05_回归方程的函数形式

合集下载

计量经济学第五讲---模型函数形式

计量经济学第五讲---模型函数形式

Prob. 0.0000 0.0000 5.468946 0.086294 -9.94267 -9.84926 81786.04 0.000000
ˆ 5.317 0.0098t ln Y t
斜率0.0098表示,平均而言, se (0.000608 )(0.0000343 ) Y的年增长率为0.98%。
每提高1个百分点,平均而言,数学S.A.T分数将增加0.13 个百分点。根据定义,如果弹性的绝对值小于1,则称缺 乏弹性。因此,在该例中,数学S.A.T分数是缺乏弹性的。 另外,r2=0.9, 表明logX解释了变量logY的90%的变 动。
13
第5章
经济学的弹性:

以价格弹性为例: 价格弹性的准确定义是需求量变动的百分比除以价格变动的百分 比。 价格变动一个百分点,引起需求量变动超过一个百分点,则该物 品就富有价格需求弹性;需求变动量不到一个百分点,则缺乏价 格需求弹性;需求变动量等于一个百分点,则该物品拥有单位需 求价格弹性。
S.D. dependent var
Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)
20.51101
2.260832 2.354245 23141.80 0.000000
S.E. of regression Sum squared resid Log likelihood
2642.152 134.6207
Mean dependent var S.D. dependent var
S.E. of regression
Sum squared resid Log likelihood Durbin-Watson stat

回归线方程ppt课件

回归线方程ppt课件
果关系。
变量筛选
在多元回归分析中,利用回归线 方程筛选对因变量有显著影响的
自变量,简化模型。
控制质量
过程控制
在生产过程中,通过建立回归线方程,监控关键工艺参数对产品 质量的影响,确保产品质量稳定。
质量控制
利用回归线方程分析产品质量检测数据,找出影响产品质量的因素 ,制定相应的质量控制措施。
质量改进
求解回归系数
01
02
03
计算回归系数
根据回归方程,计算每个 自变量的回归系数。
分析回归系数
分析回归系数的符号、大 小和显著性,了解自变量 对因变量的影响程度。
检验回归系数
通过假设检验等方法,检 验回差分布情况,检查 是否存在异常值或离群点 。
拟合优度检验
通过计算判定系数、调整 判定系数等方法,评估回 归方程的拟合优度。
显著性检验
通过F检验、t检验等方法 ,检验回归方程的显著性 和可信度。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
04
回归线方程的应用
预测未来趋势
股票价格预测
通过分析历史股票数据,利用回 归线方程建立模型,预测未来股
最小二乘法通过最小化误差的 平方和来找到最佳拟合直线, 使得所有数据点到直线的垂直 距离最小。
最小二乘法的计算过程
计算误差
计算每个数据点到拟合线的垂 直距离,即误差。
最小化误差平方和
通过最小化所有数据点到直线 的垂直距离的平方和来找到最 佳拟合直线。
收集数据
收集自变量(X)和因变量(Y )的数据点。
数据来源的可靠性
02
数据来源必须可靠,避免使用不可靠的数据源可能导致错误的

高一数学必修三课件第章线性回归方程

高一数学必修三课件第章线性回归方程

01
02
03
变量
在某一过程中可以取不同 数值的量。
自变量
能够影响其它变量,而又 不受其它变量影响的变量 。
因变量
依赖于其它变量,而又不 能影响其它变量的变量。
散点图及其特点
散点图
用点的密度和变化趋势表示两指 标之间的直线和曲线关系的图。
特点
能直观表现出影响因素和预测对 象之间的总体关系趋势。
线性回归方程定义
通过绘制自变量和因变量的散点图,观察数据点 分布形态,若呈现非线性形态,则可能存在非线 性关系。
曲线拟合
根据散点图形态,选择合适的曲线类型进行拟合 ,如二次曲线、指数曲线、对数曲线等。
3
变换自变量或因变量
通过对自变量或因变量进行变换,如取对数、平 方、开方等,将非线性关系转化为线性关系。
可化为线性关系非线性模型
一致性
随着样本量的增加,线性回归方程 的系数估计值会逐渐接近真实值。
预测值与置信区间估计
预测值
根据回归方程和给定的自 变量值,可以计算出因变 量的预测值。
置信区间
通过构造置信区间,可以 对预测值进行区间估计, 表示预测值的可靠程度。
置信水平
置信水平表示了置信区间 包含真实值的概率,常用 的置信水平有95%和99% 。
在数据采集过程中,可能存在某些自变量 被重复测量或高度相关的情况。
变量设计问题
样本量问题
在变量设计时,可能存在某些自变量之间 存在固有的高度相关性。
当样本量较小而自变量较多时,也容易出 现多重共线性问题。
识别和处理多重共线性方法
观察自变量间的相关系数
如果两个自变量间的相关系数很高,则可能存在多重共线性 。
案例二

回归方程的函数形式

回归方程的函数形式
返回
二、对数-对数模型用于测量弹性
1、回顾弹性的含义 需求的价格弹性含义: 商品价格每变动1%, 带来需求量变动的百 分比,即两个相对变 动的比值
dQ Q dP P dQ dP Q P
2、对对数-对数模型进行全微分
LNY LNA LNL LNK 对上式全微分得: dY dL dK Y L K 由偏回归系数含义得: 当k不变,即dk 0时 返回 dY Y ,即衡量的是弹性,当 L每变动 1%时,Y变动 %。 dL 我们可以看到此时弹性(α,β)在模型 L 中作为回归参数,是不变的,所以我们也 含义相同 称双对数模型为固定弹性模型或者不变弹
返回
二、半对数模型测度增长率
1、对于对数到线性模型 LNY b 0 b1 X1 dY dY 将其全微分,可得: b1 dX1 , b1 Y Y dX1 b1 含义:X1绝对量变动一个单位, 带来Y 的相对量(即增长率) 的变动, 2、对于线性到对数模型 :Y b 0 b1 LNX1 将其全微分可得: dY b1 dX1 dY , b1 dX1 X1 X1
方程两边变量以对数形式出现(注意参数依然是 线性的)
对于Y AL K 两边取自然对数,我们可以转换为 LNY LNA LNL LNK,此类模型称为对数-对数模型, 在回归分析中有特殊作用 令Y* LNY,A* LNA,L* LNL,K* LNK Y* A* L* K* 如果新的方程满足经典假定,则可使用OLS法估计
例题2:生产函数的回归
1、理论背景
科布-道格拉斯生产函数
2、数据 3、回归结果和解释
2、数据
年份
1955 1956 1957 1958 -----

专题05 回归分析(解析版)

专题05 回归分析(解析版)

