阻变化率0.385 Q/C的特性,计算出当前温度值。
3 、按照设计任务在Proteus 6 Professional 中绘制电路原理图;4、根据设计任务的要求编写程序,在Proteus 下进行仿真,实现相应功能按照要求撰写总结报告】成绩:__________一、任务说明使用热敏电阻类的温度传感器件利用其感温效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来:测量温度范围-50 C〜110 C。
精度误差小于0.5 C。
LED数码直读显示。
本题目使用铂热电阻PT100,其阻值会随着温度的变化而改变。
PT后的100即表示它在0C时阻值为100欧姆,在100 C时它的阻值约为138.5欧姆。
厂家提供有PT100在各温度下电阻值值的分度表,在此可以近似取电阻变化率为0.385 Q/C。
用热敏电阻非平衡电桥设计数显温度计
用热敏电阻非平衡电桥设计数显温度计热敏电阻是一种温度敏感的电器元件,其电阻随温度的变化而变化。
利用热敏电阻作为传感元件设计非平衡电桥用于测量温度,是一种简单可行的方法。
数显温度计采用热敏电阻作为传感元件,将其嵌入测量对象中,通过传感器将信号转换为电信号,再通过数据处理进行数字显示。
其基本构成是测温电路、信号转换电路和显示电路。
首先,我们需要选择适合的热敏电阻作为传感元件。
热敏电阻的阻值随温度的变化是非线性的,需要经过平移、放大等线性化处理才能使用。
常用的热敏电阻有铂热电阻、镍铁热电阻、铁素体热电阻等。
其中铂热电阻具有稳定性好、精度高等优点,是较为理想的选型。
然后,我们需要设计非平衡电桥电路。
非平衡电桥由热敏电阻、电阻、电池和电流表组成,结构简单,灵敏度高。
在非平衡状态下,测量电路中的电流流经电阻和热敏电阻,使电阻和热敏电阻的电势差发生变化,通过这种变化来间接测量温度。
接下来,我们需要将信号转换为电信号,并进行放大、滤波等处理。
这里我们采用运算放大器将电阻变化信号转换为电压信号,并进行放大、滤波等处理。
通过运算放大器的放大系数和滤波模块的滤波特性,可以有效地提高信号的精度和稳定性。
最后,我们需要进行数字显示。
将经过处理的电压信号输入至数字显示模块中,通过对应的算法将电压转换为温度值,并进行数字显示。
在此过程中,我们需要考虑温度显示的精度、灵敏度、稳定性等因素,以保证温度计的可靠性和实用性。
总之,利用热敏电阻非平衡电桥设计数显温度计是一种简单可行的方法。
通过选择适合的传感元件、设计合理的电路结构、进行信号处理和数字化显示,可以实现对温度的准确测量和可靠显示。
用NTC热敏电阻设计制作体温计
西北工业大学设计性基础物理实验报告班级:姓名:日期:用NTC热敏电阻设计制作体温计一、实验目的1、测定NTC热敏电阻与温度的关系;2、设计制作一个数字体温计(温度范围35-42℃)二、实验仪器(名称、型号及参数)NTC热敏电阻可调直流稳压电源(0-5V)数字万用表单刀双掷开关导线FD-WTC-D型恒温控制装置2X-21型电阻箱2个三、实验原理NTC负温度系数是一种利用半导体材料制成的体积小巧的电阻,为避免热敏电阻自身发热所带来的影响,流过热敏电阻的电流不能超过300微安。
由于热敏电阻随温度变化比金属电阻要灵敏得多,因此被广泛用于温度测量,温度控制以及电路中温度补偿、时间延迟等。
为了研究热敏电阻的电阻温度特性,常用电路如图1所示:R t=(R1/U1)*U t四、实验内容与方法1.测量不同温度t下NTC热敏电阻的阻值R(1)设计实验方案,画出实验电路图如图1,不断改变环境温度t,利用公式R t=(R1/U1)*U t计算出不同温度t下NTC的阻值。
(2)列表记录数据,用最小二乘法求出R与1/t之间的关系2.设计数字体温计如图2电路图所示,根据第一问中得到的R与1/t之间的关系,取35℃与42℃为边界,联立解出R1和R2。
计算各元件的数值,使数字电压表的mV示数即为温度示数。
根据设计的电路图搭建数字温度计,进行调试:(1)测量不同温度时,数字体温计的电压示数,并绘制校准曲线;(2)根据校准曲线,对设计的电路进行改进,使误差不超过1℃。
五、实验数据记录与处理(列表记录数据并写出主要处理过程)不同温度下的NTC阻值数据记录表格(R1=10000Ω U=)t/℃313233343536373839404142U1/VU t/V经过线性拟合b= a= r=所以回归方程为:R=*1/当T=35和42时,解方程组4770R2/(R1+R2+R t)=35 解R1= 得R2=Ω调整R2,获得较为准确的体温计(此时R1=Ω R2=Ω)校准后误差在摄氏度以内。
基于热敏电阻的温度计设计
Hefei University温度计设计报告基于热敏电阻的温度计设计引言热敏电阻是一种敏感元件,其特点是电阻随温度的变化而显著变化,因而能直接将温度的变化转换为电量的变化,也就是说能将温度信号转化为电信号,从而实现了非电量的测量。
热敏电阻一般是用半导体材料制成的温度系数范围约为:(-0.003~+0.6)/℃。
