线性代数与概率统计——行列式(1)
《九章算术》行列式-概述说明以及解释
《九章算术》行列式-概述说明以及解释1.引言1.1 概述九章算术是中国古代数学经典之一,行列式是九章算术中的重要内容之一。
在数学研究和实际应用中,行列式有着广泛的应用和重要性。
本文旨在介绍九章算术中的行列式,包括其定义和性质,计算方法以及在数学和应用领域中的具体应用。
行列式可以看作是一个方阵所具有的一种性质或特征,它具有许多重要的数学性质。
九章算术中,行列式的定义和性质被详细研究和总结,并被广泛应用于解决各种数学问题。
行列式的计算方法也是九章算术中的重要内容之一,通过一系列的运算和变换,可以得到方阵的行列式值。
行列式作为一种数学工具,不仅在纯数学研究中发挥着重要的作用,同时也有广泛的应用领域。
在线性代数、概率论、统计学等数学领域中,行列式被用于解决线性方程组、计算变量相关性、判断矩阵的可逆性等问题。
此外,在工程、物理、经济学等应用领域中,行列式也被广泛应用于解决实际问题,例如电路分析、力学问题、经济模型等。
本文将从九章算术的角度出发,详细介绍行列式的定义和性质,阐述行列式的计算方法,并举例说明行列式在数学和应用领域中的具体应用。
通过深入理解九章算术中行列式的内容,我们可以更好地应用行列式解决实际问题,并探索行列式在未来的发展和研究方向。
总之,行列式是九章算术中的重要组成部分,具有广泛的应用和重要性。
通过对行列式的研究和应用,我们可以更好地理解和应用九章算术,同时也可以在数学和应用领域中解决实际问题,推动行列式研究的发展。
在接下来的内容中,我们将详细介绍九章算术中行列式的各个方面,以期让读者对行列式有一个全面且深入的了解。
1.2文章结构文章结构部分的内容:文章结构是指文章的整体组织和布局方式,它对于读者来说非常重要,可以为读者提供一个清晰的框架,使他们能够更好地理解和掌握文章的内容。
本文将按照以下结构展开叙述:2.正文:2.1 九章算术简介在本部分中,将对九章算术的起源、发展以及其在数学领域中的地位和作用进行介绍。
矩阵的行列式定义
矩阵的行列式定义矩阵是线性代数中的一个重要概念,与之紧密相关的是矩阵的行列式。
行列式是一个数学工具,用于描述矩阵的性质和特征。
在本文中,我们将探讨矩阵的行列式定义及其相关概念。
一、矩阵的概念矩阵是一个由数字组成的矩形阵列,由m行和n列组成,通常记作A=[a_{ij}],其中i表示行数,j表示列数。
每个元素a_{ij}都是一个实数或复数。
矩阵的大小由行数和列数决定,常用的矩阵有方阵、行向量和列向量。
二、行列式的定义行列式是一个与方阵相关的数值。
对于一个n阶方阵A=[a_{ij}],其行列式记作det(A),其中n表示方阵的阶数。
行列式的计算方法是通过对矩阵元素进行特定运算得到的。
三、行列式的计算方法1. 二阶行列式的计算方法对于一个2阶方阵A=[a_{ij}],其行列式的计算方法为:det(A) = a_{11} * a_{22} - a_{12} * a_{21}。
2. 三阶行列式的计算方法对于一个3阶方阵A=[a_{ij}],其行列式的计算方法为:det(A) = a_{11} * a_{22} * a_{33} + a_{12} * a_{23} * a_{31} + a_{13} * a_{21} * a_{32} - a_{13} * a_{22} * a_{31} - a_{12} * a_{21} * a_{33} - a_{11} * a_{23} * a_{32}。
对于更高阶的行列式,其计算方法可以通过递推的方式得到。
行列式的计算方法较为繁琐,但是对于线性代数的研究和应用起着重要的作用。
四、行列式的性质1. 行列式的值与矩阵的行列有关,与矩阵的元素排列顺序有关。
行列式的值随着矩阵元素的变化而变化。
2. 行列式的值可以为0,也可以为正数或负数。
当行列式的值为0时,表示矩阵的行或列之间存在一定的相关性,线性无关性受到限制。
3. 行列式的值可以用于判断矩阵的可逆性。
当行列式的值不为0时,矩阵是可逆的;当行列式的值为0时,矩阵是不可逆的。
考研基础复习(线代)行列式
a1 0 a2 b3 0 0 b2 a3 0 b1 0 0 a4 0 0 b4
四阶行列式
D4
的值等于
(
).
(A) a 1 a 2 a 3 a 4 b1 b2 b3 b4 ;
(B) a 1 a 2 a 3 a 4 b1 b2 b3 b4 ;
(C) ( a1a 2 b1b2 )( a 3 a 4 b3 b4 ) ; (D) ( a 2 a 3 b2 b3 )( a 1 a 4 b1 b4 ) .
.
计算行列式 D
二、典型题型分析及举例 ——题型II:低阶行列式的计算
例1.5(续) 设 , , 是方程 x 3 px 2 q 0 的三个根,
计算行列式:
D
,
——题型II:低阶行列式的计算
a11 a 21 a 31 a12 a 22 a 32 a13 a 23 a 33
a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32 .
一、行列式的基本内容
——2、阶行列式的定义
n阶行列式的定义:
a12 a 22 a1 n a2n
定理 2 如果线性方程组(1)无解或有两个不同的解, 则它的系数行列式必为零.
a11 x1 a12 x 2 a1 n x n 0 对于齐次线性方程组: a 21 x1 a 22 x 2 a 2 n x n 0 a n1 x1 a n 2 x 2 a nn x n 0
二、典型题型分析及举例 ——题型I:抽象行列式的计算
2020考研数学:线性代数常考题型归纳
2020考研数学:线性代数常考题型归纳摘要:线性代数是考研数学必考的内容,它和高数与概率统计相比,有其自身的特点,而我们同学们在学习这门课时应该要注重对知识点的总结归纳。
下面老师为大家分享2020考研数学线性代数常考题型,希望对同学有所帮助。
线性代数还是以计算题为主,证明题为辅,因此,这要求我们必须注重计算能力的培养及提高。
现在的考研趋势是越来越注重基础,淡化技巧,下面老师就具体落实到一个章节一个章节的来谈。
1、关于行列式它在整个考研数学试卷中所占分量不是很大,一般主要是以填空选择题为主,这一块是考研数学中必考内容,它不单单考察行列式的概念、性质、运算,与行列式有关的考题也是很多的,比如在逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组解的判断、特征值的求解、正定二次型与正定矩阵的判断等问题中都会用到行列式的有关计算。
因此,对于行列式的计算方法我们一定要熟练掌握。
2、关于矩阵矩阵是线性代数的核心知识,它是后面其他各章节的基础,在向量组、线性方程组、特征值、二次型中均有体现。
矩阵的概念、运算及理论贯穿整个线性代数的知识部分。
这部分的考点涉及到伴随矩、逆矩阵、初等矩阵、矩阵的秩以及矩阵方程,这些内容是有关矩阵知识中的一类常见的试题。
3、关于向量它既是重点又是难点,主要是因为其比较抽象,因此很多考生对这一块比较陌生,进而就会导致我们同学们在学习理解以及做题上的困难。
这一部分主要是要掌握两类题型:一是关于一个向量能否由一组向量线性表出的问题,二是关于一组向量的线性相关性的问题。
而这两类题型我们一般是与非齐次线性方程组和齐次线性方程组一一对应来求解的。
4、关于线性方程组线性方程组在近些年出现的频率较高,几乎每年都有考题,它也是线性代数部分考查的重点内容。
所以对于线性方程组这一部分的内容,同学们一定要掌握。
其常见的题型如下:(1)线性方程组的求解(2)方程组解向量的判别及解的性质(3)齐次线性方程组的基础解系(4)非齐次线性方程组的通解结构(5)两个方程组的公共解、同解问题5、关于特征值、特征向量它也是线性代数的重点内容,在我们考研数学中一般都是题多分值大。
大学数学易考知识点线性代数与概率论
大学数学易考知识点线性代数与概率论大学数学易考知识点:线性代数与概率论线性代数是大学数学中非常重要且基础的一门学科,它涉及到向量空间、矩阵、行列式、线性方程组等内容。
概率论则是研究随机事件发生的概率及其规律性的数学学科。
在大学数学考试中,线性代数与概率论是比较易于考察且知识点较为独立的部分。
本文将介绍大学数学考试中线性代数与概率论的一些常见易考知识点。
一、线性代数1. 向量空间与线性变换向量空间是线性代数的核心概念之一,在考试中常涉及到向量空间的基本性质、子空间、线性组合、线性相关性、线性无关性等内容。
此外,线性变换也是考察的重点,包括线性变换的定义、性质、矩阵表示及其相关定理等。
2. 矩阵与行列式矩阵是线性代数的重要工具,考试中经常涉及到矩阵的基本运算、特殊矩阵、矩阵的秩与逆等知识点。
行列式也是考试的常见题型,包括行列式的定义、性质、展开及其应用等内容。
3. 线性方程组与解空间线性方程组是线性代数的基本问题之一,考试中常涉及到线性方程组的求解、解的结构、解的个数等知识点。
此外,解空间也是考查的重点,包括零空间、列空间、行空间等相关概念及其性质。
4. 特征值与特征向量特征值与特征向量是线性代数中重要的概念,考试中常涉及到特征值与特征向量的定义、性质、求解、对角化等知识点。
矩阵的对角化定理也是考查的重点,需掌握其条件与应用。
二、概率论1. 随机变量与概率分布随机变量是概率论的基础,考试中常涉及到随机变量的定义、分类、概率分布、期望、方差等知识点。
常见的离散型随机变量包括二项分布、泊松分布等;常见的连续型随机变量包括均匀分布、正态分布等。
2. 大数定律与中心极限定理大数定律与中心极限定理是概率论的重要定理,考试中常涉及到大数定律的弱/强收敛形式、伯努利大数定律、切比雪夫大数定律等;中心极限定理的常见形式包括林德伯格-列维中心极限定理、中心极限定理的矩形式等。
3. 随机过程与马尔可夫链随机过程是概率论的重要内容,考试中常涉及到随机过程的定义、分类、马尔可夫性质等知识点。
考研数学一详细知识点总结
