乘法公式(提高)
初中数学全套公式
初中数学全套公式初中数学是义务教育的基础学科,其公式和概念的学习是这门课程的核心部分。
以下是一套完整的初中数学公式,这些公式涵盖了初中数学的大部分内容,对于理解和应用数学概念具有重要意义。
一、代数公式1、乘法公式:(a+b)(a-b)=a²-b²2、完全平方公式:a²+2ab+b²=(a+b)²3、平方差公式:a²-b²=(a+b)(a-b)4、立方和公式:a³+b³=(a+b)(a²-ab+b²)5、立方差公式:a³-b³=(a-b)(a²+ab+b²)6、两数和乘两数差:2(a+b)(a-b)=2a²-2b²7、两数平方和:a²+b²=(a+b)²-2ab8、两数和的平方:(a+b)²=a²+2ab+b²9、两数差的平方:(a-b)²=a²-2ab+b²10、幂的乘方:anbn=(ab)n11、积的乘方:anbn=(ab)n12、分式的约分:同时分子分母除以公因式。
13、提公因式法:一般地,如果想要提取一个多项式的公因式,我们把这个多项式的各项都含有的相同字母因式提到括号外面,将多项式化成积的形式,这种分解因式的方法叫做提公因式法。
14、运用公式法:如果一个式子的值等于几个其他式子的值乘积,那么这个式子就叫公式的原式,这几个其他式子就叫这个公式的因式。
如果把一个公式的所有因式分解出来,那么它们就都叫这个公式的因式分解。
二、几何公式1、勾股定理:在一个直角三角形中,斜边的平方等于两条直角边的平方和。
2、平行线间的距离公式:如果两条直线平行,那么一条直线上任意一点到另一条直线的距离相等。
3、三角形的面积公式:一个三角形的面积等于底边乘以高再除以2。
乘法运算律公式大全
乘法运算律是数学中的基本规则,它们帮助我们理解和处理乘法操作。
以下是一些常见的乘法运算律:
1. 乘法交换律(Commutative Law of Multiplication):
a *
b = b * a
这意味着乘法操作的顺序可以交换,不影响结果。
例如,2 * 3 = 3 * 2。
2. 乘法结合律(Associative Law of Multiplication):
(a * b) * c = a * (b * c)
这意味着乘法操作的括号分组方式可以改变,不影响结果。
例如,(2 * 3) * 4 = 2 * (3 * 4)。
3. 乘法分配律(Distributive Law of Multiplication):
a * (
b + c) = (a * b) + (a * c)
这个律法表示乘法对加法的分配,或者说,可以将一个数与括号内的每个数相乘,然后将结果相加。
例如,2 * (3 + 4) = (2 * 3) + (2 * 4)。
4. 乘法单位元律(Multiplicative Identity Law):
a * 1 = a
任何数与1相乘都等于其自身。
5. 乘法零元律(Multiplicative Zero Law):
a * 0 = 0
任何数与0相乘都等于0。
这些乘法运算律是基础数学原理,它们在解决各种数学问题和代数方程式中都非常有用。
通过应用这些规则,我们可以简化乘法运算、重新排列因子和求解复杂的数学表达式。
乘法公式经典例题
乘法公式经典例题
乘法公式是数学中非常基础和重要的公式之一,它在我们日常生活和学习中经常被使用到。
下面将给出几个经典的乘法公式例题,帮助我们更好地理解和运用乘法公式。
一、乘法的交换律:a * b = b * a
这个公式告诉我们,两个数相乘的结果不受它们的顺序影响。
例如,2 * 3 = 3 * 2 = 6。
二、乘法的结合律:(a * b) * c = a * (b * c)
结合律告诉我们,三个数相乘的结果不受它们加括号的顺序影响。
例如,(2 * 3) * 4 = 2 * (3 * 4) = 24。
三、乘法的分配律:a * (b + c) = a * b + a * c
分配律告诉我们,一个数与两个数的和相乘,等于这个数分别与这两个数相乘再求和。
例如,2 * (3 + 4) = 2 * 3 + 2 * 4 = 14。
四、零的乘法:a * 0 = 0
零的乘法告诉我们,任何数乘以零的结果都是零。
例如,2 * 0 = 0。
五、一的乘法:a * 1 = a
一的乘法告诉我们,任何数乘以一的结果都是它本身。
例如,2 * 1 =
2。
除了以上几个经典的乘法公式,还可以根据实际情况进行推导和运用。
例如,我们可以利用乘法公式计算两个数的乘积,或者根据乘法公式解决实际问题,如计算面积、体积等。
总结来说,乘法公式是数学中非常重要的基础工具,它帮助我们理解和运用乘法的规律,解决各种数学问题。
通过不断练习和应用乘法公式,我们可以提高自己的数学能力,更加灵活地运用乘法进行计算和解决问题。
浙教版七年级数学下册 3.4 乘法公式(提高)知识讲解
乘法公式(提高讲义)【重点梳理】重点一、平方差公式平方差公式:22()()a b a b a b +-=-两个数的和与这两个数的差的积,等于这两个数的平方差.重点诠释:在这里,b a ,既可以是具体数字,也可以是单项式或多项式.抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型:(1)位置变化:如()()a b b a +-+利用加法交换律可以转化为公式的标准型 (2)系数变化:如(35)(35)x y x y +- (3)指数变化:如3232()()m n m n +- (4)符号变化:如()()a b a b --- (5)增项变化:如()()m n p m n p ++-+(6)增因式变化:如2244()()()()a b a b a b a b -+++ 重点二、完全平方公式完全平方公式:()2222a b a ab b +=++2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.重点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形:()2222a b a b ab +=+-()22a b ab =-+()()224a b a b ab +=-+重点三、添括号法则添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.重点诠释:添括号与去括号是互逆的,符号的变化也是一致的,可以用去括号法则检查添括号是否正确. 重点四、补充公式2()()()x p x q x p q x pq ++=+++;2233()()a b a ab b a b ±+=±m ;33223()33a b a a b ab b ±=±+±;2222()222a b c a b c ab ac bc ++=+++++. 【典型例题】类型一、平方差公式的应用例1、计算(2+1)(221+)( 421+)(821+)(1621+)(3221+)+1.【思路点拨】本题直接计算比较复杂,但观察可以发现2+1与2-1,221+与221-,421+与421-等能够构成平方差,只需在前面添上因式(2-1),即可利用平方差公式逐步计算. 【答案与解析】解:原式=(2-1)(2+1)( 221+)(421+)(821+)(1621+)(3221+) +1 =(221-)( 221+)( 421+)(821+)(1621+)(3221+)+1 =642-1+1=642.【总结升华】对于式子较为复杂的数的计算求值问题,不妨先仔细观察,看是否有规律,然后去解决,会事半功倍,提高解题能力. 举一反三:【变式1】(2019秋﹒平山县期末)用简便方法计算: (1)1002-200×99+992 (2)2018×2020-20192【分析】(1)将原式转化为1002-2×100×(100-1)+(100-1)2,再利用完全平方公式进行计算, (2)2018×2020转化为(2019-1)(2019+1),再利用平方差公式计算即可. 