高考数学圆锥曲线历年高考真题

合集下载

(完整版)高考圆锥曲线经典真题

(完整版)高考圆锥曲线经典真题

高考圆锥曲线经典真题知识整合:直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能.1.(江西卷15)过抛物线22(0)x py p =>的焦点F 作倾角为30o 的直线,与抛物线分别交于A 、B 两点(A 在y 轴左侧),则AFFB= .132 (2008年安徽卷)若过点A(4,0)的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( ) A. [3,3] B. (3,3) C.33[33-D. 33(,33-3(2008年海南---宁夏卷)设双曲线221916x y -=的右顶点为A,右焦点为F,过点F平行双曲线的一条渐近线的直线与双曲线交于点B,则三角形AFB 的面积为-___________. 热点考点探究:考点一:直线与曲线交点问题例1.已知双曲线C :2x2-y2=2与点P(1,2)(1)求过P(1,2)点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点.解:(1)当直线l 的斜率不存在时,l 的方程为x=1,与曲线C 有一个交点.当l的斜率存在时,设直线l 的方程为y -2=k(x -1),代入C 的方程,并整理得 (2-k2)x2+2(k2-2k)x -k2+4k -6=0 (*) (ⅰ)当2-k2=0,即k=±2时,方程(*)有一个根,l 与C 有一个交点(ⅱ)当2-k2≠0,即k ≠±2时Δ=[2(k2-2k)]2-4(2-k2)(-k2+4k -6)=16(3-2k) ①当Δ=0,即3-2k=0,k=23时,方程(*)有一个实根,l 与C 有一个交点.②当Δ>0,即k <23,又k ≠±2,故当k <-2或-2<k <2或2<k <23时,方程(*)有两不等实根,l 与C 有两个交点. ③当Δ<0,即k >23时,方程(*)无解,l与C 无交点.综上知:当k=±2,或k=23,或k 不存在时,l 与C 只有一个交点; 当2<k <23,或-2<k <2,或k <-2时,l 与C 有两个交点;当k >23时,l与C 没有交点.(2)假设以Q 为中点的弦存在,设为AB ,且A(x1,y1),B(x2,y2),则2x12-y12=2,2x22-y22=2两式相减得:2(x1-x2)(x1+x2)=(y1-y2)(y1+y2) 又∵x1+x2=2,y1+y2=2 ∴2(x1-x2)=y1-y1 即kAB=2121x x y y --=2但渐近线斜率为±2,结合图形知直线AB 与C 无交点,所以假设不正确,即以Q 为中点的弦不存在.(2)若Q(1,1),试判断以Q 为中点的弦是否存在. 考点二:圆锥曲线中的最值问题对于圆锥曲线问题上一些动点,在变化过程中会引入一些相互联系、相互制约的变量,从而使变量与其中的参变量之间构成函数关系,此时,用函数思想与函数方法处理起来十分方便。

历年高考圆锥曲线真题

历年高考圆锥曲线真题

2014l 辽宁理20. (本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图),双曲线22122:1x y C a b-=过点P 且离心率为3. (1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.(5)已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为( )(A )221520x y -= (B )221205x y -= (C )2233125100x y -= (D )2233110025x y -= 2014天津理(18)(本小题满分13分) 设椭圆22221x y a b+=(0a b >>)的左、右焦点为12,F F ,右顶点为A ,上顶点为B .已知1232AB F F =. (Ⅰ)求椭圆的离心率;(Ⅱ)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点1F ,经过原点的直线l 与该圆相切. 求直线的斜率.2014广东卷20.已知椭圆2222:1(0)x y C a b a b +=>>的一个焦点为(5,0),离心率为53, (1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.2014陕西理(本小题满分13分)如图,曲线C 由上半椭圆22122:1(0,0)y x C a b y a b+=>>≥和部分抛物线22:1(0)C y x y =-+≤连接而成,12,C C 的公共点为,A B ,其中1C 的离心率为32. (1)求,a b 的值;(2)过点B 的直线l 与12,C C 分别交于,P Q (均异于点,A B ),若AP AQ ⊥,求直线l的方程.2013辽宁理20.(本小题满分12分)如图,抛物线()()2212002:4,:20.,C x y C x py p M x y C ==->点在抛物线上, 1M C 过作()0,,.12A B M O A B O x =-的切线,切点为为原点时,重合于当时,1-.2MA 切线的斜率为 (I )P 求的值;(II )2M C AB N 当在上运动时,求线段中点的轨迹方程 (),,.A B O O 重合于时中点为2012辽宁理(20)(本小题满分12分)如图,椭圆0C :22221(0x y a b a b+=>>,a ,b 为常数),动圆22211:C x y t +=,1b t a <<。

全国一卷圆锥曲线高考题汇编含答案

全国一卷圆锥曲线高考题汇编含答案

圆锥曲线部分高考试题汇编(椭圆部分)1、(2016全国Ⅰ卷)(20)(本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l过点B(1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B作AC 的平行线交AD于点E.(I)证明EA EB +为定值,并写出点E 的轨迹方程;(II)设点E 的轨迹为曲线C 1,直线l 交C1于M ,N 两点,过B且与l垂直的直线与圆A 交于P ,Q两点,求四边形M PN Q面积的取值范围.2、(2015全国Ⅰ卷)(14)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴上,则该圆的标准方程为 。

3、(2014全国Ⅰ卷)20.(本小题满分12分)已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆的焦点,直线AF 的斜率为3,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.4、(2016山东卷)(21)(本小题满分14分)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b+=>> 3,抛物线E:22x y =的焦点F是C 的一个顶点. (I )求椭圆C 的方程;(II )设P是E 上的动点,且位于第一象限,E 在点P处的切线l 与C 交与不同的两点A,B,线段AB 的中点为D,直线O D与过P且垂直于x 轴的直线交于点M. (i)求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG 的面积为1S ,PDM 的面积为2S ,求12S S 的最大值及取得最大值时点P的坐标.5、(2015山东卷)(20) (本小题满分13分)平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b +=>>的离心率为32,左、右焦点分别是12,F F ,以1F 为圆心,以3为半径的圆与以2F为圆心,以1为半径的圆相交,交点在椭圆C上. (Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆2222:144x yEa b+=,P为椭圆C上的任意一点,过点P的直线y kx m=+交椭圆E于A,B两点,射线PO交椭圆E于点Q.(ⅰ)求||||OQOP的值;(ⅱ)求ABQ∆面积最大值.圆锥曲线部分高考试题汇编(双曲线部分)1、(2016全国Ⅰ卷)(5)已知方程错误!–错误!=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是( )(A)(–1,3) (B)(–1,错误!) (C)(0,3)(D)(0,错误!)2、(2015全国Ⅰ卷)(5)已知M(x 0,y 0)是双曲线C :2212x y -=上的一点,F1、F 2是C 上的两个焦点,若1MF •2MF <0,则y 0的取值范围是()3 (B )((C)(3-,3) (D)()3、(2014全国Ⅰ卷)4. 已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( )A .B .3CD .3m4、(2016山东卷)(13)已知双曲线E1:22221x y a b-=(a>0,b >0),若矩形ABCD 的四个顶点在E上,AB ,CD的中点为E 的两个焦点,且2|AB |=3|B C|,则E 的离心率是_______ .5、(2015山东卷)(15)平面直角坐标系xOy 中,双曲线22122:1(0,0)x y C a b a b-=>>的渐近线与抛物线22:2(0)C x py p =>交于点,,O A B ,若OAB ∆的垂心为2C 的焦点,则1C 的离心率为 .6、(2014山东卷)(10)已知a b >,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 与2C2C 的渐近线方程为( )(A)0x = (0y ±= (C)20x y ±= (D)20x y ±=圆锥曲线部分高考试题汇编(抛物线部分)1、(2016全国Ⅰ卷)(10)以抛物线C 的顶点为圆心的圆交C 于A,B 两点,交C的准线于D ,E 两点.已知|AB |=DE |=C 的焦点到准线的距离为( )(A)2 (B )4 (C )6 (D )82、(2015全国Ⅰ卷)(20)(本小题满分12分)在直角坐标系xoy中,曲线C :y=24x 与直线y kx a =+(a >0)交与M ,N两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠O PN ?说明理由。

圆锥曲线十年高考题(带详细解析)

圆锥曲线十年高考题(带详细解析)

答案解析1将方程a 2x 2+b 2y 2=1与ax +by 2=0转化为标准方程:x b ay b y a x -==+22222,111.因为a >b >0,因此,ab 11>>0,所以有:椭圆的焦点在y 轴,抛物线的开口向左,得D 选项. 4.答案:B 2.答案:D ∵θ∈(0,4π),∴sin θ∈(0,22),∴a 2=tan θ,b 2=c ot θ∴c 2=a 2+b 2=tan θ+c ot θ,∴e 2=θθθθ222sin 1tan cot tan =+=a c ,∴e =θsin 1,∴e ∈(2,+∞) 3.答案:D 由双曲线方程判断出公共焦点在x 轴上∴椭圆焦点(2253n m -,0),双曲线焦点(2232n m +,0)∴3m 2-5n 2=2m 2+3n 2∴m 2=8n 2又∵双曲线渐近线为y =±||2||6m n ⋅²x∴代入m 2=8n 2,|m |=22|n |,得y =±43x 4答案:C 由F 1、F 2的坐标得2c =3-1,c =1,又∵椭圆过原点a -c =1,a =1+c =2,又∵e =21=a c ,∴选C. 5.答案:D 由题意知a =2,b =1,c =3,准线方程为x =±ca 2,∴椭圆中心到准线距离为6.答案:C 渐近线方程为y =±b a x ,由b a ²(-ba )=-1,得a 2=b 2,∴c =2a ,14.答案:B y =-x 2的标准式为x 2=-y ,∴p =21,焦点坐标F (0,-41). 7.答案:A 不妨设F 1(-3,0),F 2(3,0)由条件得P (3,±23),即|PF 2|=23,|PF 1|=2147,因此|PF 1|=7|PF 2|,故选A.8.答案:A 将已知椭圆中的x 换成-y ,y 换成-x 便得椭圆C 的方程为9)3(4)2(22+++y x=1,所以选A.9.答案:A 由已知有⇒⎪⎪⎩⎪⎪⎨⎧==2142a c c a a =2,c =1,b 2=3,于是椭圆方程为3422y x +=1, 10.答案:C 如图8—14,原点O 逆时针方向旋转90°到O ′,则O ′(-4,4)为旋转后椭圆的中心,故旋转后所得椭圆方程为25)4(9)4(22-++y x =1.所以选C. 11.答案:B 把已知方程化为25)1(9)3(22++-y x =1,∴a =5,b =3,c =4 ∵椭圆的中心是(3,-1),∴焦点坐标是(3,3)和(3,-5).12.答案:A 由已知,直线l 的方程为ay +bx -ab =0,原点到直线l 的距离为43c ,则有c b a ab 4322=+,又c 2=a 2+b 2,∴4ab =3c 2,两边平方,得16a 2(c 2-a 2)=3c 4,两边同除以a 4,并整理,得3e 4-16e 2+16=0∴e 2=4或e 2=34.而0<a <b ,得e 2=222221ab a b a +=+>2,∴e 2=4.故e =2.13.答案:D ,得2)cos 2(2θ-x +(y +sin θ)2=1.∴椭圆中心的坐标是(2cos θ,-sinθ).其轨迹方程是⎩⎨⎧-==θθsin cos 2y x θ∈[0,2π].即22x +y 2=1(0≤x ≤2,-1≤y ≤0).30.答案:C 将双曲线方程化为标准形式为x 2-32y=1,其焦点在x 轴上,且a =1,b =3,故其渐近线方程为y =±abx =±3x ,所以应选C.14.答案:D 原方程可变为ky x 2222+=1,因为是焦点在y 轴的椭圆,所以⎪⎩⎪⎨⎧>>220k k ,解此不等式组得0<k <1,因而选D.15.答案:A 解法一:由双曲线方程知|F 1F 2|=25,且双曲线是对称图形,假设P (x ,142-x ),由已知F 1P ⊥F 2 P ,有151451422-=+-⋅--x x x x ,即1145221,52422=-⋅⋅==x S x ,因此选A.16.答案:23因为F 1、F 2为椭圆的焦点,点P 在椭圆上,且正△POF 2的面积为3,所以S =21|OF 2|²|PO |sin60°=43c 2,所以c 2=4.∴点P 的横、纵坐标分别为23,2c c ,即P (1,3)在椭圆上,所以有2231b a +=1,又b 2+c 2=a 2,⎩⎨⎧+==+22222243ba b a a b17.答案:(3,2)解法一:设直线y =x -1与抛物线y 2=4x 交于A (x 1,y 1),B (x 2,y 2),其中点为P (x 0,y 0).由题意得⎩⎨⎧=-=xy x y 412,(x -1)2=4x ,x 2-6x +1=0.∴x 0=221x x +=3.y 0=x 0-1=2.∴P (3,2). 18.答案:1625)2(22y x +- =1由两焦点坐标得出椭圆中心为点(2,0),焦半径c =3 ∵长轴长为10,∴2a =10,∴a =5,∴b =22c a -=4∴椭圆方程为1625)2(22y x +-=1 19答案:(±7,0)由双曲线方程得出其渐近线方程为y =±2m x ∴m =3,求得双曲线方程为3422y x -=1,从而得到焦点坐标. 20.答案:(2,1)抛物线(y -1)2=4(x -1)的图象为抛物线y 2=4x 的图象沿坐标轴分别向右、向上平移1个单位得来的.∵抛物线y 2=4x 的焦点为(1,0)∴抛物线(y -1)2=4(x -1)的焦点为(2,1)21.答案:-1椭圆方程化为x 2+ky 52-=1∵焦点(0,2)在y 轴上,∴a 2=k -5,b 2=1又∵c 2=a 2-b 2=4,∴k =-122答案:x 2-4y 2=1设P (x 0,y 0) ∴M (x ,y )∴2,200y y x x == ∴2x =x 0,2y =y 0∴442x -4y 2=1⇒x 2-4y 2=1 23.答案:516设|PF 1|=M ,|PF 2|=n (m >n )a =3 b =4 c =5∴m -n =6 m 2+n 2=4c 2 m 2+n 2-(m -n )2=m 2+n 2-(m 2+n 2-2mn )=2mn =4³25-36=64 mn =32.又利用等面积法可得:2c ²y =mn ,∴y =516 24.答案:16922y x -=1由已知a =3,c =5,∴b 2=c 2-a 2=16又顶点在x 轴,所以标准方程为16922y x -=1. 25.解:(1)椭圆C 的焦点在x 轴上,由椭圆上的点A 到F 1、F 2两点的距离之和是4,得2a =4,即a =2.又点A (1,23)在椭圆上,因此222)23(21b +=1得b 2=3,于是c 2=1.所以椭圆C 的方程为3422y x +=1,焦点F 1(-1,0),F 2(1,0). (2)设椭圆C 上的动点为K (x 1,y 1),线段F 1K 的中点Q (x ,y )满足:2,2111yy x x =+-=, 即x 1=2x +1,y 1=2y . 因此3)2(4)12(22y x ++=1.即134)21(22=++y x 为所求的轨迹方程.(3)类似的性质为:若M 、N 是双曲线:2222by a x -=1上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PM 、PN 的斜率都存在,并记为k PM 、k PN 时,那么k PM 与k PN之积是与点P 位置无关的定值.设点M 的坐标为(m ,n ),则点N 的坐标为(-m ,-n ),其中2222bn a m -=1.又设点P 的坐标为(x ,y ),由mx ny k m x n y k PN PM++=--=,, 得k PM ²k PN =2222m x n y m x n y m x n y --=++⋅--,将22222222,ab n b x a b y =-=m 2-b 2代入得k PM ²k PN =22ab .26解:(1)设F 2(c ,0)(c >0),P (c ,y 0),则2222by a c -=1.解得y 0=±a b 2∴|PF 2|=a b 2在直角三角形PF 2F 1中,∠PF 1F 2=30°解法一:|F 1F 2|=3|PF 2|,即2c =ab 23将c 2=a 2+b 2代入,解得b 2=2a 2 解法二:|PF 1|=2|PF 2|由双曲线定义可知|PF 1|-|PF 2|=2a ,得|PF 2|=2a .∵|PF 2|=a b 2,∴2a =ab 2,即b 2=2a 2,∴2=a b故所求双曲线的渐近线方程为y =±2x .27.(Ⅰ)解:由椭圆定义及条件知2a =|F 1B |+|F 2B |=10,得a =5,又c =4所以b =22c a -=3.故椭圆方程为92522y x +=1. (Ⅱ)由点B (4,y B )在椭圆上,得|F 2B |=|y B |=59.(如图8—18) 因为椭圆右准线方程为x =425,离心率为54根据椭圆定义,有|F 2A |=54(425-x 1),|F 2C |=54(425-x 2)由|F 2A |,|F 2B |,|F 2C |成等差数列,得54(425-x 1)+54(425-x 2)=2³59由此得出x 1+x 2=8.设弦AC 的中点为P (x 0,y 0) 则x 0=28221=+x x =4. (Ⅲ)由A (x 1,y 1),C (x 2,y 2)在椭圆上,得⎪⎩⎪⎨⎧⨯=+⨯=+25925925925922222121y x y x 图8—18④⑤由④-⑤得9(x 12-x 22)+25(y 12-y 22)=0. 即)))(2(25)2(921212121x x y y y y x x --+++=0(x 1≠x 2) 将kx x y y y y y x x x 1,2,422121021021-=--=+==+(k ≠0)代入上式,得 9³4+25y 0(-k1)=0(k ≠0). 由上式得k =3625y 0(当k =0时也成立). 由点P (4,y 0)在弦AC 的垂直平分线上,得y 0=4k +m . 所以m =y 0-4k =y 0-925y 0=-916y 0. 由P (4,y 0)在线段BB ′(B ′与B 关于x 轴对称,如图8—18)的内部,得-59<y 0<59. 所以-516<m <516. 28.解法一:由已知|PF 1|+|PF 2|=6,|F 1F 2|=25,根据直角的不同位置,分两种情况:若∠PF 2F 1为直角,则|PF 1|2=|PF 2|2+|F 1F 2|2即|PF 1|2=(6-|PF 1|)2+20, 得|PF 1|=314,|PF 2|=34,故27||||21=PF PF ;若∠F 1PF 2为直角,则|F 1F 2|2=|PF 1|2+|PF 2|2,即20=|PF 1|2+(6-|PF 1|)2,得|PF 1|=4,|PF 2|=2,故||||21PF PF =2.29.证法一:依题设得椭圆的半焦距c =1,右焦点为F (1,0),右准线方程为x =2,点E 的坐标为(2,0),EF 的中点为N (23,0). 若AB 垂直于x 轴,则A (1,y 1),B (1,-y 1),C (2,-y 1),∴AC 中点为N (23,0),即AC 过EF 中点N .若AB 不垂直于x 轴,由直线AB 过点F ,且由BC ∥x 轴知点B 不在x 轴上,故直线AB 的方程为y =k (x -1),k ≠0.记A (x 1,y 1)和B (x 2,y 2),则(2,y 2)且x 1,x 2满足二次方程22x +k 2(x -1)2=1,即(1+2k 2)x 2-4k 2x +2(k 2-1)=0∴2221222121)1(2,214kk x x k k x x +-=+=+. 又x 12=2-2y 12<2,得x 1-23≠0,故直线AN 、CN 的斜率分别为 )1(2232,32)1(22322211111-=-=--=-=x k yk x x k x y k .∴k 1-k 2=2k ²32)32)(1()1(1121-----x x x x∵(x 1-1)-(x 2-1)(2x 1-3)=3(x 1+x 2)-2x 1x 2-4 =2211k+[12k 2-4(k 2-1)-4(1+2k 2)]=0, ∴k 1-k 2=0,即k 1=k 2.故A 、C 、N 三点共线.所以,直线AC 经过线段EF 的中点N .30.解:设椭圆C 的方程为12222=+b y a x ,由题意a =3,c =22,于是b =1.∴椭圆C 的方程为92x +y 2=1.由⎪⎩⎪⎨⎧=++=19222y x x y 得10x 2+36x +27=0, 因为该二次方程的判别式Δ>0,所以直线与椭圆有两个不同的交点, 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=518-, 故线段AB 的中点坐标为(51,59-).图8—22。