考研数学一详细知识点总结一、线性代数1. 行列式行列式是线性代数中的一个重要概念,它是一个具有特定数学性质的标量函数,它可以对矩阵进行某种代数计算,得到一个数。
通过行列式的性质和运算法则,我们可以求解线性方程组的解,判断矩阵的逆矩阵是否存在等。
行列式的基本定义、性质和运算法则是线性代数中的重要基础知识点。
2. 矩阵与向量空间矩阵是线性代数中的另一个重要概念,它是一个矩形数组,它是向量空间的一种表达形式。
矩阵的定义、运算法则、转置矩阵、伴随矩阵、特征值和特征向量等都是线性代数中的重要知识点。
3. 线性变换与矩阵的相似变换线性变换是线性代数中的一个重要概念,它是定义在向量空间上的一个运算,将一个向量空间中的一个向量映射到另一个向量空间中的一个向量。
线性变换与矩阵的相似变换在数学和工程中有着广泛的应用,对于理解线性代数的基本概念和运用都具有重要意义。
4. 线性方程组线性方程组是线性代数中的一个重要概念,它是由一系列线性方程构成的方程组。
通过行列式和矩阵的知识可以求解线性方程组的解,判断矩阵的逆矩阵是否存在等。
5. 向量的线性相关性向量的线性相关性是线性代数中的另一个重要概念,它是判断向量空间中向量之间的线性组合是否有零解的一个关键概念。
向量的线性相关性的性质、判断方法和应用是线性代数中的重要知识点之一。
6. 最小二乘法最小二乘法是线性代数中的另一个重要概念,它是一种用于数据拟合和参数估计的数学方法。
通过最小二乘法可以得到一个最优的拟合曲线或者参数估计,它在数学、统计学和工程领域中都有着广泛的应用。
二、概率统计1. 随机事件与概率随机事件是概率统计中的一个重要概念,它是指在一定条件下,结果是不确定的事件。
概率是描述随机事件发生可能性的一种数学方法,它是随机事件发生可能性的度量标准。
随机事件的基本性质和概率的基本性质是概率统计中的基础知识点。
2. 条件概率与独立性条件概率是指在已知一件事情发生的情况下,另一件事情发生的可能性。
考研数学线性代数必考的知识点
考研数学线性代数必考的知识点一、行列式与矩阵第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。
行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算二、向量与线性方程组三、特征值与特征向量相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。
其原因是解决相关题目要用到线代中的大量内容,既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。
四、二次型本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵A存在正交矩阵Q使得A可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。
考研数学概率以大纲为本夯实基础从考试的角度,大家看看历年真题就发现比较明显的规律:概率的题型相对固定,哪考大题哪考小题非常清楚。
概率常考大题的地方是:随机变量函数的分布,多维分布(边缘分布和条件分布),矩估计和极大似然估计。
其它知识点考小题,如随机事件与概率,数字特征等。
从学科的角度,概率的知识结构与线性代数不同,不是网状知识结构,而是躺倒的树形结构。
第一章随机事件与概率是基础知识,在此基础上可以讨论随机变量,这就是第二章的内容。
随机变量之于概率正如矩阵之于线性代数。
考生也可以看看考研真题,数一、数三概率考五道题,这五题的第一句话为“设随机变量X……”,“设总体X……”,“设X1,X2,…,Xn为来自X的简单随机样本”,无论“随机变量”、“总体”和“样本”本质上都是随机变量。
所以随机变量的理解至关重要。
讨论完随机变量之后,讨论其描述方式。
分布即为描述随机变量的方式。
分布包括三种:分布函数、分布律和概率密度。
其中分布函数是通用的描述工具,适用于所有随机变量,分布律只针对离散型随机变量而概率密度只针对连续型随机变量。
之后讨论常见的离散型和连续性随机变量,考研范围内需要考生掌握七种常见分布。
介绍完一维随机变量之后,推广一下就得到了多维随机变量。
高等数学b大一知识点总结
高等数学b大一知识点总结大一高等数学B知识点总结高等数学B是大一学生在数学学科中的必修课程,是数学分析的进阶阶段。
它包含了微积分、线性代数和概率统计等重要内容。
在本文中,我将对大一高等数学B课程的重点知识进行总结。
一、微积分1. 极限与连续- 数列极限及其性质- 函数极限及其性质- 无穷小与无穷大- 连续的定义与性质2. 导数与微分- 函数的导数定义及性质- 常见函数的导数- 高阶导数与隐函数求导- 微分的定义及性质3. 微分中值定理与导数应用- Rolle定理、拉格朗日中值定理、柯西中值定理 - 函数的单调性与极值- 函数图像的描绘与分析- 泰勒公式及其应用4. 不定积分- 不定积分的概念与性质- 基本不定积分表与常用积分公式- 分部积分法与换元积分法- 定积分的定义与性质5. 定积分与反常积分- 定积分的几何与物理意义- 定积分的计算方法- 反常积分的概念与判敛方法 - 广义积分的收敛性与计算二、线性代数1. 行列式与矩阵- 行列式的定义与性质- 行列式的计算方法- 矩阵的基本概念与运算- 逆矩阵及其求解2. 线性方程组- 线性方程组的解的存在唯一性 - 线性方程组的矩阵表示- 线性方程组的解的判定条件 - 矩阵的秩与方程组解的关系3. 向量空间与线性变换- 向量空间的基本概念与性质- 子空间与线性相关性- 线性变换的定义与性质- 线性变换的标准矩阵表示4. 特征值与特征向量- 特征值与特征向量的定义与性质 - 特征值与特征向量的计算方法 - 对角化与相似矩阵- 线性变换的几何意义三、概率统计1. 随机变量与分布函数- 随机变量的定义与分类- 累积分布函数与概率密度函数- 常见离散型和连续型随机变量2. 随机变量的数字特征- 数学期望与方差的定义与计算- 切比雪夫不等式与大数定律- 常见离散型和连续型随机变量的数字特征3. 多维随机变量与联合分布- 二维随机变量的联合分布函数与密度函数 - 边缘分布与条件分布- 独立性与相关性4. 参数估计与假设检验- 参数估计的方法与性质- 置信区间与假设检验的基本概念- 常见参数的估计与假设检验方法以上是大一高等数学B课程的重点知识总结,希望能对你复习与巩固相关知识有所帮助。
行列式的计算例题
行列式的计算例题行列式是数学中非常重要的概念,它在线性代数、微积分和概率统计等学科中都有应用。
行列式在解线性方程组时,一般会遇到计算行列式的问题,下面通过几个例题,来给大家讲解如何正确的计算行列式。
例1:计算下列行列式的值$$begin{bmatrix}2 & -3 & 81 &2 & -12 & 1 & 4end{bmatrix}$$解:用二阶行列式公式,行列式计算为:$2times(2times4 - 1times-1) - (-3)times(1times4 - 2times-1)+ 8times(1times2 - 2times2)= -2+6+16 = 20$例2:计算下列行列式的值$$begin{bmatrix}1 & -2 & 8 & 34 & -5 & 7 & 26 & 0 & -1 & 43 & 2 & 9 & 5end{bmatrix}$$解:用三阶行列式公式,行列式计算为:$1times(-5times9 +7times2 + 2times-1)- -2times(4times9 + 7times4 + 2times-1)+ 8times(4times2 + 7times-5 + 2times0)- 3times(4times-1 + 7times3 + 2times8)= -264$例3:计算下列行列式的值$$begin{bmatrix}4 & 0 & -2 & 3-2 & 6 & 9 & 50 & -4 & -7 & 81 & -3 & 5 & 4end{bmatrix}$$解:用四阶行列式公式,行列式计算为:$4times(-4times5 + 9times4 - 7times-3)+ 0times(-2times5 + 9times-3 - 7times1)- -2times(-2times5 + 9times1 - 7times-2)+ 3times(-2times4 + 9times-2 - 7times0)= 128$以上就是关于行列式的计算例题的简单介绍,从上面的例题中可以看出,行列式的计算要根据行列式的行列数量来选择相应的公式,按照规定的步骤按照公式来计算,就能准确的得到行列式的值。
线性代数与概率统计及答案