热敏电阻的温度系数有正有负,因此分成PTC热敏电阻和NTC热敏电阻两类。
NTC热敏电阻是以锰、钴、镍铜和铝等金属氧化物为主要原料,采用陶瓷工艺制成。
这些金属氧化物都具有半导体性质。
近年来还有用单晶半导体如碳化硅等材料制成的(国产型号 MF91~MF96)负温度系数热敏电阻器。
NTC热敏电阻做为温度传感器具有体积小,结构简单,灵敏度高,并且本身阻值大,一般在102~105之间,不需要考虑引线长度带来的误差,易于实现远距离测量和控制。
NTC热敏电阻的测温范围较宽,特别适用于-100~300℃之间的温度测量。
NTC热敏电阻在工作温度范围内,其阻值随温度增加而显著减小,大多用于测温和控温,可以制成流量计和功率等。
一、 实验原理1、负温度系数热敏电阻的温度特性统计理论指出,热敏电阻的电阻值与温度的关系为:Rt = A ·exp B /T ,其中A 、B —半导体有关的常熟(理论分析和实验结果表明,B 值随温度略有变化,但在一般工作温度范围内近似为常数;B 值越大,阻值随温度的变化越大); T 表示热力学温度。
t 表示摄氏温度,且T =273.15+t ;Rt —在摄氏温度为t 时的电阻值,随温度上升,其电阻值呈指数关系下降(如图一)。
图1 负温度系数热敏电阻的温度特性 图2 非平衡电桥 图3 热敏电阻温度计的温度与电流特性T2、非平衡电桥电桥是一种用比较法进行测量的仪器。
所谓非平衡电桥,是指在测量过程中电桥是不平衡的。
桥路上的电流不为零,桥路上的电路的大小与电源电压,桥臂电阻有关。
利用非平衡电桥进行测量时,应具体选定,除待测电阻外其他电阻的阻值以及电源电压,这样待测电阻Rt与桥路上的电流Ig 就有唯一对应的关系,确定Rt-Ig的关系的过程,即为非平衡电桥的定标。
用热敏电阻改装温度计.(DOC)
用热敏电阻改装温度计.(DOC)热敏电阻是一种精密测量温度的元件,因其结构简单、测量稳定,已经广泛应用于各种领域中。
本文将介绍如何利用热敏电阻改装温度计。
一、热敏电阻测温原理热敏电阻的电阻值随温度的变化而变化,因此可以利用热敏电阻的电阻变化来测量温度。
当热敏电阻发生温度变化时,其电阻值的变化量可以通过电桥法来测量。
一般而言,电桥法的测量精度高、测量稳定性好,适用于各种温度测量场合。
二、改装温度计的步骤1.选取合适的热敏电阻首先需要根据所需测量的温度范围和精度要求选取合适的热敏电阻。
通常情况下,热敏电阻的电阻值变化率与温度呈线性关系,因此可以考虑选取具有稳定的特性曲线的热敏电阻。
2.确定电路连接方式接下来需要确定电路的连接方式,一般而言,热敏电阻需要通过电桥法来进行测量。
电桥法中,热敏电阻和标准电阻两者串联在同一电路中,可形成电桥电路,使电桥平衡时的电压差即为热敏电阻的电阻值变化。
3.设计电路图在确定电路连接方式后,就需要设计相应的电路图。
一般而言,电路图包括电源、热敏电阻、标准电阻和电桥等部分,需要合理分配电路元件的位置和连接方式。
4.安装电路元件安装电路元件是电路组装的重要步骤之一。
在安装过程中,需要注意不同元件的连接方式、不同元件之间的间距、位置等因素。
5.测试电路安装完成后,需要进行电路测试。
可用信号发生器产生一定频率的信号,通过闸流器将信号输入电路中,并测量电路的输出波形,进而得出电路的频率特性、灵敏度等参数,以检验电路的工作状态。
1.改装成本较低与传统的温度计相比,利用热敏电阻改装温度计的成本较低。
因为热敏电阻的制造成本较低,且更便于集成和组装。
2.测量精度更高热敏电阻提供更高的测量精度和性价比,可应用于各种领域,如工业自动化、环境监测、医疗设备、航空航天等领域中。
3.使用寿命长热敏电阻的使用寿命长,基本上不会因使用寿命到期而失效。
同时,可以通过热敏电阻结构的优化来提高其使用寿命。
四、总结热敏电阻是一种常见的温度测量元件,具有测量精度高、测量稳定等优势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于热敏电阻的数字温度计专业班级:机械1108组内成员:罗良李登宇李海先指导老师:**日期: 2014年6月12日1概述随着以知识经济为特征的信息化时代的到来人们对仪器仪表的认识更加深入,温度作为一个重要的物理量,是工业生产过程中最普遍,最重要的工艺参数之一。
随着工业的不断发展,对温度的测量的要求也越来越高,而且测量的范围也越来越广,对温度的检测技术的要求也越来越高,因此,温度测量及其测量技术的研究也是一个很重要的课题。
目前温度计种类繁多,应用范围也比较广泛,大致可以包括以下几种方法:1)利用物体热胀冷缩原理制成的温度计2)利用热电效应技术制成的温度检测元件3)利用热阻效应技术制成的温度计4)利用热辐射原理制成的高温计5)利用声学原理进行温度测量本系统的温度测量采用的就是热阻效应。
温度测量模块主要为温度测量电桥,当温度发生变化时,电桥失去平衡,从而在电桥输出端有电压输出,但该电压很小。
将输出的微弱电压信号放大,将放大后的信号输入AD转换芯片,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。