(完整版)历年圆锥曲线高考题(带答案)

(完整版)历年圆锥曲线高考题(带答案)

历年高考圆锥曲线2000年:(10)过原点的直线与圆相切,若切点在第三象限,则该直03422=+++x y x 线的方程是( )(A ) (B ) (C )(D )x y 3=x y 3-=x 33x 33-(11)过抛物线的焦点F 作一条直线交抛物线于P 、Q 两点,若线()02>=a ax y段PF 与FQ 的长分别是、,则等于( )p q qp 11+(A )(B )(C ) (D )a 2a21a 4a4(14)椭圆的焦点为、,点P 为其上的动点,当为钝角14922=+y x 1F 2F 21PF F ∠ 时,点P 横坐标的取值范围是________。

(22)(本小题满分14分)如图,已知梯形ABCD 中,点E 分有向线段所成的比为,CD AB 2=AC λ双曲线过C 、D 、E 三点,且以A 、B 为焦点。

当时,求双曲线离心率4332≤≤λ的取值范围。

e 2004年3.过点(-1,3)且垂直于直线的直线方程为( )032=+-y x A .B .C .D .12=-+y x 052=-+y x 052=-+y x 072=+-y x 8.已知圆C 的半径为2,圆心在轴的正半轴上,直线与圆C 相切,则圆x 0443=++y x C 的方程为( )A .B .03222=--+x y x 0422=++x y x C .D .3222=-++x y x 0422=-+x y x 8.(理工类)已知椭圆的中心在原点,离心率,且它的一个焦点与抛物线21=e 的焦点重合,x y 42-= 则此椭圆方程为( )A .B .13422=+y x 16822=+y x C .D .1222=+y x 1422=+y x 22.(本小题满分14分)双曲线的焦距为2c ,直线过点(a ,0)和(0,b ),且点)0,1(12222>>=-b a by a x l (1,0)到直线的距离与点(-1,0)到直线的距离之和求双曲线的离心率e l l .54c s ≥的取值范围.2005年:9.已知双曲线的焦点为,点在双曲线上且则点1222=-y x 12,F F M 120,MF MF ⋅= 到M 轴的距离为(x )A .B .CD435310.设椭圆的两个焦点分别为过作椭圆长轴的垂线交椭圆于点P ,若△为12,,F F 2F 12F PF等腰直角三角形,则椭圆的离心率是()A B C .D 2121、(理工类)(本小题满分12分)设,两点在抛物线上,是的垂直平分线。

历年高考数学《圆锥曲线》真题集锦

历年高考数学《圆锥曲线》真题集锦

以下题目全是经典的高考题目,希望对您有帮助!!圆锥曲线1.如图,设抛物线方程为x 2=2py (p >0),M 为直线p y 2-=上任意一点,过M 引抛物线的切线,切点分别为A ,B .(1)求证:A ,M ,B 三点的横坐标成等差数列; (2)已知当M 点的坐标为(2,p 2-)时,AB = (3)是否存在点M ,使得点C 关于直线AB 的对称点D 在抛物线22(0)x py p =>上,其中,点C 满足OC OA OB =+(O 为坐标原点).若存在,求出所有适合题意的点M 的坐标;若不存在,请说明理由. 解:(1)证明:由题意设221212120(,),(,),,(,2).22x x A x B x x x M x p p p-<由22x py =得22x y p =,则,x y p'= 所以12,.MA MB x x k k p p ==因此直线MA :102(),x y p x x p +=- 直线MB :202().xy p x x p+=-所以211102(),2x x p x x p p +=- ① 222202().2x x p x x p p+=- ② 由①、②得: 0122.x x x =+所以A 、M 、B 三点的横坐标成等差数列. (2)解:由(1)知,当x 0=2时, 将其代入①、②并整理得:2211440,x x p --= 2222440,x x p --=所以x 1、x 2是方程22440x x p --=的两根,因此212124,4,x x x x p +==-又22210122122,2ABx x x x x p p k x x p p-+===-所以2.AB k p =由弦长公式AB==又AB=p=1或p=2,因此所求抛物线方程为22x y=或24.x y=(3)解:设D(x3,y3),由题意得C(x1+ x2, y1+ y2),则CD的中点坐标为123123(,),22x x x y y yQ++++设直线AB的方程为011(),xy y x xp-=-由点Q在直线AB上,并注意到点1212(,)22x x y y++也在直线AB上,代入得033.xy xp=若D(x3,y3)在抛物线上,则2330322,x py x x==因此x3=0或x3=2x0. 即D(0,0)或22(2,).xD xp(1’ 当x0=0时,则12020x x x+==,此时,点M(0,-2p)适合题意.(2’ 当x≠,对于D(0,0),此时221222221212002(2,),,224CDx xx x x xpC x kp x px+++==又0,ABxkp=AB⊥CD,所以22220121221,44AB CDx x x x xk kp px p++===-即222124,x x p+=-矛盾.对于22(2,),xD xp因为2212(2,),2x xC xp+此时直线CD平行于y轴,又00,ABxkp=≠所以直线AB与直线CD不垂直,与题设矛盾,所以x≠时,不存在符合题意的M点. 综上所述,仅存在一点M(0,-2p)适合题意.2.已知曲线11(0)xyC a ba b+=>>:所围成的封闭图形的面积为1C的内切圆半径为3.记2C为以曲线1C与坐标轴的交点为顶点的椭圆.(O为坐标原点)(Ⅰ)求椭圆2C 的标准方程;(Ⅱ)设AB 是过椭圆2C 中心的任意弦,l 是线段AB 的垂直平分线.M 是l 上异于椭圆中心的点.(1)若MO OA λ=,当点A 在椭圆2C 上运动时,求点M 的轨迹方程; (2)若M 是l 与椭圆2C 的交点,求AMB △的面积的最小值.解:(Ⅰ)由题意得23ab ⎧=⎪⎨= 又0a b >>,解得25a =,24b =.因此所求椭圆的标准方程为22154x y +=. (Ⅱ)(1)假设AB 所在的直线斜率存在且不为零,设AB 所在直线方程为(0)y kx k =≠,()A A A x y ,.解方程组22154x y y kx ⎧+=⎪⎨⎪=⎩,,得222045A x k =+,2222045A k y k =+, 所以22222222202020(1)454545AAk k OA x y k k k +=+=+=+++.设()M x y ,由(0)MO OA λλ=≠,所以222MO OA λ=,即2222220(1)45k x y kλ++=+, 因为l 是AB 的垂直平分线,所以直线l 的方程为1y x k=-,即x k y =-,因此22222222222220120()4545x y x y x y x y x y λλ⎛⎫+ ⎪+⎝⎭+==++, 又220x y +≠,所以2225420x y λ+=,故22245x y λ+=. 又当0k =或不存在时,上式仍然成立.综上所述,M 轨迹222(0)45x y λλ+=≠. (2)当k 存在且0k ≠时,由(1)得222045Ax k =+,2222045A k y k =+,由221541x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,解得2222054M k x k =+,222054M y k =+, 所以2222220(1)45AAk OA x y k +=+=+,222280(1)445k AB OA k +==+,22220(1)54k OM k+=+. 解法一:由于22214AMBSAB OM =△2222180(1)20(1)44554k k k k ++=⨯⨯++ 2222400(1)(45)(54)k k k +=++22222400(1)45542k k k +⎛⎫+++ ⎪⎝⎭≥222221600(1)4081(1)9k k +⎛⎫== ⎪+⎝⎭, 当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时最小409AMB S =△.当0k =,140229AMB S =⨯=>△. 当k不存在时,140429AMB S ==>△.综上,AMB △的面积的最小值为409.解法二:因为222222111120(1)20(1)4554k k OAOMk k +=+++++2224554920(1)20k k k +++==+,又22112OA OMOAOM+≥,409OA OM ≥,当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时AMB △面积的最小值是409AMB S =△.下同解法一. 3.已知m ∈R ,直线l :2(1)4mx m y m -+=和圆C :2284160x y x y +-++=.(1)求直线l 斜率的取值范围;(2)直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?为什么?解: (1)直线l 的方程可化为22411m m y x m m =-++,此时斜率21mk m =+ 因为()2112m m ≤+,所以2112m k m =≤+,当且仅当1m =时等号成立 所以,斜率k 的取值范围是11,22⎡⎤-⎢⎥⎣⎦;(2)不能.由(1)知l 的方程为()4y k x =-,其中12k ≤; 圆C的圆心为()4,2C -,半径2r =;圆心C到直线l的距离d =由12k ≤,得1d ≥>,即2rd >,从而,若l 与圆C相交,则圆C截直线l 所得 的弦所对的圆心角小于23π,所以l 不能将圆C分割成弧长的比值为12的两段弧; 4.双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.解:(Ⅰ)设OA m d =-,AB m =,OB m d =+则由题有:222()()m d m m d -+=+ 得:14d m =,tan b AOF a ∠=,4tan tan 23AB AOB AOF OA ∠=∠== 由倍角公式∴22431ba b a =⎛⎫- ⎪⎝⎭,解得12b a =,则离心率e = (Ⅱ)过F 直线方程为()ay x c b=--,与双曲线方程22221x y a b -=联立将2a b =,c =代入,化简有22152104x x b b-+=124x =-=将数值代入,有4=解得3b = 故所求的双曲线方程为221369x y -=。

圆锥曲线历年高考题集锦及答案

圆锥曲线历年高考题集锦及答案

历届高考中的“椭圆”试题精选、选择题:(2002春招北京文、理)已知椭圆的焦点是 F 1、F 2、P 是椭圆上的一个动点. 使得|PQ|=|PF 2|,那么动点Q 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线的一支(D )抛物线(2004福建文、理)已知F 1、F 2是椭圆的两个焦点, 过R 且与椭圆长轴垂直的直线交椭圆于二、填空题:则该椭圆的离心率 e ___________________ .10. (2006上海理)已知椭圆中心在原点,一个焦点为 倍,则该椭圆的标准方程是 ___________________________11. (2007江苏)在平面直角坐标系 xOy 中,已知 ABC 顶点A( 4,0)和C(4,0),顶点B 在椭2 2圆』L 1上,则弘A sinC ________________________25 9 sin B12.(2001春招北京、内蒙、安徽文、理) 椭圆x 2 4y 2 4长轴上一个顶点为 A 以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是_______________ .-历届高考中的“双曲线”试题精选1.(2007 (A )安徽文)椭圆X 22(B ) 342. (2008 上海文 ) A . 4(2005广东) 4y 2)设p 是椭圆B . 52x25 1的离心率为(2(C )2y 16C. 8若焦点在x 轴上的椭圆B.(2006全国n 卷文、理)点,且椭圆的另外一个焦点在(B) 6 2(D )-31上的点. x 2D. 2yC.已知△ ABC 勺顶点B BC 边上,则△(C 4 3 (A ) 2 3 (2003北京文)如图,直线l : x 2y 2 F 1和一个顶点B,该椭圆的离心率为(1 25 2, 5 A. B . - C .D .-5 555若F" F 2是椭圆的两个焦点, 1011的离心率为一,则m=(2D.-3X 22C 在椭圆_ + y = 1上,顶点 ABC 勺周长是()D ) 120过椭圆的左焦点)则PF 』| PF ?等 A 是椭圆的一个焦如果延长F i P 到Q,A 、B 两点,若△ ABF 是正三角形,^2爲(A ) (B ) -338. (2007重庆文)已知以F 1 个交点,则椭圆的长轴长为( 则这个椭圆的离心率是( ) 2 (22 2),F 2 (2,0 )为焦点的椭圆与直线 x < 3y 4 0有且仅有 ) (C ) (-2,0 26(C ) 2、、79.(2008 全国I 卷文)在厶 ABC 中,A 90o , ta nB•若以A , B 为焦点的椭圆经过点 C ,F (- 2 3 , 0),且长轴长是短轴长的 2、选择题:(2005全国卷n文, 2004春招北京文、理)2.2x3(2006全国I卷文、A 1B .4(A) y理)4(B) y -x9双曲线mx2(2000春招北京、安徽文、理)双曲线双曲线的离心率是((C)4x24. ( (2007全国I文、理) )2 2(A)x_ 14 125. (2008辽宁文)6. ( 2005全国卷2双曲线—43y 2x(D)1的渐近线方程是()1的虚轴长是实轴长的2y~2a2已知双曲线的离心率为2,2(B)—12已知双曲线9y2)B.IIIuuuur UUULTMF 1 MF 2 0,则点C.文、理)已知双曲线M到x轴的距离为(B. 532 27 . (2008福建文、理)双曲线务占a b9x42倍,则m ()1的两条渐近线互相垂直,那么该焦点是(-4 ,2 2(0 2x_ y_ 110 60) , (4, 0),则双曲线方程为2 2(0冬上16 101(m 0)的一个顶点到它的一条渐近线的距离为D. 42—1的焦点为F1、F2,点M在双曲线上且2)C.兰31 (a>0, b> 0)点,且| PR | 2 | PF2 |,则双曲线离心率的取值范围为(A. (1,3)B. (1,3] c. (3,)2 2x r8.(2007安徽理)如图,F1和F2分别是双曲线—2a b 的两个焦点为F I,F2,若P为其上的一)D. [3,1(a 0,b 0)的两个焦点,A和B是以O为圆心,以OF」为半径的圆与该双曲线左支的两个交点,且厶F2AB是等边三角形,(A) .3 (B) ,5 则双曲线的离心率为(二(D)1 32(C)二、填空题:9. ( 2008安徽文)10. (2006上海文)2 _—一1的离心率是3。

(完整版)圆锥曲线高考真题

(完整版)圆锥曲线高考真题

(完整版)圆锥曲线⾼考真题(1)求M 的⽅程(2)C ,D 为M 上的两点,若四边形ACBD 的对⾓线CD ⊥AB ,求四边形ACBD 的⾯积最⼤值.2.设1F ,2F 分别是椭圆()222210y x a b a b+=>>的左右焦点,M 是C 上⼀点且2MF 与x 轴垂直,直线1MF 与C 的另⼀个交点为N.(1)若直线MN 的斜率为34,求C 的离⼼率;(2)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b .3.已知椭圆C :,直线不过原点O 且不平⾏于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1) 证明:直线OM 的斜率与的斜率的乘积为定值;(2)若过点(),延长线段OM 与C 交于点P ,四边形OAPB 能否平⾏四边⾏?若能,求此时的斜率,若不能,说明理由.4.已知抛物线C :22y x = 的焦点为F ,平⾏于x 轴的两条直线12,l l 分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(2)若△PQF 的⾯积是△ABF 的⾯积的两倍,求AB 中点的轨迹⽅程.5.已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的⽅程.6.已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上⼀点,且FP FA FB ++=0u u u r u u u r u u u r .证明:FA u u u r,FP u u u r ,FB u u u r 成等差数列,并求该数列的公差.7.已知椭圆2222:1(0)x y C a b a b +=>>的离⼼率为,且经过点(0,1),圆22221:C x y a b +=+。

高考经典圆锥曲线习题(含答案)

高考经典圆锥曲线习题(含答案)