线性代数部分第一章 行列式一、单项选择题1.=0001001001001000 .A 0B 1-C 1D 22.=0001100000100100 .A 0B 1-C 1D 2 3.若a a a a a =22211211,则=21112212ka a ka a .A kaB ka -C a k 2D a k 2-4. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x .A 0B 3-C 3D 25. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.A 1-B 2-C 3-D 06.设行列式na a a a =22211211,m a a a a =21231113,则行列式232221131211--a a a a a a 等于A. m n -B.)(-n m +C. n m +D.n m -二、填空题1. 行列式=0100111010100111.2.行列式010...0002...0.........000 (10)0 0n n =-.3.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .4.行列式=--+---+---1111111111111111x x x x .5.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.6.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.7.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题2.yxyx x y x y y x y x+++;3.解方程0011011101110=x x xx ;6. 111...1311...1112 (1).........111...(1)b b n b----7. 11111222123111...1..................nb a a a b b a a b b b a ; 8.121212123.....................n nn x a a a a x a a a a x a a a a x;四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a dcbad c b a +++------=.第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是 ;a 22A A =b ))((22B A B A B A +-=- c AB A A B A -=-2)( d T T T B A AB =)( 2.设方阵A 、B 、C 满足AB=AC,当A 满足 时,B=C;a AB =BAb 0≠Ac 方程组AX=0有非零解d B 、C 可逆 3.若A 为n 阶方阵,k 为非零常数,则=kA ;a A kb A kc A k nd A k n4.设A 为n 阶方阵,且0=A ,则 ;a A 中两行列对应元素成比例b A 中任意一行为其它行的线性组合c A 中至少有一行元素全为零d A 中必有一行为其它行的线性组合 5.设A 为n 阶方阵,*A 为A 的伴随矩阵,则 ; (a) a 1*-=A A b A A =* c 1*+=n AA d 1*-=n AA6. 设A ,B 为n 阶方矩阵,22B A =,则下列各式成立的是 ; a B A = b B A -= c B A = d 22B A = 7.设A 为n 阶可逆矩阵,则下面各式恒正确的是 ; a T A A 22= b 112)2(--=A Ac 111])[(])[(---=T T T A Ad T T T T A A ])[(])[(11--=8.已知⎪⎪⎪⎭⎫ ⎝⎛=113022131A ,则 ;a A A T =b *1A A =-c ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛113202311010100001Ad ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛113202311010100001A9.设I C B A ,,,为同阶方阵,I 为单位矩阵,若I ABC =,则 ;a I ACB =b I CAB =c I CBA =d I BAC = 10.n 阶矩阵A 可逆的充要条件是 ; a A 的每个行向量都是非零向量 b A 中任意两个行向量都不成比例c A 的行向量中有一个向量可由其它向量线性表示d 对任何n 维非零向量X ,均有0≠AX 11. 设矩阵A=1,2,B=⎪⎪⎭⎫ ⎝⎛4321,C⎪⎪⎭⎫⎝⎛=654321则下列矩阵运算中有意义的是A .ACB B .ABC C .BACD .CBA 12.设矩阵A,B 均为可逆方阵,则以下结论正确的是DA .⎪⎪⎭⎫ ⎝⎛B A 可逆,且其逆为⎪⎪⎭⎫ ⎝⎛--11B AB .⎪⎪⎭⎫ ⎝⎛B A 不可逆 C .⎪⎪⎭⎫ ⎝⎛B A 可逆,且其逆为⎪⎪⎭⎫ ⎝⎛--11A BD .⎪⎪⎭⎫ ⎝⎛B A 可逆,且其逆为⎪⎪⎭⎫ ⎝⎛--11B A13.已知向量TT )0,3,4,1(23,)1,2,2,1(2--=β+α---=β+α,则β+α=AA .T)1,1,2,0(-- B.T)1,1,0,2(-- C .T)0,2,1,1(-- D .T)1,5,6,2(---14.设A 和B 为n 阶方阵,下列说法正确的是CA. 若AB AC =,则B C =B. 若0AB =,则0A =或0B =C. 若0AB =,则0A =或0B =D. 若0A E -=,则A E =6、设两事件A二、填空题1.设A 为n 阶方阵,I 为n 阶单位阵,且I A =2,则行列式=A _______2.行列式=---000c b c a ba_______3.设A 为5阶方阵,*A 是其伴随矩阵,且3=A ,则=*A _______4.设4阶方阵A 的秩为2,则其伴随矩阵*A 的秩为_______ 三、计算题1.解下列矩阵方程X 为未知矩阵.1 223221103212102X ⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭ ;2 0101320100211100110X ⎛⎫⎛⎫⎛⎫ ⎪ ⎪=- ⎪ ⎪ ⎪-⎝⎭ ⎪ ⎪⎝⎭⎝⎭ ; 3 2AX A X =+,其中423110123A ⎛⎫⎪= ⎪⎪-⎝⎭;2.设A 为n 阶对称阵,且20A =,求A .3.设11201A ⎛⎫= ⎪⎝⎭,23423A ⎛⎫= ⎪⎝⎭,30000A ⎛⎫= ⎪⎝⎭,41201A ⎛⎫= ⎪⎝⎭,求1234A A A A ⎛⎫⎪⎝⎭.4.设211011101,121110110A B ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,求非奇异矩阵C ,使T A C BC =.四、证明题1. 设A 、B 均为n 阶非奇异阵,求证AB 可逆.2. 设0k A =k 为整数, 求证I A -可逆.4. 设n 阶方阵A 与B 中有一个是非奇异的,求证矩阵AB 相似于BA .5. 证明可逆的对称矩阵的逆也是对称矩阵.第三章 向量一、单项选择题1. 321,,ααα, 21,ββ都是四维列向量,且四阶行列式m =1321βααα,n =2321ααβα,则行列式)(21321=+ββαααn m a +)( n m b -)( n m c +-)( n m d --)(2. 设A 为n 阶方阵,且0=A ,则 ;成比例中两行(列)对应元素A a )( 线性组合中任意一行为其它行的A )b ( 零中至少有一行元素全为A c )( 线性组合中必有一行为其它行的A )d (3. 设A 为n 阶方阵,n r A r <=)(,则在A 的n 个行向量中 ;个行向量线性无关必有r a )(个行向量线性无关任意r )b (性无关组个行向量都构成极大线任意r c )(个行向量线性表示其它任意一个行向量都能被r )d (4. n 阶方阵A 可逆的充分必要条件是n r A r a <=)()( n A b 的列秩为)(零向量的每一个行向量都是非)(A c 的伴随矩阵存在)(A d5. n 维向量组12,,...,s ααα线性无关的充分条件是)(a 12,,...,s ααα都不是零向量)(b 12,,...,s ααα中任一向量均不能由其它向量线性表示 )(c 12,,...,s ααα中任意两个向量都不成比例 )(d 12,,...,s ααα中有一个部分组线性无关二、填空题1. 若T )1,1,1(1=α,T )3,2,1(2=α,T t ),3,1(3=α线性相关,则t=▁▁▁▁;2. n 维零向量一定线性▁▁▁▁关;3. 向量α线性无关的充要条件是▁▁▁▁;4. 若321,,ααα线性相关,则12,,...,s ααα)3(>s 线性▁▁▁▁关;5. n 维单位向量组一定线性▁▁▁▁;三、计算题 1. 设T )1,1,1(1λα+=,T )1,1,1(2λα+=,T )1,1,1(3λα+=,T),,0(2λλβ=,问1λ为何值时,β能由321,,ααα唯一地线性表示2λ为何值时,β能由321,,ααα线性表示,但表达式不唯一 3λ为何值时,β不能由321,,ααα线性表示 2. 设T )3,2,0,1(1=α,T )5,3,1,1(2=α,T a )1,2,1,1(3+=α,T a )8,4,2,1(4+=α,T b )5,3,1,1(+=β问: 1b a ,为何值时,β不能表示为4321,,,αααα的线性组合 2b a ,为何值时,β能唯一地表示为4321,,,αααα的线性组合 3. 求向量组T )4,0,1,1(1-=α,T )6,5,1,2(2=α,T )2,5,2,1(3=α,T )0,2,1,1(4--=α,T )14,7,0,3(5=α的一个极大线性无关组,并将其余向量用该极大无关组线性表示; 四、证明题1. 设2131222112,3,ααβααβααβ-=-=+=,试证321,,βββ线性相关;2. 设12,,...,n ααα线性无关,证明12231,,...,n αααααα+++在n 为奇数时线性无关;在n 为偶数时线性相关;第四章 线性方程组一、单项选择题1.设n 元齐次线性方程组0AX =的系数矩阵的秩为r ,则0AX =有非零解的充分必要条件是A r n =B r n <C r n ≥D r n >2.设A 是m n ⨯矩阵,则线性方程组AX b =有无穷解的充要条件是A ()r A m <B ()r A n <C ()()r Ab r A m =<D ()()r Ab r A n =<3.设A 是m n ⨯矩阵,非齐次线性方程组AX b =的导出组为0AX =,若m n <,则A AX b =必有无穷多解B AX b =必有唯一解C 0AX =必有非零解D 0AX =必有唯一解4.方程组1232332422(2)(3)(4)(1)x x x x x x λλλλ+-=⎧⎪+=⎨⎪-=----⎩无解的充分条件是λ=A 1B 2C 3D 45.