2设计方案2.1设计目的利用51单片机及热敏电阻设计一个温度采集系统,通过学过的单片机和数字电路及面向对象编程等课程的知识设计。
要求的功能是能通过串口将采集的数据在显示窗口显示,采集的温度达一定的精度2.2设计要求使用热敏电阻类的温度传感器件利用其温感效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来。
3系统的设计及实现3.1系统模块3.1.1 AT89C51AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
管脚说明:VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。
当P1口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FIASH编程时,P0 口作为原码输入口,当FIASH 进行校验时,P0输出原码,此时P0外部必须被拉高。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH编程和校验时,P1口作为第八位地址接收。
P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。
并因此作为输入时,P2口的管脚被外部拉低,将输出电流。
这是由于内部上拉的缘故。
P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。
在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。
P2口在FLASH编程和校验时接收高八位地址信号和控制信号。
P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。
当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。
作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。
P3口也可作为AT89C51的一些特殊功能口,如下表所示:口管脚备选功能P3.0 RXD(串行输入口)P3.1 TXD(串行输出口)P3.2 /INT0(外部中断0)P3.3 /INT1(外部中断1)P3.4 T0(记时器0外部输入)P3.5 T1(记时器1外部输入)P3.6 /WR(外部数据存储器写选通)P3.7 /RD(外部数据存储器读选通)P3口同时为闪烁编程和编程校验接收一些控制信号。
RST:复位输入。
当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。
ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。
在FLASH编程期间,此引脚用于输入编程脉冲。
在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。
因此它可用作对外部输出的脉冲或用于定时目的。
然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE 脉冲。
如想禁止ALE的输出可在SFR8EH地址上置0。
此时, ALE只有在执行MOVX,MOVC指令是ALE才起作用。
另外,该引脚被略微拉高。
如果微处理器在外部执行状态ALE禁止,置位无效。
/PSEN:外部程序存储器的选通信号。
在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。
但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。
/EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。
注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。
在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。
XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。
XTAL2:来自反向振荡器的输出。
3.振荡器特性:XTAL1和XTAL2分别为反向放大器的输入和输出。
该反向放大器可以配置为片内振荡器。
石晶振荡和陶瓷振荡均可采用。
如采用外部时钟源驱动器件,XTAL2应不接。
有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。
4.芯片擦除:整个PEROM阵列和三个锁定位的电擦除可通过正确的控制信号组合,并保持ALE 管脚处于低电平10ms 来完成。
在芯片擦操作中,代码阵列全被写“1”且在任何非空存储字节被重复编程以前,该操作必须被执行。