【解答】解:(1)1002-200×99+992 =1002-2×100×(100-1)+(100-1)2 =[100-(100-1)]2=12 =1;(2)2018×2020-20192=(2019-1)(2019+1)-20192=20192-1-20192 =-1.【点评】考查平方差公式、完全平方公式的应用,掌握公式特征是关键.【变式2】(2019•内江)(1)填空: (a ﹣b )(a+b )= ;(a ﹣b )(a 2+ab+b 2)= ;(a ﹣b )(a 3+a 2b+ab 2+b 3)= . (2)猜想:(a ﹣b )(a n ﹣1+a n ﹣2b+…+ab n ﹣2+b n ﹣1)= (其中n 为正整数,且n≥2).(3)利用(2)猜想的结论计算:29﹣28+27﹣…+23﹣22+2. 【答案】解:(1)(a ﹣b )(a+b )=a 2﹣b 2;(a ﹣b )(a 2+ab+b 2)=a 3+a 2b+ab 2﹣a 2b ﹣ab 2﹣b 3=a 3﹣b 3;(a ﹣b )(a 3+a 2b+ab 2+b 3)=a 4+a 3b+a 2b 2+ab 3﹣a 3b ﹣a 2b 2﹣ab 3﹣b 4=a 4﹣b 4;故答案为:a 2﹣b 2,a 3﹣b 3,a 4﹣b 4; (2)由(1)的规律可得:原式=a n﹣b n,故答案为:a n ﹣b n;(3)29﹣28+27﹣…+23﹣22+2=(2﹣1)(28+26+24+22+2)=342.例2、(2019秋﹒甘井子区期末)数学兴趣小组在“用面积验证平方差公式”时,经历了如下的探究过程:(1)小明的想法是:将边长为a 的正方形右下角剪掉一个边长为b 的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,并用两种方式表示这两部分面积的和,请你按照小明的想法验证平方差公式.(2)小白的起法是:在边长为a 的正方形内部任意位置剪掉一个边长为b 的正方形(如图2),再将剩下部分进行适当分割,并将分割得到的几部分面积和用两种方式表示出来,请你按照小白的想法在图中用虚线画出分割线,并验证平方差公式.【考点】平方差公式的几何背景.乘法公式的几何验证方法∴①+②的面积=a 2-b 2;①+②的面积=大正方形的面积-小正方形的面积=a 2-b 2, ∴(a+b)(a -b)=a 2-b 2.(2)①+②的面积=(a-b)b=ab-b 2, ③+④的面积=(a-b)a=a 2-ab, ∴①+②+③+④=a 2-b 2;①+②+③+④的面积=大正方形的面积-小正方形的面积=a 2-b 2, ∴(a+b)(a -b)=a 2-b 2.【点评】本题考查平方差公式的几何背景;理解题意,结合图形面积的关系得到公式,并能灵活运用公式是解题的关键. 举一反三:【变式】(2019秋﹒南昌期末)如图1的两个长方形可以按不同的形式拼成图2和图3两个图形.(1)在图2中的阴影部分面积S 1可表示为a 2-b 2a 2-b 2,在图3中的阴影部分的面积S 2可表示为a 2-b 2a 2-b 2,由这两个阴影部分的面积得到的一个等式是BB . A .(a+b)2=a 2+2ab+b 2B .a 2-b 2=(a+b)(a-b) C .(a-b)2=a 2-2ab+b 2(2)根据你得到的等式解决下面的问题: ①计算:67.52-32.52; ②解方程:(x+2)2-(x-2)2=24.【考点】平方差公式的几何背景.【专题】整式;一次方程(组)及应用;运算能力. 【分析】(1)由正方形的面积,可得S 1=a 2-b 2;由长方形的面积,可得S 1=(a+b)(a-b)=a 2-b 2;所以a 2-b 2=(a+b)(a-b);(2)①67.52-32.52=(67.5+32.5)(67.5-32.5)=100×35=3500;②展开整理,得8x=24,解得x=3,所以方程的解是x=3.【解答】解:(1)由正方形的面积,可得 S 1=a 2-b 2;由长方形的面积,可得S 1=(a+b)(a-b)=a 2-b 2; ∴a 2-b 2=(a+b)(a-b); 故答案为a 2-b 2,a 2-b 2,选B ;(2)①67.52-32.52=(67.5+32.5)(67.5-32.5)=100×35=3500; ②(x+2)2-(x-2)2=24, 展开整理,得8x=24, 解得x=3, ∴方程的解是x=3.【点评】本题考查平方差公式的几何背景;理解题意,结合图形面积的关系得到公式,并能灵活运用公式是解题的关键.类型二、完全平方公式的应用例3、运用乘法公式计算:(1)2(23)a b +-;(2)(23)(23)a b c a b c +--+.【思路点拨】(1)是一个三项式的平方,不能直接运用完全平方公式,可以用加法结合律将23a b +-化成(23)a b +-,看成a 与(23)b -和的平方再应用公式;(2)是两个三项式相乘,其中a 与a 完全相同,2b ,3c -与2b -,3c 分别互为相反数,与平方差公式特征一致,可适当添加括号,使完全相同部分作为“一项”,互为相反数的部分括在一起作为“另一项”. 【答案与解析】解:(1)原式222[(23)]2(23)(23)a b a a b b =+-=+-+-22464129a ab a b b =+-+-+ 22446129a b ab a b =++--+.(2)原式22222[(23)][(23)](23)4129a b c a b c a b c a b bc c =+---=--=-+-. 【总结升华】配成公式中的“a ”“b ”的形式再进行计算. 举一反三:【变式】运用乘法公式计算:(1)()()a b c a b c -++-; (2)()()2112x y y x -+-+; (3)()2x y z -+; (4)()()231123a b a b +---. 【答案】解:(1) ()()a b c a b c -++-=[a -(b -c )][ a +(b -c )]=()()222222a b c a b bc c--=--+=2222a b bc c -+-.(2) ()()2112x y y x -+-+ =[2x +(y -1)][2x -(y -1)]=()()()222221421x y x y y --=--+=22421x y y -+-.(3)()()()()22222x y z x y z x y x y z z -+=-+=-+-+⎡⎤⎣⎦=222222x xy y xz yz z -++-+.(4) ()()231123a b a b +---=()2231a b -+-=-22[(23)2(23)1]a b a b +-++=-()22(2)2233461a a b b a b ⎡⎤+⋅⋅+--+⎣⎦=224129461a ab b a b ---++-例4、已知△ABC 的三边长a 、b 、c 满足2220a b c ab bc ac ++---=,试判断△ABC 的形状.【思路点拨】通过对式子变化,化为平方和等于零的形式,从而求出三边长的关系. 【答案与解析】解:∵ 2220a b c ab bc ac ++---=,∴ 2222222220a b c ab bc ac ++---=,即222222(2)(2)(2)0a ab b b bc c a ac c -++-++-+=. 即222()()()0a b b c a c -+-+-=. ∴ 0a b -=,0b c -=,0a c -=,即a b c ==,∴ △ABC 为等边三角形.【总结升华】式子2220a b c ab bc ac ++---=体现了三角形三边长关系,从形式上看与完全平方式相仿,但差着2ab 中的2倍,故想到等式两边同时扩大2倍,从而得到结论. 举一反三:【变式】多项式222225x xy y y -+++的最小值是____________. 【答案】4;提示:()()2222222514x xy y y x y y -+++=-+++,所以最小值为4.。