专题5 回归分析例1.已知回归方程y=5x+1,则该方程在样本(1,4)处的残差为()A.﹣2B.1C.2D.5【解析】解:当x=1时,y=5x+1=6,∴方程在样本(1,4)处的残差是4﹣6=﹣2.故选:A.例2.研究变量x,y得到一组样本数据,进行回归分析,有以下结论①残差平方和越小的模型,拟合的效果越好;②用相关指数R2来刻画回归效果,R2越小说明拟合效果越好;③在回归直线方程y=−0.2x+0.8中,当解释变量x每增加1个单位时,预报变量y平均减少0.2个单位;④若变量y和x之间的相关系数为r=﹣0.9462,则变量y和x之间的负相关很强.以上正确说法的是①③④.【解析】解:①可用残差平方和判断模型的拟合效果,残差平方和越小,模型的拟合效果越好,故①正确;②用相关指数R2来刻画回归效果,R2越大说明拟合效果越好,故②错误;③在回归直线方程y=−0.2x+0.8中中,当解释变量x每增加1个单位时,预报变量y平均减少0.2个单位,故③正确;④若变量y和x之间的相关系数为r=﹣0.9462,r的绝对值趋向于1,则变量y和x之间的负相关很强,故④正确.故答案为:①③④.例3.下列命题中,正确的命题有②③.①回归直线y=b x+a恒过样本点中心(x,y),且至少过一个样本点;②用相关指数R2来刻画回归效果,表示预报变量对解释变量变化的贡献率,R2越接近于1说明模型的拟合效果越好;③残差图中残差点比较均匀的落在水平的带状区域中,说明选用的模型比较合适;④两个模型中残差平方和越大的模型的拟合效果越好.【解析】解:①回归直线y=b x+a恒过样本点中心(x,y),不一定过样本点,故①正确;②用相关指数R2来刻画回归效果,表示预报变量对解释变量变化的贡献率,R2越接近于1说明模型的拟合效果越好,正确;③残差图中残差点比较均匀的落在水平的带状区域中,说明选用的模型比较合适,正确;④两个模型中残差平方和越大的模型的拟合效果越差.故④错误,故正确的是②③,故答案为:②③例4.下列命题:①相关指数R2越小,则残差平方和越大,模型的拟合效果越好.②对分类变量X与Y的随机变量K2的观测值k来说,k越小,“X与Y有关系”可信程度越大.③残差点比较均匀地落在水平带状区域内,带状区域越宽,说明模型拟合精度越高.④两个随机变量相关性越强,则相关系数的绝对值越接近0.其中错误命题的个数为4.【解析】解:对于①,相关指数R2越小,则残差平方和越大,此时模型的拟合效果越差,所以①错误;对于②,对分类变量X与Y的随机变量K2的观测值k来说,k越小,“X与Y有关系”可信程度越小,所以②错误;对于③,残差点比较均匀地落在水平带状区域内,带状区域越宽,说明模型拟合精度越低,所以③错误;对于④,两个随机变量相关性越强,则相关系数的绝对值越接近1,所以④错误.综上知,错误命题的序号是①②③④,共4个.故答案为:4.例5.垃圾是人类日常生活和生产中产生的废弃物,由于排出量大,成分复杂多样,且具有污染性,所以需要无害化、减量化处理.某市为调査产生的垃圾数量,采用简单随机抽样的方法抽取20个县城进行了分析,得到样本数据(x i,y i)(i=1,2,……,20),其中x i和y i分别表示第i个县城的人口(单位:万人)和该县年垃圾产生总量(单位:吨),并计算得∑20i=1x i=80,∑20i=1y i=4000,∑20i=1(x i−x)2=80,∑20i=1(y i−y)2=8000,∑20i=1(x i−x)(y i−y)=7000.(1)请用相关系数说明该组数据中y与x之间的关系可用线性回归模型进行拟合;(2)求y关于x的线性回归方程;(3)某科研机构研发了两款垃圾处理机器,如表是以往两款垃圾处理机器的使用年限(整年)统计表:1年2年3年4年5年使用年限台数款式甲款520151050乙款152010550某环保机构若考虑购买其中一款垃圾处理器,以使用年限的频率估计概率.根据以往经验估计,该机构选择购买哪一款垃圾处理机器,才能使用更长久?参考公式:相关系数r=∑n i=1i−x)(y i−y)√∑i=1(x i−x)∑i=1(y i−y)2.对于一组具有线性相关关系的数据(x i,y i)(i=1,2,……,n),其回归直线y=b x+a的斜率和截距的最小二乘估计分别为:b=∑ni=1(x i−x)(y i−y)∑n i=1(x i−x)2,a=y−b x.【解析】解:(1)由题意知相关系数r=∑20i=1i−x)(y i−y)√∑i=1(x i−x)2∑i=1(y i−y)2=√80×8000=78=0.875,因为y与x的相关系数接近1,所以y与x之间具有较强的线性相关关系,可用线性回归模型进行拟合.(2)由题意可得,b=∑20i=1(x i−x)(y i−y)∑20i=1(x i−x)2=70080=8.75,a=y−b x=400020−8.75×8020=200−8.75×4=165,所以y=8.75x+165.(3)以频率估计概率,购买一台甲款垃圾处理机器节约政府支持的垃圾处理费用X(单位:万元)的分布列为X﹣50050100P0.10.40.30.2E(X)=﹣50×0.1+0×0.4+50×0.3+100×0.2=30(万元)购买一台乙款垃圾处理机器节约政府支持的垃圾处理费用Y(单位:万元)的分布列为:Y﹣302070120P0.30.40.20.1E(Y)=﹣30×0.3+20×0.4+70×0.2+120×0.1=25(万元)因为E(X)>E(Y),所以该县城选择购买一台甲款垃圾处理机器更划算.例6.某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.据统计该基地的西红柿增加量y(百斤)与使用某种液体肥料x(千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,请计算相关系数r(精确到0.01),并以此判定是否可用线性回归模型拟合y 与x的关系?若是请求出回归直线方程,若不是请说明理由;(2)过去50周的资料显示,该地周光照量X(小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X限制,并有如表关系:周光照量X(单位:小时)30<X<5050≤X≤70n≥2光照控制仪最多可运行台数542若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了5台光照控制仪,求商家在过去50周每周利润的平均值.附:对于一组数据(x1,y1),(x2,y2),……,(x n,y n),其相关系数公式r=∑n i=1i−x)(y i−y)√∑i=1i−x)2∑i=1i−y)2,回归直线y=b x+a的斜率和截距的最小二乘估计分别为:b=∑ni=1(x i−x)(y i−y)∑n i=1(x i−x)2=∑ni=1x i y i−nxy∑n i=1(x i−x)2,a=y−b x,参考数据√0.3≈0.55,√0.9≈0.95.【解析】解:(1)由已知数据可得x=2+4+5+6+85=5,y=3+4+4+4+55=4,因为∑5i=1(x i−x)(y i−y)=(−3)×(−1)+0+0+0+3×1=6,√∑5i=1(x i−x)2=√(−3)2+(−1)2+02+12+32=2√5,√∑5i=1(y i−y)2=√(−1)2+02+02+02+12=√2.所以相关系数r=∑n i=1i−x)(y i−y)√∑i=1i −x)2√∑i=1i−y)2=2√5⋅√2=√910≈0.95,因为r>0.75,所以可用线性回归模型拟合y与x的关系,因为b=∑ni=1(x i−x)(y i−y)∑n i=1(x i−x)2=620=0.3,a=y−b x=2.5,所以回归直线方程y=0.3x+2.5.(2)记商家周总利润为Y元,由条件可得在过去50周里:X>70时,共有10周,只有2台光照控制仪运行,周总利润Y=2×3000﹣3×1000=3000元,当50≤X≤70时,共有35周,有4台光照控制仪运行,周总利润Y=4×3000﹣1×1000=11000元,当X<50时,共有5周,5台光照控制仪都运行,周总利润Y=5×3000=15000元,所以过去50周每周利润的平均值Y=3000×10+11000×35+15000×550=9800元,所以商家在过去50周每周利润的平均值为9800元.例7.湖南省从2021年开始将全面推行“3+1+2”的新高考模式,新高考对化学、生物、地理和政治等四门选考科目,制定了计算转换T分(即记入高考总分的分数)的“等级转换赋分规则”(详见附1和附2),具体的转换步骤为:①原始分Y等级转换;②原始分等级内等比例转换赋分.某校的一次年级统考中,政治、生物两选考科目的原始分分布如表:等级A B C D E比例约15%约35%约35%约13%约2%政治学科各等级对应的原始分区间[81,98][72,80][66,71][63,65][60,62]生物学科各等级对应的原始分区间[90,100][77,89][69,76][66,68][63,65]现从政治、生物两学科中分别随机抽取了20个原始分成绩数据,作出茎叶图:(1)根据茎叶图,分别求出政治成绩的中位数和生物成绩的众数;(2)该校的甲同学选考政治学科,其原始分为82分,乙同学选考生物学科,其原始分为91分,根据赋分转换公式,分别求出这两位同学的转化分;(3)根据生物成绩在等级B的6个原始分和对应的6个转化分,得到样本数据(Y i,T i),请计算生物原始分Y i与生物转换分T i之间的相关系数,并根据这两个变量的相关系数谈谈你对新高考这种“等级转换赋分法”的看法.附1:等级转换的等级人数占比与各等级的转换分赋分区间等级A B C D E原始分从高到低排序的等级人数占比约15% 约35% 约35% 约13% 约2%转换分T 的赋分区间[86,100] [71,85][56,70] [41,55] [30,40]附2:计算转换分T 的等比例转换赋分公式:Y 2−Y Y−Y 1=T 2−T T−T 1.(其中:Y 1,Y 2别表示原始分Y 对应等级的原始分区间下限和上限;T 1,T 2分别表示原始分对应等级的转换分赋分区间下限和上限.T 的计算结果按四舍五入取整).附3:∑ 6i=1(Y i −Y )(T i −T )=74,√∑ 6i=1(Yi −Y)2∑ 6i=1(T i −T)2=√5494≈74.12,r =∑n i=1i −Y)(T i −T)√∑i=1i −Y)2∑i=1i −T)2.【解析】解:(1)根据茎叶图知,政治成绩的中位数为72,生物成绩的众数为73; (2)甲同学选考政治学科的等级为A ,由转换赋分公式:98−8282−81=100−T T−86,解得T =87;乙同学选考生物学科的等级为A ,由赋分转换公式:100−9191−90=100−T T−86,解得T =87;所以甲、乙两位同学的转换分都是87分. (3)由题意知,r =∑n i=1i −Y)(T i −T)√∑ i=1(Y i −Y)2∑ i=1(T i −T)2=7474.12≈0.998, 说法1:等级转换赋分公平,因为相关系数十分接近1,接近函数关系,因此高考这种“等级转换赋分”具有公平性与合理性.