高考圆锥曲线试题精选一、选择题:(每小题5分,计50分)1、(2008海南、宁夏文)双曲线22110x y -=的焦距为( )2.(2004全国卷Ⅰ文、理)椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的 直线与椭圆相交,一个交点为P ,则||2PF = ( )A .23 B .3 C .27D .4 3.(2006辽宁文)方程22520x x -+=的两个根可分别作为( )A.一椭圆和一双曲线的离心率B.两抛物线的离心率 C.一椭圆和一抛物线的离心率D.两椭圆的离心率4.(2006四川文、理)直线y=x-3与抛物线x y 42=交于A 、B 两点,过A 、B 两点向 抛物线的准线作垂线,垂足分别为P 、Q ,则梯形APQB 的面积为( ) (A )48. (B )56 (C )64 (D )72.5.(2007福建理)以双曲线116922=-y x 的右焦点为圆心,且与其渐近线相切的圆的方程是( )A .B.C .D.6.(2004全国卷Ⅳ理)已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线 x y 42-=的焦点重合,则此椭圆方程为( )A .13422=+y xB .16822=+y xC .1222=+y x D .1422=+y x 7.(2005湖北文、理)双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A .163B .83C .316D .388. (2008重庆文)若双曲线2221613x y p-=的左焦点在抛物线y 2=2px 的准线上,则p 的值为 ( )(A)2(B)3(C)4(D)429.(2002北京文)已知椭圆1532222=+n y m x 和双曲线1322222=-n y m x 有公共的焦点,那么 双曲线的渐近线方程是( ) A .y x 215±= B .x y 215±= C .y x 43±= D .x y 43±= 二、填空题:(每小题5分,计20分)11. (2005上海文)若椭圆长轴长与短轴长之比为2,它的一个焦点是()0,152,则椭圆的标准方程是_________________________12.(2008江西文)已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线方程为y x =, 若顶点到渐近线的距离为1,则双曲线方程为 .13.(2007上海文)以双曲线15422=-y x 的中心为顶点,且以该双曲线的右焦点为焦点的 抛物线方程是 .三、解答题:(15—18题各13分,19、20题各14分)15.(2006北京文)椭圆C:22221(0)x y a b a b +=>>的两个焦点为F 1,F 2,点P 在椭圆C 上,且11212414,||,||.33PF F F PF PF ⊥== (Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l 过圆x 2+y 2+4x-2y=0的圆心M , 交椭圆C 于,A B 两点, 且A 、B 关于点M 对称,求直线l 的方程..16.(2005重庆文)已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.17.(2007安徽文)设F 是抛物线G :x 2=4y 的焦点.(Ⅰ)过点P (0,-4)作抛物线G 的切线,求切线方程:(Ⅱ)设A 、B 为抛物线G 上异于原点的两点,且满足0·=FB FA ,延长AF 、BF 分别交抛物线G 于点C ,D ,求四边形ABCD 面积的最小值.18.(2008辽宁文) 在平面直角坐标系xOy 中,点P 到两点(0-,,(0的距离之和等于4,设点P 的轨迹为C . (Ⅰ)写出C 的方程;(Ⅱ)设直线1y kx =+与C 交于A ,B 两点.k 为何值时OA ⊥OB ?此时AB 的值是多少?19. (2002广东、河南、江苏)A 、B 是双曲线x 2-y22=1上的两点,点N(1,2)是线段AB 的中点(1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆?为什么?20.(2007福建理)如图,已知点F (1,0),直线l :x =-1,P 为平面上的动点,过P 作直线l 的垂线,垂足为点Q ,且=。

圆锥曲线高考题全国卷真题汇总

圆锥曲线高考题全国卷真题汇总

2 0 1 8 ( 新 课 标 全 国 卷 2 理 科 )5.双曲线 x 2 y 2= 1 (a > 0, b > 0) 的离心率为 3 ,则其渐近线方程为a 2b 22 3A . y = 士 2xB . y = 士 3xC . y = 士 xD . y = 士 x2 212.已知 F 1, F 2 是椭圆 C :a x 22 +b y 22=1 (a > b > 0) 的左,右焦点, A 是 C 的左顶点,点 P 在过 A 且斜率为 63的直线上, △PF 1F 2 为等腰三角形, 三 1F F 2 P = 120O ,则 C 的离心率为2A .3 1 B .21 C .31 D .419.(12 分)设抛物线 C : y 2 = 4x 的焦点为 F ,过 F 且斜率为 k(k > 0) 的直线 l 与 C 交于 A , B 两点, | AB| = 8. (1)求 l 的方程;(2)求过点 A , B 且与 C 的准线相切的圆的方程.2018 (新课标全国卷 2 文科)6.双曲线x 2 y 2= 1 (a > 0, b > 0) 的离心率为 3 ,则其渐近线方程为 a 2 b 2A . y = 士 2xB . y = 士 3x2C . y = 士 x23D . y = 士 x211.已知 F , F 是椭圆 C 的两个焦点, P 是 C 上的一点,若 PF 」PF , 且 三PF F = 60O , 则 C 的离心率为3A . 12B . 2 3C . 3 12D . 3 120. ( 12 分) 设抛物线 C : y 2 = 4x 的焦点为 F , 过 F 且斜率为 k(k > 0) 的直线 l 与 C 交于 A , B 两点,| AB | = 8.(1)求 l 的方程;(2)求过点 A , B 且与 C 的准线相切的圆的方程.2018 (新课标全国卷 1 理科)28.设抛物线 C : y 2=4x 的焦点为 F ,过点( –2, 0)且斜率为 的直线与 C 交于 M , N 两点,则FM . FN =3A . 5B . 6C . 7D . 823为 M 、N.若△OMN 为直角三角形,则|MN|=3A .B . 3C . 2 3D . 4219. (12 分) 设椭圆 C : x 2+ y 2 = 1 的右焦点为 F ,过 F 的直线 l 与 C 交于 A, B 两点,点 M 的坐标为 (2,0) .2x 11.已知双曲线 C : y 2 = 1, O 为坐标原点, F 为 C 的右焦点,过 F 的直线与 C 的两条渐近线的交点分别 1 2 1 2 2 1(1)当 l 与 x 轴垂直时,求直线 AM 的方程;(2)设 O 为坐标原点,证明: 三OMA = 三OMB .2018 (新课标全国卷 1 文科)4.已知椭圆 C : x 2 + y 2= 1的一个焦点为(2,0) ,则 C 的离心率为a 2 41 A .31 B .2C .2 22 2 D .315.直线 y = x +1 与圆 x 2 + y 2 + 2y - 3 = 0 交于 A , B 两点,则 AB = ________. 20.(12 分)设抛物线 C : y 2 = 2x ,点 A (2, 0), B (-2, 0) ,过点 A 的直线 l 与 C 交于 M , N 两点. (1)当 l 与x 轴垂直时,求直线 BM 的方程;(2)证明: ∠ABM = ∠ABN .2018 (新课标全国卷 3 理科)6.直线 x + y + 2 = 0 分别与 x 轴, y 轴交于 A , B 两点,点 P 在圆 (x - 2)2 + y 2 = 2 上,则 △ABP 面积的取值范围是A . [2, 6]B . [4, 8]C . 2,3 2D . 2 2,3 2 11. 设 1F , F 2 是双曲线 C : a x 22 - b y 22= 1 ( a > 0,b > 0 ) 的左 、右焦点, O 是坐标原点. 过 F 2 作 C 的一条渐近线的垂线,垂足为 P .若 PF = 6 OP ,则 C 的离心率为1A . 5B . 2C . 3D . 2 20.(12 分)已知斜率为 k 的直线 l 与椭圆C :x 2+ y 2= 1交于 A , B 两点,线段 AB 的中点为 M (1, m)(m > 0). 4 3(1)证明: k < - 1;2(2) 设 F 为 C 的右焦点, P 为 C 上一点,且 FP+ FA+ FB = 0 .证明: FA , FP , FB 成等差数列,并 求该数列的公差.2018 (新课标全国卷 3 文科)8. 直线 x + y +2 = 0 分别与 x 轴, y 轴交于 A , B 两点, 点 P 在圆 (x - 2)2 + y 2 = 2 上, 则 △ABP 面积的取值范围是A . [2,6]B . [4,8]C . [ 2, 3 2]D . [2 2 ,3 2 ]10.已知双曲线 C : x 2 一 y 2= 1(a > 0,b > 0) 的离心率为 2 ,则点 (4,0) 到C 的渐近线的距离为a 2b 23 2A . 2B . 2C .D . 2 2220.(12 分)已知斜率为 k 的直线 l 与椭圆C : x 2 + y 2= 1 交于 A , B 两点.线段 AB 的中点 为 M (1, m)(m > 0).4 3 1(1)证明: k 想 一 ;2(2)设 F 为C 的右焦点, P 为C 上一点,且 FP + FA + FB = 0.证明: 2 | FP |=| FA |+ | FB |.2017 (新课标全国卷 2 理科)9.若双曲线 C : x 22一 1(a > 0,b > 0) 的一条渐近线被圆 (x 一 2)2 + y 2 = 4所截得的弦长为 2, 则 C 的离心率为( ) .2 3A . 2B . 3C . 2D .316.已知 F 是抛物线 C : y 2 = 8x 的焦点, M 是C 上一点, FM 的延长线交 y 轴于点 N .若 M 为 FN 的中点,则 FN = .20. 设 O 为 坐 标 原 点, 动 点 M 在 椭 圆 C : x 2 + y 2= 1 上, 过 M 做 x 轴 的 垂 线, 垂 足 为 N , 点 P 满 足2NP = 2NM .(1)求点 P 的轨迹方程;(2)设点 Q 在直线 x = 一3 上,且OP . PQ = 1 .证明:过点 P 且垂直于 OQ 的直线 l 过 C 的左焦点 F .2017 (新课标全国卷 2 文科)x 2 2A. ( 2,+w)B. ( 2,2)C. (1, 2)D. (1,2)12.过抛物线 C : y 2 = 4x 的焦点 F ,且斜率为 3 的直线交 C 于点 M ( M 在 x 轴上方), l 为 C 的准线,点N 在 l 上且 MN 」l ,则 M 到直线 NF 的距离为( ) .A. 5B. 2 2C. 2 3D. 3 320.设 O 为坐标原点,动点 M 在椭圆 C :x 2+ y 2 = 1 上,过 M 作 x 轴的垂线,垂足为 N , 25.若 a >1 ,则双曲线 a2 一 y = 1 的离心率的取值范围是( ) .a b点 P 满足 NP = 2NM . (1)求点 P 的轨迹方程;(2)设点 Q 在直线 x = 一3 上,且 OP . PQ = 1 .证明:过点 P 且垂直于 OQ 的直线 l 过 C 的左焦点 F .2017 (新课标全国卷 1 理科)10.已知 F 为抛物线C : y 2 = 4x 的焦点, 过 F 作两条互相垂直的直线l 1, l 2, 直线l 1 与 C 交于 A , B 两点, 直线 l 2 与 C 交于 D , E 两点,则 AB + DE 的最小值为( ) .A . 16B . 14C . 12D . 10 15.已知双曲线 C :x 2 一 y 2= 1(a > 0,b > 0) 的右顶点为 A , 以 A 为圆心, b 为半径做圆 A , 圆 A 与双曲线 C a 2 b 2的一条渐近线交于 M , N 两点.若 三MAN = 60 ,则 C 的离心率为________.20.已知椭圆 C : a x 22 + b y 22=1(a > b > 0), 四点 1P (1,1), 2P (0,1), 3P (||( – 1, 23 ))||, 4P (||(1, 23 ))|| 中恰有三点在椭圆 C 上. (1)求 C 的方程;(2) 设直线 l 不经过 P 2 点且与 C 相交于 A , B 两点.若直线 P 2 A 与直线 P 2 B 的斜率的和为 – 1, 证明: l 过定.2017 (新课标全国卷 1 文科)5.已知 F 是双曲线 C : x 2一 y 2= 1 的右焦点, P 是 C 上一点, 且 PE 与 x 轴垂直, 点 A 的坐标是(1, 3), 则3△APF 的面积为( ) .1 12 3A .B .C .D .3 2 3 2x 2 y 2围是( ) .A 20.设 A ,B 为曲线C : y = x 2上两点, A 与 B 的横坐标之和为 4.4(1)求直线 AB 的斜率;(2)设 M 为曲线 C 上一点, C 在 M 处的切线与直线 AB 平行,且 AM 」BM ,求直线 AB 的方程. . (0,1] [9, +w ) B. (0, 3 [9, +w ) C. (0,1] [4, +w) D. (0, 3 [4, +w )点 12.设 A , B 是椭圆C : + = 1 长轴的两个端点, 若C 上存在点 M 满足三AMB = 120 , 则 m 的取值范3 m2017 (新课标全国卷 3 理科)5.已知双曲线 C : C :x 2 y 2 = 1(a > 0, b > 0) 的一条渐近线方程为 y = 5x ,且与椭圆 a 2 b 2 2x 2 y 2+ = 1 有公共焦点,则 C 的方程为( 12 3) .x 2 y 2A . = 18 10x 2 y 2B . = 14 5x 2 y 2C . = 15 4x 2 y 2D . = 14 310. 已知椭圆 C : a x 22 + b y 22= 1(a > b > 0) 的左 、 右顶点分别为 A 1, A 2, 且以线段 A 1A 2 为直径的圆与直线bx ay + 2ab = 0 相切,则 C 的离心率为( ) .A .6 3 B .3 3 C .2 31 D .320.已知抛物线 C : y 2 = 2x ,过点(2,0) 的直线 l 交 C 与A , B 两点,圆 M 是以线段 AB 为直径的圆. (1)证明:坐标原点 O 在圆 M 上; (2)设圆 M 过点 P(4,2) ,求直线 l 与圆 M 的方程.2017 (新课标全国卷 3 文科)11.已知椭圆 C : a x 22 + b y 22= 1(a > b > 0) 的左 、 右顶点分别为 A 1, A 2, 且以线段 A 1A 2 为直径的圆与直线bx ay + 2ab = 0 相切,则 C 的离心率为( ) .2 313x 2 y 2 3a 2 9 520. 在直角坐标系 xOy 中, 曲线 y = x 2 + mx – 2 与 x 轴交于 A , B 两点, 点 C 的坐标为(0,1) . 当 m 变化 时,解答下列问题:(1)能否出现 AC 」BC 的情况?说明理由;(2)证明过 A , B , C 三点的圆在 y 轴上截得的弦长为定值 .2016 (新课标全国卷 2 理科)(4)圆 x 2 + y 2 2x 8y +13 = 0 的圆心到直线 ax + y 1 = 0 的距离为 1,则 a= ( )3 36 314.双曲线 = 1(a > 0) 的一条渐近线方程为 y = x ,则 a = .D . C .B . A .|DE|= 2 5 ,则 C 的焦点到准线的距离为(C ) 3 (D ) 24x 2 y 2a bsin 三MF 2 F 1 = 3, 则 E 的离心率为( )3220. (本小题满分 12 分)已知椭圆 E: x 2 + y 2= 1 的焦点在 x 轴上, A 是 E 的左顶点, 斜率为 k (k > 0) 的直线交 E 于 A , M 两点, 点t 3N 在 E 上, MA 」NA .(Ⅰ)当 t = 4,| AM |=| AN | 时,求 编AMN 的面积; (Ⅱ)当 2 AM = AN 时,求 k 的取值范围.2016 (新课标全国卷 2 文科)(5) 设 F 为抛物线 C : y 2=4x 的焦点,曲线 y= (k> 0)与 C 交于点 P , PF ⊥x 轴,则 k= ( )x1 3(A) (B) 1 (C) (D) 22 2(6) 圆 x 2+y 2?2x?8y+13=0 的圆心到直线 ax+y?1=0 的距离为 1,则 a= ( )4(A) ?3 3(B) ?4(C)3(D) 2(21)(本小题满分 12 分)已知 A 是椭圆 E : + = 1 的左顶点,斜率为 k (k >0) 的直线交 E 与 A , M 两点,点 N 在 E 上,4 3MA 」NA .(Ⅰ)当 AM = AN 时,求 编AMN 的面积; (Ⅱ)当 AM = AN 时,证明: 3 < k < 2 .2016 (新课标全国卷 1 理科)(5)已知方程–3m yn =1 表示双曲线,且该双曲线两焦点间的距离为 4,则 n 的取值范围是(A) ( – 1,3) (B) ( – 1, 3) (C) (0,3) (D) (0, 3)(10)以抛物线 C 的顶点为圆心的圆交 C 于 A 、B 两点, 交 C 的标准线于 D 、E 两点 . 已知|AB|= 4 2 , (11) 已知 F 1 , F 2 是双曲线 E : 2 _ 2= 1 的左, 右焦点, 点 M 在 E 上, MF 1 与 x 轴垂直,(A ) 2 (B ) (C ) 3 (D ) 2 (A ) _(B ) _x 2 y 2 k 4331(A)2 (B)4 (C)6 (D)820. (本小题满分 12 分)理科设圆x2 + y2 + 2x 15 = 0 的圆心为 A,直线 l 过点 B (1,0) 且与 x 轴不重合, l 交圆 A 于 C, D 两点,过 B 作AC 的平行线交 AD 于点 E.(I)证明EA + EB 为定值,并写出点 E 的轨迹方程;(II)设点 E 的轨迹为曲线 C1 ,直线 l 交 C1 于 M,N 两点,过 B 且与 l 垂直的直线与圆 A 交于 P,Q 两点,求四边形 MPNQ 面积的取值范围 .2016 (新课标全国卷 1 文科)1(5)直线 l 经过椭圆的一个顶点和一个焦点,若椭圆中心到 l 的距离为其短轴长的4,则该椭圆的离心率为1 12 3(A) (B) (C) (D)(15)设直线 y=x+2a 与圆 C: x2+y2-2ay-2=0 相交于 A, B 两点,若,则圆 C 的面积为 . (20)(本小题满分 12 分)在直角坐标系xOy 中,直线l:y=t(t≠0)交 y 轴于点 M,交抛物线 C:y2 = 2px(p > 0) 于点 P, M 关于点 P 的对称点为 N,连结 ON 并延长交 C 于点 H.OH(I)求;ON(II)除 H 以外,直线 MH 与 C 是否有其它公共点?说明理由 .2016 (新课标全国卷 3 理科)(11)已知 O 为坐标原点, F 是椭圆 C:x2a2+y2b2= 1(a > b > 0) 的左焦点, A, B 分别为 C 的左,右顶点 .P 为 C上一点,且PF 」x 轴.过点 A 的直线 l 与线段PF 交于点 M,与 y 轴交于点 E.若直线 BM 经过 OE 的中点,则 C 的离心率为1 (A)31(B)22(C)33(D)4(16)已知直线l:mx + y + 3m 3 = 0 与圆x2 + y2 = 12 交于A, B 两点,过A, B 分别做l 的垂线与x 轴交于C, D 两点,若AB = 2 3 ,则| CD |= __________________.(20)(本小题满分 12 分)已知抛物线C:y2 = 2x 的焦点为F,平行于x 轴的两条直线l1 , l2 分别交C 于A, B 两点,交C 的准线于P, Q 两点.(I)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ;(II)若PQF 的面积是ABF 的面积的两倍,求AB 中点的轨迹方程 .2016 (新课标全国卷 3 文科)3 2 3 4(12)已知 O 为坐标原点, F 是椭圆 C : x 2 + y 2= 1(a > b > 0) 的左焦点, A , B 分别为 C 的左,右顶点 .P 为a 2b 2C 上一点,且 PF 」x 轴.过点 A 的直线 l 与线段 PF 交于点 M , 与 y 轴交于点 E.若直线 BM 经过 OE 的中 点,则 C 的离心率为1 (A)31 (B)22 (C)33 (D)4( 15) 已知直线 l : x 3y + 6 = 0 与圆x 2 + y 2 = 12 交于 A, B 两点, 过 A, B 分别作l 的垂线与x 轴交于C, D 两点,则 | CD |= _____________ .(20)(本小题满分 12 分)已知抛物线 C : y 2 = 2x 的焦点为 F , 平行于 x 轴的两条直线 l 1 , l 2 分别交 C 于 A , B 两点, 交 C 的准线 于 P , Q 两点.(I)若 F 在线段 AB 上, R 是 PQ 的中点,证明 AR FQ ; (II)若PQF 的面积是 ABF 的面积的两倍,求 AB 中点的轨迹方程 .2015 (新课标全国卷 2)(11) 已知 A , B 为双曲线 E 的左,右顶点,点 M 在 E 上, ?ABM 为等腰三角形,且顶角为 120°,则 E 的离心 率为(A ) √ 5 (B) 2 (C ) √3 (D ) √2(15)已知双曲线过点(4, ,3),且渐近线方程为 y = 士 x ,则该双曲线的标准方程为 2。