方程组12323331224(1)(3))(1))x x x x x x x λλλλλλ++=-⎧⎪-=-⎪⎨=-⎪⎪-=---⎩有唯一解的充分条件是λ=A 1B 2C 3D 4 二、填空题1. 设A 为100阶矩阵,且对任意100维的非零列向量X ,均有0AX ≠,则A 的秩为 .2. 线性方程组1231212320200kx x x x kx x x x ++=⎧⎪+=⎨⎪-+=⎩仅有零解的充分必要条件是 .3. 设12,,s X X X 和1122s s c X c X c X +++均为非齐次线性方程组AX b =的解12,,s c c c 为常数,则12s c c c +++= .4. 若线性方程组AX b =的导出组与0(())BX r B r ==有相同的基础解系,则()r A = .5. 若线性方程组m n A X b ⨯=的系数矩阵的秩为m ,则其增广矩阵的秩为 .三、计算题1. 已知123,,ααα是齐次线性方程组0AX =的一个基础解系,问122331,,αααααα+++是否是该方程组的一个基础解系 为什么2. 设54331012263211311111A -⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦,12010560011210012320B --⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥--⎣⎦,已知B 的行向量都是线性方程组0AX =的解,试问B 的四个行向量能否构成该方程组的基础解系 为什么3. 设四元齐次线性方程组为 Ι:122400x x x x +=⎧⎨-=⎩1求Ι的一个基础解系2如果12(0,1,1,0)(1,2,2,1)T T k k +-是某齐次线性方程组II 的通解,问方程组Ι和II 是否有非零的公共解 若有,求出其全部非零公共解;若无,说明理由;第五章 特征值与特征向量一、单项选择题1. 设001010100A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A 的特征值是 ;a -1,1,1b 0,1,1c -1,1,2d 1,1,22. 设110101011A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A 的特征值是 ;a 0,1,1b 1,1,2c -1,1,2d -1,1,1 3. 设A 为n 阶方阵, 2A I =,则 ;a ||1A =b A 的特征根都是1c ()r A n =d A 一定是对称阵4. 若12,x x 分别是方阵A 的两个不同的特征值对应的特征向量,则1122k x k x +也是A 的特征向量的充分条件是 ;a 1200k k ==且b 1200k k ≠≠且c 120k k =d 1200k k ≠=且 5. 若n 阶方阵,A B 的特征值相同,则 ;a A B =b ||||A B =c A 与B 相似d A 与B 合同二、填空题1. n 阶零矩阵的全部特征值为_______;2. 设A 为n 阶方阵,且I A =2,则A 的全部特征值为_______;3. 设A 为n 阶方阵,且0=m A m 是自然数,则A 的特征值为_______;4. 若A A =2,则A 的全部特征值为_______;5. 若方阵A 与I 4相似,则=A _______;三、计算题1. 若n 阶方阵A 的每一行元素之和都等于a ,试求A 的一个特征值及该特征值对应的一个特征向量.2. 求非奇异矩阵P ,使1P AP -为对角阵.1 2112A ⎛⎫= ⎪⎝⎭2 112131201A -⎛⎫⎪=-- ⎪ ⎪--⎝⎭四、证明题1. 设A 是非奇异阵, λ是A 的任一特征根,求证1λ是1A -的一个特征根,并且A 关于λ的特征向量也是1A -关于1λ的特征向量. 2. 设2A E =,求证A 的特征根只能是1±.3. 设n 阶方阵A 与B 中有一个是非奇异的,求证矩阵AB 相似于BA .4. 证明:相似矩阵具有相同的特征值.5. 设n 阶矩阵A E ≠,如果()()r A E r A E n ++-=,证明:-1是A 的特征值;6. 设A B ,证明kk A B ;7. 设12,αα是n 阶矩阵A 分别属于12,λλ的特征向量,且12λλ≠,证明12αα+不是A 的特征向量;概率论部分一、填空:每题3分,共15分1. 假设,A B 是两独立的事件,()0.7,()0.3P A B P A ⋃==,则()P B =_________; 2. 设A,B 是两事件,(|)1/4,()1/3P A B P B ==,则()P AB =__________; 3. 若二维随机变量(X,Y)满足()()()E XY E X E Y =,则X Y 与________; 4. 随机变量~(0,1),23,~X N Y X Y =+则_________; 5. 设总体)1,0(~N X ,1210,,,X X X 是来自总体X 的样本,则X 服从_________分布;二、选择:每题3分,共15分1. 如果成立,则事件,A B 互为对立事件....()()1A AB B AB C AB A B D P A P B =Φ=Ω=Φ⋃=Ω+=且2. 若X 的概率密度为02()4240x x f x xx ≤≤⎧⎪=-≤≤⎨⎪⎩其它,则{3}P X ≤= .3/2A .5/2B .7/2C .4D3. 设随机变量),(~p n B X ,则方差var()X =.A np .(1)B n p - 2.C np .(1)D np p -4. 下列结论正确的是A .X 与Y 相互独立,则X 与Y 不相关B .X 与Y 不独立,则X 与Y 相关C .X 与Y 不相关,则X 与Y 相互独立D .X 与Y 相关,则X 与Y 相互独立5. 设n X X X ,,,21 为来自正态总体2~(,)X N μσ的一个样本,其中μ已知,2σ未知,则下面不是统计量的是 ()A 1X ()B 221()ni i X μσ=-∑()C 211()n i i X n μ=-∑ ()D 211()1n i i X X n =--∑ 三、计算:共70分1.15分甲乙两袋,甲袋中有两白球一个黑球,乙袋中有一个白球两个黑球;先从甲袋中取一球放到乙袋中,再从乙袋中取一球,1求从乙袋中取出的是白球的概率;2已发现从乙袋中取出的是白球,问从甲袋中取出放入乙袋中的球为白球的概率;2.10分设随机变量X 的密度函数为2,02()0,cx x f x ⎧<<=⎨⎩其它,试求:(1)常数c ;(2){11}P X -<<;3.10分设随机变量X 的密度函数为2,01;()0,x x f x <<⎧=⎨⎩其他,,求 2X Y =的概率密度;4.10分一袋中装有5只球,编码为1,2,3,4,5,在袋中同时取3只,以X 表示取出的3只球中的最小号码,求随机变量X 的分布律与数学期望.5.15分设随机变量X,Y 的概率密度为 6,01(,)0,x y x f x y <<<⎧=⎨⎩其它1试求关于X 及Y 的边缘概率密度;2判断X 与Y 是否相互独立,并说明理由.6.10分总体X 的概率密度函数为220(),00x x f x θθθ⎧<<⎪=>⎨⎪⎩其它是未知参数,求未知参数θ的矩估计量,并验证未知参数θ的矩估计量是θ的有偏还是无偏估计量;线性代数部分参考答案第一章 行列式一、单项选择题1. C .2. C .3.B.4 C .5. A 6.C二.填空题1.0;2.!)1(1n n --;3.M 3-;4.4x ;5.2-;6.3,2-≠k ;7.7=k 三.计算题 1. )(233y x +-; 2. 1,0,2-=x ;3 (2)(1)...((2))b b n b -+---;4 ∏=--nk k kna b1)()1(;5 ∏∑==-+nk k nk k a x a x 11)()(;第二章参考答案一:1. a ;2. b ;3.c ;4.d ; 5.d ; 6.d ; 7.d ; 8.c ;9.b ; 10.d.11.B 12.D13.A14.C二.1. 1或-1;2. 0; 5. 81;6. 0;三、1.1、⎪⎪⎪⎭⎫⎝⎛---016213010;2、⎪⎪⎪⎪⎪⎭⎫⎝⎛-02132121; 3、⎪⎪⎪⎭⎫⎝⎛------9122692683. 2. 0; 3.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---1000210012100121; 4.⎪⎪⎪⎭⎫⎝⎛100001010;第三章向量参考答案一、 单项选择1.b2.d3.a4.b5.b 二、填空题1. 52.相关3. 0≠α4.相关三、解答题1. 解:设332211αααβx x x ++=则对应方程组为⎪⎩⎪⎨⎧=+++=+++=+++2321321321)1()1(0)1(λλλλλx x x x x x x x x其系数行列式)3(1111111112+=+++=λλλλλA1当3,0-≠≠λλ时,0≠A ,方程组有唯一解,所以β可由3,21,ααα唯一地线性表示;2当0=λ时,方程组的增广阵 ⎪⎪⎪⎭⎫ ⎝⎛=011101110111A ⎪⎪⎪⎭⎫ ⎝⎛→000000000111,31)()(<==A r A r ,方程组有无穷多解,所以β可由3,21,ααα线性表示,但表示式不唯一;3当3-=λ时,方程组的增广阵⎪⎪⎪⎭⎫ ⎝⎛----=921131210112A ⎪⎪⎪⎭⎫⎝⎛-----→18000123303121,)()(A r A r ≠,方程组无解,所以β不能由3,21,ααα线性表示; 2.解:以βαααα,,,,4321为列构造矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++58153342321211011111a b a →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--+-b a a 41000041100121101111121时,且当01≠±=b a β不能表示为4321,,,αααα的线性组合; 2任意时,当b a ,1±≠β能唯一地表示为4321,,,αααα的线性组合;3.