说法2:等级转换赋分法不公平,在同一等级内,原始分与转化分是确定的函数关系,理论上原始分与转化分的相关系数为1,在实际赋分过程中由于数据的四舍五入,使得实际的转化分与应得的转化分有一定的误差,极小部分同学赋分后会出现偏高或偏低的现象. (只要说法有道理,都可以得分).例8.某市房管局为了了解该市市民2018年1月至2019年1月期间买二手房情况,首先随机抽样其中200名购房者,并对其购房面积m (单位:平方米,60≤m ≤130)进行了一次调查统计,制成了如图1所示的频率分布直方图,接着调查了该市2018年1月至2019年1月期间当月在售二手房均价y (单位:万元/平方米),制成了如图2所示的散点图(图中月份代码1﹣13分别对应2018年1月至2019年1月).(Ⅰ)试估计该市市民的购房面积的中位数m0;(Ⅱ)现采用分层抽样的方法从购房面积位于[110,130]的40位市民中随机抽取4人,再从这4人中随机抽取2人,求这2人的购房面积恰好有一人在[120,130]的概率;(Ⅲ)根据散点图选择y=a+b√x和y=c+d lnx两个模型进行拟合,经过数据处理得到两个回归方程,分别为y=0.9369+0.0285√x和y=0.9554+0.0306lnx,并得到一些统计量的值如表所示:y=0.9369+0.0285√x y=0.9554+0.0306lnx ∑13i=1(y i−y i)20.0005910.000164∑13i=1(y i−y)20.006050请利用相关指数R2判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测出2019年12月份的二手房购房均价(精确到0.001).【参考数据】ln2≈0.69,ln3≈1.10,ln23≈3.14,ln25≈3.22,√2≈141,√3≈1.73,√23≈4.80.【参考公式】R2=1−∑ni=1(y i−y i)2∑n i=1(y i−y)2.【解析】解:(I)由频率分布直方图,可得,前三组频率和为0.05+0.1+0.2=0.35,前四组频率和为0.05+0.1+0.2+025=0.6,故中位数出现在第四组,且m0=90+10×0.150.25=96.(Ⅱ)设从位于[110,120)的市民中抽取x人,从位于[120,130]的市民中抽取y人,由分层抽样可知:440=x30=y10,则x=3,y=1,在抽取的4人中,记3名位于[11,120)的市民为A1,A2,A3,位于[120,130]的市民为B则所有抽样情况为:(A1,A2),(A1,A3),(A1,B),(A2,A3),(A2,B),(A3,B)共6种.而其中恰有一人在位于购房面积[120,130]的情况共有3种,故所求概率P=36=12,(III)设模型y=0.9369+0.0285√x和y=0.955+0.0306lnx的相关指数分别为R12,R22,则R12=1−0.0005910.006050,R22=1−0.0001640.006050,显然R12<R22,故模型y=0.9554+0.0306lnx的拟合效果更好.由2019年12月份对应的代码为24,则y=0.9554+0.0306ln24=0.9554+0.0306(3ln2+ln3)≈1.052万元/平方米.例9.某汽车公司拟对“东方红”款高端汽车发动机进行科技改造,根据市场调研与模拟,得到科技改造投入x(亿元)与科技改造直接收益y(亿元)的数据统计如表:x2346810132122232425y1322314250565868.56867.56666当0<x≤16时,建立了y与x的两个回归模型:模型①:y=4.1x+11.8;模型②:y=21.3√x−14.4;当x>16时,确定y与x满足的线性回归方程为:y=−0.7x+a.(Ⅰ)根据下列表格中的数据,比较当0<x≤16时模型①、②的相关指数R2,并选择拟合精度更高、更可靠的模型,预测对“东方红”款汽车发动机科技改造的投入为16亿元时的直接收益.回归模型模型①模型②回归方程y=4.1x+11.8y=21.3√x−14.4∑7i=1(y i−y i)2182.479.2(附:刻画回归效果的相关指数R2=1−∑n i=1(y i−y i)2∑n i=1(y i−y)2.)(Ⅱ)为鼓励科技创新,当科技改造的投入不少于20亿元时,国家给予公司补贴收益10亿元,以回归方程为预测依据,比较科技改造投入16元与20亿元时公司实际收益的大小;(附:用最小二乘法求线性回归方程y=b x+a的系数公式b=∑ni=1x i y i−nx⋅y∑n i=1x i2−nx2=∑ni=1(x i−x)(y i−y)∑n i=1(x i−x)2;a=y−b x)(Ⅲ)科技改造后,“东方红”款汽车发动机的热效率X大幅提高,X服从正态分布N(0.52,0.012),公司对科技改造团队的奖励方案如下:若发动机的热效率不超过50%但不超过53%,不予奖励;若发动机的热效率超过50%但不超过53%,每台发动机奖励2万元;若发动机的热效率超过53%,每台发动机奖励4万元.求每台发动机获得奖励的数学期望.(附:随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=0.6827,P(μ﹣2σ<ξ<μ+2σ)=0.9545.)【解析】解:(Ⅰ)由表格中的数据,有182.4>79.2,即182.4∑7i=1(y i−y)2>79.2∑7i=1(y i−y)2,∴模型①的R2小于模型②的R2,说明模型②的刻画效果更好.∴当x=16亿元时,科技改造直接收益的预测值为y=21.3×√16−14.4=70.8(亿元);(Ⅱ)由已知可得,x−20=0.5+2+3.5+4+55=3,则x=23,y−60=8.5+8+7.5+6+65=7.2,则y=67.2,∴a=y−0.7x=67.2+0.7×23=83.3,∴当x>16亿元时,y与x满足线性回归方程y=−0.7x+83.3,当x=20亿元时,科技改造直接收益的预测值为y=−0.7×20+83.3=69.3.∴当x=20亿元时,实际收益的预测值为69.3+10=79.3亿元>70.8亿元.∴科技改造投入20亿元时,公司的实际收益更大;(Ⅲ)∵P(0.52﹣0.02<X<0.52+0.02)=0.9545,∴P(X>0.50)=1+0.95452=0.97725,P(X≤0.50)=1−0.95452=0.02275,∵P(0.52﹣0.01<X<0.52+0.01)=0.6827,∴P(X>0.53)=1−0.68272=0.15865,∴P(0.50<X≤0.53)=0.97725﹣0.15865=0.8186.设每台发动机获得的奖励为Y(万元),则Y的分布列为:Y024P0.022750.81860.15865∴每台发动机获得的奖励的数学期望为:E(Y)=0×0.02275+2×0.8186+4×0.15865=2.2718(万元).例10.某高中数学建模兴趣小组的同学为了研究所在地区男高中生的身高与体重的关系,从若干个高中男学生中抽取了1000个样本,得到如下数据.数据一:身高在[170,180)(单位:cm)的体重频数统计体重(kg)[50,55)[55,60)[60,65)[65,70)[70,75)[75,80)[80,85)[85,90)人数206010010080201010数据二:身高所在的区间含样本的个数及部分数据身高x(cm)[140,150)[150,160)[160﹣170)[170﹣180)[180﹣190)平均体重y(kg)4553.66075(Ⅰ)依据数据一将下面男高中生身高在[170﹣180)(单位:cm)体重的频率分布直方图补充完整,并利用频率分布直方图估计身高在[170﹣180)(单位:cm)的中学生的平均体重;(保留小数点后一位)(Ⅱ)依据数据一、二,计算身高(取值为区间中点)和体重的相关系数约为0.99,能否用线性回归直线来刻画中学生身高与体重的相关关系,请说明理由;若能,求出该回归直线方程;(Ⅲ)说明残差平方和或相关指数R2与线性回归模型拟合效果之间关系.(只需写出结论,不需要计算)参考公式:b=∑ni=1(x i−x)(y i−y)∑n i=1(x i−x)2=∑ni=1x i y i−nx⋅y∑n i=1x i2−nx2,a=y−b x.参考数据:(1)145×45+155×53.6+165×60+185×75=38608;(2)1452+1552+1652+1752+1852﹣5×1652=1000.(3)663×175=116025,664×175=116200,665×175=116375.(4)728×165=120120.【解析】解:(1)身高在[170,180)的总人数为:20+60+100+100+80+20+10+10=400,体重在[55﹣60)的频率为:60400=0.15,体重在[70﹣75)的 频率为:80400=0.2,平均体重为:52.5×0.05+57.5×0.15+62.5×0.25+67.5×0.25+72.5×0.2 +77.5×0.05+82.5×0.025+87.5×0.025≈66.4,(2)因为 r =0.99→1,线性相关很强,故可以用线性回归直线来 刻画中学生身高与体重的相关, x =145+155+165+175+1855=165,y =45+75+60+53.6+66.45=60,b =∑ 8i=1x i y i −8x⋅y ∑ 8i=1x i 2−8x2=38608+175×66.4−5×165×601000=0.728, a =y −b x =60−0.728×165=−60.12, 所以回归直线方程为:y =0.728x −60.12,(3)残差平方和越小或相关指数 R 2 越接近于1,线性回归模型拟合效果越好.例11.2019年的“金九银十”变成“铜九铁十”,国各地房价“跳水”严重,但某地二手房交易却“逆市”而行.如图是该地某小区2018年11月至2019年1月间,当月在售二手房均价(单位:万元/平方米)的散点图.(图中月份代码1~13分别对应2018年11月~2019年11月)根据散点图选择y =a +b √x 和y =c +dlnx 两个模型进行拟合,经过数据处理得到两个回归方程分别为y ^=0.9369+0.0285√x和y^=0.9554+0.0306lnx,并得到以下一些统计量的值:y^=0.9369+0.0285√x y^=0.9554+0.0306lnx ∑13i=1(y i−y^i)20.0005910.000164∑13i=1(y i−y)20.006050(1)请利用相关指数R2判断哪个模型的拟合效果更好;(2)某位购房者拟于2020年4月购买这个小区m(70≤m≤160)平方米的二手房(欲购房为其家庭首套房).若购房时该小区所有住房的房产证均已满2但未满5年,请你利用(1)中拟合效果更好的模型解决以下问题:(i)估算该购房者应支付的购房金额;(购房金额=房款+税费,房屋均价精确到0.001万元/平方米)(ii)若该购房者拟用不超过100万元的资金购买该小区一套二手房,试估算其可购买的最大面积.(精确到1平方米)附注:根据有关规定,二手房交易需要缴纳若干项税费,税费是按房屋的计税价格(计税价格=房款)进行征收的.