历年高考圆锥曲线真题汇总以及解析

历年高考圆锥曲线真题汇总以及解析
(1)求证: .
(2)若点P在 轴的上方,当 的面积最小时,求直线 的斜率 .
附:多项式因式分解公式:
24.
已知椭圆C: 过点 ,且离心率为 .
(1)求椭圆C的方程;
(2)若斜率为 的直线 与椭圆C交于不同的两点M,N,且线段MN的垂直平分线过点 ,求 的取值范围.
25.
已知直线x=﹣2上有一动点Q,过点Q作直线l,垂直于y轴,动点P在l1上,且满足 (O为坐标原点),记点P的轨迹为C.
(1)求曲线C的方程;
(2)已知定点M( ,0),N( ,0),点A为曲线C上一点,直线AM交曲线C于另一点B,且点A在线段MB上,直线AN交曲线C于另一点D,求△MBD的内切圆半径r的取值范围.
试卷答案
1.A
【分析】
根据x=-1是抛物线 的准线,则点P到x=-1的距离等于PF,根据垂直线段最短,利用数形结合法,得到点F到直线2x-y+3=0的距离,即为P到直线 和直线 的距离之和的最小值求解.
(2)证明:直线OM的斜率与l的斜率的乘积为定值;
(3)若l过点 ,射线OM与椭圆E交于点P,四边形OAPB能否为平行四边形?若能,求此时直线l斜率;若不能,说明理由.
12.
已知两动圆 和 ( ),把它们的公共点的轨迹记为曲线C,若曲线C与 轴的正半轴的交点为M,且曲线C上的相异两点A、B满足: .
9.
已知椭圆 的左,右焦点分别为 , ,点 ,椭圆C短轴的一个端点恰为准线方程是_____.
11.
已知椭圆E: ,直线l不过原点O且不平行于坐标轴,l与E有两个交点A,B,线段AB的中点为M.
(1)若 ,点K在椭圆E上, 、 分别为椭圆的两个焦点,求 的范围;
(1)求抛物线的方程;

历年高考圆锥曲线大题精选

历年高考圆锥曲线大题精选

1.(2018全国I理19)
设椭圆C: +y²=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).
(1)当l与x轴垂直时,求直线AM的方程;
(2)设O为坐标原点,证明:∠OMA=∠OMB.
2.(2018全国II理)
3.(2018全国III理)
4.(2018全国I文)
5.(2018浙江)
6.(2017全国I理20)
7.
8.
9.(2017全国III理)
10.(2017全国I文20)
11.(2016全国I理20)
12.(2016全国III理20)
13.(2016山东理)平面直角坐标系中,椭圆C:的离心率是
,抛物线E:的焦点F是C的一个顶点.
(1)求椭圆C的方程;
(2)设P是E上的动点,且位于第一象限,E在点P处的切线与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.
①求证:点M在定直线上;
②直线与y轴交于点G,记△PFG的面积为,△PDM的面积为,求的最大值及取得最大值时点P的坐标.
14.(2015全国I理)
15.(2015全国II理)
16.
17.
18.。