数学运算常用公式大全
数学运算常用公式大全1.加法和减法公式:-加法交换律:a+b=b+a-加法结合律:(a+b)+c=a+(b+c)-加法逆元(减法):a+(-a)=0-加法消去律:a+b=a+c,则b=c2.乘法和除法公式:-乘法交换律:a×b=b×a-乘法结合律:(a×b)×c=a×(b×c)-乘法逆元(倒数):a×(1/a)=1,其中a≠0-乘法消去律:a×b=a×c,则b=c3.指数公式:-幂的乘法:a^m×a^n=a^(m+n)-幂的除法:a^m÷a^n=a^(m-n)-幂的乘方:(a^m)^n=a^(m×n)-幂的零次方:a^0=1,其中a≠04.对数公式:- 对数的乘法:loga (xy) = loga x + loga y- 对数的除法:loga (x/y) = loga x - loga y- 对数的幂:loga (x^n) = n loga x5.三角函数公式:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:a^2 = b^2 + c^2 - 2bc cosA- 正切定理:tanA = sinA/cosA- 和差化积公式:sin(A ± B) = sinA cosB ± cosA sinB6.二次方程公式:- 一元二次方程:ax^2 + bx + c = 0,其中a≠0- 解的公式:x = (-b ± √(b^2 - 4ac)) / 2a- 判别式:Δ = b^2 - 4ac,若Δ > 0,则有两个不相等的实根;若Δ = 0,则有两个相等的实根;若Δ < 0,则没有实根。
7.统计学公式:-平均数:平均数=总和/数据个数-中位数:将数据从小到大排列,如果数据个数为奇数,中位数为中间的那个数;如果数据个数为偶数,中位数为中间两个数的平均数。
乘法公式定理(题型扩展)
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 (a+b)(a 2-ab+b 2)=a 3+b 3 (a-b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式: ① 位置变化,x y y x x 2y 2 ② 符号变化,x y x y x 2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2a b 2a b 4a 2b 2 ⑤ 换式变化,xy z m xy z mxy 2z m 2 x 2y 2z m z m x 2y 2z 2zm zm m 2 x 2y 2z 22zm m 2⑥ 增项变化,x y z x y zx y 2z 2 x y x y z 2 x 2xy xy y 2z 2 x 22xy y 2z 2⑦ 连用公式变化,x y x y x 2y 2x 2y 2x 2y 2 x 4y 4⑧ 逆用公式变化,x y z 2x y z 2x y zx y zx y z x y z2x 2y 2z 4xy 4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
用乘法公式巧妙计算
用乘法公式巧妙计算乘法公式是数学中的基本公式之一,它用于计算两个数的乘积。
乘法公式还可以通过巧妙的变形和运算,用来解决一些复杂的问题。
在本文中,我将介绍一些常见的乘法公式应用和巧妙计算方法,为你提供一些灵感和启示。
1.乘法分配律:乘法分配律是数学中最常用的乘法公式之一、它表明,两个数的积与其中一个数分别乘以另一个数再相加的结果相等。
即:a*(b+c)=a*b+a*c。
这个公式在计算中可以大大简化问题,因为我们可以先将一些因子与多个数相乘,然后再将结果相加,而不需要一个一个相乘再相加。
2. 平方公式:平方公式用于计算一个数的平方。
即:(a+b)^2 = a^2 + 2ab + b^2、这个公式可以用来计算一个数的平方和,或者将一个数的立方拆分成多个平方的和。
3. 乘方公式:乘方公式用于计算一个数的乘方。
例如,(a+b)^3 =a^3 + 3a^2b + 3ab^2 + b^3、这个公式可以用来计算一个数的立方和,或者将一个数的四次方、五次方等拆分成多个平方的和。
4.九九乘法口诀:九九乘法口诀是学习乘法的基础,它通过记忆九九乘法表的形式,帮助我们快速计算两个数的乘积。
例如,2乘以3等于6,3乘以4等于12等等。
通过熟练掌握九九乘法口诀,可以在计算中快速推算乘积。
5.快速乘法法则:快速乘法法则是一种通过巧妙的变形和运算,高效地计算乘积的方法。
例如,计算17乘以15,可以将15拆分成10和5,然后将10乘以17,在将5乘以17,最后将两个数的乘积相加。
这种方法可以在一定程度上减少手工计算的复杂度。
通过灵活运用这些乘法公式和巧妙计算方法,可以大大简化乘法计算的过程,并提高计算效率。
在以后的学习和工作中,你可以根据具体的问题和需求,选择合适的公式和方法,以便更加高效地进行乘法计算。
不断练习和应用这些方法,你会发现数学计算的乐趣,同时也提高自己的数学能力。
2014年初中数学乘法公式提高练习
一.解答题(共14小题)1.计算:2(m+1)2﹣(2m+1)(2m﹣1).2.阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.例如:(x﹣1)2+3、(x﹣2)2+2x、(x﹣2)2+x2是x2﹣2x+4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项﹣﹣见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出x2﹣4x+2三种不同形式的配方;(2)将a2+ab+b2配方(至少两种形式);(3)已知a2+b2+c2﹣ab﹣3b﹣2c+4=0,求a+b+c的值.3.若a=,b=,试不用将分数化小数的方法比较a、b的大小.4.根据以下10个乘积,回答问题:11×29;12×28;13×27;14×26;15×25;16×24;17×23;18×22;19×21;20×20.(1)试将以上各乘积分别写成一个“□2﹣∅2”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)若用a1b1,a2b2,…,a n b n表示n个乘积,其中a1,a2,a3,…,a n,b1,b2,b3,…,b n为正数.试由(1)、(2)猜测一个一般性的结论.(不要求证明)5.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1,系数和为8;…根据以上规律,解答下列问题:(1)(a+b)4展开式共有_________项,系数分别为_________;(2)(a+b)n展开式共有_________项,系数和为_________.6.老师在黑板上写出三个算式:52﹣32=8×2,92﹣72=8×4,152﹣32=8×27,王华接着又写了两个具有同样规律的算式:112﹣52=8×12,152﹣72=8×22,…(1)请你再写出两个(不同于上面算式)具有上述规律的算式;(2)用文字写出反映上述算式的规律;(3)证明这个规律的正确性.7.(1)计算:(a+b)(a2﹣ab+b2);(2)若x+y=1,xy=﹣1,求x3+y3的值.8.若x2+2xy+y2﹣a(x+y)+25是完全平方式,求a的值.9.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题(1)若x2+2y2﹣2xy+4y+4=0,求x y的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.10.已知,求的值.11.已知(x+y)2=1,(x﹣y)2=49,求:①x2+y2,②xy.12.如图所示,图1是一个长为2m,宽为2n的长方形,沿图中的虚线剪成四个全等的小长方形,再按图2围成一个较大的正方形.