房产证满2年但未满5年的征收方式如下:首套面积90平方米以内(含90平方米)为1%;首套面积90平方米以上且140平方米以内(含140平方米)1.5%;首套面积140平方米以上或非首套为3%.参考数据:ln2≈0.69,ln3≈1.10,ln17≈2.83,ln19≈2.94,√2≈1.41,√3≈1.73,√17≈4.12,√19≈4.36.参考公式:相关指数R2=1−∑ni=1(y i−y^i)2∑n i=1(y i−y)2.【解析】解:(1)模型一中,y=0.9369+0.0285√x的残差平方和为0.000591,相关指数为R21−0.0005910.006050≈0.923,模型二中,y=0.9554+0.0306lnx的残差平方和为0.000164,相关指数为 R 21−0.0001640.006050≈0.973,∴ 相关指数较大的模型二拟合效果好些. (2)通过散点图确定2020年4月对应的 x =18, 代入(1)中拟合效果更好的模型二,代入计算 y =0.9554+0.0306ln18 =0.9554+0.0306×(ln 2+2ln 3) =0.9554+0.0306×(0.69+2×1.10) ≈1.044 (万元/平方米),则2020年4月份二手房均价的预测值为1.044(万元/平方米).(i )设该购房者应支付的购房金额 h 万元,因为税费中淵方只需缴纳契税, ①当70⩽m ⩽90 时,契税为计税价格的 1%, 故h =m ×1.044×(1%+1)=1.05444m ; ②当90<m ⩽144 时,契税为计税价格的 1.5%, 故h =m ×1.044×(1.5%+1)=1.05966m ; ③当144<m ⩽160 时,契税为计税价格的 3%, 故h =m ×1.044×(3%+1)=1.07532m ;∴ℎ={1.05444m ,70⩽m ⩽901.05966m ,90<m ⩽1441.07532m ,144<m ⩽160;∴ 当 70⩽m ⩽90 时购房金额为 1.05444m 万元, 当 90<m ⩽144 时购房金额为 1.05966m 万元, 当 144<m ⩽160 时购房金额为 1.07532m 万元.(ii )设该购房者可购买该小区二手房的最大面积为 t 平方米,由(i ) 知,当70⩽m ⩽90时,应支付的购房金额为 1.05444t ,又1.05444t ⩽1.05444×90<100, 又因为房屋均价约为1.044万元/平方米,所以 t <100,所以90⩽t <100, 由1.05966t ⩽100,解得 t ⩽1001.05966,且1001.05966≈94.4,所以该购房者可购买该小区二手房的最大面积为94平方米.例12.某新兴科技公司为了确定新研发的产品下一季度的营销计划,需了解月宣传费x (单位:万元)对月销售量y(单位:千件)的影响,收集了2020年3月至2020年8月共6个月的月宣传费x和月销售量y的数据如表:月份345678宣传费x5678910月销售量y0.4 3.5 5.27.08.610.7现分别用模型①y=b x+a和模型②y=e m x+n对以上数据进行拟合,得到回归模型,并计算出模型的残差如表:(模型①和模型②的残差分别为e1和e2,残差=实际值﹣预报值)x5678910y0.4 3.5 5.37.08.610.7e1﹣0.60.540.280.12﹣0.24﹣0.1e2﹣0.63 1.71 2.10 1.63﹣0.7﹣5.42(1)根据上表的残差数据,应选择哪个模型来拟合月宣传费x与月销售量y的关系较为合适,简要说明理由;(2)为了优化模型,将(1)中选择的模型残差绝对值最大所对应的一组数据(x,y)剔除,根据剩余的5组数据,求该模型的回归方程,并预测月宣传费为12万元时,该公司的月销售量.(剔除数据前的参考数据:x=7.5,y=5.9,∑6i=1x i y i=299.8,∑6i=1x i2=355,z=lny.z≈−1.41,∑6i=1x i y i=−73.10,ln10.7≈2.37,e4.034≈56.49.)参考公式:b=∑ni=1x i y i−nxy∑n i=1x i2−nx2,a=y−b x.【解析】解:(1)应选择模型①,因为模型①每组数据对应的残差绝对值都比模型②的小,残差波动小,残差点比较均匀地落在水平的带状区域内,说明拟合精度高.(2)由(1)知,需剔除第一组数据,则剔除后的x=7.5×6−55=8,y=5.9×6−0.45=7,5xy=280,5x2=320,∑5i=1x i y i=299.8−5×0.4=297.8,∑5i=1x i2=355−25=330.∴b=∑5i=1x i y i−5xy∑5i=1x i2−5x2=297.8−280330−320=1.78,a=y−b x=7−1.78×8=−7.24.得①的回归方程为y=1.78x−7.24,则当x=12时,y=1.78×12−7.24=14.12.故月宣传费为12万元时,该公司的月销售量为14.12千件.例13.新型冠状病毒肺炎COVID﹣19疫情发生以来,在世界各地逐渐蔓延.在全国人民的共同努力和各级部门的严格管控下,我国的疫情已经得到了很好的控制.然而,小王同学发现,每个国家在疫情发生的初期,由于认识不足和措施不到位,感染人数都会出现快速的增长.如表是小王同学记录的某国连续8天每日新型冠状病毒感染确诊的累计人数.日期代码x12345678累计确诊人数y481632517197122为了分析该国累计感染人数的变化趋势,小王同学分别用两种模型:①y=bx2+a,②y=dx+c对变量x和y的关系进行拟合,得到相应的回归方程并进行残差分析,残差图如下(注:残差e î=y i−y î):经过计算得它∑8i=1(x i−x)(y i−y)=728,∑8i=1(x i−x)2=42,∑8i=1(z i−z)(y i−y)=6868,∑8i=1(z i−z)2=3570,其中z i=x i2,z=18∑8i=1z i.(1)根据残差图,比较模型①,②的拟合效果,应该选择哪个模型?并简要说明理由;(2)根据(1)问选定的模型求出相应的回归方程(系数均保留两位小数);(3)由于时差,该国截止第9天新型冠状病毒感染确诊的累计人数尚未公布.小王同学认为,如果防疫形势没有得到明显改善,在数据公布之前可以根据他在(2)问求出的回归方程来对感染人数做出预测,那么估计该地区第9天新型冠状病毒感染确诊的累计人数是多少?附:回归直线的斜率和截距的最小二乘估计公式分别为:b=∑8i=1(x i−x)(y i−y)∑8i=1(x i−x)2,a=y−b x.【解析】解:(1)选择模型①,理由如下:根据残差图可以看出,模型①的估计值和真实值相对比较接近,模型②的残差相对比较大,所以模型①的拟合效果相对较好;(2)由(1)可知y关于x的回归方程为y=bx2+a,令z=x2,则y=bz+a,由所给的数据可得:z=18(1+4+9+16+25+36+49+64)=25.5,y=18(4+8+16+31+51+71+97+122)=50,b=∑8i=1(z i−z)(y i−y)∑8i=1(z i−z)2=68683570≈1.92,则a=y−b z≈50﹣1.92×25.5=1.04,所以y关于x的回归方程为y=1.92x2+1.04;(3)将x=9代入回归方程,可得y=1.92×92+1.04=156.56≈157(人),所以预测该地区第9天新型冠状病毒感染确诊的累计人数约为157人.例14.H市某企业坚持以市场需求为导向,合理配置生产资源,不断改革、探索销售模式.下表是该企业每月生产的一种核心产品的产量x(吨)与相应的生产总成本y(万元)的五组对照数据.产量x(件)12345生产总成本y(万元)3781012(Ⅰ)根据上达数据,若用最小二乘法进行线性模拟,试求y关于x的线性回归方程y=b x+a;参考公式:b=∑ni=1x i y i−nxy∑n i=1x i2−nx2,a=y−b x.(Ⅱ)记第(Ⅰ)问中所求y与x的线性回归方程y=b x+a为模型①,同时该企业科研人员利用计算机根据数据又建立了y与x的回归模型②:y=12x2+1.其中模型②的残差图(残差=实际值﹣预报值)如图所示:请完成模型①的残差表与残差图,并根据残差图,判断哪一个模型更适宜作为y关于x的回归方程?并说明理由;(Ⅲ)根据模型①中y与x的线性回归方程,预测产量为6吨时生产总成本为多少万元?【解析】解:(Ⅰ)计算x=15(1+2+3+4+5)=3,y=15(3+7+8+10+12)=8,∑5i=1x i2=12+22+32+42+52=55,∑5i=1x i y i=1⋅3+2⋅7+3⋅8+4⋅10+5⋅12=141,b=∑5i=1x i y i−nxy∑5i=1x i2−nx2=141−5×3×855−5×9=2.1,a=y−b x=8−2.1×3=1.7,因此,回归直线方程为y=2.1x+1.7.(Ⅱ)模型①的残差表为:x12345y3781012 y 3.8 5.9810.112.2 e﹣0.8 1.10﹣0.1﹣0.2画出残差图,如图所示;结论:模型①更适宜作为y关于x的回归方程,因为:理由1:模型①的4个样本点的残差点落在的带状区域比模型②的带状区域更窄;理由2:模型①的4个样本点的残差点比模型②的残差点更贴近进x轴..(不列残差表不扣分,写出一个理由即可得分.)(Ⅲ)根据模型①中y与x的回归直线方程,计算x=6时,y=2.1×6+1.7=14.3,所以预测产量为6吨时生产总成本为14.3万元.例15.为了解某企业生产的某产品的年利润与年广告投入的关系,该企业对最近一些相关数据进行了调查统计,得出相关数据见表:23456年广告投入x(万元)346811年利润y(十万元)根据以上数据,研究人员分别借助甲.乙两种不同的回归模型,得到两个回归方程,方程甲:方程甲:y(1)=b(x﹣1)2+2.75,方程乙:y(2)=c x﹣1.6.(1)求b(结果精确到0.01)与c的值.(2)为了评价两种模型的拟合效果,完成以下任务.①完成下表(备注:e î=y i−y î,e î称为相应于点(x i,y i)的残差;年广告投入x(万元)23456年利润y(十万元)346811模型甲估计值y î(1)残差e î(1)模型乙估计值y î(2)残差e î(2)②分别计算模型甲与模型乙的残差平方和Q1及Q2,并通过比较Q1,Q2的大小,判断哪个模型拟合效果更好.【解析】解:(1)设t=(x﹣1)2,则t=15(1+4+9+16+25)=11.∵y=6.4,∴6.4=b×11+2.75,解得b≈0.33.又x=4,∴6.4=c×4−1.6,即c=2.(2)①经计算,可得下表:年广告投入x(万元)23456年利润y(十万元)346811模型甲估计值y î(1) 3.08 4.07 5.728.0311残差e î(1)﹣0.08﹣0.070.28﹣0.030模型乙估计值y î(2) 2.4 4.4 6.48.410.4残差e î(2)0.6﹣0.4﹣0.4﹣0.40.6②Q1=(−0.08)2+(−0.07)2+0.282+(−0.03)2=0.0906.Q2=0.62×2+(−0.4)2×3=1.2.∵Q1<Q2,∴模型甲的拟合效果更好.。