圆锥曲线--2023高考真题分类汇编完整版

圆锥曲线--2023高考真题分类汇编完整版

圆锥曲线--高考真题汇编第一节椭圆1.(2023全国甲卷理科12)已知椭圆22196x y +=,12,F F 为两个焦点,O 为原点,P 为椭圆上一点,123cos 5F PF ∠=,则OP =()A.25 C.35【解析】解法一(利用焦点三角形面积公式):设122F PF θ∠=,π02θ<<.22212222cos sin 1tan 3cos cos 2cos sin 1tan 5F PF θθθθθθθ--∠====++,解得1tan 2θ=.由椭圆焦点三角形面积公式得1222121tantan 6322F PF F PF S b b θ∠===⨯=△.121211322F PF P P S F F y ===△,解得23P y =.则代入椭圆方程得292P x =,因此302OP ==.故选B.解法二(几何性质+定义):因为1226PF PF a +==①,22212121122cos PF PF PF PF F PF F F +-⋅∠=,即2212126125PF PF PF PF +-⋅=②,联立①②,解得12152PF PF ⋅=,221221PF PF +=.由中线定理可知,()()222212122242OP F F PF PF +=+=,而12F F =,解得302OP =.故选B.解法三(向量法):由解法二知12152PF PF ⋅=,221221PF PF +=.而()1212PO PF PF =+,所以1213022PO PF PF =+===.故选B.2.(2023全国甲卷文科7)设12,F F 为椭圆22:15x C y +=的两个焦点,点P 在C 上,若120PF PF ⋅= ,则12PF PF ⋅=()A.1B.2C.4D.5【分析】解法一:根据焦点三角形面积公式求出12PF F △的面积,即可解出;解法二:根据椭圆的定义以及勾股定理即可解出.【解析】解法一:因为120PF PF ⋅=,所以1290F PF ∠= ,从而122121tan 4512F PF S b PF PF ===⨯⋅ △,所以122PF PF ⋅=.故选B.解法二:因为120PF PF ⋅=,所以1290F PF ∠= ,由椭圆方程可知,25142c c =-=⇒=,所以22221212416PF PF F F +===,又122PF PF a +==22121212216220PF PF PF PF PF PF ++=+=,所以122PF PF ⋅=.故选B.3.(2023新高考I 卷5)设椭圆()2212:11x C y a a +=>,222:14x C y +=的离心率分别为1e ,2e .若21e =,则a =()A.233B.【解析】11a e a =,232e =,由21e =可得32=,解得233a =.故选A.4.(2023新高考II 卷5)已知椭圆22:13x C y +=的左、右焦点分别为12,F F ,直线y x m =+与C 交于,A B 两点,若1F AB △的面积是2F AB △面积的2倍,则m =()A.23B.3C.3-D.23-【解析】设AB 与x 轴相交于点(),0D m -,由122F AB F AB S S =△△,得122F DF D=.又12F F =23F D =,则有()3m --=,解得3m =.故选C.第二节双曲线1.(2023新高考I 卷16)已知双曲线()2222:10,0x y C a b a b -=>>的左、右焦点分别为12,F F ,点A 在C 上,点B 在y 轴上,11F A F B ⊥ ,2223F A F B =- ,则C 的离心率为.【解析】解法一:建立如图所示的平面直角坐标系,设()()()12,0,,0,0,F c F c B n -,由2223F A F B =- 可得52,33A c n ⎛⎫- ⎪⎝⎭,又11F A F B ⊥ 且182,33F A c n ⎛⎫=- ⎪⎝⎭ ,()1,F B c n = ,则()22118282,,03333F A F B c n c n c n ⎛⎫⋅=-⋅=-= ⎪⎝⎭ ,所以224n c =,又点A 在C 上,则2222254991c n a b -=,整理可得2222254199c n a b-=,代入224n c =,可得222225169c c a b -=,即222162591e e e -=-,解得295e =或()215e =舍.故355e =.解法二:由2223F A F B =-可得2223F A F B =,设222,3F A x F B x ==,由对称性可得,13F B x =,由定义可得,122AF x a =+,5AB x =,设12F AF θ∠=,则33sin 55x x θ==,所以422cos 55x a xθ+==,解得x a =,所以1224AF x a a =+=,222F A x a ==,在12AF F △中,由余弦定理可得222216444cos 165a a c a θ+-==,2295a c =,所以355e =.2.(2023全国甲卷理科8)已知双曲线()222210,0x y a b a b-=>>的离心率为5,其中一条渐近线与圆()()22231x y -+-=交于,A B 两点,则AB =()A.15B.55C.255 D.455【解析】由5e =,则222222215c a b b a a a +==+=,解得2b a =.所以双曲线的一条渐近线为2y x =,则圆心()2,3到渐近线的距离22235521d ⨯-==+,所以弦长221452155AB r d =--.故选D.3.(2023全国甲卷文科9)已知双曲线()222210,0x y a b a b-=>>的离心率为5,其中一条渐近线与圆()()22231x y -+-=交于,A B 两点,则AB =()A.15B.55C.255D.455【解析】由e =,则222222215c a b b a a a+==+=,解得2b a =.所以双曲线的一条渐近线为2y x =,则圆心()2,3到渐近线的距离55d ==,所以弦长5AB =.故选D.4.(2023北京卷12)已知双曲线C 的焦点为()2,0-和()2,0,离心率为,则C 的方程为.【分析】根据给定条件,求出双曲线C 的实半轴、虚半轴长,再写出C 的方程作答.【解析】令双曲线C 的实半轴、虚半轴长分别为,a b ,显然双曲线C 的中心为原点,焦点在x 轴上,其半焦距2c =,由双曲线C ,得ca,解得a =,则b =所以双曲线C 的方程为22122x y -=.故答案为:22122x y -=.因为()2,0F c ,不妨设渐近线方程为所以222bc bcPF c a b ==+设2POF θ∠=,则tan θ=第三节抛物线2.(2023全国乙卷理科13,文科13)已知点A 在抛物线2:2C y px =上,则A 到C 的准线的距离为.【分析】由题意首先求得抛物线的标准方程,然后由抛物线方程可得抛物线的准线方程为54x =-,最后利用点的坐标和准线方程计算点A 到C 的准线的距离即可.【解析】由题意可得:221p =⨯,则25p =,抛物线的方程为25y x =,准线方程为54x =-,点A 到C 的准线的距离为59144⎛⎫--= ⎪⎝⎭.故答案为:94.3.(2023新高考II 卷10)设O 为坐标原点,直线)1y x =-过抛物线()2:20C y px p =>的焦点,且与C 交于,M N 两点,l 为C 的准线,则()A .2p =B .83MN =C .以MN 为直径的圆与l 相切D .OMN △为等腰三角形【解析】由题意可得焦点为()1,0F ,所以12p=,2p =,A 正确;联立)214y x y x⎧=-⎪⎨=⎪⎩,消y 得231030x x -+=.设()()1122,,,M x y N x y ,由韦达定理得12103x x +=,所以12163MN MF NF x x p =+=++=,B 错误;设MN 的中点为Q ,分别过,,M N Q 向l 作垂线,垂足分别为111,,M N Q ,由梯形中位线性质及抛物线定义可得,()()111111222QQ MM NN MF NF MN r =+=+==,所以以MN 为直径的圆与准线l 相切,C 正确;由上述解题过程知,231030x x -+=,解得121,33x x ==,从而(1,3,3M N ⎛- ⎝⎭,易得OM ON MN ≠≠,OMN △不是等腰三角形,D 错误.综上,故选AC.第四节直线与圆锥曲线的位置关系1.(2023全国乙卷理科11,文科12)已知,A B 是双曲线2219y x -=上两点,下列四个点中,可为线段AB 中点的是()A.()1,1 B.()1,2- C.()1,3 D.()1,4--【分析】设直线AB 的斜率为AB k ,OM 的斜率为k ,根据点差法分析可得9AB k k ⋅=,对于A ,B ,D 通过联立方程判断交点个数,逐项分析判断;对于C :结合双曲线的渐近线分析判断.【解析】设()11,A x y ,()22,B x y ,则AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭,设直线AB 的斜率为AB k ,OM 的斜率为k ,可得1212121212122,2ABy y y y y y k k x x x x x x +-+===+-+,因为,A B 在双曲线上,则221122221919y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减得()2222121209y y x x ---=,所以221222129AB y y k k x x -⋅==-.对于选项A :可得1k =,9AB k =,则:98AB y x =-,联立方程229819y x y x =-⎧⎪⎨-=⎪⎩,消去y 得272272730x x -⨯+=,此时()2272472732880∆=-⨯-⨯⨯=-<,所以直线AB 与双曲线没有交点,故A 错误;对于选项B :可得2k =-,92AB k =-,则95:22AB y x =--,联立方程22952219y x y x ⎧=--⎪⎪⎨⎪-=⎪⎩,消去y 得245245610x x +⨯+=,此时()()22454456144545610∆=⨯-⨯⨯=⨯⨯-<,所以直线AB 与双曲线没有交点,故B 错误;对于选项C :可得3k =,3AB k =,则:3AB y x =.由双曲线方程可得1a =,3b =,则:3AB y x =为双曲线的渐近线,所以直线AB 与双曲线没有交点,故C 错误;对于选项D :4k =,94AB k =,则97:44AB y x =-,联立方程22974419y x y x ⎧=-⎪⎪⎨⎪-=⎪⎩,消去y 得2631261930x x +-=,此时21264631930∆=+⨯⨯>,故直线AB 与双曲线有交两个交点,故D 正确.故选D.2.(2023新高考I 卷22)在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点10,2⎛⎫⎪⎝⎭的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD的周长大于【解析】(1)设(,)P x y ,则22212x y y ⎛⎫+-= ⎪⎝⎭,故21:4W y x =+.(2)解法一:不妨设三个顶点,,A B C 在抛物线214y x =+上,且AB BC ⊥,显然,AB BC 的斜率存在且不为0,令222111,,,,,444A a a B b b C c c ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则,AB BC k a b k b c =+=+,1AB BC k k =-,即()()1a b b c ++=-,即1a b b c-+=+,本题等价于证明332AB BC +>,令||||AB BC b c m +=--=,则m b c =-+-,(未知数有,,a b c ,通过转化(放缩),将变量归一)由221ABBC kk =⋅,即()()22221AB BC k k a b b c =++=⋅,不妨设()221AB k a b =+≤,则m b c=-+-b =-+b c ≥--c ≥-()b b c =+-+1b a b=+++()3221a b a b⎡⎤⎣⎦++=+.令a b t +=,则()()1232323323222211223411332t t a b ta b tt t⎡⎤⎢⎥⎛⎫⎢⎥++⎡⎤ ⎪⎢⎥⎣⎦⎝⎭⎛⎫⨯ ⎪⎝⎭+++==≥=+⎣⎦,当212t =时取等号,又()2321t m t+≥取等时必有21t =,因此取不到等号,所以332m >.解法二:如图所示,先将第一问中的曲线下移14个单位,其表达式为2x y =.不妨设,,A B D 三点在抛物线上,再设()2,A t t 及AB 的斜率为k .由题意知AD 的斜率为1k -,因为11k k ⎛⎫⋅-= ⎪⎝⎭,故而可再使01k <≤,直线AB 的方程()2y t k x t -=-,即2y kx kt t =-+,与曲线联立可得220x kx kt t -+-=,由此可知()222222221211414412AB k x x k k kt t k k kt t k k t=+-=+--=+-+=+-同理,21112AD t k k=++,由此可知矩形ABCD 的周长ρ满足2211122122k k t t k kρ+-++=+2211122212k k t k t k k=+-+++22t t≥-+①12+2k t tk⎫-+⎪⎭1+k≥②()323222112122=2kkk k⎛⎫++⎪+⎝⎭=322k⎛⎫⎝⎭≥⨯③22⨯==.当1k=时①处取等号,当12,2k t tk-+同号时②处取等号,当212k=时③处取等号,显然三处不能同时取等号,所以矩形ABCD的周长大于.由题意得31a c a c +=⎧⎨-=⎩,解得所以椭圆的方程为24x y +(2)由题意得,直线2A A P 的方程为y =第五节圆锥曲线综合探究型问题1.(2023全国甲卷理科20)设抛物线()2:20C y px p =>,直线210x y -+=与C 交于,A B 两点,且AB =.(1)求p ;(2)设C 的焦点为F ,,M N 为抛物线C 上的两点,0MF NF ⋅=,求MNF △面积的最小值.【解析】(1)设()11,A x y ,()22,B x y ,联立直线与抛物线的方程22102x y y px -+=⎧⎨=⎩,消x 得()2221y p y =-,即2420y py p -+=,()21212168821042p p p p y y p y y p ∆⎧=-=->⎪+=⎨⎪=⎩,12AB y y ==-=,解得2p =,32p =-(舍).所以2p =.(2)解法一(向量法):由(1)知,抛物线的方程为24y x =,()1,0F ,设()33,M x y ,()44,N x y ,()233331,1,4y FM x y y ⎛⎫=-=- ⎪⎝⎭,()244441,1,4y FN x y y ⎛⎫=-=- ⎪⎝⎭ ,又FM FN ⊥ 得22343411044y y y y ⎛⎫⎛⎫--+= ⎪⎪⎝⎭⎝⎭,即22223434341164y y y y y y +++=,又()()22222233434434111111111222442164MNFy y y y y y S FM FN x x ⎛⎫⎛⎫⎛⎫+=⋅=++=++=++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ △()2223434344122816y y y y y y +⎛⎫=++= ⎪⎝⎭,又22223434341164y y y y y y +++=,得()()22343444y y y y +=-,因此343442y y y y +=-,即()343442y y y y +=-或()3434420y y y y ++-=,得()434222y y y +=-或()343222y y y +=-(这一步至关重要),()24442214162MNFy S y y ⎡+⎤=⋅+⎢⎥-⎣⎦△或()23332214162y y y ⎡+⎤⋅+⎢⎥-⎣⎦.设()22214,162MNFt S t t t ⎡+⎤=⋅+∈⎢⎥-⎣⎦R△()()22222214148181822442424242t t t t t t t t ⎛⎫⎛⎫+-+⎡⎤⎡⎤===-++=-+- ⎪ ⎪⎢⎥⎢⎥----⎣⎦⎣⎦⎝⎭⎝⎭.又()822t t -+-()822t t-+--则()(214434MNF S =-△(当且仅当2t -=时,即32t y =-=时取最小值).解法二(极坐标法):如图所示,设MF 与x 轴正半轴的夹角为θ,则有21cos MF θ=-,21sin NF θ=+,从而有()()()221cos 1sin 1sin cos sin cos MNF S θθθθθθ==-++--△()()()(22224443111112t t t ===-++++-.其中sin cos 4t θθθπ⎛⎫=-=- ⎪⎝⎭,显然当且仅当4θ3π=,即4MFO π∠=时取等号.2.(2023全国甲卷文科21)设抛物线()2:20C y px p =>,直线210x y -+=与C 交于,A B两点,且AB =.(1)求p ;(2)设C 的焦点为F ,,M N 为抛物线C 上的两点,0MF NF ⋅=,求MNF △面积的最小值.【解析】设()11,A x y ,()22,B x y ,联立直线与抛物线的方程22102x y y px-+=⎧⎨=⎩,消x 得()2221y p y =-,即2420y py p -+=,()21212168821042p p p p y y p y y p ∆⎧=-=->⎪+=⎨⎪=⎩,12AB y ==-==,解得2p =,32p =-(舍).所以2p =.(2)解法一:由(1)知,抛物线的方程为24y x =,()1,0F ,设()33,M x y ,()44,N x y ,()233331,1,4y FM x y y ⎛⎫=-=- ⎪⎝⎭ ,()244441,1,4y FN x y y ⎛⎫=-=- ⎪⎝⎭ ,又FM FN ⊥ 得22343411044y y y y ⎛⎫⎛⎫--+= ⎪⎪⎝⎭⎝⎭,即22223434341164y y y y y y +++=.又()()22222233434434111111111222442164MNFy y y y y y S FM FN x x ⎛⎫⎛⎫⎛⎫+=⋅==++=++=++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ △()2223434344122816y y y y y y +⎛⎫=++= ⎪⎝⎭,又22223434341164y y y y y y +++=,得()()22343444y y y y +=-,因此343442y y y y +=-,即()343442y y y y +=-或()3434420y y y y ++-=,得()434222y y y +=-或()343222y y y +=-(这一步至关重要),()24442214162MNFy S y y ⎡+⎤=⋅+⎢⎥-⎣⎦△或()23332214162y y y ⎡+⎤⋅+⎢⎥-⎣⎦.设()22214,162MNFt S t t t ⎡+⎤=⋅+∈⎢⎥-⎣⎦R △()()22222214148181822442424242t t t t t t t t ⎛⎫⎛⎫+-+⎡⎤⎡⎤===-++=-+- ⎪ ⎪⎢⎥⎢⎥----⎣⎦⎣⎦⎝⎭⎝⎭.又()822t t -+-()822t t-+--则()(214434MNFS-=-△2t -=时,即32t y =-=时取最小值).解法二(极坐标):如图所示,设MF 与x 轴正半轴的夹角为θ,则有22,1cos 1sin MF NF θθ==-+,从而有()()()221cos 1sin 1sin cos sin cos MNF S θθθθθθ==-++--△()()()(22224443111112t t t ===-++++-.其中sin cos 4t θθθπ⎛⎫=-=- ⎪⎝⎭,显然当且仅当4MFO π∠=时取等号.3.(2023全国乙卷理科20,文科21)已知椭圆()2222:10y x C a b a b+=>>的离心率为3,点()2,0A -在C 上.(1)求C 的方程;(2)过点()2,3-的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,求证:线段MN 中点为定点.【解析】(1)依题意,2b =,3c e a ==,则2224b a c =-=,得3a =,c =,曲线C 的方程为22194y x +=.(2)设()11,P x y ,()22,Q x y ,直线():32PQ y k x -=+,()11:22y AP y x x =++,令0x =,得1122M yy x =+,()22:22y AQ y x x =++,令0x =,得2222N yy x =+.MN 的中点坐标为12120,22y y x x ⎛⎫+ ⎪++⎝⎭,联立直线PQ 的方程和椭圆方程得()22239436y k x x y ⎧=++⎪⎨+=⎪⎩,消y 建立关于x 的一元二次方程,()229423360x k x +⎡++⎤-=⎣⎦,即()()222249162416480k x k k x k k +++++=,21222122162449164849k kx x k k k x x k ⎧++=-⎪⎪+⎨+⎪=⎪+⎩,又()()121212121223231123222222k x k x y y k x x x x x x ++++⎛⎫+=+=++ ⎪++++++⎝⎭()2221222121222162416364492323164832482444949k k k x x k k k k k k k x x x x k k --+++++=+⋅=+⋅+++++-+++3=.所以线段MN 过定点()0,3.【评注】本题为2022全国乙卷的变式题,难度有所降低,考查仍为极点、极线的性质,定点()0,3为()2,3P -关于椭圆22194y x +=的极线123x y +=-与y 轴的交点.本题以椭圆中极点极线理论的射影不变性为命题背景,考查椭圆中对称式的计算方法,要求考生具有较强的计算能力.除此之外,如果考生具有先猜再证的解题意识,本题中的定点可以通过极限思想进行猜想.4.(2023新高考II 卷21)已知双曲线C的中心为坐标原点,左焦点为()-.(1)求C 的方程;(2)记C 的左、右顶点分别为1A ,2A ,过点()4,0-的直线与C 的左支交于M ,N 两点,M 在第二象限,直线1MA 与2NA 交于点P ,求证:点P 在定直线上.【解析】(1)设双曲线方程为()22221,0x y a b a b-=>,且22220c a b =+=.又c e a a===,得2a =,因为c =,所以4b =,因此双曲线的方程为221416x y -=.(2)(设点设线).设()()1122,,,M x y N x y ,:4MN x ty =-.由(1)可得,()()122,0,2,0A A -,则()111:22y MA y x x =++,()222:22yNA y x x =--.联立12,MA NA 的方程,消y 得()()12122222y yx x x x +=-+-,即2121122212112122222266y x y ty ty y y x x x y ty y ty y y +--+=⋅=⋅=----.联立MN 的方程与双曲线221416x y -=,得224416x ty x y =-⎧⎨-=⎩,消x 得()224416ty y --=,即()224132480t y ty --+=.由韦达定理()()221221223244148032414841t t t y y t y y t ∆⎧=---⨯>⎪⎪⎪+=⎨-⎪⎪=⎪-⎩(非对称结构处理).()12122483412t ty y y y t ==+-,则()()1221212112331221222393236222y y y y y x x y y yy y +--+===--+--+,得1x =-.因此点P 在定直线1x =-上.5.(2023北京卷19)已知椭圆()2222:10x y E a b a b +=>>的离心率为53,,A C 分别是E 的上、下顶点,,B D分别是E 的左、右顶点,4AC =.(1)求椭圆E 的方程;(2)点P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线AP 与直线2y =-交于点N .求证://MN CD .【分析】(1)结合题意得到c a =24b =,再结合222a c b -=,解之即可;(2)依题意求得直线BC 、PD 与PA 的方程,从而求得点,M N 的坐标,进而求得MN k ,再根据题意求得CD k ,得到MN CD k k =,由此得解.【解析】(1)依题意,得53c e a ==,则53c a =,又,A C 分别为椭圆上下顶点,4AC =,所以24b =,即2b =,所以2224a c b -==,即22254499a a a -==,则29a =,所以椭圆E 的方程为22194x y +=.(2)因为椭圆E 的方程为22194x y +=,所以()()()()0,2,0,2,3,0,3,0A C B D --,因为P 为第一象限E 上的动点,设()(),03,02P m n m n <<<<,则22194m n +=,易得022303BC k +==---,则直线BC 的方程为223y x =--,033PD n n k m m -==--,则直线PD 的方程为()33n y x m =--,联立()22333y x n y x m ⎧=--⎪⎪⎨⎪=-⎪-⎩,解得()332632612326n m x n m n y n m ⎧-+=⎪⎪+-⎨-⎪=⎪+-⎩,即()332612,326326n m n M n m n m ⎛-+⎫- ⎪+-+-⎝⎭,而220PA n n k m m --==-,则直线PA 的方程为22n y x m-=+,令=2y -,则222n x m --=+,解得42m x n -=-,即4,22m N n -⎛⎫- ⎪-⎝⎭,又22194m n +=,则22994n m =-,2287218m n =-,所以()()()()()()12264122326332696182432643262MN n n m n n m k n m n m n m n m m n m n -+-+--+-==-+-+-++---+--222222648246482498612369612367218n mn m n mn m n m mn m n m n n m -+-+-+-+==++---++--()()22222324126482429612363332412n mn m n mn m n mn m n mn m -+-+-+-+===-+-+-+-+,又022303CD k +==-,即MN CD k k =,显然,MN 与CD 不重合,所以//MN CD .第六节平面几何性质在圆锥曲线中的应用1.(2023全国甲卷理科12)已知椭圆22196x y +=,12,F F 为两个焦点,O 为原点,P 为椭圆上一点,123cos 5F PF ∠=,则OP =()A.25C.35【解析】因为1226PF PF a +==①,22212121122cos PF PF PF PF F PF F F +-⋅∠=,即2212126125PF PF PF PF +-⋅=②,联立①②,解得12152PF PF ⋅=,221221PF PF +=.由中线定理可知,()()222212122242OP F F PF PF +=+=,而12F F =,解得302OP =.故选B.2.(2023新高考II 卷10)设O为坐标原点,直线)1y x =-过抛物线()2:20C y px p =>的焦点,且与C 交于,M N 两点,l 为C 的准线,则()A .2p =B .83MN =C .以MN 为直径的圆与l 相切D .OMN △为等腰三角形【解析】由题意可得焦点为()1,0F ,所以12p =,2p =,A 正确;联立)214y x y x⎧=-⎪⎨=⎪⎩,消y 得231030x x -+=.设()()1122,,,M x y N x y ,由韦达定理得12103x x +=,所以12163MN MF NF x x p =+=++=,B 错误;设MN 的中点为Q ,分别过,,M N Q 向l 作垂线,垂足分别为111,,M N Q ,由梯形中位线性质及抛物线定义可得,()()111111222QQ MM NN MF NF MN r =+=+==,所以以MN 为直径的圆与准线l 相切,C 正确;由上述解题过程知,231030x x -+=,解得121,33x x ==,从而(1,3,3M N ⎛- ⎝⎭,易得OM ON MN ≠≠,OMN △不是等腰三角形,D 错误.综上,故选AC.。

历年高考数学圆锥曲线试题汇总

历年高考数学圆锥曲线试题汇总

历年高考数学圆锥曲线试题汇总(总20页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除高考数学试题分类详解——圆锥曲线一、选择题1.设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于( C )(A )3 (B )2 (C )5 (D )62.已知椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF =(A). 2 (B). 2 (C).3 (D). 33.过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =,则双曲线的离心率是 ( )A .2B .3C .5D .104.已知椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( )A .32 B .22 C .13 D .125.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2y x =于,A B 两点,且|||PA AB =,则称点P 为“点”,那么下列结论中正确的是( )A .直线l 上的所有点都是“点”B .直线l 上仅有有限个点是“点”C .直线l 上的所有点都不是“点”D .直线l 上有无穷多个点(点不是所有的点)是“点”6.设双曲线12222=-by a x 的一条渐近线与抛物线y=x 2+1 只有一个公共点,则双曲线的离心率为( ).A. 45B. 5C. 25D.57.设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为( ).A.24y x =±B.28y x =±C. 24y x =D. 28y x =8.双曲线13622=-y x 的渐近线与圆)0()3(222>=+-r r y x 相切,则r= (A )3 (B )2 (C )3 (D )69.已知直线)0)(2(>+=k x k y 与抛物线C:x y 82=相交A 、B 两点,F 为C 的焦点。