(1)请用两种方法表示图2中阴影部分的面积(只需表示,不必化简);(2)比较(1)的两种结果,你能得到怎样的等量关系?(3)请你用(2)中得到的等量关系解决下面问题:如果m﹣n=4,mn=12,求m+n的值.13.如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于多少?(2)请用两种不同的方法求图2中阴影部分的面积.方法1:_________方法2:_________(3)观察图2你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m﹣n)2,mn._________(4)根据(3)题中的等量关系,解决如下问题:若a+b=7,ab=5,则(a﹣b)2=_________.14.(1)观察下列各式:62﹣42=4×5,112﹣92=4×10,172﹣152=4×16…你发现了什么规律?试用你发现的规律填空:512﹣492=4×_________,752﹣732=4×_________.(2)请你用含一个字母的等式将上面各式呈现的规律表示出来,并用所学数学知识说明你所写式子的正确性.2014年初中数学乘法公式提高练习参考答案与试题解析一.解答题(共14小题)1.(2011•大连一模)计算:2(m+1)2﹣(2m+1)(2m﹣1).2.(2009•佛山)阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.例如:(x﹣1)2+3、(x﹣2)2+2x、(x﹣2)2+x2是x2﹣2x+4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项﹣﹣见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出x2﹣4x+2三种不同形式的配方;(2)将a2+ab+b2配方(至少两种形式);(3)已知a2+b2+c2﹣ab﹣3b﹣2c+4=0,求a+b+c的值.)+4(﹣a++ab+(ab++b(﹣3.(2009•临夏州)若a=,b=,试不用将分数化小数的方法比较a、b的大小.=4.(2007•东营)根据以下10个乘积,回答问题:11×29;12×28;13×27;14×26;15×25;16×24;17×23;18×22;19×21;20×20.(1)试将以上各乘积分别写成一个“□2﹣∅2”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)若用a1b1,a2b2,…,a n b n表示n个乘积,其中a1,a2,a3,…,a n,b1,b2,b3,…,b n为正数.试由(1)、(2)猜测一个一般性的结论.(不要求证明)≤5.(2006•龙岩)我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1,系数和为8;…根据以上规律,解答下列问题:(1)(a+b)4展开式共有5项,系数分别为1,4,6,4,1;(2)(a+b)n展开式共有n+1项,系数和为2n.6.(2006•安徽)老师在黑板上写出三个算式:52﹣32=8×2,92﹣72=8×4,152﹣32=8×27,王华接着又写了两个具有同样规律的算式:112﹣52=8×12,152﹣72=8×22,…(1)请你再写出两个(不同于上面算式)具有上述规律的算式;(2)用文字写出反映上述算式的规律;(3)证明这个规律的正确性.7.(2006•肇庆)(1)计算:(a+b)(a2﹣ab+b2);(2)若x+y=1,xy=﹣1,求x3+y3的值.8.(2003•黄石)若x2+2xy+y2﹣a(x+y)+25是完全平方式,求a的值.9.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题(1)若x2+2y2﹣2xy+4y+4=0,求x y的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.10.已知,求的值.=)﹣=))﹣±11.已知(x+y)2=1,(x﹣y)2=49,求:①x2+y2,②xy.12.如图所示,图1是一个长为2m,宽为2n的长方形,沿图中的虚线剪成四个全等的小长方形,再按图2围成一个较大的正方形.(1)请用两种方法表示图2中阴影部分的面积(只需表示,不必化简);(2)比较(1)的两种结果,你能得到怎样的等量关系?(3)请你用(2)中得到的等量关系解决下面问题:如果m﹣n=4,mn=12,求m+n的值.13.如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于多少?(2)请用两种不同的方法求图2中阴影部分的面积.方法1:(m+n)2﹣4mn方法2:(m﹣n)2(3)观察图2你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m﹣n)2,mn.(m+n)2=(m ﹣n)2+4mn(4)根据(3)题中的等量关系,解决如下问题:若a+b=7,ab=5,则(a﹣b)2=29.14.(1)观察下列各式:62﹣42=4×5,112﹣92=4×10,172﹣152=4×16…你发现了什么规律?试用你发现的规律填空:512﹣492=4×50,752﹣732=4×74.(2)请你用含一个字母的等式将上面各式呈现的规律表示出来,并用所学数学知识说明你所写式子的正确性.。
1到6年级的数学公式大全
1到6年级的数学公式大全数学是一门重要的学科,它涉及到我们日常生活中的计数、测量、形状和模式等方方面面。
在学习数学的过程中,掌握数学公式是非常关键的一部分,它们帮助我们解决各种数学问题并提高计算的准确性和效率。
以下是1到6年级的数学公式大全。
一、计数和基本运算公式1. 加法公式:- 两个数相加:a + b = c2. 减法公式:- 两个数相减:a - b = c3. 乘法公式:- 两个数相乘:a × b = c4. 除法公式:- 两个数相除:a ÷ b = c5. 平方公式:- 数的平方:a² = c6. 开方公式:- 数的平方根:√a = c二、几何形状公式1. 长方形公式:- 周长:P = 2(a + b)- 面积:A = a × b2. 正方形公式:- 周长:P = 4a- 面积:A = a²3. 三角形公式:- 周长:P = a + b + c- 面积:A = 1/2 × b × h4. 圆形公式:- 周长:C = 2πr (π取3.14或3.14159) - 面积:A = πr²三、分数和小数公式1. 分数加法公式:- a/b + c/d = (a×d + b×c) / (b×d)2. 分数减法公式:- a/b - c/d = (a×d - b×c) / (b×d)3. 分数乘法公式:- a/b × c/d = (a×c) / (b×d)4. 分数除法公式:- a/b ÷ c/d = (a×d) / (b×c)5. 小数转分数公式:- 将小数x转为分数:x = a/b6. 分数转小数公式:- 将分数a/b转为小数:a ÷ b = x四、代数公式1. 一元一次方程公式:- ax + b = 0 或者 ax = b- 解:x = -b/a2. 二次方程公式:- ax² + bx + c = 0- 解:x = (-b ± √(b² - 4ac)) / (2a)3. 等差数列求和公式:- Sn = (n/2)(a₁ + an)- 其中,Sn表示前n项和,a₁表示首项,an表示第n项4. 等比数列求和公式:- Sn = a₁(1 - qⁿ)/(1 - q)- 其中,Sn表示前n项和,a₁表示首项,q表示公比五、时间和速度公式1. 时间、速度和距离公式:- 速度(平均速度):v = s / t- 距离:s = v × t- 时间:t = s / v2. 寻找相对速度公式:- 相对速度:vr = v₁ - v₂六、百分数和几率公式1. 百分数公式:- 百分数 = (所占部分 / 总数) × 100%2. 几率公式:- 几率 = 事件发生的可能性 / 事件不发生的可能性以上是1到6年级数学公式的大全,这些公式将帮助你更好地理解和应用数学,希望对你的学习有所帮助!。