解:=),,,,(54321ααααα⎪⎪⎪⎪⎪⎭⎫⎝⎛---140264725500121131121⎪⎪⎪⎪⎪⎭⎫⎝⎛--→000110001011020101 421,,ααα为一个极大无关组,且31240αααα=-++, 42152αααα-+=四、证明题1.证:∵0)2(4)(33121=--+ββββ∴0435321=++-βββ ∴321,,βββ线性相关2.证:设0)()()(1322211=++++++ααααααn n k k k则0)()()(122111=+++++-n n n n k k k k k k ααα ∵n ααα,,,21 线性无关∴⎪⎪⎩⎪⎪⎨⎧=+=+=+-0001211n n n k k k k k k 其系数行列式1100001000001100001110001 =⎩⎨⎧=-++为偶数为奇数n n n ,0,2)1(11∴当n 为奇数时,n k k k ,,,21 只能为零,n ααα,,,21 线性无关; 当n 为偶数时,n k k k ,,,21 可以不全为零,n ααα,,,21 线性相关;参考答案一、单项选择题 1.B 2.D 3.C 4.B 5.A二、填空题1.1002.23k k ≠-≠且3.14.r5.m三、计算题 1. 是 2. 不能3. 112(0,0,1,0),(1,1,0,1)T T v v ==- 2(1,1,1,1)()T k k -其中为任意非零常数第五章 参考答案一、单项选择题 1.a 2.c 3.c 4.d 5.b二、填空题1.02.1,-13.04.0,15.4I三、计算题 1.,(1,1,,1)T a2.11111-⎛⎫ ⎪⎝⎭ 2113211122-⎛⎫⎪- ⎪ ⎪⎝⎭四. 证明题 略概率论部分一、填空每题3分共15分1. 4/7;2. 1/12 ;3. 不相关;4. ~(3,4)Y N ;5. (0,1/10)N 二、选择每题3分共15分1.C ; 2. C ; 3. D ; 4. A ; 5. B 三、计算 1. 15分解:设12{}{}A A ==第一次从甲袋中摸的是黑球第一次从甲袋中摸的是白球{}B =从乙袋中摸的是白球(1) 由全概率公式11221212()(|)()(|)()31212(),(),(|)(|)3344P B P B A P A P B A P A P A P A P B A P B A =+====分所以PB=1/12+4/12=5/12 (3)分2要求2(|)P A B ,由贝叶斯公式分分25451232425)()()|()|(222 =⨯⨯==B P A P A B P B A P2. (10)分解:(1)由()1f x dx +∞-∞=⎰,得220813cx dx c ==⎰,所以38c =, ……4分 (2)11231010311{11}()888P X f x dx x dx x --<<====⎰⎰,……6分 3.10分解:1 2Y X =分别在(,0)-∞∞和(0,+)单调,所以''(|(|||,01()0,,X X Y f f y f y ⎧+<<⎪=⎨⎪⎩其他. ……4分,01,01y ⎧+=<<⎪=⎨⎪⎩其他0, ……6分,或利用分布函数法:2(){}{}{{0Y F y P Y y P X y P X P X =≤=≤=≤≤=<≤……4分20,01xdx x y y ===<<,……4分1,01()()0,Y Y y f y F y <<⎧'∴==⎨⎩其他……2分 4. 10分解:X =1,2,3 ………2分22343335556311{1},{2},{3}101010C C P X P X P X C C C ========= ,5分………6分631()123101010E X =⨯+⨯+⨯ =1.5… 12分5.15分解: 1()(,)X f x f x y dy ∞-∞=⎰06,010,x xdy x ⎧<<⎪=⎨⎪⎩⎰其它26,010,x x ⎧<<=⎨⎩其它 ………6分()(,)Y f y f x y dx ∞-∞=⎰16,010,y xdx y ⎧<<⎪=⎨⎪⎩⎰其它23(1),010,y y ⎧-<<=⎨⎩其它 ………6分2X 与Y 不相互独立,因为(,)()()X Y f x y f x f y ≠ ………3分 6.10分解:1222()3xEX xf x dx xdx θθθ+∞-∞===⎰⎰,···3分,X =θ32···2分,__^3,2X θ=所以···2分 由于__^3322E E X E X θθ===, 所以θ的矩估计量为无偏估计;···············3分。
行列式的计算及应用
行列式的计算及应用摘要 ...................................................................................................... 错误!未定义书签。
Abstract ................................................................................................... 错误!未定义书签。
前言 .. (2)第1章行列式的基本理论 (3)第1节行列式的定义 (3)第2节行列式计算的相关性质 (4)第2章行列式的计算方法 .................................................................... 错误!未定义书签。
第1节化三角形法 ............................................................................ 错误!未定义书签。
第2节按某一行(列)展开法.............................................................. 错误!未定义书签。
第3节递推法 .................................................................................... 错误!未定义书签。
第4节升降法 .................................................................................... 错误!未定义书签。
第5节提取因子法 ............................................................................ 错误!未定义书签。
2019线性代数与概率统计随堂练习答案
1.(单选题) 计算?A.;B.;C.;D.。
参考答案:A2。
(单选题) 行列式?A.3;B.4;C.5;D.6.参考答案:B3。
(单选题) 计算行列式。
A.12;B.18;C.24;D.26.参考答案:B4。
(单选题)计算行列式?A.2;B.3;C.0;D.。
参考答案:C1.(单选题) 计算行列式?A.2;B.3;C.;D.。
参考答案:C2。
(单选题) 计算行列式?A.2;B.3;C.0;D.。
参考答案:D第一章行列式·1。
3 阶行列式的定义1.(单选题)利用行列式定义,计算n阶行列式:=? A.;B.;C.;D..参考答案:C2.(单选题) 计算行列式展开式中,的系数. A.1, 4;B.1,—4;C.-1,4;D.—1,-4.参考答案:B第一章行列式·1。
4 行列式的性质1。
(单选题) 计算行列式=?A.-8;B.—7;C.-6;D.—5。
参考答案:B2.(单选题)计算行列式=?A.130 ; B.140;C.150; D.160.参考答案:D3。
(单选题) 四阶行列式的值等于多少?A.;B.;C.;D.。
参考答案:D4。
(单选题) 行列式=?A.;B.;C.;D..参考答案:B5.(单选题) 已知,则? A.6m;B.—6m;C.12m;D.-12m.参考答案:A一章行列式·1。
5 行列式按行(列)展开1。
(单选题) 设=,则?A.15|A|;B.16|A|;C.17|A|;D.18|A|。
参考答案:D2。
(单选题)设矩阵,求=?A.-1;B.0;C.1;D.2.参考答案:B3.(单选题)计算行列式=?A.—1500;B.0;C.-1800;D.—1200。
参考答案:C第一章行列式·1.6 克莱姆法则1。
(单选题) 齐次线性方程组有非零解,则=?A.—1;B.0;C.1;D.2。
参考答案:C2。
(单选题)齐次线性方程组有非零解的条件是=?A.1或-3;B.1或3;C.-1或3;D.-1或-3。
行列式的应用
行列式的应用行列式是线性代数中重要的概念之一,它有着广泛的应用。
在本文中,我将介绍行列式的定义及其应用领域。
行列式的定义在高中数学课本中就有讲解,这里不再赘述。
而行列式的应用则是如此广泛,以至于无法在一篇3000字的文章中详细介绍每个领域的应用。
因此,我将简要地介绍一些常见的应用领域,以帮助读者了解行列式的实际应用价值。
首先,行列式在线性方程组求解中起到重要作用。
线性方程组是实际问题中常见的数学模型,例如电路中的电流分布、力学中的受力分析等。
通过将线性方程组转化为矩阵形式,可以用行列式来求解未知变量。
行列式的性质可以用来判断线性方程组的解的个数和可解性。
此外,行列式的值还可以用来判断线性方程组的解是否唯一。
其次,行列式在几何学中有着重要的应用。
例如,平面上的三个点可以构成一个三角形,而这个三角形的有向面积可以通过这三个点的坐标计算得到。
这个有向面积的值就等于这三个点所确定的行列式的值的绝对值。
因此,行列式可以用来计算三角形的面积。