圆锥曲线十年高考题

圆锥曲线十年高考题

一、选择题1.(2003京春文9,理5)在同一坐标系中,方程a 2x 2+b 2y 2=1与ax +b y 2=0(a >b >0)的曲线大致是( )2.(2003京春理,7)椭圆⎩⎨⎧=+=ϕϕsin 3cos 54y x (ϕ为参数)的焦点坐标为( )A.(0,0),(0,-8)B.(0,0),(-8,0)C.(0,0),(0,8)D.(0,0),(8,0)3.(2002京皖春,3)已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点.如果延长F 1P到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线4.(2002全国文,7)椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k 等于( )A.-1B.1C.5D. -55.(2002全国文,11)设θ∈(0,4π),则二次曲线x 2cot θ-y 2tan θ=1的离心率的取值范围为( )A.(0,21) B.(22,21) C.(2,22) D.(2,+∞)6.(2002北京文,10)已知椭圆222253n y m x +和双曲线222232ny m x -=1有公共的焦点,那么双曲线的渐近线方程是( )A.x =±y 215B.y =±x 215 C.x =±y 43D.y =±x 437.(2002天津理,1)曲线⎩⎨⎧==θθsin cos y x (θ为参数)上的点到两坐标轴的距离之和的最大值是( )A.21B.22 C.1 D.28.(2002全国理,6)点P (1,0)到曲线⎩⎨⎧==t y t x 22(其中参数t ∈R )上的点的最短距离为( )A.0B.1C.2D.29.(2001全国,7)若椭圆经过原点,且焦点为F 1(1,0),F 2(3,0),则其离心率为( )A.43 B.32 C.21 D.41 10.(2001广东、河南,10)对于抛物线y 2=4x 上任意一点Q ,点P (a ,0)都满足|PQ |≥|a |,则a 的取值范围是( )A.(-∞,0)B.(-∞,2]C.[0,2]D.(0,2)11.(2000京皖春,9)椭圆短轴长是2,长轴是短轴的2倍,则椭圆中心到其准线距离是( )A.43B.554C.358D.334 12.(2000全国,11)过抛物线y =ax 2(a >0)的焦点F 用一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则qp 11+等于( ) A.2a B.a 21C.4aD.a4 13.(2000京皖春,3)双曲线2222ay b x -=1的两条渐近线互相垂直,那么该双曲线的离心率是( )A.2B.3C.2D.2314.(2000上海春,13)抛物线y =-x 2的焦点坐标为( )A.(0,41) B.(0,-41) C.(41,0)D.(-41,0) 15.(2000上海春,14)x =231y -表示的曲线是( )A.双曲线B.椭圆C.双曲线的一部分D.椭圆的一部分16.(1999上海理,14)下列以t 为参数的参数方程所表示的曲线中,与xy =1所表示的曲线完全一致的是( )A.⎪⎩⎪⎨⎧==-2121t y t xB.⎪⎩⎪⎨⎧==||1||t y t xC.⎩⎨⎧==ty tx sec cosD.⎩⎨⎧==ty tx cot tan17.(1998全国理,2)椭圆31222y x +=1的焦点为F 1和F 2,点P 在椭圆上.如果线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的( )A.7倍B.5倍C.4倍D.3倍18.(1998全国文,12)椭圆31222y x +=1的一个焦点为F 1,点P 在椭圆上.如果线段PF 1的中点M 在y 轴上,那么点M 的纵坐标是( )A.±43 B.±23 C.±22D.±43 19.(1997全国,11)椭圆C 与椭圆4)2(9)3(22-+-y x ,关于直线x +y =0对称,椭圆C 的方程是( )A.19)3(4)2(22=+++y xB.19)3(4)2(22=++-y xC.14)3(9)2(22=+++y xD.19)3(4)2(22=-+-y x20.(1997全国理,9)曲线的参数方程是⎪⎩⎪⎨⎧-=-=2111t y t x (t 是参数,t ≠0),它的普通方程是( )A.(x -1)2(y -1)=1B.y =2)1()2(x x x -- C.y =1)1(12--x D.y =21xx-+1 21.(1997上海)设θ∈(43π,π),则关于x 、y 的方程x 2csc θ-y 2sec θ=1所表示的曲线是( )A.实轴在y 轴上的双曲线B.实轴在x 轴上的双曲线C.长轴在y 轴上的椭圆D.长轴在x 轴上的椭圆 22.(1997上海)设k >1,则关于x 、y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是( ) A.长轴在y 轴上的椭圆 B.长轴在x 轴上的椭圆 C.实轴在y 轴上的双曲线 D.实轴在x 轴上的双曲线23.(1996全国文,9)中心在原点,准线方程为x =±4,离心率为21的椭圆方程是( ) A.3422y x +=1B.4322y x +=1C.42x +y 2=1D.x 2+42y =124.(1996上海,5)将椭圆92522y x +=1绕其左焦点按逆时针方向旋转90°,所得椭圆方程是( )A.19)4(25)4(22=-++y xB.19)4(25)4(22=+++y xC.125)4(9)4(22=-++y xD.125)4(9)4(22=+++y x25.(1996上海理,6)若函数f (x )、g (x )的定义域和值域都为R ,则f (x )>g (x )(x ∈R )成立的充要条件是( )A.有一个x ∈R ,使f (x )>g (x )B.有无穷多个x ∈R ,使得f (x )>g (x )C.对R 中任意的x ,都有f (x )>g (x )+1D.R 中不存在x ,使得f (x )≤g (x ) 26.(1996全国理,7)椭圆⎩⎨⎧+-=+=ϕϕsin 51cos 33y x 的两个焦点坐标是( )A.(-3,5),(-3,-3)B.(3,3),(3,-5)C.(1,1),(-7,1)D.(7,-1),(-1,-1)27.(1996全国文,11)椭圆25x 2-150x +9y 2+18y +9=0的两个焦点坐标是( ) A.(-3,5),(-3,3) B.(3,3),(3,-5) C.(1,1),(-7,1) D.(7,-1),(-1,-1)28.(1996全国)设双曲线2222by a x -=1(0<a <b )的半焦距为c ,直线l 过(a ,0),(0,b )两点.已知原点到直线l 的距离为43c ,则双曲线的离心率为( ) A.2 B.3C.2D.332 29.(1996上海理,7)若θ∈[0,2π],则椭圆x 2+2y 2-22x cos θ+4y sin θ=0的中心的轨迹是( )30.(1995全国文6,理8)双曲线3x 2-y 2=3的渐近线方程是( ) A.y =±3xB.y =±31x C.y =±3xD.y =±x 33 31.(1994全国,2)如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)32.(1994全国,8)设F 1和F 2为双曲线-42x y 2=1的两个焦点,点P 在双曲线上,且满足∠F 1PF 2=90°,则△F 1PF 2的面积是( )A.1B.25 C.2 D.533.(1994上海,17)设a 、b 是平面α外任意两条线段,则“a 、b 的长相等”是a 、b 在平面α内的射影长相等的( ) A.非充分也非必要条件 B.充要条件 C.必要非充分条件 D.充分非必要条件34.(1994上海,19)在直角坐标系xOy 中,曲线C 的方程是y =cos x ,现在平移坐标系,把原点移到O ′(2π,-2π),则在坐标系x ′O ′y ′中,曲线C 的方程是( )A.y ′=sin x ′+2πB.y ′=-sin x ′+2πC.y ′=sin x ′-2π D.y ′=-sin x ′-2π二、填空题35.(2003京春,16)如图8—1,F 1、F 2分别为椭圆2222by a x +=1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2的值是_____.36.(2003上海春,4)直线y =x -1被抛物线y 2=4x 截得线段的中点坐标是_____.37.(2002上海春,2)若椭圆的两个焦点坐标为F 1(-1,0),F 2(5,0),长轴的长为10,则椭圆的方程为 .38.(2002京皖春,13)若双曲线m y x 224-=1的渐近线方程为y =±23x ,则双曲线的焦点坐标是 .39.(2002全国文,16)对于顶点在原点的抛物线,给出下列条件: ①焦点在y 轴上; ②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6; ④抛物线的通径的长为5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1). 能使这抛物线方程为y 2=10x 的条件是 .(要求填写合适条件的序号) 40.(2002上海文,8)抛物线(y -1)2=4(x -1)的焦点坐标是 . 41.(2002天津理,14)椭圆5x 2-ky 2=5的一个焦点是(0,2),那么k = .42.(2002上海理,8)曲线⎩⎨⎧+=-=1212t y t x (t 为参数)的焦点坐标是_____.图8—143.(2001京皖春,14)椭圆x 2+4y 2=4长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是 .44.(2001上海,3)设P 为双曲线-42x y 2=1上一动点,O 为坐标原点,M 为线段OP的中点,则点M 的轨迹方程是 .45.(2001上海,5)抛物线x 2-4y -3=0的焦点坐标为 .46.(2001全国,14)双曲线16922y x -=1的两个焦点为F 1、F 2,点P 在双曲线上,若PF 1⊥PF 2,则点P 到x 轴的距离为 .47.(2001上海春,5)若双曲线的一个顶点坐标为(3,0),焦距为10,则它的标准方程为_____.48.(2001上海理,10)直线y =2x -21与曲线⎩⎨⎧==ϕϕ2cos sin y x (ϕ为参数)的交点坐标是_____.49.(2000全国,14)椭圆4922y x +=1的焦点为F 1、F 2,点P 为其上的动点,当∠F 1PF 2为钝角时,点P 横坐标的取值范围是_____.50.(2000上海文,3)圆锥曲线916)1(22y x --=1的焦点坐标是_____.51.(2000上海理,3)圆锥曲线⎩⎨⎧=+=θθtan 31sec 4y x 的焦点坐标是_____.52.(1999全国,15)设椭圆2222by a x +=1(a >b >0)的右焦点为F 1,右准线为l 1,若过F 1且垂直于x 轴的弦的长等于点F 1到l 1的距离,则椭圆的离心率是 .53.(1999上海5)若平移坐标系,将曲线方程y 2+4x -4y -4=0化为标准方程,则坐标原点应移到点O ′ ( ) .54.(1998全国,16)设圆过双曲线16922y x -=1的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是 .55.(1997全国文,17)已知直线x -y =2与抛物线y 2=4x 交于A 、B 两点,那么线段AB 的中点坐标是_____.56.(1997上海)二次曲线⎩⎨⎧==θθsin 3cos 5y x (θ为参数)的左焦点坐标是_____.57.(1996上海,16)平移坐标轴将抛物线4x 2-8x +y +5=0化为标准方程x ′2=ay ′(a ≠0),则新坐标系的原点在原坐标系中的坐标是 .58.(1996全国文,16)已知点(-2,3)与抛物线y 2=2px (p >0)的焦点的距离是5,则p =_____.59.(1996全国理,16)已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p =_____.60.(1995全国理,19)直线L 过抛物线y 2=a (x +1)(a >0)的焦点,并且与x 轴垂直,若L 被抛物线截得的线段长为4,则a = .61.(1995全国文,19)若直线L 过抛物线y 2=4(x +1)的焦点,并且与x 轴垂直,则L 被抛物线截得的线段长为 .62.(1995上海,15)把参数方程⎩⎨⎧+==1cos sin ααy x (α是参数)化为普通方程,结果是 .63.(1995上海,10)双曲线98222y x -=8的渐近线方程是 . 64.(1995上海,14)到点A (-1,0)和直线x =3距离相等的点的轨迹方程是 .65.(1994全国,17)抛物线y 2=8-4x 的准线方程是 ,圆心在该抛物线的顶点且与其准线相切的圆的方程是 .66.(1994上海,7)双曲线22y -x 2=1的两个焦点的坐标是 .三、解答题67.(2003上海春,21)设F 1、F 2分别为椭圆C :22228by a x + =1(a >b >0)的左、右两个焦点.(1)若椭圆C 上的点A (1,23)到F 1、F 2两点的距离之和等于4,写出椭圆C 的方程和焦点坐标;(2)设点K 是(1)中所得椭圆上的动点,求线段F 1K 的中点的轨迹方程;(3)已知椭圆具有性质:若M 、N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM 、PN 的斜率都存在,并记为k PM 、k PN 时,那么k PM 与k PN 之积是与点P 位置无关的定值.试对双曲线12222=-by a x 写出具有类似特性的性质,并加以证明.68.(2002上海春,18)如图8—2,已知F 1、F 2为双曲线12222=-by a x (a >0,b >0)的焦点,过F 2作垂直于x 轴的直线交双曲线于点P ,且∠PF 1F 2=30°.求双曲线的渐近线方程.69.(2002京皖文,理,22)已知某椭圆的焦点是F 1(-4,0)、F 2(4,0),过点F 2并垂直于x 轴的直线与椭圆的一个交点为B ,且|F 1B |+|F 2B |=10.椭圆上不同的两点A (x 1,y 1)、C (x 2,y 2)满足条件:|F 2A |、|F 2B |、|F 2C |成等差数列.图8—2(Ⅰ)求该椭圆的方程;(Ⅱ)求弦AC 中点的横坐标;(Ⅲ)设弦AC 的垂直平分线的方程为y =kx +m ,求m 的取值范围. 70.(2002全国理,19)设点P 到点M (-1,0)、N (1,0)距离之差为2m ,到x 轴、y 轴距离之比为2.求m 的取值范围.71.(2002北京,21)已知O (0,0),B (1,0),C (b ,c )是△OBC 的三个顶点.如图8—3.(Ⅰ)写出△OBC 的重心G ,外心F ,垂心H 的坐标,并证明G 、F 、H 三点共线;(Ⅱ)当直线FH 与OB 平行时,求顶点C 的轨迹.72.(2002江苏,20)设A 、B 是双曲线x 222y -=1上的两点,点N (1,2)是线段AB 的中点.(Ⅰ)求直线AB 的方程;(Ⅱ)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆,为什么?73.(2002上海,18)已知点A (3-,0)和B (3,0),动点C 到A 、B 两点的距离之差的绝对值为2,点C 的轨迹与直线y =x -2交于D 、E 两点,求线段DE 的长.74.(2001京皖春,22)已知抛物线y 2=2px (p >0).过动点M (a ,0)且斜率为1的直线l 与该抛物线交于不同的两点A 、B ,|AB |≤2p .(Ⅰ)求a 的取值范围;(Ⅱ)若线段AB 的垂直平分线交x 轴于点N ,求△NAB 面积的最大值.75.(2001上海文,理,18)设F 1、F 2为椭圆4922y x +=1的两个焦点,P 为椭圆上的一点.已知P 、F 1、F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,求||||21PF PF 的值.76.(2001全国文20,理19)设抛物线y 2=2px (p >0)的焦点为F ,经过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴.证明直线AC 经过原点O .77.(2001上海春,21)已知椭圆C 的方程为x 2+22y =1,点P (a ,b )的坐标满足a 2+22b ≤1,过点P 的直线l 与椭圆交于A 、B 两点,点Q 为线段AB 的中点,求:(1)点Q 的轨迹方程;(2)点Q 的轨迹与坐标轴的交点的个数.78.(2001广东河南21)已知椭圆22x +y 2=1的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC ∥x 轴.求证:直线AC 经过线段EF 的中点.图8—379.(2000上海春,22)如图8—4所示,A 、F 分别是椭圆12)1(16)1(22-++x y =1的一个顶点与一个焦点,位于x 轴的正半轴上的动点T (t ,0)与F 的连线交射影OA 于Q .求: (1)点A 、F 的坐标及直线TQ 的方程;(2)△OTQ 的面积S 与t 的函数关系式S =f (t )及其函数的最小值;(3)写出S =f (t )的单调递增区间,并证明之.80.(2000京皖春,23)如图8—5,设点A 和B 为抛物线y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.81.(2000全国理,22)如图8—6,已知梯形ABCD 中,|AB |=2|C D|,点E 分有向线段AC 所成的比为λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点.当32≤λ≤43时,求双曲线离心率e 的取值范围.图8—5 图8—6 图8—782.(2000全国文,22)如图8—7,已知梯形ABCD 中|AB |=2|CD |,点E 分有向线段AC 所成的比为118,双曲线过C 、D 、E 三点,且以A 、B 为焦点.求双曲线离心率. 83.(2000上海,17)已知椭圆C 的焦点分别为F 1(22-,0)和F 2(22,0),长轴长为6,设直线y =x +2交椭圆C 于A 、B 两点,求线段AB 的中点坐标.84.(1999全国,24)如图8—8,给出定点A (a ,0)(a >0)和直线l :x =-1.B 是直线l 上的动点,∠BOA 的角平分线交AB 于点C.求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值的关系.注:文科题设还有条件a ≠185.(1999上海,22)设椭圆C 1的方程为2222by a x +=1(a >b >0),曲线C 2的方程为y =x1,且C 1与C 2在第一象限内只有一个公共点P . (Ⅰ)试用a 表示点P 的坐标.(Ⅱ)设A 、B 是椭圆C 1的两个焦点,当a 变化时,求△ABP 的面积函数S (a )的值域;图8— 4图8—8(Ⅲ)设min {y 1,y 2,…,y n }为y 1,y 2,…,y n 中最小的一个.设g (a )是以椭圆C 1的半焦距为边长的正方形的面积,求函数f (a )=min {g (a ),S (a )}的表达式.86.(1998全国理,24)设曲线C 的方程是y =x 3-x ,将C 沿x 轴、y 轴正向分别平行移动t 、s 单位长度后得曲线C 1.(Ⅰ)写出曲线C 1的方程;(Ⅱ)证明曲线C 与C 1关于点A (2,2st )对称; (Ⅲ)如果曲线C 与C 1有且仅有一个公共点,证明s =43t -t 且t ≠0.87.(1998全国文22,理21)如图8—9,直线l 1和l 2相交于点M ,l 1⊥l 2,点N ∈l 1.以A 、B 为端点的曲线段C 上的任一点到l 2的距离与到点N 的距离相等.若△AMN 为锐角三角形,|AM |=17,|AN |=3,且|BN |=6.建立适当的坐标系,求曲线段C 的方程.88.(1998上海理,20)(1)动直线y =a 与抛物线y 2=21(x -2)相交于A 点,动点B 的坐标是(0,3a ),求线段AB 中点M 的轨迹C 的方程;(2)过点D (2,0)的直线l 交上述轨迹C 于P 、Q 两点,E 点坐标是(1,0),若△EPQ 的面积为4,求直线l 的倾斜角α的值.89.(1997上海)抛物线方程为y 2=p (x +1)(p >0),直线x +y =m 与x 轴的交点在抛物线的准线的右边.(1)求证:直线与抛物线总有两个交点;(2)设直线与抛物线的交点为Q 、R ,OQ ⊥OR ,求p 关于m 的函数f (m )的表达式;(3)(文)在(2)的条件下,若抛物线焦点F 到直线x +y =m 的距离为22,求此直线的方程;(理)在(2)的条件下,若m 变化,使得原点O 到直线QR 的距离不大于22,求p 的值的范围.90.(1996全国理,24)已知l 1、l 2是过点P (-2,0)的两条互相垂直的直线,且l 1、l 2与双曲线y 2-x 2=1各有两个交点,分别为A 1、B 1和A 2、B 2.(Ⅰ)求l 1的斜率k 1的取值范围;(Ⅱ)(理)若|A 1B 1|=5|A 2B 2|,求l 1、l 2的方程.(文)若A 1恰是双曲线的一个顶点,求|A 2B 2|的值.91.(1996上海,23)已知双曲线S 的两条渐近线过坐标原点,且与以点A (2,0)为圆心,1为半径的圆相切,双曲线S 的一个顶图8—9图8—10点A ′与点A 关于直线y =x 对称.设直线l 过点A ,斜率为k .(1)求双曲线S 的方程;(2)当k =1时,在双曲线S 的上支上求点B ,使其与直线l 的距离为2;(3)当0≤k <1时,若双曲线S 的上支上有且只有一个点B 到直线l 的距离为2,求斜率k 的值及相应的点B 的坐标,如图8—10.92.(1995全国理,26)已知椭圆如图8—11,162422y x +=1,直线L :812yx +=1,P 是L 上一点,射线OP 交椭圆于点R ,又点Q 在OP 上且满足|OQ |²|OP |=|OR |2.当点P 在L 上移动时,求点Q 的轨迹方程,并说明轨迹是什么曲线.93.(1995上海,24)设椭圆的方程为2222ny m x +=1(m ,n >0),过原点且倾角为θ和π-θ(0<θ<2π=的两条直线分别交椭圆于A 、C 和B 、D 两点,(Ⅰ)用θ、m 、n 表示四边形ABCD 的面积S ; (Ⅱ)若m 、n 为定值,当θ在(0,4π]上变化时,求S 的最小值u ;(Ⅲ)如果μ>mn ,求nm的取值范围. 94.(1995全国文,26)已知椭圆162422y x +=1,直线l :x =12.P 是直线l 上一点,射线OP 交椭圆于点R .又点Q 在OP 上且满足|OQ |²|OP |=|OR |2.当点P 在直线l 上移动时,求点Q 的轨迹方程,并说明轨迹是什么曲线.95.(1994全国理,24)已知直线L 过坐标原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上,若点A (-1,0)和点B (0,8)关于L 的对称点都在C 上,求直线L 和抛物线C 的方程.96.(1994上海,24)设椭圆的中心为原点O ,一个焦点为F (0,1),长轴和短轴的长度之比为t .(1)求椭圆的方程;(2)设经过原点且斜率为t 的直线与椭圆在y 轴右边部分的交点为Q 、点P 在该直线上,且1||||2-=t t OQ OP ,当t 变化时,求点P 的轨迹方程,并说明轨迹是什么图形. 答案解析图8—111.答案:D解析一:将方程a 2x 2+b 2y 2=1与ax +by 2=0转化为标准方程:x b ay b y a x -==+22222,111.