乘法公式(提高)知识讲解
乘法公式(提高讲义)【重点梳理】重点一、平方差公式平方差公式:22()()a b a b a b +-=-两个数的和与这两个数的差的积,等于这两个数的平方差.重点诠释:在这里,b a ,既可以是具体数字,也可以是单项式或多项式.抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型:(1)位置变化:如()()a b b a +-+利用加法交换律可以转化为公式的标准型 (2)系数变化:如(35)(35)x y x y +- (3)指数变化:如3232()()m n m n +- (4)符号变化:如()()a b a b --- (5)增项变化:如()()m n p m n p ++-+(6)增因式变化:如2244()()()()a b a b a b a b -+++ 重点二、完全平方公式完全平方公式:()2222a b a ab b +=++2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.重点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形:()2222a b a b ab +=+-()22a b ab =-+()()224a b a b ab +=-+重点三、添括号法则添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.重点诠释:添括号与去括号是互逆的,符号的变化也是一致的,可以用去括号法则检查添括号是否正确. 重点四、补充公式2()()()x p x q x p q x pq ++=+++;2233()()a b a ab b a b ±+=±;33223()33a b a a b ab b ±=±+±;2222()222a b c a b c ab ac bc ++=+++++. 【典型例题】类型一、平方差公式的应用例1、计算(2+1)(221+)( 421+)(821+)(1621+)(3221+)+1.【思路点拨】本题直接计算比较复杂,但观察可以发现2+1与2-1,221+与221-,421+与421-等能够构成平方差,只需在前面添上因式(2-1),即可利用平方差公式逐步计算. 【答案与解析】解:原式=(2-1)(2+1)( 221+)(421+)(821+)(1621+)(3221+) +1 =(221-)( 221+)( 421+)(821+)(1621+)(3221+)+1 =642-1+1=642.【总结升华】对于式子较为复杂的数的计算求值问题,不妨先仔细观察,看是否有规律,然后去解决,会事半功倍,提高解题能力. 举一反三:【变式1】(2019秋﹒平山县期末)用简便方法计算: (1)1002-200×99+992 (2)2018×2020-20192【分析】(1)将原式转化为1002-2×100×(100-1)+(100-1)2,再利用完全平方公式进行计算, (2)2018×2020转化为(2019-1)(2019+1),再利用平方差公式计算即可. 【解答】解:(1)1002-200×99+992 =1002-2×100×(100-1)+(100-1)2 =[100-(100-1)]2=12 =1;(2)2018×2020-20192=(2019-1)(2019+1)-20192=20192-1-20192 =-1.【点评】考查平方差公式、完全平方公式的应用,掌握公式特征是关键.【变式2】(2019•内江)(1)填空: (a ﹣b )(a+b )= ;(a ﹣b )(a 2+ab+b 2)= ;(a ﹣b )(a 3+a 2b+ab 2+b 3)= . (2)猜想:(a ﹣b )(a n ﹣1+a n ﹣2b+…+ab n ﹣2+b n ﹣1)= (其中n 为正整数,且n≥2).(3)利用(2)猜想的结论计算:29﹣28+27﹣…+23﹣22+2. 【答案】解:(1)(a ﹣b )(a+b )=a 2﹣b 2;(a ﹣b )(a 2+ab+b 2)=a 3+a 2b+ab 2﹣a 2b ﹣ab 2﹣b 3=a 3﹣b 3;(a ﹣b )(a 3+a 2b+ab 2+b 3)=a 4+a 3b+a 2b 2+ab 3﹣a 3b ﹣a 2b 2﹣ab 3﹣b 4=a 4﹣b 4;故答案为:a 2﹣b 2,a 3﹣b 3,a 4﹣b 4; (2)由(1)的规律可得:原式=a n﹣b n,故答案为:a n ﹣b n;(3)29﹣28+27﹣…+23﹣22+2=(2﹣1)(28+26+24+22+2)=342.例2、(2019秋﹒甘井子区期末)数学兴趣小组在“用面积验证平方差公式”时,经历了如下的探究过程:(1)小明的想法是:将边长为a 的正方形右下角剪掉一个边长为b 的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,并用两种方式表示这两部分面积的和,请你按照小明的想法验证平方差公式.(2)小白的起法是:在边长为a 的正方形内部任意位置剪掉一个边长为b 的正方形(如图2),再将剩下部分进行适当分割,并将分割得到的几部分面积和用两种方式表示出来,请你按照小白的想法在图中用虚线画出分割线,并验证平方差公式.【考点】平方差公式的几何背景.乘法公式的几何验证方法∴①+②的面积=a 2-b 2;①+②的面积=大正方形的面积-小正方形的面积=a 2-b 2, ∴(a+b)(a -b)=a 2-b 2.(2)①+②的面积=(a-b)b=ab-b 2, ③+④的面积=(a-b)a=a 2-ab, ∴①+②+③+④=a 2-b 2;①+②+③+④的面积=大正方形的面积-小正方形的面积=a 2-b 2, ∴(a+b)(a -b)=a 2-b 2.【点评】本题考查平方差公式的几何背景;理解题意,结合图形面积的关系得到公式,并能灵活运用公式是解题的关键. 举一反三:【变式】(2019秋﹒南昌期末)如图1的两个长方形可以按不同的形式拼成图2和图3两个图形.(1)在图2中的阴影部分面积S 1可表示为a 2-b 2a 2-b 2,在图3中的阴影部分的面积S 2可表示为a 2-b 2a 2-b 2,由这两个阴影部分的面积得到的一个等式是BB . A .(a+b)2=a 2+2ab+b 2B .a 2-b 2=(a+b)(a-b) C .(a-b)2=a 2-2ab+b 2(2)根据你得到的等式解决下面的问题: ①计算:67.52-32.52; ②解方程:(x+2)2-(x-2)2=24.【考点】平方差公式的几何背景.【专题】整式;一次方程(组)及应用;运算能力. 【分析】(1)由正方形的面积,可得S 1=a 2-b 2;由长方形的面积,可得S 1=(a+b)(a-b)=a 2-b 2;所以a 2-b 2=(a+b)(a-b);(2)①67.52-32.52=(67.5+32.5)(67.5-32.5)=100×35=3500;②展开整理,得8x=24,解得x=3,所以方程的解是x=3.【解答】解:(1)由正方形的面积,可得 S 1=a 2-b 2;由长方形的面积,可得S 1=(a+b)(a-b)=a 2-b 2; ∴a 2-b 2=(a+b)(a-b); 故答案为a 2-b 2,a 2-b 2,选B ;(2)①67.52-32.52=(67.5+32.5)(67.5-32.5)=100×35=3500; ②(x+2)2-(x-2)2=24, 展开整理,得8x=24, 解得x=3, ∴方程的解是x=3.【点评】本题考查平方差公式的几何背景;理解题意,结合图形面积的关系得到公式,并能灵活运用公式是解题的关键.