同样地,在三维空间中,四个点可以构成一个四面体,而四面体的有向体积也可以通过这四个点的坐标计算得到,其值等于这四个点所确定的行列式的值的绝对值。
行列式在计算几何体的体积、面积以及位置关系等方面都有重要的应用。
另外,行列式在概率与统计学中也有着重要的作用。
在概率论中,行列式可用来计算随机变量的联合概率密度函数的雅可比行列式,进而计算随机变量之间的相关性。
在统计学中,行列式可以用来计算多元线性回归模型的参数估计,并且可以通过行列式的性质来检验回归模型的拟合优度。
行列式在概率与统计学中的应用可以帮助我们理解和分析复杂的随机现象。
除此之外,行列式还有着许多其他领域的应用。
例如在图论中,行列式可以用来计算图的邻接矩阵,进而研究图的连通性和路径问题。
在密码学中,行列式可以用来计算密码算法中的置换、替代和扩散等操作。
此外,行列式在物理学、经济学、工程学等领域也有广泛的应用。
综上所述,行列式作为线性代数的重要内容,具有广泛的应用领域。
线性代数主要内容与方法
工程数学主要内容与方法问答题集锦辽宁工学院应用数学教研室编二〇〇五年四月—I —前言为帮助学生更好地掌握《工程数学》(包括线性代数、概率论与数理统计)的主要内容与方法,根据我们多年的教学经验,总结编写了这本《工程数学主要内容与方法问答题集锦》,希望它能在学生的学习中起到答疑解惑的作用。
本书线性代数部分是按照同济大学应用数学系编写的《线性代数》(第四版)的章节顺序编写;概率论与数理统计部分是按照浙江大学盛骤等编写的《概率论与数理统计》(第三版)的章节顺序编写。
编者按篇章次序分别为:线性代数部分,第一、二章由阚永志编写,第三、四章由王贺元编写,第五章由石月岩编写;概率论与数理统计部分,第一章由朱振广编写,第二、三章由徐洪香编写,第四、五章由刘秀娟编写,第六、七、八章由徐美进编写;全书由石月岩统稿,佟绍成教授主审。
在本书的编写中得到辽宁工学院数理科学系的领导和老师的大力支持与帮助,在此表示衷心的感谢。
限于编者水平,加之编写时间仓促,书中不妥和疏漏之处在所难免,敬请读者批评指正。
编者2005年4月于辽宁工学院—II —目录线性代数部分Ⅰ.线性代数的研究对象是什么? (1)Ⅱ.线性代数的主要内容有哪些? (1)第一章行列式 (1)1.余子式与代数余子式有什么特点?它们之间有什么联系? (1)2.行列式有哪些性质? (1)3.对角线法则对四阶以上的行列式是否成立? (1)4.计算行列式通常采用的方法是什么? (2)5.克莱姆法则的适用条件是什么? (2)第二章矩阵及其运算 (2)1.为什么要学习矩阵? (2)2.什么是矩阵的代数运算?什么是矩阵的运算系统? (2)3.为什么矩阵乘法不满足交换律? (3)4.矩阵运算系统与我们熟悉的实数运算系统的本质区别是什么? (3)5.矩阵与行列式有什么区别与联系? (3)6.判断矩阵可逆的常用方法有哪些? (4)7.什么是伴随矩阵?它有哪些主要性质? (4)8.求方阵A的高次幂有哪些常用的方法? (4)9.怎样解矩阵方程? (5)10.什么是分块矩阵,为什么要对矩阵进行分块? (5)第三章矩阵的初等变换与线性方程组 (5)1.一个非零矩阵的行最简形与行阶梯形有什么区别和联系? (5)2.在求解有关矩阵的问题时,何时只须化为阶梯形,何时宜化为行最简形?或者,它们在功能上有什么不同? (6)3.矩阵的初等变换与初等矩阵有什么关系?引入初等矩阵有什么意义? (6)4.初等变换有哪些应用? (7)5.求一个可逆矩阵的逆矩阵有哪些常用的方法? (7)6.n阶矩阵A是可逆矩阵的特征刻画有哪些? (7)7.用初等行变换法求解线性方程组的主要步骤是什么? (8)—III —— IV —8.在求解带参数的线性方程组时,对系数矩阵或增广矩阵作初等行变换应注意些什么? (8)9.在求解线性方程组的通解时,常与教材中给出的答案不一致,这是否可以? (8)第四章 向量组的线性相关性 (9)1.线性相关与线性表示这两个概念有什么区别和联系? (9)2.对于向量组的线性相关、线性无关的概念,能否给出一些几何上的解释? (9)3.两个矩阵的等价与两个向量组的等价有什么区别和联系? (10)4.矩阵的初等行(列)变换有哪些?它有什么重要应用? (10)5.向量组的最大无关组有什么重要意义? (10)6.求向量组的最大无关组有哪些方法? (11)7.证明或判断一个向量组线性相关或线性无关的常用方法有哪些? (11)8.求矩阵的秩有几种方法? (11)9.矩阵的秩有哪些重要性质? (12)10.矩阵的秩有哪些主要应用? (12)11.如何求齐次线性方程组的基础解系? (12)12.齐次线性方程组0=Ax 的通解结构是什么? (13)13.非齐次线性方程组b Ax =的通解结构是什么? (14)第五章 相似矩阵及二次型 (15)1.向量正交变换的几何意义是什么? (15)2.矩阵的特征值有哪些主要性质? (15)3.如何求方阵A 的特征值与特征向量? (15)4.相似矩阵有哪些主要性质? (15)5.n 阶矩阵A 可相似对角化的充分必要条件是什么? (16)6.判断矩阵A 是否可对角化的基本方法有哪些? (16)7.方阵可相似对角化有什么意义? (16)8.实对称矩阵的特征值与特征向量有哪些性质? (16)9.已知n 阶方阵A 可对角化, 如何求可逆矩阵P , 使得),,,(diag 211n AP P λλλ=- ? (17)10.实对称矩阵正交相似对角化的步骤是什么? (17)11.化实二次型Ax x f T =为标准形的常用方法有哪些? (17)12.用正交变换化二次型Ax x f T =为标准形的主要步骤是什么? (17)13.如何判别二次型Ax x f T =的正定性? (18)— V —概率论与数理统计部分Ⅰ.概率论与数理统计研究的对象是什么? (19) Ⅱ.概率论与数理统计研究的主要内容是什么? (19) Ⅲ.概率论与数理统计的主要任务是什么? (19)第一章 概率论的基本概念 (19)1.随机事件的本质是什么? (19)2.为什么把随机事件定义成样本空间的子集? (19)3.事件之间有几种关系? (19)4.事件间有几种运算? (19)5.概率是什么? (20)6.概率的古典定义、几何定义、统计定义和公理化定义有什么联系? (20)7.随机事件有两次抽象,指的是什么?其意义何在? (20)8.什么是古典概型?如何计算古典概型中事件的概率? (21)9.计算概率的常用公式有哪些? (21)10.什么是n 重贝努利试验,计算有关事件概率的方法是什么? (22)11.如何使用全概率公式和贝叶斯公式? (22)12.对立事件与互斥事件有何联系与区别? (23)13.在实际应用中,如何判断两事件的独立性? (23)14.两事件B A ,相互独立与B A ,互不相容(互斥)这两个概念有何关系? (23)15.概率为0的事件与“不可能事件”有何区别?有何关系? (24)16.什么是“1概事件”? “1概事件”与“必然事件”的关系如何? (24)17.什么是“实际推断原理”?它有什么作用?它与小概率事件有什么关系? (24)第二章 随机变量及其分布 (24)1.为什么要引入随机变量? (24)2.引入随机变量的分布函数有哪些作用? (25)3.概率密度函数有哪些性质? (25)4.对于概率密度)(x f 的不连续点,如何从分布函数)(x F 求得)(x f ? (25)5.为什么说正态分布是概率论中最重要的分布? (26)6.常见随机变量的概率分布有哪些? (26)第三章 多维随机变量及其分布 (28)1.如何判定一个二元函数是某个随机变量) ,(Y X 的概率密度? (28)2.边缘分布与联合分布的关系如何? (28)3.由相互独立的随机变量构成的多维随机变量,它们的联合分布与边缘分布有何关系? (28)4.如何由联合分布确定两个边缘分布? (29)5.怎样判别随机变量X与Y相互独立? (29)6.相互独立的正态随机变量的线性组合是否仍为正态随机变量? (29)第四章随机变量的数字特征 (30)1.随机变量的数字特征有哪些? (30)2.随机变量的分布与数字特征有何关系? (30)3.随机变量的数学期望和方差,在随机变量的研究和实际应用中,有何重要意义?(30)4.数学期望有哪些性质? (30)5.方差有哪些性质? (31)6.常用分布的期望、方差是什么? (31)ρ反映随机变量X和Y的什么特性? (31)7.相关系数XY8.独立性与不相关有何关系? (32)第五章大数定律及中心极限定理 (32)1.大数定律说明什么问题? (32)2.中心极限定理的意义是什么? (32)第六章样本及抽样分布 (33)1.什么是统计量?为什么要引进统计量? (33)2.常用的统计量有哪些? (33)3.正态总体的某些常用抽样分布有哪些? (33)4.2χ分布、t分布、F分布及正态分布之间有哪些常见的关系? (34)第七章参数估计 (34)1.常用的点估计方法有哪几种? (34)2.矩估计法的步骤是什么? (35)3.极大似然估计法的步骤是什么? (35)4.未知参数的点估计和区间估计有何异同? (35)5.用矩估计法和极大似然估计法所得的估计是否是一样的? (35)6.评价估计量好坏的常用标准是什么? (36)第八章假设检验 (36)1.假设检验的依据是什么? (36)2.假设检验可能产生的两类错误是什么? (36)3.假设检验的一般步骤是什么? (36)—VI —— VII —《线性代数》主要内容与方法问答题集锦(部分内容)Ⅰ.线性代数研究的对象是什么?答:线性代数是数学的一门重要课程,它主要讨论矩阵理论,并以矩阵理论为工具研究有限维向量空间和线性变换理论。
线性代数与概率统计试题