计量经济学_詹姆斯斯托克_第8章_非线性的回归模型

计量经济学_詹姆斯斯托克_第8章_非线性的回归模型

Ln(TestScore) = 6.336 + 0.0554 ln(Incomei) (0.006) (0.0021)
假设 Income 从$10,000 增加到$11,000(或者 10%)。
则 TestScore 增加大约 0.0554 10% = 0.554%。
如果 TestScore = 650, 意味着测试成绩预计会增加
非线性的回归模型
非线性的回归函数
“非线性”的含义:
(1)非线性的函数 自变量与解释变量之间的非线性
函 数形式。
(2)非线性的回归 参数与随机项的非线性形式。
非线性的回归函数
一、多项式回归 二、对数回归 三、自变量的交互作用 四、其他非线性形式的回归 五*、非线性回归(参数非线性)
一、多项式回归
1、指数函数曲线
指数函数方程有两种形式:
yˆ aebx yˆ abx
y a>0,b>0
a>0,b<0
x
图11.1方yˆ 程 aebx 的图象
二、对数函数曲线
对数函数方程的一般表达式为:
yˆ a b ln x
y
b>0
b<0
x
图11.2 方程yˆ =a+blnx 的图象
(2)根据拟合程度的好坏来确定(如,利用spss 的相关功能) 在社会科学领域里,阶数不会太高!
一、多项式回归
形式: Y 0 1X 2 X 2 ...r X r u
(2)多项式的本质 泰勒展开
一、多项式回归
形式: Y 0 1X 2 X 2 ...r X r u
Y——收入; D1——性别(1——男;0——女) D2——学历(1——大学学历;0——没有)