类型二、完全平方公式的应用例3、运用乘法公式计算:(1)2(23)a b +-;(2)(23)(23)a b c a b c +--+.【思路点拨】(1)是一个三项式的平方,不能直接运用完全平方公式,可以用加法结合律将23a b +-化成(23)a b +-,看成a 与(23)b -和的平方再应用公式;(2)是两个三项式相乘,其中a 与a 完全相同,2b ,3c -与2b -,3c 分别互为相反数,与平方差公式特征一致,可适当添加括号,使完全相同部分作为“一项”,互为相反数的部分括在一起作为“另一项”. 【答案与解析】解:(1)原式222[(23)]2(23)(23)a b a a b b =+-=+-+-22464129a ab a b b =+-+-+ 22446129a b ab a b =++--+.(2)原式22222[(23)][(23)](23)4129a b c a b c a b c a b bc c =+---=--=-+-. 【总结升华】配成公式中的“a ”“b ”的形式再进行计算. 举一反三:【变式】运用乘法公式计算:(1)()()a b c a b c -++-; (2)()()2112x y y x -+-+; (3)()2x y z -+; (4)()()231123a b a b +---. 【答案】解:(1) ()()a b c a b c -++-=[a -(b -c )][ a +(b -c )]=()()222222a b c a b bc c--=--+=2222a b bc c -+-.(2) ()()2112x y y x -+-+ =[2x +(y -1)][2x -(y -1)]=()()()222221421x y x y y --=--+=22421x y y -+-.(3)()()()()22222x y z x y z x y x y z z -+=-+=-+-+⎡⎤⎣⎦=222222x xy y xz yz z -++-+.(4) ()()231123a b a b +---=()2231a b -+-=-22[(23)2(23)1]a b a b +-++=-()22(2)2233461a a b b a b ⎡⎤+⋅⋅+--+⎣⎦=224129461a ab b a b ---++-例4、已知△ABC 的三边长a 、b 、c 满足2220a b c ab bc ac ++---=,试判断△ABC 的形状.【思路点拨】通过对式子变化,化为平方和等于零的形式,从而求出三边长的关系. 【答案与解析】解:∵ 2220a b c ab bc ac ++---=,∴ 2222222220a b c ab bc ac ++---=,即222222(2)(2)(2)0a ab b b bc c a ac c -++-++-+=. 即222()()()0a b b c a c -+-+-=. ∴ 0a b -=,0b c -=,0a c -=,即a b c ==,∴ △ABC 为等边三角形.【总结升华】式子2220a b c ab bc ac ++---=体现了三角形三边长关系,从形式上看与完全平方式相仿,但差着2ab 中的2倍,故想到等式两边同时扩大2倍,从而得到结论. 举一反三:【变式】多项式222225x xy y y -+++的最小值是____________. 【答案】4;提示:()()2222222514x xy y y x y y -+++=-+++,所以最小值为4.。
乘法公式三元立方公式
乘法公式三元立方公式
摘要:
1.乘法公式的概述
2.三元立方公式的定义
3.三元立方公式的应用
4.三元立方公式的优点
正文:
【乘法公式的概述】
乘法公式是我们日常生活中经常用到的一种数学工具,它可以帮助我们快速地进行乘法运算。
在数学中,乘法公式通常是指两个数相乘的式子,比如2x、3y 等。
通过乘法公式,我们可以把复杂的乘法运算简化成简单的加法或减法运算,从而提高我们的计算效率。
【三元立方公式的定义】
三元立方公式,又称三元立方恒等式,是一个在数学中经常用到的公式。
它的定义是:(a+b+c) = a + b + c + 3(ab+ac+bc)。
这个公式可以帮助我们在计算三次方时,把复杂的运算简化成简单的加法或减法运算。
【三元立方公式的应用】
三元立方公式在数学中有广泛的应用,尤其在解决一些复杂的数学问题时,它可以帮助我们简化运算过程,提高计算效率。
比如,在解决一些涉及三次方的数学题时,我们可以通过三元立方公式,把复杂的三次方运算简化成简单的加法或减法运算。
【三元立方公式的优点】
三元立方公式的最大优点在于,它可以帮助我们简化复杂的数学运算,提高我们的计算效率。
八年级数学上册《乘法公式》教案、教学设计
1.教学活动设计:将学生分成若干小组,每组针对以下问题进行讨论:
a.平方差公式和完全平方公式的推导过程;
b.乘法公式在解决实际问题中的应用;
c.运用乘法公式进行整式乘法的优点。
2.教师指导:在学生讨论过程中,教师巡回指导,解答学生的疑问,引导学生深入探讨。
(四)课堂练习
1.教学内容:设计以下几类练习题,巩固学生对乘法公式的掌握:
7.信息技术辅助教学:利用多媒体、网络资源等信息技术手段,形象直观地展示乘法公式的推导过程,提高教学效果。
8.关注个体差异,因材施教:针对不同学生的特点,给予个性化的指导,使每个学生都能在原有基础上得到提高。
9.定期评估,总结提高:通过定期测试和评估,了解学生的学习情况,总结教学经验,不断调整和优化教学方法,提高教学质量。
a.平方差公式:a² - b² = (a + b)(a - b)
通过具体的数值代入,引导学生观察、发现并总结出平方差公式的规律。
b.完全平方公式:a² + 2ab + b² = (a + b)²
同样,通过具体的数值代入,引导学生观察、发现并总结出完全平方公式的规律。
2.教学方法:采用引导式教学,让学生通过观察、思考和总结,自主发现乘法公式的规律。
4.利用信息技术手段,如多媒体、网络资源等,辅助教学,提高课堂教学效果。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热情,激发学生学习数学的积极性。
2.培养学生勇于探索、积极思考的学习态度,使学生养成良好的学习习惯。
3.培养学生合作交流的意识,学会倾听他人意见,提高人际沟通能力。
4.培养学生认识到数学知识在实际生活中的重要性,增强学生的应用意识和实践能力。
乘法公式(题型拓展)
A. 4x 2x2 3x 1 8x3 12x2 4x
C. 4a 14a 1 1 16a 2
B. x y x 2 y 2 x3 y3
D. x 2 y2 x 2 2xy 4 y 2
例 2:多项式 4x 2 1 加上一个单项式后,使它能成为一个整式的完全平方,则加上的多项式可以是
(A)a4-1 (B)a4+1 (C)a4+2a2+1 (D)1-a4
2、若(x+m)(x-8)中不含 x 的一次项,则 m 的值为………………………( )
(A)8
(B)-8
(C)0
(D)8 或-8
3、下列计算正确的是( )
A、 3 2 3 3 2 3 9
B、 a b2 a 2 b2
例 6:已知 a b 3 , ab 1 ,求: 2
(1)a2+b2
(2)a2+ab+b2
(3)a4+b4
(二)思维重点突破
例 7 观察下列各式(x-1)(x+1)=x2-1,(x-1)(x2+x+l)=x3-l.(x-l)(x3+x2+x+l)=x4-1,
根据前面各式的规律可得(x-1)(xn+xn-1+…+x+1)=
4、已知
x+
1 x
=2,求
x2+
1 x2
的值.
5、已知 a2+6a+b2-10b+34=0,求代数式(2a+b)(3a-2b)+4ab 的值.
AB=4a,MP=b,正方形 APCD 与正方形 PBEF 的面积之差为 S。 (1)用 a,b 的代数表示 S。 (2)当 a=4、b=1/2 时,S 的值是多少?当 a=S,b=1/4 时呢?