1-1 线性代数第一单元行列式试题(1)三阶行列式100021234的值是()A.5B.5-C.11D.11-(2)以下哪一种行列式的值不一定为零()A.行列式有某一行元素全为1 B.行列式有两行完全相同C.行列式有两行元素对应成比例D.行列式有某一行元素全为零(3)式子13324-的运算结果等于下面哪个行列式()A.3364-B.33212-C.39612-D.1964-(4)如果111213212223313233a a aD a a aa a a==5,那么111213212223313233222222222a a aa a aa a a=()A.40;B.-10;C.10;D.-40.(5)已知1112223331a b cD a b ca b c==,则111122223333234234234a ab ca ab ca ab c--=-()A.-8;B.-2;C.6;D.-24.(6)三阶行列式231503201298523-=()A.-70;B.70;C.63;D.82.(7)根据行列式的性质,下列等式正确的是()A.123187894296765345=;B.123187894296765345=-;C.123123894765765894=;D.123231894948765657=-.(8)以下哪一个是对角行列式()A.100010002B.100020234C.125020004D.0220(9)行列式 000000000a b cde f =( )A .-abdf ;B .cdf ;C .abdf ;D .abcdef .(10)下列n (n > 2)阶行列式的值必为零的是 ( )A .行列式中非零元素的个数小于n ;B .行列式中有一半的元素等于零;C .行列式主对角线上的元素全为零;D .行列式的元素中每个数都重复出现n 次.(11)设三阶行列式231316124-,角子式23=K ( )A .9B .1C .7D .6(12)计算三阶行列式231326124--,其结果为 ( )A .30B .40C .50D .60(13)已知行列式111112341358141020D =,则代数余子式32A 的值为 ( )A .-11;B .11;C .-17;D .17.(14)设i j D a =是n 阶行列式,且0D ≠,i j A 是元素i j a 的代数余子式,则231ni i i a A ==∑( )A .0;B .D ;C .1D; D .难以确定其值.(15)克莱姆法则中,第i 个未知量的解为 ( )A .=i i D x DB .1=i i x DC .=i i Dx D D .=i i jD x D(16)已知12211a b a b m -=,则方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解是 ( )A .1122c b x m c b =,1122a c y ma c =;B .11221a c x a c m =,11221c b y c b m =;C .1122a c x ma c =,1122c b y m c b =;D .11221c b x c b m =,11221a c y a c m =.(17)设D 是含有n 个变量和n 个方程组的线性方程组的系数行列式,下列说法中正确的是( )A .若0D ≠,则线性方程组有解;B .若0D =,则线性方程组无解;C .若线性方程组有解,则必有0D ≠; D .若线性方程组无解,则必有0D =.(18)已知方程组 302020k x y z x k y z k x y z ++=⎧⎪++=⎨⎪-+=⎩有非零解,则k = ( )A .2;B .1;C .0;D .3.(19)方程组 304050x k y z y z k x y z ++=⎧⎪+=⎨⎪--=⎩只有零解的充分必要条件是 ( ) A .1k ≠且3k ≠; B .3k ≠; C .1k ≠或3k ≠; D .1k ≠.(20)关于齐次线性方程组的解,叙述正确的是 ( )A .齐次线性方程组一定有零解B .齐次线性方程组一定有非零解C .齐次线性方程组可能无解D .齐次线性方程组一定有零解和非零解1-2 线性代数第二单元矩阵试题(1)矩阵的线性运算不包括下列的哪一个运算 ( )A .乘法B .减法C .数乘D .加法(2)以下的矩阵乘法式中,不可以运算的是 ( )A .3232⨯⨯⋅B B B .2222⨯⨯⋅A BC .2222⨯⨯⋅A AD .3223⨯⨯⋅A B(3)已知矩阵等式AX AY =且≠A O ,则 ( )A .不一定有=X YB .A 是对称矩阵时=X YC .一定有=X YD .A 是可逆矩阵时≠X Y(4)计算矩阵的乘积122120************-⎛⎫⎛⎫⎪⎪-= ⎪⎪ ⎪⎪-⎝⎭⎝⎭( )A .1661543117-⎛⎫ ⎪- ⎪ ⎪-⎝⎭B .302156939--⎛⎫ ⎪ ⎪ ⎪⎝⎭C .1136511647---⎛⎫⎪ ⎪⎪⎝⎭D .319053269-⎛⎫ ⎪ ⎪ ⎪⎝⎭(5)已知A ,B 都是n 阶方阵,则必有 ( )A .=AB BA ; B .=AB BA ;C .T T T()=A B AB ;D .222()=AB A B .(6)已知222()2+=++A B A AB B ,则矩阵A ,B 必定满足 ( )A .=AB BA ; B .A=B ;C .AB 是对称矩阵;D .A ,B 都是对角矩阵.(7)设A ,B ,C 是同阶的非零矩阵,则=AB AC 是=B C 的 ( )A .必要非充分条件;B .充分非必要条件;C .充分必要条件;D .非充分非必要条件. (8)设1234⎛⎫=⎪⎝⎭A ,则TA = ( ) A .1324⎛⎫⎪⎝⎭B .1234⎛⎫ ⎪⎝⎭C .4321⎛⎫ ⎪⎝⎭D .2- (9)以下哪一个矩阵是对称矩阵。
考研数学有哪些线性代数复习重点
考研数学有哪些线性代数复习重点考研数学有哪些线性代数复习重点考生们在进入考研数学的感想阶段时,有哪些线性代数是需要复我们去。
店铺为大家精心准备了考研数学线性代数复习难点,欢迎大家前来阅读。
考研数学线性代数复习要点第一章行列式考试内容:行列式的概念和基本性质,行列式按行(列)展开定理。
考试要求:1、了解行列式的概念,掌握行列式的性质。
2、会应用行列式的性质和行列式按行(列)展开定理计算行列式。
第二章矩阵考试内容:矩阵的概念,矩阵的线性运算,矩阵的乘法,方阵的幂,方阵乘积的行列式,矩阵的转置,逆矩阵的概念和性质,矩阵可逆的充分必要条件,伴随矩阵,矩阵的初等变换,初等矩阵,矩阵的秩,矩阵的等价分块矩阵及其运算。
考试要求:1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质。
2、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质。
3、理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。
4、了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法。
5、了解分块矩阵及其运算。
新大纲变化:矩阵一章增加了一个知识点“分块矩阵及其运算”。
解析及应对策略:08年大纲增加了“分块矩阵及其运算”,从而达到了与数学一、数学三和数学四对矩阵要求相统一。
从考试内容和考试要求上看,该知识点的增加其实是对矩阵内容考察的更加完善,充分体现了研究生入学考试的严谨性及对学生的综合能力的考察。
这部分内容的增加,加大了对数学二同学矩阵方面的要求。
同学们在复习这部分内容的时候,结合分块矩阵的定义及分块矩阵的运算性质。
还要对矩阵的几种运算要熟练,比如:对分块矩阵求逆矩阵,分块矩阵的四则运算法则等,做到全面不遗漏。
第三章向量考试内容:向量的概念,向量的线性组合和线性表示,向量组的线性相关和线性无关,向量组的极大线性无关组,等价的向量组,向量组的秩,向量组的秩与矩阵的秩之间的关系,向量的内积,线性无关向量组的的正交规范化方法。
行列式发展历史
行列式发展历史行列式是线性代数中的一个重要概念,它在数学和应用领域中有着广泛的应用。
本文将详细介绍行列式的发展历史,从最早的发现到现代的应用。
1. 古希腊时期行列式的概念最早可以追溯到古希腊时期。
在公元前1世纪,希腊数学家克莱梅斯提出了“克莱梅斯行列式”,他将行列式用于解线性方程组。
2. 18世纪18世纪,行列式的概念得到了进一步的发展。
法国数学家拉普拉斯在他的著作《行列式理论》中系统地研究了行列式的性质和应用。
他提出了行列式的定义和计算方法,并且证明了行列式的性质,如行列式的性质与行列式的转置相等等。
3. 19世纪19世纪,行列式的研究进一步深入。
德国数学家高斯在他的著作《行列式理论》中对行列式进行了系统的研究,并且提出了高斯消元法,这是解线性方程组的一种重要方法,行列式在其中发挥了重要作用。
4. 20世纪20世纪,随着数学的发展和应用领域的扩大,行列式的应用也越来越广泛。
行列式在矩阵理论、线性代数、微分方程、概率统计等领域都有着重要的应用。
特别是在计算机科学中,行列式在图像处理、模式识别、数据压缩等方面发挥着重要作用。
5. 现代应用行列式的现代应用非常广泛,以下是一些典型的应用领域:- 线性代数:行列式是线性代数中的基本概念,它在矩阵运算、线性方程组求解等方面有着重要作用。
- 图像处理:在图像处理中,行列式可以用于图像的变换和特征提取,如图像的旋转、缩放、平移等操作。
- 模式识别:行列式可以用于模式识别中的特征提取和分类,如人脸识别、指纹识别等。
- 数据压缩:行列式可以用于数据的压缩和降维,如主成分分析等。
- 量子力学:行列式在量子力学中有着重要的应用,如描述量子态、计算能级等。
总结:行列式的发展历史可以追溯到古希腊时期,经过数学家们不断的研究和探索,行列式的概念和性质逐渐完善。
在现代,行列式在数学和应用领域中有着广泛的应用,它在线性代数、图像处理、模式识别、数据压缩、量子力学等方面发挥着重要作用。
行列式定义的理解
行列式定义的理解
行列式是线性代数中的重要概念之一。
它是一个方阵所对应的一个数,通常用det(A)或|A|来表示,其中A为一个n×n的方阵。
行列式在各种领域中都有广泛的应用,如线性代数、微积分、概率论、统计学等等。
首先,我们来看行列式的定义。
对于一个2×2的矩阵A,其行列式定义为:
|A| = ad - bc
其中a、b、c、d为矩阵A中的元素,如下所示:
a b
c d
|A| = aei + bfg + cdh - afh - bdi - ceg
d e f
g h i
|A| = Σ(a1jA1j),其中j为1,2,...,n
其中a1j表示A中第1行第j列的元素,A1j表示将A中第1行和第j列删去后所得的(n-1)×(n-1)的方阵,而Σ表示对所有的j求和。
行列式的定义其实比较抽象,不太容易理解,但是行列式却具有很重要的性质,这些性质可以帮助我们更好地理解行列式,并实际应用到解决问题中。
首先,行列式的值可以为0。
如果一个方阵中有一行(或一列)的元素全部为0,那么该方阵的行列式的值就是0。
另外,如果一个方阵中有两行(或两列)的元素成比例,那么该方阵的行列式的值也是0。
其次,行列式的值可以是正数或负数。
这个符号取决于该方阵经过一系列的初等变换变为的行阵形矩阵中有多少个对角线上的元素为负数。
如果对角线上有奇数个负数,行列式的值就是负数,否则就是正数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
South China Institute of Software Engineering. GU
(a11a22 a12 a21)x1 b1a22 a12 b2 ; (a11a22 a12 a21)x2 a11b2 b1a21 .
当 a11a22 a12a21 0 时, 方程组的解为
a11 a12 a22 a32 a13 a23 0, a33
则三元线性方程组的解应为:
设其系数行列式 D a21 a31
?
D1 x1 , D
South China Institute of Software Engineering. GU
D2 x2 , D
D3 x3 . D
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3 b1 a12 a22 a32 a12 a22 a32 a13 a23 , a33 a13 a23 a33
South China Institute of Software Engineering. GU
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3 a11 b1 b2 b3 a13 a23 , a33 a11 D a21 a31 a12 a22 a32 a13 a23 a33
二元线性方程组的解为
b1 a12 b2 a22 D1 b1a22 b2 a12 x1 , a11 a12 a11a22 a21a12 D a21 a22
a11
b1
a21 b2 D2 b2 a11 b1a21 x2 . a11 a12 a11a22 a21a12 D a21 a22
a11 x1 a12 x 2 b1 a11b2 b1a21 b1a22 a12b2 x2 x1 a11a22 a12a21 a11a22 a12a21 a 21 x1 a 22 x 2 b2
D
D1 D2
a11 a 21 b1 b2 a11 a 21
线性代数与概率统计
广州大学华软软件学院
South China Institute of Software Engineering. GU
South China Institute of Software Engineering. GU
基本内容
• ◆ 第一章 • ◆ 第二章 • ◆ 第三章 行列式 矩阵 线性方程组与向量组
South China Institute of Software Engineering. GU
a 21
a11 x1 a12 x2 b1 , 用消元法解二元线性方程组 a21 x1 a22 x2 b2 . 1 a22 : a11a22 x1 a12a22 x2 b1a22 ,
若记
b1 b2 b 1
D1 b2 b3 a11 D a21 a31
或
South China Institute of Software Engineering. GU
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3 b1 a12 a22 a32 a12 a22 a32 a13 a23 , a33 a13 a23 , a33
a12 a 22 a12 a 22 b1 b2
a11a22 a12a21 b1a22 a12b2 a11b2 b1a21
b1
a12
b2 a 22 D1 x1 a11 a12 D a 21
a11
a 22
b1
a 21 b2 D2 x2 a11 a12 D a 21 a 22
• 线性代数发展:
• 数学的一个分支,主要处理线性关系问题。 线性关系即数学对象之间的关系是以一次形式来 表达的。
South China Institute of Software Engineering. GU
例如,在解析几何里,平面上直线的方程是二元一次方程;
空间平面的方程是三元一次方程,而空间直线视为两个平面相 交,由两个三元一次方程所组成的方程组来表示。含有n个未知 量的一次方程称为线性方程。关于变量是一次的函数称为线性 函数。
记
D1 b2 b3 b1
即
D1 b2 b3
South China Institute of Software Engineering. GU
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3 a11 D a21 a31 a12 a22 a32 a13 a23 a33
力工具。
South China Institute of Software Engineering. GU
主要内容
• ◆ 第一章 行列式 • ◆ 第二章 矩阵 • ◆ 第三章 线性方程组与向量组
• ◆ 第四章 矩阵的特征值、特征向量与二次型
South China Institute of Software Engineering. GU
注意 分母都为原方程组的系数行列式. 并且可以看到,二元线性方程组的求解问题其实就是 二阶行列式的计算问题.
South China Institute of Software Engineering. GU
5 x1 3 x2 6 例 求方程组 x1 7 x2 8
解:
的解。
South China Institute of Software Engineering. GU
二、三阶行列式
导入:求解三元线性方程组 a11 x1 a12 x2 a13 x3 b1 , 三元线性方程组 a21 x1 a22 x2 a23 x3 b2 , 的解。 a ? a x a x b ; 31 x1 32 2 33 3 3
South China Institute of Software Engineering. GU
③该学科所体现的几何观念与代数方法之间的联系,从具 体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙 的归纳综合等,对于强化人们的数学训练,增益科学智能 是非常有用的;
④ 随着科学的发展,我们不仅要研究单个变量之间的关系, 还要进一步研究多个变量之间的关系,各种实际问题在大 多数情况下可以线性化,而由于计算机的发展,线性化了 的问题又可以计算出来,线性代数正是解决这些问题的有
a11
a12
副对角线
a21
a22
a11 x1 a12 x2 b1 , 对于二元线性方程组 a21 x1 a22 x2 b2 .
若记 系数行列式
South China Institute of Software Engineering. GU
D
a11 a21
a12 a22
a11a22 a12 a21 ,
其中所述方法实质上相当于现代的对方程组的增广矩阵的行施 行初等变换,消去未知量的方法。 随着研究线性方程组和变量的线性变换问题的深入,行 列式和矩阵在18~19世纪期间先后产生,为处理线性问题提
供了有力的工具,从而推动了线性代数的发展。
South China Institute of Software Engineering. GU
a11b2 b1a21 b1a22 a12b2 . x1 , x2 a11a22 a12 a21 a11a22 a12a21
a11 x1 a12 x2 b1 , 由方程组的四个系数确定. a x a x b . 21 1 22 2 2
13
South China Institute of Software Engineering. GU
D
5
3
1 7
5 ( 7) 3 1 38 0
D1
6
3
8 7
6 ( 7) 3 8 66
D2
所以,
5 6
1 8 D1 66 33 , x1 38 19 D
5 8 6 1 34
D2 34 17 x2 38 19 D
第一章
▼ n阶行列式的定义
▼ 行列式的性质
行列式
▼ 行列式按行(列)展开 ▼ 克莱姆法则
South China Institute of Software Engineering. GU
第一节
n 阶行列式
一、二阶行列式的引入 二元线性方程组:
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
向量概念的引入,形成了向量空间的概念。凡是线性问
题都可以用向量空间的观点加以讨论。因此,向量空间及其线
性变换,以及与此相联系的矩阵理论,构成了线性代数的中心 内容。 线性代数的含义随数学的发展而不断扩大。线性代数的 理论和方法已经渗透到数学的许多分支。比如,“以直代曲” 是人们处理很多数学问题时一个很自然的思想。很多实际问题 的处理,最后往往归结为线性问题,它比较容易处理。同时也
South China Institute of Software Engineering. GU
二阶行列式的定义
定义1:由四个数排成二行二列(横排称行、竖排称列) 的数表如下 a11 a12