计量经济学课件 第5章 回归模型的函数形式

计量经济学课件 第5章 回归模型的函数形式
• 2.选择模型的基本准则:
• 模型选择的重点不是在判定系数大小,而是要考 虑进入模型的解释变量之间的相关性(即理论基 础)、解释变量系数的预期符号、变量的统计显 著性、以及弹性系数这样的度量工具。
线性回归模型的弹性系数计算
• 平均弹性:
E

Y X
X Y

B2
X Y
多元对数线性回归模型
• 偏弹性系数的含义: 在其他变量(如,X3)保持不变的条件下,X2 每变动1%,被解释变量Y变动的百分比为B2;
• (3)菲利普斯曲线
被解释变量:英国货币工资变化率,解释变量:失业率 结论:失业率上升,工资增长率会下降。 在自然失业率UN上下,工资变动幅度快慢不同。即失业率低于自然失业率时,工 资随失业率单位变化而上升快于失业率高于自然失业率时工资随失业率单位变化而下 降。
(P113例5-6) 倒数模型: 菲利普斯曲线
依据经济理论,失业率上升,工资增长率会下降;且 当失业率处于不同水平时,工资变动率变动的程度会 不一样,即Y对X 的斜率(Y / X)不会是常数。
Y / X 20.588*(1/ X 2 )
R2 0.6594
模型选择:
1、依据经济理论
以及经验判断;
2、辅助于对拟合
R2 0.5153 Y / X 0.79
1、B1、B2、B4 0; 2、B3 0 3、B32 3B2B4
WHY? —所以经济理论的学习对于模型的建立、选择
和检验有非常关键和重要的意义。 24
四、模型(形式)选择的依据
经济理论
工作经验
1、模型的建立需要正确地理论、合适可用的数据、 对各种模型统计性质的完整理解以及经验判断。
模型选择的基本准则:进入模型中的解释变量的关系(即 理论基础)、解释变量系数的预期符号、弹性系数等经济 指标、统计显著性等

线性回归计算方法及公式PPT课件

线性回归计算方法及公式PPT课件
公式
(y = ax + b)
解释
其中(y)是因变量,(a)是斜率,(x)是自变量,(b)是截距。
实例二:多元线性回归分析
总结词
多个自变量的线性关系
详细描述
多元线性回归分析研究因变量与多个自变量之间的线性关 系。通过引入多个自变量,可以更全面地描述因变量的变 化规律。
公式
(y = a_1x_1 + a_2x_2 + ... + a_nx_n + b)
加权最小二乘法的公式
加权最小二乘法的公式是:(ŷ=β₀+β₁x₁+β₂x₂+...+βₙxₙ)其中,(w_i)是加权因 子,用于对不同观测值赋予不同的权重。
加权最小二乘法适用于数据存在异方差性的情况,通过给不同观测值赋予不同的 权重,能够更好地拟合数据。
主成分回归的公式
主成分回归的公式是:(ŷ=β₀+β₁z₁+β₂z₂+...+βₙzₙ)其中, (z_i)是主成分得分,通过对原始自变量进行线性变换得到。
误差项独立同分布
误差项被假设是相互独立的,并且具有相 同的分布(通常是正态分布)。
误差项无系统偏差
自变量无多重共线性
误差项被假设没有系统偏差,即它们不随 着自变量或因变量的值而变化。
自变量之间被假设没有多重共线性,即它 们是独立的或相关性很低。
02
线性回归模型
模型建立
确定因变量和自变量
首先需要确定研究的因变量和自变量, 以便建立线性回归模型。
以提供更稳定和准确的估 计。
(y = (X^T X + lambda I)^{1}X^T y)
其中(y)是因变量,(X)是自变量 矩阵,(lambda)是正则化参数

回归方程的函数形式

回归方程的函数形式

P
P0
D2
A
dQ P Ed dP Q
D1
Q0
Q
对于对数线性回归模型, ln Y 3.9617 0.2272ln X
其回归系数-0.2272的经济意义是价格每上升1%, 平均而言,需求量会下降0.22%。
对于线性回归模型,
Y 49.667 2.1576 X
其回归系数-2.1576的经济意义是价格每增加1元 钱,平均而言,需求量会减少大约2个单位。
形如Yi B1 B2 X i B3 X i2 B4 X i3 ui的回归模型称为 多项式回归模型,
它只有一个解释变量,不过解释变量以 不同次幂的形式出现在回归模型中
由于参数B1 , B2 , B3 , B4是以一次方的形式出现在回归方程中 因而这是一个线性回归模型
问题?由于解释变量X的不同次幂同时出现在回归模型 中,是否会导致(多重)共线性呢?
Y
LNY
X
LNX
思考:是否可以根据判定系数决定模型形式 的选择?
注意:只有当两个模型的应变量相同时,才 可能根据判定系数的高低评价两个模型的拟合优 度。在线性回归模型中,应变量是绝对形式,在 对数线性回归模型中,应变量是对数形式。
判定系数并不是评价模型优劣的唯一标准, 像回归系数的符号是否与理论预期相一致,是 否在统计上显著等也是评价模型好坏的重要标 准。
X Y B2 ( ) X
5.6
倒数模型
1 形如Yi B1 B2 ( ) ui的模型称为倒数模型 Xi
它的特点是随着X取值的无限增大,应变量Y将趋向于 其渐进值B1
Y
B1 B2
0 0
B1
0
X
Y
B1

重庆市主城区交通状况预测

重庆市主城区交通状况预测

重庆市主城区交通状况预测摘要通过建立用一元回归模型、采用曲线拟合方法并利用matlab软件求解预测出重庆市未来五年的人口数量、人均GDP及公路里程数,得到重庆市未来五年的交通状况。

关键词统计回归;曲线拟合;预测目前,重庆市正处于迅速发展的阶段。

交通发展也是其中的一项重要内容,国家交通局以及重庆市交通局都非常关注这个问题。

只有正确地把握未来交通的发展趋势才能制定出合理有效的规划方案。

在规划的多方案比较中,无法直接用定性分析的方法判断方案的优劣,必须定量的分析,从而保证规划的科学性。

因此,可以借助于以往的数据再结合理论知识对未来的交通作出预测。

目前,国内外常见的模型有多元线性回归模型、ARIMA模型、神经网络模型,但对于未来交通状况好坏的预测却很少见,为此,我们需要建立一种模型,定量地对影响重庆未来交通状况的两个最重要因素——车辆保有量和公路里程作出预测,并以此为依据得出重庆未来的交通状况。

1问题分析由于交通状况的复杂性及人们认识程度的限制,我们无法通过分析其内在的因果关系来建立合乎机理规律的数学模型,通常的办法是搜集大量的数据,基于对数据的统计分析去建立统计回归模型。

在现实中,整个重庆市的交通状况与诸多因素有关,但经调查分析后可以得出,交通状况主要跟当年车辆保有量和公路里程数有关。

而经过进一步研究,我们又发现,车辆保有量又主要受人口数量及人均GDP影响。

因此,我们可以把问题简化为通过人口数量、人均GDP的预测来预测车辆保有量,并综合对公路里程数的预测,从而对重庆未来的交通状况作出预测。

2未来五年车辆保有量预测2.1一元线性回归模型建立设一元总体线性回归模型为为确定车辆保有量与人口数量的关系,根据重庆市1994-2007年人口数量和车辆保有量的观测(样本)值,可设人口数量为xi,车辆保有量为yi,即可得如下一元样本回归方程。