D
C
F
E
A
MP B
A 类作业:
第一章整式乘法-乘法公式拓展提升(教案)
3.注重个体差异,针对不同水平的学生进行有针对性的辅导和指导;
4.定期对学生们进行评价,了解他们在整式乘法方面的掌握程度,以便调整教学策略。
五、教学反思
在今天的教学中,我发现学生们对整式乘法的基础知识掌握得相对扎实,但在乘法公式的运用上还存在一些问题。尤其是在完全平方公式、平方差公式等拓展提升部分,学生们在理解上还有一定的难度。这让我意识到,在今后的教学中,需要更加注重乘法公式的推导过程和实际应用。
课堂上,我尽量用生动的语言和具体的例子来解释乘法公式的来源和运用,但显然,这部分内容对于一些学生来说仍然难以消化。我想,在下一节课中,可以尝试通过更多的互动和实际操作,让学生们亲自参与到公式的推导和应用中来,以提高他们的理解和记忆。
(3)各类乘法公式在实际问题中的综合运用。
举例:
-多项式乘法法则:要求学生掌握(a+b)(c+d)=ac+ad+bc+bd的展开方法;
-完全平方公式:熟练运用a²±2ab+b²=(a±b)²解决实际问题;
-平方差公式:掌握a²-b²=(a+b)(a-b),并能应用于求解相关问题;
-立方和与立方差公式:熟练运用a³+b³=(a+b)(a²-ab+b²)和a³-b³=(a-b)(a²+ab+b²)解决具体问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了整式乘法的基本概念、乘法公式的重要性和应用。通过实践活动和小组讨论,我们加深了对乘法公式的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
乘法公式(题型扩展)
乘法公式的复习一、复习:(a+b)(a-b)=a2-b2 (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 (a+b)(a2-ab+b2)=a3+b3 (a-b)(a2+ab+b2)=a3-b3归纳小结公式的变式,准确灵活运用公式:① 位置变化,xyyxx2y2② 符号变化,xyxyx2y2 x2y2③ 指数变化,x2y2x2y2x4y4④ 系数变化,2ab2ab4a2b2⑤ 换式变化,xyzmxyzmxy2zm2x2y2zmzmx2y2z2zmzmm2x2y2z22zmm2⑥ 增项变化,xyzxyzxy2z2xyxyz2x2xyxyy2z2x22xyy2z2⑦ 连用公式变化,xyxyx2y2x2y2x2y2x4y4⑧ 逆用公式变化,xyz2xyz2xyzxyzxyzxyz2x2y2z4xy4xz例1.已知,,求的值。
解:∵ ∴=∵, ∴=例2.已知,,求的值。
解:∵∴ ∴=∵, ∴例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
解:19992-2000×1998 =19992-(1999+1)×(1999-1)=19992-(19992-12)=19992-19992+1 =1例4:已知a+b=2,ab=1,求a2+b2和(a-b)2的值。
〖解析〗此题可用完全平方公式的变形得解。
解:a2+b2=(a+b)2-2ab=4-2=2(a-b)2=(a+b)2-4ab=4-4=0例5:已知x-y=2,y-z=2,x+z=14。
求x2-z2的值。
〖解析〗此题若想根据现有条件求出x、y、z的值,比较麻烦,考虑到x2-z2是由x+z和x-z的积得来的,所以只要求出x-z的值即可。
解:因为x-y=2,y-z=2,将两式相加得x-z=4,所以x2-z2=(x+z)(x-z)=14×4=56。
乘法运算定律
乘法运算定律一、乘法交换律公式:a×b=a×b(目的:通过因数位置的交换,达到将特殊组合数先算的目的。
)如(4和25;125和8;20和5等)例题:25×7×4 12.5×6×8=25×4×7 =12.5×8×6=100×7 =100×6=700 =600二、乘法结合律:公式:(a×b)×c=a×(b×c)(目的:通过将后算因数进行结合,达到将特殊组合数先算的目的。
)如(4和25;125和8;20和5等)例题:4×8×12.5 5.6×125=4×(8×12.5)=(7×0.8)×125=4×100 =7×(0.8×125)=400 =7×100=700三、乘法分配律:公式:a×(b+c)=ab+ac(目的:通过将复杂数字拆分成简单有利于组合的数字,达到简便计算的目的。
)如(8.8=8+0.8;101=100+1; 99=100-1等)例题:8.8×125 101×0.45 99×0.36 =(8+0.8)×125 =(100+1)×0.45 =(100-1)×0.36=8×125+0.8×125 =100×0.45+1×0.45 =100×0.36-1×0.36 =1000+100 =45+0.45 =36-0.36=1100 =45.45 =35.64四、乘法分配律(逆运算):公式:ab+ac=a×(b+c)(目的:通过将分开的数字组合成有利于计算的数字,达到简便计算的目的。
)如(98+2=100;101-1=100等)例题:98×0.36+2×0.36 101×0.45-0.45=(98+2)×0.36 =(101-1)×0.45=100×0.36 =100×0.45=360 =45实际操作:97×0.35+0.35×3 102×0.36-0.36×2 99×0.79 5.6×125 7.2×125 0.72×99+7.2×0.1 102×0.45-0.45×2 101×0.21 99×0.45+2×0.45-0.45。
乘法公式知识点总结
乘法公式知识点总结在数学中,乘法是最基本和常用的运算之一。
乘法公式是描述乘法操作的规则和性质的数学工具,用于简化和计算复杂的乘法运算。
本文将总结乘法公式的重要知识点,帮助读者更好地理解和运用乘法公式。
一、乘法的基本概念乘法是一种表示重复加法的运算。
当我们将一个数(被乘数)与另一个数(乘数)相乘时,结果称为积。
乘法运算可以用算式表示为:被乘数×乘数 = 积。
二、乘法的交换律乘法具有交换律,即两个数相乘的结果与换位后的乘数和被乘数相乘的结果相同。
换句话说,乘法的顺序可以交换。
例如,2 × 3 = 6 和 3 × 2 = 6 是等价的。
三、乘法的结合律乘法还具有结合律,即三个数相乘的结果不受乘法运算的顺序影响。
换句话说,当进行多个数的乘法时,可以将任意两个数的乘积先求出,然后再与剩下的数相乘。
例如,(2 × 3) × 4 = 6 × 4 =24 和 2 × (3 × 4) = 2 × 12 = 24 是等价的。
四、乘法的分配律乘法也具有分配律,可以将乘法运算分配到加法运算上。
具体地说,当一个数同时与两个数进行加法运算时,可以先将这个数分别与这两个数相乘,然后再将两个积相加。
例如,2 × (3 + 4) = 2 ×3 + 2 × 4。
同样地,(3 + 4) × 2 = 3 × 2 +4 × 2。
五、乘法的乘积性质乘法还有一些重要的乘积性质,包括零乘积性质和乘法的倒数性质。
1. 零乘积性质:任何数与零相乘的结果都等于零。
例如,0 × 5 = 0 和 0 × 100 = 0。
2. 乘法的倒数性质:任何非零数与其倒数相乘的结果都等于1。
例如,5 × 1/5 = 1 和 10 × 1/10 = 1。
六、乘法的幂与乘方运算乘法还与幂和乘方运算密切相关。
完美掌握正方形乘法公式的技巧
完美掌握正方形乘法公式的技巧在学习数学的过程中,乘法是一个重要的概念,而正方形乘法公式则是乘法中的一个重要技巧。
掌握正方形乘法公式不仅可以帮助我们更好地理解乘法运算,还可以提高我们的计算速度和准确性。
本文将介绍一些完美掌握正方形乘法公式的技巧,帮助读者更好地应用于实际问题中。
正方形乘法公式是指将一个数乘以自身的技巧,即a * a = a^2。
这个公式在数学中非常常见,尤其在代数学中经常用到。
为了更好地理解和应用这个公式,我们可以从几个方面进行思考和练习。
首先,我们可以通过几何图形来理解正方形乘法公式。
正方形是一个具有四个相等边和四个直角的多边形。
当我们将一个数a乘以自身时,可以将这个数看作正方形的边长。
那么,正方形的面积就是a * a,即a^2。
通过这种几何图形的思考方式,可以更加形象地理解正方形乘法公式。