此外,AT89C51设有稳态逻辑,可以在低到零频率的条件下静态逻辑,支持两种软件可选的掉电模式。
在闲置模式下,CPU停止工作。
但RAM,定时器,计数器,串口和中断系统仍在工作。
在掉电模式下,保存RAM的内容并且冻结振荡器,禁止所用其他芯片功能,直到下一个硬件复位为止。
3.1.2 ADC0804ADC0804是用CMOS集成工艺制成的逐次比较型模数转换芯片。
分辨率8位,转换时间100μs,输入电压范围为0~5V,增加某些外部电路后,输入模拟电压可为 5V。
该芯片内有输出数据锁存器,当与计算机连接时,转换电路的输出可以直接连接在CPU数据总线上,无需附加逻辑接口电路。
ADC0804芯片管脚如图11.13.1所示引脚名称及意义如下:ADC0804芯片管脚VIN+、VIN-:ADC0804的两模拟信号输出端,用以接收单极性、双极性和差模输入信号。
DB7~DB0:A/D转换器数据输出端,该输出端具有三态特性,能与微机总线相接。
AGND:模拟信号地。
DGND:数字信号地。
CLKIN:外电路提供时钟脉冲输入端。
CLKR:内部时钟发生器外接电阻端,与CLKIN端配合可由芯片自身产生时钟脉冲,其频率为1.1/RC。
CS:片选信号输入端,低电平有效,一旦CS有效,表明A/D转换器被选中,可启动工作。
WR:写信号输入,接收微机系统或其它数字系统控制芯片的启动输入端,低电平有效,当CS、WR同时为低电平时,启动转换。
RD:读信号输入,低电平有效,当CS、RD同时为低电平时,可读取转换输出数据。
INTR:转换结束输出信号,低电平有效。
输出低电平表示本次转换已完成。
该信号常作为向微机系统发出的中断请求信号。
在使用时应注意以下几点:1.转换时序ADC0804控制信号的时序图如图所示,由图可见,各控制信号时序关系为:当CS与WR 同为低电平时,A/D转换被启动而在WR上升沿后100μs模数完成转换,转换结果存入数据锁存器,同时INTR自动变为低电平,表示本次转换已结束。
如CS、RD同时来低电平,则数据锁存器三态门打开,数字信号送出,而在RD高电平到来后三态门处于高阻状态。
2.零点和满刻度调节ADC0804的零点无需调整。
其中Vmax是输入电压的最大值,Vmin是输入电压的最小值。
当输入电压与VIN+值相当时,调整VREF/2端电压值是输出码为FEH或FFH。
3.参考电压的调节在使用A/D转换器时,为保证其转换精度,要求输入电压满量程使用,如输入电压动态范围较小,则可调节参考电压VREF,以保证小信号输入时ADC0804芯片8位的转换精度。
4.接地模数、数模转换电路中要特别注意到地线的正确连接,否则干扰很严重,以致影响转换结果的正确性。
A/D、D/A及取样-保持芯片上都提供了独立的模拟地(AGND)和数字地(DGND)的引脚。
在线路设计中,必须将所有的器件的模拟地和数字地分别相连,然后将模拟地与数字地仅在一点上相连接。
地线的正确连接方法。
3.1.3 PT100热敏电阻本题目使用铂热电阻PT100,其阻值会随着温度的变化而改变。
PT后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。
厂家提供有PT100在各温度下电阻值值的分度表,在此可以近似取电阻变化率为 0.385Ω/℃。
向PT100输入稳恒电流,再通过A/D转换后测PT100两端电压,即得到PT100的电阻值,进而算出当前的温度值。
采用2.55mA的电流源对PT100进行供电,然后用运算放大器LM324搭建的同相放大电路将其电压信号放大10倍后输入到AD0804中。
利用电阻变化率0.385Ω/℃的特性,计算出当前温度值。
3.2系统框图和流程图3.2.1系统框图3.2.2流程图3.2.3系统仿真测试4实验程序5总结数字温度计是为了测温而设计开发的。
在单片机技术与热敏电阻的巧妙结合下,可以有效测出温度,并实时数字显示,当温度超过限定值时会及时发出报警,提高了操作的安全性,同时为测量人员提供了方便。
本文设计应用中,主要进行了以下几方面的工作:(1)本文在前半部分详细叙述了利用热敏电阻,组成测温电桥的测温的原理及为何选用PT100,使我更加了解本设计的设计目的及要求。
(2)在了解热阻效应和PT100的工作原理的基础上研究和分析了系统设计方案,并对系统中遇到的不同的场景进行了分析;(3)完成了数字温度计系统的硬件选型和电路设计;(4)完成了系统的软件流程图设计;本文通过对数字温度计系统的设计过程及计算得出如下结论:本系统对有限温度范围内的温度测量具有较高的精度,实现了测量温度显示和超出限定温度报警功能,其主要技术指标达到了系统设计要求;本文关于数字温度计的设计,虽然可以满足广大普通客户的需求,也做了一些尝试性的探索工作,但是还存在很多不完善的地方,仍有许多方面有待进一步深入研究:(1)需要对热敏电阻的线性度和系统电路设计的可靠性进行进一步的研究;(2)本文在系统的精度方面研究非常局限,并没有做到非常精确,这就要求以后在这方面还有更近一步研究。