2.2模型求解利用最小二乘原理,依据使样本剩余的平方和达到最小的准则,从而确定模型中的参数,建立样本回归函数。

线性回归方程

线性回归方程

一、线性回归方程1、线性回归方程是利用数理统计中的回归分析,来确定两种或两种以上变数相互依赖的定量关系的一种统计分析方法之一。

线性回归也是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。

按自变量个数可分为一元线性回归分析方程和多元线性回归分析方程。

在统计学中,线性回归方程是利用最小二乘函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。

这种函数是一个或多个称为回归系数的模型参数的线性组合。

只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。

2、在线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。

这些模型被叫做线性模型。

最常用的线性回归建模是给定X值的y的条件均值是X的仿射函数。

不太一般的情况,线性回归模型可以是一个中位数或一些其他的给定X的条件下y的条件分布的分位数作为X的线性函数表示。

像所有形式的回归分析一样,线性回归也把焦点放在给定X值的y的条件概率分布,而不是X和y的联合概率分布(多元分析领域)。

3、理论模型给一个随机样本(Yi ,Xi1,…,Xip),i=1,…,n,,一个线性回归模型假设回归子Yi 和回归量Xi1,…,Xip之间的关系是除了X的影响以外,还有其他的变数存在。

我们加入一个误差项(也是一个随机变量)来捕获除了Xi1,…,Xip之外任何对Yi的影响。

所以一个多变量线性回归模型表示为以下的形式:,i=1,…,n,其他的模型可能被认定成非线性模型。

一个线性回归模型不需要是自变量的线性函数。

线性在这里表示Yi的条件均值在参数里是线性的。

例如:模型在和里是线性的,但在里是非线性的,它是的非线性函数。

4、数据和估计区分随机变量和这些变量的观测值是很重要的。

通常来说,观测值或数据(以小写字母表记)包括了n个值(y i,x i1,…,x ip),i=1,…,n。

我们有p+1个参数,,需要决定,为了估计这些参数,使用矩阵表记是很有用的。

线性回归方程

线性回归方程

线性回归方程知识定位线性回归方程在全国卷中有所考察,往往以解答题形式出现,考察难度中等,主要掌握以下内容即可:①会作两个有关联变量数据的散点图,会利用散点图认识变量间的相关关系. ②了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.知识梳理知识梳理1:相关关系和函数关系在实际问题中,变量之间的常见关系有两类: 一类是确定性函数关系,变量之间的关系可以用函数表示。

例如正方形的面积S 与其边长之间的函数关系(确定关系);一类是相关关系,变量之间有一定的联系,但不能完全用函数来表达。

例如一块农田的水稻产量与施肥量的关系(非确定关系) 相关关系:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系。

相关关系与函数关系的异同点:相同点:均是指两个变量的关系。

不同点:函数关系是一种确定关系;而相关关系是一种非确定关系;函数关系是自变量与因变量之间的关系,这种关系是两个非随机变量的关系;而相关关系是非随机变量与随机变量的关系。

知识梳理2:求回归直线方程的思想方法观察散点图的特征,发现各点大致分布在一条直线的附近,思考:类似图中的直线可画几条?引导学生分析,最能代表变量x 与y 之间关系的直线的特征:即n 个偏差的平方和最小,其过程简要分析如下:设所求的直线方程为,其中a 、b 是待定系数。

则,于是得到各个偏差。

显见,偏差的符号有正负,若将它们相加会造成相互抵消,所以它们的和不能代表几个点与相应直线在整体上的接近程度,故采用n 个偏差的平方和表示n 个点与相应直线在整体上的接近程度。

记。

x 2x S =ˆybx a =+ˆ(1,2,,)i i ybx a i n =+=⋅⋅⋅⋅ˆˆ(),(1,2,...)i i i yy y bx a i n -=-+=ˆˆi yy -2221122()()....()n n Q y bx x y bx a y bx a =--+--++--21()nii i Q ybx a ==--∑上述式子展开后,是一个关于a ,b 的二次多项式,应用配方法,可求出使Q 为最小值时的a ,b 的值,即其中例题精讲【试题来源】【题目】下列各组变量哪个是函数关系,哪个是相关关系? (1)电压U 与电流I (2)圆面积S 与半径R(3)自由落体运动中位移s 与时间t (4)粮食产量与施肥量 (5)人的身高与体重(6)广告费支出与商品销售额 【答案】见解析【解析】分析:函数关系是一种确定关系;而相关关系是一种非确定关系;函数关系是自变量与因变量之间的关系,这种关系是两个非随机变量的关系;而相关关系是非随机变量与随机变量的关系。

线性回归模型及其函数形式

线性回归模型及其函数形式
W
S
总体回归函数和样本回归函数
o 总体回归函数的另一种表述
o 误差(error)的来源 ❖其他解释变量的影响 ❖测量误差 ❖人类行为的随机性
总体回归函数和样本回归函数
o 总体回归函数图解
Wi E(W|Si)
A
ui
PRF C
Si
总体回归函数和样本回归函数
样本回归函数(sample regression function,SRF) o 样本:从上述总体中随机抽取了100人 o 问题:根据样本数据估计总体中工资W与受教育年限S的关系
variable
variable
回归分析中的常用术语
相关与回归(co目r的relation变&量r间eg的r关es系sion变)量的性质 指标
相关分析 分析变量之间 对称的
都是随机变量 相关系数
(correlation 的线性关联程 analysis) 度
回归分析 根据自变量的 不对称的
因变量是随机 回归系数
variable variable
Exogenous Predictor variable
Regressor
因变量
被解释变量 响应变量 内生变量
预测子
回归子
Dependent Explained Response Endogenous Predictand Regressand
variable
variable
o 请用最小二乘法估计出以D为因变量的样本回归方程 o 计算回归标准误和回归系数估计量的标准误
年份 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
P 0.77 0.74 0.72 0.73 0.76 0.75 1.08 1.81 1.39 1.20 1.17 D 2.57 2.50 2.35 2.30 2.25 2.20 2.11 1.94 1.97 2.06 2.02

回归模型的函数形式

回归模型的函数形式

如果用符号 Y 代表Y的一个微小变动,X 代表X的一个微 小变动,则弹性E定义为:
E Y 变动的百分数 Y / Y •100 Y • X slop( X )
X变动的百分数 X / X •100 X Y
Y
从图形上看,变量线性的回归模型的图形是一条直线,而 双对数模型的图形是一条曲线,并且对于不同的X值来说, 都具有相同的弹性。所以,双对数模型又称为不变弹性模 型。
倒数模型的一个显著特征是,随着X 的无限增大,(1/ Xi ) 趋于零,Y 接近渐进值或极限值 B1 。因此,当变量 X 无限增大 时,倒数模型中的应变量的取值将逐渐靠近其渐进线或极值。
下图描绘了倒数模型的一些曲线形状: 倒数模型:Yi B1 B2 (1/ X i )
上图a)中,若Y表示生产的平均固定成本(AFC),X代表产出,则 根据经济理论,随着产出的不断增加,平均固定成本将逐渐降低,最 终接近产出轴。
4.线性-对数模型:解释变量是对数形式
考虑如下例子:个人总消费支出与服务支出的关系 (1993.1~1998.3,1992年美元价,10亿美元),数据见下表:
1993.1~1998.3个人总消费支出与各类支出的季度数据(10亿美元)
以个人总消费支出X与服务支出Y的关系为例,得到线性- 对数模型如下:
Variable Coefficient
C
0.420412
DASSET 0.054930
Std. Error t-Statistic 0.012858 32.69715 0.022099 2.485610
Prob. 0.0000 0.0322
R-squared
0.381886
Adjusted R-squared 0.320075
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设:
b1 ln Y0 , b 2 ln(1 r ) , 并 加 上 随 机 误 差 项 ,
则复利公式变成了对数到线性的半对数模型:
ln(Yt ) b1 b 2 t u t
所以复利增长率 1。 Example 9.4 The growth of the U.S. Population,1970 to 1999 pp258-259
Y / Y Y / Y X b2 ( 是 一 个 b2 ( 是 个 常 数 ) X / X Y X / X
变量)
注:当用 X 和 Y 的样本均值 代 入 时( b2
X ) ,即 为 样 本 期 Y
的平均产弹性。
Y 对 X 的 斜率 判定系 数 R2
b2 ( 常 数 )
X 对 Y 变动的解释比例
两边取以 e 为底的对数得:
ln Yt ln a1 a 2 ln X t u t