因为a >b >0,因此,ab 11>>0,所以有:椭圆的焦点在y 轴,抛物线的开口向左,得D 选项.解析二:将方程ax +by 2=0中的y 换成-y ,其结果不变,即说明:ax +by 2=0的图形关于x 轴对称,排除B 、C ,又椭圆的焦点在y 轴.故选D.评述:本题考查椭圆与抛物线的基础知识,即标准方程与图形的基本关系.同时,考查了代数式的恒等变形及简单的逻辑推理能力.2.答案:D解析:利用三角函数中的平方和关系消参,得925)4(22y x +-=1,∴c 2=16,x -4=±4,而焦点在x 轴上,所以焦点坐标为:(8,0),(0,0),选D.如果画出925)4(22y x +-=1的图形,则可以直接“找”出正确选项.评述:本题考查将参数方程化为普通方程的思想和方法,以及利用平移变换公式进行逻辑推理,同时也考查了数形结合的思想方法.3.答案:A解析:由第一定义得,|PF 1|+|PF 2|为定值 ∵|PQ |=|PF 2|,∴|PF 1|+|PQ |为定值,即|F 1Q |为定值. 4.答案:B解析:椭圆方程可化为:x 2+ky52=1∵焦点(0,2)在y 轴上,∴a 2=k5,b 2=1, 又∵c 2=a 2-b 2=4,∴k =1 5.答案:D 解析:∵θ∈(0,4π),∴sin θ∈(0,22), ∴a 2=tan θ,b 2=c ot θ ∴c 2=a 2+b 2=tan θ+c ot θ,∴e 2=θθθθ222sin 1tan cot tan =+=a c ,∴e =θsin 1,∴e ∈(2,+∞)6.答案:D解析:由双曲线方程判断出公共焦点在x 轴上 ∴椭圆焦点(2253n m -,0),双曲线焦点(2232n m +,0)∴3m 2-5n 2=2m 2+3n 2∴m 2=8n 2又∵双曲线渐近线为y =±||2||6m n ⋅²x∴代入m 2=8n 2,|m |=22|n |,得y =±43x 7.答案:D解析:设曲线上的点到两坐标轴的距离之和为d ∴d =|x |+|y |=|co s θ|+|sin θ| 设θ∈[0,2π]∴d =sin θ+cos θ=2sin (θ+4π) ∴d max =2.8.答案:B解法一:将曲线方程化为一般式:y 2=4x ∴点P (1,0)为该抛物线的焦点由定义,得:曲线上到P 点,距离最小的点为抛物线的顶点. 解法二:设点P 到曲线上的点的距离为d ∴由两点间距离公式,得d 2=(x -1)2+y 2=(t 2-1)2+4t 2=(t 2+1)2 ∵t ∈R ∴d min 2=1 ∴d min =1 9.答案:C解析:由F 1、F 2的坐标得2c =3-1,c =1, 又∵椭圆过原点a -c =1,a =1+c =2, 又∵e =21=a c ,∴选C. 10.答案:B解析:设点Q 的坐标为(420y,y 0),图8—12由 |PQ |≥|a |,得y 02+(42y -a )2≥a 2. 整理,得:y 02(y 02+16-8a )≥0, ∵y 02≥0,∴y 02+16-8a ≥0.即a ≤2+820y 恒成立.而2+820y的最小值为2.∴a ≤2.选B.11.答案:D解析:由题意知a =2,b =1,c =3,准线方程为x =±ca 2,∴椭圆中心到准线距离为334. 12.答案:C解析:抛物线y =ax 2的标准式为x 2=a1y , ∴焦点F (0,a41). 取特殊情况,即直线PQ 平行x 轴,则p =q .如图8—13,∵PF =PM ,∴p =a21,故a pp p q p 421111==+=+. 13.答案:C解析:渐近线方程为y =±b a x ,由b a ²(-ba )=-1,得a 2=b 2, ∴c =2a ,e =2.14.答案:B解析:y =-x 2的标准式为x 2=-y ,∴p =21,焦点坐标F (0,-41). 15.答案:D 解析:x =231y -化为x 2+3y 2=1(x >0).16.答案:D图8—13解析:由已知xy =1可知x 、y 同号且不为零,而A 、B 、C 选项中尽管都满足xy =1,但x 、y 的取值范围与已知不同.17.答案:A解析:不妨设F 1(-3,0),F 2(3,0)由条件得P (3,±23),即|PF 2|=23,|PF 1|=2147,因此|PF 1|=7|PF 2|,故选A.评述:本题主要考查椭圆的定义及数形结合思想,具有较强的思辨性,是高考命题的方向.18.答案:A解析:由条件可得F 1(-3,0),PF 1的中点在y 轴上,∴P 坐标(3,y 0),又P 在31222y x +=1的椭圆上得y 0=±23, ∴M 的坐标(0,±43),故选A. 评述:本题考查了椭圆的标准方程及几何性质,中点坐标公式以及运算能力. 19.答案:A解析:将已知椭圆中的x 换成-y ,y 换成-x 便得椭圆C 的方程为9)3(4)2(22+++y x =1,所以选A.评述:本题考查了椭圆的方程及点关于直线的对称问题. 20.答案:B解法一:由已知得t =x -11,代入y =1-t 2中消去t ,得y =122)1()2()1(1x x x x --=--,故选B.解法二:令t =1,得曲线过(0,0),分别代入验证,只有B 适合,故选B. 评述:本题重点考查参数方程与普通方程的互化,考查等价转化的能力. 21.答案:C解析:由已知得方程为θθcos sin 22y x -=1 由于θ∈(43π,π),因此sin θ>0,cos θ<0,且|sin θ|<|cos θ| ∴原方程表示长轴在y 轴上的椭圆. 22.答案:C解析:原方程化为11222+--k x k y =1由于k >1,因此它表示实轴在y 轴上的双曲线. 23.答案:A解析:由已知有⇒⎪⎪⎩⎪⎪⎨⎧==2142a c c a a =2,c =1,b 2=3,于是椭圆方程为3422y x +=1,故选A. 评述:本题考查了椭圆的方程及其几何性质,以及待定系数法和运算能力.24.答案:C解析:如图8—14,原点O 逆时针方向旋转90°到O ′,则O ′(-4,4)为旋转后椭圆的中心,故旋转后所得椭圆方程为25)4(9)4(22-++y x =1.所以选C. 25.答案:D解析:R 中不存在x ,使得f (x )≤g (x ),即是R 中的任意x 都有f (x )>g (x ), 故选D.26.答案:B解析:可得a =3,b =5,c =4,椭圆在新坐标系中的焦点坐标为(0,±4),在原坐标系中的焦点坐标为(3,3),(3,-5),故选B.评述:本题重点考查椭圆的参数方程、坐标轴的平移等基本知识点,考查数形结合的能力.27.答案:B解析:把已知方程化为25)1(9)3(22++-y x =1,∴a =5,b =3,c =4 ∵椭圆的中心是(3,-1),∴焦点坐标是(3,3)和(3,-5). 28.答案:A解析:由已知,直线l 的方程为ay +bx -ab =0,原点到直线l 的距离为43c ,则有c b a ab 4322=+, 又c 2=a 2+b 2,∴4ab =3c 2,两边平方,得16a 2(c 2-a 2)=3c 4,两边同除以a 4,并整理,得3e 4-16e 2+16=0∴e 2=4或e 2=34. 而0<a <b ,得e 2=222221ab a b a +=+>2,∴e 2=4.故e=2. 图8—14评述:本题考查点到直线的距离,双曲线的性质以及计算、推理能力.难度较大,特别是求出e 后还须根据b >a 进行检验.29.答案:D解析:把已知方程化为标准方程,得2)cos 2(2θ-x +(y +sin θ)2=1.∴椭圆中心的坐标是(2cos θ,-sin θ).其轨迹方程是⎩⎨⎧-==θθsin cos 2y x θ∈[0,2π].即22x +y 2=1(0≤x ≤2,-1≤y ≤0).30.答案:C解法一:将双曲线方程化为标准形式为x 2-32y =1,其焦点在x 轴上,且a =1,b =3,故其渐近线方程为y =±abx =±3x ,所以应选C. 解法二:由3x 2-y 2=0分解因式得y =±3x ,此方程即为3x 2-y 2=3的渐近线方程,故应选C.评述:本题考查了双曲线的标准方程及其性质. 31.答案:D解析:原方程可变为ky x 2222+=1,因为是焦点在y 轴的椭圆,所以⎪⎩⎪⎨⎧>>220k k ,解此不等式组得0<k <1,因而选D.评述:本题考查了椭圆的方程及其几何意义以及解不等式的方法,从而考查了逻辑思维能力和运算能力.32.答案:A解法一:由双曲线方程知|F 1F 2|=25,且双曲线是对称图形,假设P (x ,142-x ),由已知F 1P ⊥F 2 P ,有151451422-=+-⋅--x x x x ,即1145221,52422=-⋅⋅==x S x ,因此选A.解法二:S △=b 2cot221PF F =1³cot45°=1.评述:本题考查了双曲线的标准方程及其性质、两条直线垂直的条件、三角形面积公式以及运算能力.33.答案:A 解析:a 、b 长相等a 、b 在平面α内的射影长相等,因此选A. 34.答案:B解析:由已知得平移公式⎪⎪⎩⎪⎪⎨⎧-'=+'=22ππy y x x 代入曲线C 的方程,得y ′-2π=cos (x ′+2π).即y ′=-sin x ′+2π. 35.答案:23解析:因为F 1、F 2为椭圆的焦点,点P 在椭圆上,且正△POF 2的面积为3,所以S =21|OF 2|²|PO |sin60°=43c 2,所以c 2=4. ∴点P 的横、纵坐标分别为23,2c c ,即P (1,3)在椭圆上,所以有2231b a +=1,又b 2+c 2=a 2,⎩⎨⎧+==+22222243ba b a a b解得b 2=23.评述:本题主要考查椭圆的基本知识以及基本计算技能,体现出方程的思想方法. 36.答案:(3,2)解法一:设直线y =x -1与抛物线y 2=4x 交于A (x 1,y 1),B (x 2,y 2),其中点为P (x 0,y 0).由题意得⎩⎨⎧=-=xy x y 412,(x -1)2=4x ,x 2-6x +1=0.∴x 0=221x x +=3.y 0=x 0-1=2.∴P (3,2). 解法二:y 22=4x 2,y 12=4x 1,y 22-y 12=4x 2-4x 1121212))((x x y y y y -+-=4.∴y 1+y 2=4,即y 0=2,x 0=y 0+1=3.故中点为P (3,2).评述:本题考查曲线的交点与方程的根的关系.同时应注意解法一中的纵坐标与解法二中的横坐标的求法.37.答案:1625)2(22y x +- =1 解析:由两焦点坐标得出椭圆中心为点(2,0),焦半径c =3∵长轴长为10,∴2a =10, ∴a =5,∴b =22c a -=4∴椭圆方程为1625)2(22y x +-=1 38.答案:(±7,0)解析:由双曲线方程得出其渐近线方程为y =±2mx ∴m =3,求得双曲线方程为3422y x -=1,从而得到焦点坐标. 39.答案:②,⑤解析:从抛物线方程易得②,分别按条件③、④、⑤计算求抛物线方程,从而确定⑤. 40.答案:(2,1)解析:抛物线(y -1)2=4(x -1)的图象为抛物线y 2=4x 的图象沿坐标轴分别向右、向上平移1个单位得来的.∵抛物线y 2=4x 的焦点为(1,0)∴抛物线(y -1)2=4(x -1)的焦点为(2,1) 41.答案:-1解析:椭圆方程化为x 2+ky 52-=1∵焦点(0,2)在y 轴上, ∴a 2=k-5,b 2=1 又∵c 2=a 2-b 2=4,∴k =-1 42.答案:(0,1)解析:将参数方程化为普通方程:(y -1)2=4(x +1) 该曲线为抛物线y 2=4x 分别向左,向上平移一个单位得来. 43.答案:2516 解析:原方程可化为42x +y 2=1,a 2=4,b 2=1∴a =2,b =1,c =3 当等腰直角三角形,设交点(x ,y )(y >0)可得2-x =y , 代入曲线方程得:y =54 ∴S =21³2y 2=2516 44.答案:x 2-4y 2=1解析:设P (x 0,y 0) ∴M (x ,y ) ∴2,200yy x x ==∴2x =x 0,2y =y 0 ∴442x -4y 2=1⇒x 2-4y 2=145.答案:(0,41) 解析:x 2=4y +3⇒x 2=4(y +43) ∴y +43=1,y =41,∴坐标(0,41) 46.答案:516解析:设|PF 1|=M ,|PF 2|=n (m >n ) a =3 b =4 c =5∴m -n =6 m 2+n 2=4c 2m 2+n 2-(m -n )2=m 2+n 2-(m 2+n 2-2mn )=2mn =4³25-36=64 mn =32.又利用等面积法可得:2c ²y =mn ,∴y =516 47.答案:16922y x -=1 解析:由已知a =3,c =5,∴b 2=c 2-a 2=16又顶点在x 轴,所以标准方程为16922y x -=1. 48.答案:(21,21)解析:⎩⎨⎧-=-==⇒⎩⎨⎧==ϕϕϕϕϕ22sin 211cos 2sin 2cos sin y x y x ①代入②得y =1-2x 2⇒2x 2+y =1 ⎪⎩⎪⎨⎧=+-=122122y x x y解方程得:⎪⎪⎩⎪⎪⎨⎧==2121y x∴交点坐标为(21,21) 49.答案:5353<<-x 解析:已知a 2=9,b 2=4,∴c =5,∵x PF x ex a PF 353||,353||21+=-=-= 由余弦定理,)959(195||||2||||||cos 2221221222121x x PF PF F F PF PF PF F --=⋅⋅-+=,∵∠F 1PF 2是钝角,∴-1<cos F 1PF 2<0,即0)959(195122<--<-x x ,解得5353<<-x . 评述:本题也可以通过PF 1⊥PF 2时,找到P 点的横坐标的值.类似问题,在高考命题中反复出现,本题只是改变了叙述方式.50.答案:(6,0),(-4,0)解析:令⎩⎨⎧'='=-yy x x 1原方程化为标准形式191622='-'y x .∵a 2=16,b 2=9,∴c 2=25,c =5,在新坐标系下焦点坐标为(±5,0). 又由⎩⎨⎧='=±='=-051y y x x 解得⎩⎨⎧==06y x 和⎩⎨⎧=-=04y x①②所以焦点坐标为(6,0),(-4,0). 51.答案:(-4,0),(6,0)解析:由⎩⎨⎧=+=θθtan 31sec 4y x得⎪⎪⎩⎪⎪⎨⎧==-θθtan 3sec 41y x 由③2-④2,得916)1(22yx --=1.令⎩⎨⎧'='=-y y x x 1把上式化为标准方程为91622y x '-'=1. 在新坐标系下易知焦点坐标为(±5,0),又由⎩⎨⎧='=±='=-051y y x x解得⎩⎨⎧==06y x 和⎩⎨⎧=-=04y x ,所以焦点坐标为(6,0),(-4,0). 52.答案:21解析:由题意知过F 1且垂直于x 轴的弦长为a b 22∴c ca ab -=222 ∴c a 12=∴21=a c ,即e =21评述:本题重点考查了椭圆的基本性质.53.答案:(2,2)解析:将曲线方程化为(y -2)2=-4(x -2).令x ′=x -2,y ′=y -2,则y ′2=-4x ′,∴h =2,k =2 ∴坐标原点应移到(2,2).① ② ③ ④54.答案:316 解析:如图8—15所示,设圆心P (x 0,y 0)则|x 0|=2352+=+a c =4,代入16922y x -=1,得y 02=9716⨯ ∴|OP |=3162020=+y x . 评述:本题重点考查双曲线的对称性、两点间距离公式以及数形结合的思想. 55.答案:(4,2)解析:将x -y =2代入y 2=4x 得y 2-4y -8=0,由韦达定理y 1+y 2=4,AB 中点纵坐标 y =221y y +=2,横坐标x =y +2=4.故AB 中点坐标为(4,2). 评述:本题考查了直线与曲线相交不解方程而利用韦达定理、中点坐标公式以及代入法等数学方法.56.答案:(-4,0)解析:原方程消去参数θ,得92522y x +=1 ∴左焦点为(-4,0). 57.答案:(1,-1)解析:将4x 2-8x +y +5=0配方,得(x -1)2=41-(y +1), 令⎩⎨⎧'=+'=-y y x x 11则⎩⎨⎧-'=+'=.1,1y y x x 即新坐标系的原点在原坐标系中的坐标为(1,-1).58.答案:4解析:∵抛物线y 2=2px (p >0)的焦点坐标是(2p,0),由两点间距离公式,得223)22(++p=5. 解得p =4. 59.答案:2解析:已知圆的方程为(x -3)2+y 2=42,∴圆心为(3,0),半径r =4. ∴与圆相切且垂直于x 轴的两条切线是x =-1,x =7(舍) 而y 2=2px (p >0)的准线方程是x =-2p. 图8—15∴由-2p=-1,得p =2,∴p =2. 60.答案:4解析:如图8—16,抛物线的焦点坐标为F (4a-1,0),若l 被抛物线截得的线段长为4,则抛物线过点A (4a-1,2),将其代入方程y 2=a (x +1)中得 4=a (4a-1+1),a =±4,因a >0,故a =4. 评述:本题考查了抛物线方程及几何性质,由对称性设焦点坐标以及数形结合法、待定系数法、代入法等基本方法.61.答案:4解析:如图8—17,抛物线y 2=4(x +1)中,p =2,2p=1,故可求抛物线的焦点坐标为(0,0),于是直线L 与y 轴重合,将x =0代入y 2=4(x +1)中得y =±2,故直线L 被抛物线截得的弦长为4.62.答案:x 2+(y -1)2=163.答案:y =±43x 解析:把原方程化为标准方程,得91622y x=1 由此可得a =4,b =3,焦点在x 轴上, 所以渐近线方程为y =±ab x ,即y =±43x .64.答案:y 2=-8x +8解析:由抛物线定义可知点的轨迹为抛物线,焦点为A (-1,0),准线为x =3.所以顶点在(1,0),焦点到准线的距离p =4,开口向左.∴y 2=-8(x -1),即y 2=-8x +8. 65.答案:x =3 (x -2)2+y 2=1解析:原方程可化为y 2=-4(x -2),p =2,顶点(2,0),准线x =2p+3, 即x =3,顶点到准线的距离为1,即为半径,则所求圆的方程是(x -2)2+y 2=1.图8—16图8—1766.答案:(0,-3),(0,3) 67.解:(1)椭圆C 的焦点在x 轴上,由椭圆上的点A 到F 1、F 2两点的距离之和是4,得2a =4,即a =2.又点A (1,23)在椭圆上,因此222)23(21b +=1得b 2=3,于是c 2=1.所以椭圆C 的方程为3422y x +=1,焦点F 1(-1,0),F 2(1,0). (2)设椭圆C 上的动点为K (x 1,y 1),线段F 1K 的中点Q (x ,y )满足:2,2111yy x x =+-=, 即x 1=2x +1,y 1=2y . 因此3)2(4)12(22y x ++=1.即134)21(22=++y x 为所求的轨迹方程.(3)类似的性质为:若M 、N 是双曲线:2222by a x -=1上关于原点对称的两个点,点P是双曲线上任意一点,当直线PM 、PN 的斜率都存在,并记为k PM 、k PN 时,那么k PM 与k PN之积是与点P 位置无关的定值.设点M 的坐标为(m ,n ),则点N 的坐标为(-m ,-n ),其中2222bn a m -=1.又设点P 的坐标为(x ,y ),由mx ny k m x n y k PN PM++=--=,, 得k PM ²k PN =2222m x n y m x n y m x n y --=++⋅--,将22222222,a b n b x a b y =-=m 2-b 2代入得k PM ²k PN =22ab .评述:本题考查椭圆的基本知识,求动点轨迹的常用方法.第(3)问对考生的逻辑思维能力、分析和解决问题的能力及运算能力都有较高的要求,根据提供的信息,让考生通过类比自己找到所证问题,这是高考数学命题的方向,应引起注意.68.解:(1)设F 2(c ,0)(c >0),P (c ,y 0),则2222b y a c -=1.解得y 0=±ab 2∴|PF 2|=ab 2在直角三角形PF 2F 1中,∠PF 1F 2=30°解法一:|F 1F 2|=3|PF 2|,即2c =ab 23将c 2=a 2+b 2代入,解得b 2=2a 2 解法二:|PF 1|=2|PF 2|由双曲线定义可知|PF 1|-|PF 2|=2a ,得|PF 2|=2a .∵|PF 2|=a b 2,∴2a =ab 2,即b 2=2a 2,∴2=a b故所求双曲线的渐近线方程为y =±2x .69.(Ⅰ)解:由椭圆定义及条件知2a =|F 1B |+|F 2B |=10,得a =5,又c =4 所以b =22c a -=3.故椭圆方程为92522y x +=1. (Ⅱ)由点B (4,y B )在椭圆上,得 |F 2B |=|y B |=59.(如图8—18) 因为椭圆右准线方程为x =425,离心率为54 根据椭圆定义,有|F 2A |=54(425-x 1),|F 2C |=54(425-x 2)由|F 2A |,|F 2B |,|F 2C |成等差数列,得54(425-x 1)+54(425-x 2)=2³59由此得出x 1+x 2=8.设弦AC 的中点为P (x 0,y 0) 则x 0=28221=+x x =4. (Ⅲ)由A (x 1,y 1),C (x 2,y 2)在椭圆上,得图8—18⎪⎩⎪⎨⎧⨯=+⨯=+25925925925922222121y x y x 由④-⑤得9(x 12-x 22)+25(y 12-y 22)=0. 即)))(2(25)2(921212121x x y y y y x x --+++=0(x 1≠x 2) 将kx x y y y y y x x x 1,2,422121021021-=--=+==+(k ≠0)代入上式,得 9³4+25y 0(-k1)=0(k ≠0). 由上式得k =3625y 0(当k =0时也成立). 由点P (4,y 0)在弦AC 的垂直平分线上,得y 0=4k +m . 所以m =y 0-4k =y 0-925y 0=-916y 0. 由P (4,y 0)在线段BB ′(B ′与B 关于x 轴对称,如图8—18)的内部,得-59<y 0<59. 所以-516<m <516. 注:在推导过程中,未写明“x 1≠x 2”“k ≠0”“k =0时也成立”及把结论写为“-516≤m ≤516”的均不扣分. 70.解:设点P 的坐标为(x ,y ),依题设得||||x y =2,即 y =±2x ,x ≠0 ① 因此,点P (x ,y )、M (-1,0)、N (1,0)三点不共线,得 ||PM |-|PN ||<|MN |=2 ∵||PM |-|PN ||=2|m |>0 ∴0<|m |< 1④⑤因此,点P 在以M 、N 为焦点,实轴长为2|m |的双曲线上,故112222=--m y m x ②将①式代入②,并解得x 2=mm m 51)1(22--∵1-m 2>0 ∴1-5m 2>0 解得0<|m |<55. 即m 的取值范围为(-55,0)∪(0,55). 71.(Ⅰ)解:由△OBC 三顶点坐标O (0,0),B (1,0),C (b ,c )(c ≠0),可求得重心G (3,31c b +),外心F (cb c b 2,2122-+),垂心H (b ,c b b 2-). 当b =21时,G 、F 、H 三点的横坐标均为21,故三点共线; 当b ≠21时,设G 、H 所在直线的斜率为k GH ,F 、G 所在直线的斜率为k FG . 因为)21(33313222b c b b c b b c b b c k GH--+=-+--=,)21(332131232222b c b b c b c b c b c k FG--+=-+-+-=,所以,k GH =k FG ,G 、F 、H 三点共线.综上可得,G 、F 、H 三点共线.(Ⅱ)解:若FH ∥OB ,由k FH =)21(3322b c bb c --+=0,得3(b 2-b )+c 2=0(c ≠0,b ≠21),。