其次,我们可以通过实际问题来应用正方形乘法公式。
在日常生活中,有很多问题可以通过正方形乘法公式来解决。
比如,我们可以用正方形乘法公式来计算一个正方形的面积。
假设一个正方形的边长为a,那么它的面积就是a * a,即a^2。
这个公式可以帮助我们快速计算出正方形的面积,而不需要通过逐个计算边长来得出结果。
此外,正方形乘法公式还可以帮助我们解决一些代数方程。
在代数学中,我们经常会遇到形如x^2 = a的方程。
通过应用正方形乘法公式,我们可以很容易地得到x的值。
比如,如果我们有一个方程x^2 = 9,那么根据正方形乘法公式,我们可以得出x = 3或x = -3。
这个技巧在解代数方程时非常实用,可以大大简化计算过程。
除了以上几个方面,我们还可以通过一些练习来提高对正方形乘法公式的掌握。
例如,我们可以通过口算练习来熟悉正方形乘法公式的运用。
可以选择一些简单的数进行计算,比如2、3、4等,然后将其平方。
通过反复练习,我们可以更加熟练地应用正方形乘法公式,提高计算速度和准确性。
此外,我们还可以通过解决一些实际问题来应用正方形乘法公式。
乘法公式恒等变形(提高)
乘法公式恒等变形(提高)【知识要点归纳】ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+a a a a 2)1(1222+-=+aa a a ab b a b a 4)()(22=--+ ()()222222a b a b a b ++-=+ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- bc ac ab c b a c b a 222)(2222---++=++立方和与立方差))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=-【典型例题分析】公式组合1、已知(a+b)2=7,(a-b)2=3, 求值: (1)a 2+b 2 (2)ab2、已知,3)(,7)(22=-=+b a b a 求ab b a ++22的值3、已知3,5==+ab b a ,求:①22b a + ②b a - ③22b a - ④ab b a + ⑤22b ab a +- ⑥33b a +公式倍比 1、已知b a +=4,求ab b a ++2222、已知xy y x ,y x x x -+-=---22)()1(222求整体代入1、2422=-y x ,6=+y x ,求代数式y x 35+的值2、已知a=201x +20,b=201x +19,c=201x +21,求a 2+b 2+c 2-ab -bc -ac 的值3、已知(2017﹣a )2+(2016﹣a )2=1,求(2017﹣a )(2016﹣a )4、步步为营3⨯(22+1)⨯(24+1)⨯(28+1)⨯(162+1)6⨯)17(+⨯(72+1)⨯(74+1)⨯(78+1)+1 ()()()()()224488a b a b a b a b a b -++++1)12()12()12()12()12()12(3216842++⨯+⨯+⨯+⨯+⨯+2220132014—+2220112012-…+22221234-+-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-2222201411411311211分类配方1、已知03410622=++-+n m n m ,求n m +的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乘法公式(提高)
【要点梳理】
要点一、平方差公式
平方差公式:()()a b a b +-=22b a -.
两个数的和与这两个数的差的积,等于这两个数的平方差.
要点诠释:在这里,a ,b 既可以是具体数字,也可以是单项式或多项式. 抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型:
(1)位置变化:如()()a b b a +-+; (2)系数变化:如(35)(35)x y x y +-
(3)指数变化:如3232()()m n m n +-; (4)符号变化:如()()a b a b ---
(5)增项变化:如()()m n p m n p ++-+;
(6)增因式变化:如2244()()()()a b a b a b a b -+++
要点二、完全平方公式
完全平方公式:=+2)(b a 222b ab a ++ ()2
a b -=222b ab a +- 两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.
要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形:
ab b a ab b a b a 2)(2)(2222+-=-+=+;ab b a b a 4)()(22+-=+.
要点三、添括号法则
添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.
要点诠释:添括号与去括号是互逆的,符号的变化也是一致的,可以用去括号法则检查添括号是否正确.
要点四、补充公式
2()()()x p x q x p q x pq ++=+++;2
233()()a b a ab b a b ±+=±;
33223()33a b a a b ab b ±=±+±;
2222()222a b c a b c ab ac bc ++=+++++.
【典型例题】
类型一、平方差公式的应用
例1 下列式中能用平方差公式计算的有( )
①⎪⎭
⎫ ⎝⎛+⎪⎭⎫ ⎝⎛
-y x y x 2121; ②)3)(3(a bc bc a ---; ③)3)(3(y x y x +++-; ④)1100)(1100(-+
A.1个
B.2个
C.3个
D.4个
变式 用简便方法计算:
(1)899×901+1 (2)99×101×10001 (3)22005-2006×2004
例2 计算:22222110099989721-+-+
+-
变式 计算:22222
11111(1)(1)(1)(1)(1)23499100-
----
类型二、完全平方公式的应用
例3 下列多项式的乘法中,只用到完全平方公式计算的是( )
A.))((y x y x ---
B.))((y x y x ++-
C.))((y x y x -+-
D.))((z y x z y x ++--
变式1 如果92
++kx x 是一个完全平方式,则k 的值为 .
变式2 计算:(1)10098-992⨯ (2)24995149-⨯
例4 已知5=+b a ,3=ab ,求22b a +的值.
变式1 已知61=+a a ,则=+221a
a . 变式2 已知2=-
b a ,3=ab ,求44b a +的值.
类型三、综合应用
例5 已知0142=--x x ,求代数式2
2))(()32(y y x y x x --+--的值.
变式 先化简,再求值:2
22)())((m n m n m n m -+++-,其中1=m ,2-=n .
例6 先阅读后作答:我们已经知道,根据几何图形的面积关系可以说明完全平方公式,实际上还有一些等式也可以用这种方式加以说明,例如:2
232))(2(b ab a b a b a ++=++,就可以用图1的面积关系来说明.
(1)根据图2写出一个等式 ;
(2)已知等式:pq x q p x q x p x +++=++)())((2,请你画出一个相应的几何图形加以说明.
变式 如图a 是一个长为2m ,宽为2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图b 的形状,拼成一个正方形.
(1)图b 中的阴影部分面积为 ;
(2)观察图b ,请你写出三个代数式2()m n ,2)(n m -,mn 之间的等量关系是 ;
(3)若6-=+y x ,75.2=xy ,利用提供的等量关系计算:=-y x ;
(4)观察图C ,你能得到怎样的代数恒等式呢?
(5)试画出一个几何图形,使她的面积能表示为2234)3)((n mn m n m n m ++=++.。