Yt* ln Yt , X* t ln X t , b1 ln a 1 , b 2 a 2 则 模 型 变 为 : Yt* b1 b 2 X* t u t( 变 换 后 的 模 型 为 线 性 模 型 ,该 模
厦门大学经济学院 胡朝霞
1
当 当 的。
b2 1 时 , 则 称 该 商 品 的 价 格 是 有 弹 性 的 ;
b2 1 时 , 则 称 该 商 品 的 价 格 是 无 ( 缺 乏 ) 弹 性
思 考 : 如 何 检 验 价 格 弹 性 的 特 征 ? (用 t 检 验 ) 由于双对数模型的弹性是一个常数,所以双对数模 型又称为不变弹性模型。 2. 双 对 数 模 型 与 一 般 线 性 模 型 的 比 较 :
r eb 1, 即 等 于 回 归 系 数 的 反 对 数 减
2
线性趋势模型:有时研究者不去估计以上的对数到线性 的 模 型 , 而 代 之 以 如 下 的 线 性 趋 势 模 型 ( linear trend model) :
Yt b1 b 2 t u t( 不 是 对 数
对时间的回归)
即 X 变 动 一 个 单 位 , Y 变 动 的 比 率 为 b2 或 者 说 Y 变 动 了 100×b2%。 所以对数到线性模型又称为增长模型。它的目的 在于给出 X 的一个绝对的单位变化,找出 Y 的百分比 增长。 当 用 时 间 t(t=1,2,… ,T)作 为 解 释 变 量 时 , 对 数 — 线性模型为:
二 、 半 对 数 ( Semilog model ) 模 型 : 线 性 到 对 数 与 对 数到线性模型 1. 对 数 到 线 性 ( Log-lin model) 模 型 : 只 有 被 解
释变量是对数形式。
ln(Yt ) b1 b 2 X t u t
回归系数的含义:
b2
ln Y Y / Y Y的相对变动 X X X的绝对变动
Y Y b2 ( 是 变 化 的 ) X X
lnX 对 lnY 变 动 的 解 释 比 例。
由于两个模型的因变量不同,所以不可直接比较两个 模型的判定系数并以此为依据来选择模型。 ( p.157)
厦门大学经济学院 胡朝霞
2
3. 多 元 双 对 数 回 归 模 型 :
模型设定方式:
ln Yt b1 b 2 ln X 2 t b 3 ln X 3 t u t
Y A L K eu
两边取对数得:
ln Y ln A ln L ln K u
Example5.2
厦门大学经济学院 胡朝霞
The C-D production function
3
PP105— 106 Example5.3 Pp106-107 The demand for energy
2. b1<0, b2>0
Y
UN
0 b1
厦门大学经济学院 胡朝霞
X
7
实 际 应 用 : 菲 利 普 斯 曲 线 ( Phillips Curve) X: 失 业 率 ; Y 工 资 变 化 率 图的形状表明, 工资变化对失业率的反应是不对称的: 当失业率低于经济学家所指的自然失业率水平 U (工资 变化(通货膨胀)为零时的失业率)时,失业率的单位 上升(下降)所引起的工资变化率下降(上升)速度要 快于失业率高于自然水平时所引起的工资变化率的下降 (上升)速度。 b1:工 资 变 化 的 渐 进 底 线 ( asymptotic floor) 解释:可能由于制度因素,如工会的讨价能力、最低 工资规定、失业补贴等。 Example5.6 The Phillips curve for the United
N
States,1958 to1969
pp113-114.
Example 5.7 Advisory fees charged for a mutual fund Pp114-115.
厦门大学经济学院 胡朝霞
8
3.
b1>0, b2<0
Y b1
0
X

b2 b1
实际应用:恩格尔消费曲线(一个消费者在某一商品 上的支出与他的总支出或总收入之间的关系的曲线) X: 收 入 ; Y: 对 某 一 消 费 品 的 支 出 。 消费者对某些商品消费的特性: 1. 收 入 上 存 在 某 个 临 界 水 平 或 阈 值 (Threshold
型的假设检验同双变量线性模型完全相同。 ) 双对数模型一般表达为:
ln Yt b1 b 2 ln X t u t
其中斜率为:
b2
ln Y Y / Y Y / Y Y的变动率 常数 ln X X / X X / X X的变动率
即 Y 对 X 的 弹 性 : 即 X 变 动 百 分 之 一 , Y 变 动 百 分 之 b。 例 如 , 如 果 Y 为 某 商 品 的 需 求 , X 为 价 格 , 则 b2 为 该 商 品的需求价格弹性。
9
四 、 多 项 式 模 型 (Polynomial Regression Model) 1.二 项 式 模 型 ( 抛 物 线 模 型 ) :解 释 变 量 X 的 最 高 次 幂 为 2。
Yi b 0 b1X b 2 X 2 u i
图形之一:U 形曲线
Y
X
实 际 应 用 : 边 际 成 本 函 数 。 X: 产 出 ; Y: 边 际 成 本 ( MC) 或 平 均 成 本 ( AC) 。 开 始 随 着 产 出 的 增 加 ,MC 或 AC 下 降 ,但 到 了 一 定 的 产 出 水 平 后 , MC 或 AC 转 而 上 升 。 2. 三 项 式 模 型 : 解 释 变 量 X 的 最 高 次 幂 为 3。
( instantaneous) 增 长 率 。
复利公式:
Yt Y0 (1 r ) t , 其 中 , r
为 Y 的复利或复合
( compound) 增 长 率 , Y0 为 Y 的 初 始 增 长 水 平 。 对复利公式两边取自然对数得:
ln(Yt ) ln Y0 ln(1 r ) t
三 、 双 曲 函 数 模 型 (倒 数 模 型 ) 又 译 为 倒 数 模 型 (Reciprocal Model):
Yi b1 b 2 (
厦门大学经济学院 胡朝霞
1 ) ui Xi
6
倒 数 模 型 的 特 点 : 随 着 X 的 无 限 增 大 , Y 趋 于 b1。 b1 为 渐 进 值 或 极 值 ( Limit or asymptotic value) 。 因此倒数模型有一内在的渐进线或极限值,当变量 X 值无限增大时,因变量将取此极限值。 倒数模型的图形:
1.
b1>0, b2>0
Yቤተ መጻሕፍቲ ባይዱ
b1 0 X
实际应用: X: 产 出 ; Y 平 均 成 本 ( AC) 。 随着产出的增大(由于固定成本被分摊到大量的单位 产品上) , AC 连 续 的 下 降 , 直 至 最 后 渐 进 于 一 条 位 于 b1 处的产出轴。 X: 人 均 GDP; Y: 儿 童 死 亡 率 。 随着国家收入上升,儿童死亡率下降,但随着收入的 上 升 , 下 降 逐 渐 减 弱 , 最 后 死 亡 率 趋 进 于 b1。
ln(Yt ) b1 b 2 t u t
此时,回归系数的含义为:
b2
ln Y Y / Y (Yt Yt 1 ) / Yt Yt Yt 1 t t t ( t 1) Yt
4
厦门大学经济学院 胡朝霞
所 以
b2 就 是
Y 的 增 长 率 。 此 增 长 率 又 称 为 瞬 时
第 5章
回归方程的函数形式
一 、 双 对 数 线 性 ( Log-linear Model or Double-log Model) 模 型 指的是线性模型中,解释变量和被解释变量都以对 数的形式出现。 1. 双 变 量 双 对 数 模 型 模型的设定方式:
u Yt a 1X a t e
2 t
(非线性模型,但可线性化。 )
Y 对 时 间 的 回 归 ,而 是 Y
时 间 变 量 t 称 为 趋 势 变 量 ( trend variable ) 。趋势: 指变量的行为中的一种持续上升或下降运动;若斜率系
厦门大学经济学院 胡朝霞
5
数 为 正 ,则 Y 中 有 一 上 升 趋 势 ,反 之 ,若 斜 率 系 数 为 负 , 则 Y 中 有 一 下 降 趋 势 。 此 时 斜 率 系 数 b2 的 含 义 : 每 年 Y 增 长 的 绝 对 量 为 b2 个 单 位 。 增长模型和线性趋势模型之间的取舍:在两个模型 都通过显著性检验的情况下,依赖于人们对实际 Y 的相 对或绝对变化的兴趣。 ( 同 样 ,不 能 直 接 比 较 两 个 模 型 的 判定系数,因为它们的因变量并不相同。 )
相关文档
最新文档