(完整word版)圆锥曲线高考真题汇编(2013--2019新课标卷)(2019)

(完整word版)圆锥曲线高考真题汇编(2013--2019新课标卷)(2019)

解析几何高考真题1、【2019年新2文理】若抛物线22y px =(p>0)的焦点是椭圆2213x y p p+=的一个焦点,则p=( ) A.2 B.3 C.4 D.82、【2019年新2文理】设F 为双曲线C:22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点,若PQ OF =,则C 的离心率为( )B.C. 23、【2019新1文理】已知双曲线C:22221(0,0)x y a b a b-=>>D 的左、右焦点分别为12,F F ,过1F 的直线与C的两条渐近线分别交于A,B 两点,若112,0F A AB FB F B =⋅=u u u r u u u r u u u r u u u u r,则C 的离心率为________4、【2019新1文理】已知椭圆C 的焦点为12(1,0),(1,0)F F -,过2F 的直线与C 交于A,B 两点2212,AF F B AB BF ==,则C 的方程为( )A.2212x y += B.22132x y += C.22143x y += D.22154x y += 5、【2019新3文理】10.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为( )ABC.D.6、【2019新3文理】15.设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.7、【2018新2文理】5.双曲线,则其渐近线方程为( )A .B .C .D .22221(0,0)x y a ba b-=>>y =y =2y x =y =8、【2018新2理】12.已知,是椭圆的左、右焦点,是的左顶点,点在过的直线上,为等腰三角形,,则的离心率为( ) A .B .C .D .9、【2018新2文】11.已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为() A . B .CD10、【2018新1理】8.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为的直线与C 交于M ,N 两点,则=()A .5B .6C .7D .811、【2018新1理】11.已知双曲线C:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M、N .若为直角三角形,则|MN |=( ) A .B .3C .D .412、【2018新1文】4.已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B.12C D 13、【2018新1文】15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________ 14、【2018新3文理】6.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是( ) A .B .C .D .15、【2018新3理】11.设是双曲线()的左,右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为( )A B .2 C D16、【2018新3理】16.已知点和抛物线,过的焦点且斜率为的直线与交于,1F 2F 22221(0)x y C a b a b+=>>:A C PA 12PF F △12120F F P ∠=︒C 231213141F 2F C P C 12PF PF ⊥2160PF F ∠=︒C 12-123FM FN ⋅u u u u r u u u r2213x y -=OMN △3220x y ++=x y A B P ()2222x y -+=ABP △[]26,[]48,⎡⎣12F F ,22221x y C a b-=:00a b >>,O 2F C P 1PF =C ()11M -,24C y x =:C k C A两点.若,则________.17、【2018新3文】10.已知双曲线,则点到的渐近线的距离为() AB .CD .18、【2017新2理】9. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2BCD 19、【2017新2理】16. 已知F 是抛物线C :28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则FN = .20、【2017新1理】10.已知F 为抛物线2:4C y x =的焦点,过F 作两条互相垂直的直线12,l l ,直线1l 与C交于A 、B 两点,直线2l 与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16B .14C .12D .1021、【2017新1理】15.已知双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为A ,以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点。

圆锥曲线历年高考题(整理)附答案

圆锥曲线历年高考题(整理)附答案

圆锥曲线历年高考题(整理)附答案数学圆锥曲线测试高考题一、选择题:1.(2006全国II)已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一条渐近线方程为$y=x$,则双曲线的离心率为()。

A。

$\frac{\sqrt{2}}{2}$ B。

$\frac{\sqrt{3}}{2}$ C。

$\frac{\sqrt{5}}{2}$ D。

$\frac{\sqrt{7}}{2}$2.(2006全国II)已知$\triangle ABC$的顶点B、C在椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则$\triangle ABC$的周长是()。

A。

2.B。

3.C。

4.D。

63.(2006全国卷I)抛物线$y=-x^2$上的点到直线$4x+3y-8=0$的距离的最小值是()。

A。

2.B。

$\frac{4}{3}$。

C。

$\sqrt{2}$。

D。

$\sqrt{3}$4.(2006广东高考卷)已知双曲线$3x^2-y^2=9$,则双曲线右支上的点P到右焦点的距离与点P到右准线的距离之比等于()。

A。

2.B。

$\frac{1}{2}$。

C。

$\sqrt{2}$。

D。

45.(2006辽宁卷)方程$2x^2-5x+2=0$的两个根可分别作为()。

A。

一椭圆和一双曲线的离心率B。

两抛物线的离心率C。

一椭圆和一抛物线的离心率 D。

两椭圆的离心率6.(2006辽宁卷)曲线$\frac{x^2}{m}+\frac{y^2}{6-m}=1(m<6)$与曲线$\frac{x^2}{5}+\frac{y^2}{m-4}=1(5<m<9)$的()。

A。

焦距相等。

B。

离心率相等。

C。

焦点相同。

D。

准线相同7.(2006安徽高考卷)若抛物线$y=2px$的焦点与椭圆$\frac{x^2}{4}+\frac{y^2}{9}=1$的右焦点重合,则p的值为()。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省高考数学圆锥曲线真题
22
04. 若椭圆 x 2 y 2 ab 1(a > b > 0)的左、右焦点分别为 F 1、F 2, 线段 F 1F 2被抛物线 y 2=2 bx 的焦点
分成 5∶ 3的两
段 , 则此椭圆的离心率为 16
(A) 1167
05.过双曲线
2
x 2 a 4 17 (B) 17 2 b y
2 1(a b 4 (C)45 (D) 255 5 0,b 0) 的左焦点且垂直于 x 轴的直线与双曲线相交于 M 、 N 两点 , 以 MN 为直径的圆恰好过双曲线的右顶点 则双曲线的离心率等于 07. 已知双曲线 2 x 2 a
2
y 2 1(a 0,b b 2 0) 的左、右焦点分别为 F 1,F 2, P 是准线上一点 , PF 1 PF 2,|PF 1| |PF 2| 4ab , 则双曲线的离心率是 B ) 3 (C ) 2 (D ) 3 △ ABP 的面积为定
则动点 P 的轨迹是A . 圆 B .
椭圆
C . 一条直线
D . 两条平行直线
09. 2 x 过双曲线 2
a
2 y
b 2
1(a 0,b 0) 的右顶
点 条渐近线的交点分别为 B,C uuur .若 AB 1 uuur BC , 2
A . 2 B
.3 C 08.如图 , AB 是平面 的斜.线.段. ) B A P
第 10 题)
A 作斜率为 1的直线 , 该直线与双曲线的两
则双曲线的离心率
是 ( ) .5 D . 10 A 为斜足 , 若点 P 在平面 内运动 , 使得 点 A (0,2) 。

若线段
FA 的中点 B 在抛物线上 2
10. (13)设抛物线 y 2 2px (p 0) 的焦点为 F,
则 B 到该抛物线准线的距离为 近线与以 C 1 的长轴为直径的圆相交于 A, B 两点 (
) 13 2 B . a 2= 13
1 D .
A .a 2=
C .b 2=
b 2=2
2 2
2
11. 设 F 1, F 2分别为椭圆 x
2
3 y 2
1的
左、
右焦点
22 x y 2 11. 已知椭圆 C 1: 2 2 =1 (a > b > 0)与双曲线 C 2: x 2 ab 则点 A 的坐标是 _______
2
y
1有公共的焦点 , C 2 的一条渐
4
若 C 1 恰好将线段 AB 三等分 , 则
uuur uuuur
点 A,
B 在椭圆上. 若 F 1A 5F 2B ,
22
xy
12. F 1,F 2 分别是双曲线 C : 2 2 1( a,b > 0)的在左、右焦点 , B 是虚轴的端点 , ab
P,Q 两点 , 线段 PQ 的垂直平分线与 x 轴交与点 M,
到直线 AP 的距离为 1,
1)若直线 AP 的斜率为 k, 且|k| [ 33, 3 ], 求实数
3
m 的取值范
围;
2)当 m= 2 +1 时,
△APQ 的内心恰好是点 M,
求此双曲线的方程。

05. 如图 , 已知椭圆的中心在坐标原点 , 焦点 F 1、 F 2 在 x 轴上 , 左准线 l 与
x 轴的交点为 M,
|MA 1|∶|A 1F 1|=2∶1.
长轴 A 1A 2 的长为 4,
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线 l 1 : x m (| x| 1), P 为l 1上的动
点 的坐标(用 m 表示) . 使 F 1PF 2 最大的点 P 记为 Q,
求点 Q
y
直线
F 1B 与 C 的两条渐近线分别教育 |MF 2|=|F 1F 2|,则 C 的离心率是 A. 2 3 B 6
C..
2
32
D.
04. 已知双曲线的中心在原点
右顶点为 A (1,0), 点 P 、 Q 在双曲线的右支上 ,
M(m,0)
2 x
2
直线 y kx b 与椭圆
y 2
1交于 A 、B 两点, 4
0 b 1 的条件下 , S 的最大值;
1时 , 求直线 AB 的方程。

06.如图 ,
22
xy
椭圆 2
= 1(a >b >0)与过点
a 2 b
A (2, 0)B(0,1) 的直线有且只有一个公共点
T, 且椭圆的离心率
2
e= .(Ⅰ)求椭圆方程; (Ⅱ)设F 1、F 2分别为椭圆的左、 右焦点 ,
M 为线段 AF 1 的中点 ,
07 如图 ,
Ⅰ)求在 k 0, Ⅱ)当 |AB | 2,S
记 ABC 的面积为 S 。

13
08. 已知曲线 C 是到点 P 12,83 和到直线 y
l 是过点 Q ( 1,0) 的直线 , M 是 C 上(不在 MB x 轴(如图).
(Ⅰ)求曲线 C 的方程;
2
QB
(Ⅱ)求出直线 l 的方程 , 使得 为常数.
QA
l 上)的动点; A , B 在 l 上 , MA l
第 20 题)
1.
(I )求椭圆 C 1的方程;
(II )设点 P 在抛物线 C 2:y 处
的切线与 C 1交于点 M ,N 点的横坐标相等时 ,
2 y 09 已知椭圆 C 1 :
2 a x 2 b 2
1(a b 0) 的右顶点为 A(1,0) ,
过 C 1 的焦点且垂直长轴的弦长为
5
距离相等的点的轨迹.
8
2
x 2 h (h R) 上,
C 2 在点
.当线段 AP 的中点与 MN 的中
求 h 的最小值.
10.已知m 1, 直线l :x my
22
mx
0, 椭圆C : 2
2 m2
2
y21,F1,F2 分别为椭圆 C 的左、右焦
点.
I)当直线l 过右焦点F2 时,求直线l 的方
程;
II )设直线l 与椭圆 C 交于A, B 两点, AF1F2, BF1F2的重心分别为G,H.若原点O 在以线

GH 为直径的圆内, 求实数m 的取值范围.
A B
12. 如图, 为10 ,
2 x 椭圆C :
2 a
b2
1(a b 0) 的离心率为1 ,
2 不.过.原.点.O的直线l与C相交于A, B两点,
Ⅰ)求椭圆 C 的方程;
Ⅱ)求△ APB 面积取最大值时直线l 的方程。

11. 已知抛物线C1:x2=y, 圆C2 :x2+(y-4)2=1 的圆心为点M.
(1)求点M 到抛物线C1 的准线的距离;
(2)已知点P是抛物线C1上一点(异于原点), 过点P作圆C2的两条切线, A, B两点, 若过M, P两点的直线l 垂直于AB, 求直线l 的方程.。

相关文档
最新文档