两次相遇问题公式的推导.docx

合集下载

相遇问题公式推导过程

相遇问题公式推导过程

相遇问题公式推导过程全文共四篇示例,供读者参考第一篇示例:相遇问题是数学中一个经典的问题,通常涉及到两个物体同时从不同位置出发,以不同的速度移动,然后在某个时刻相遇的情况。

这种问题在生活中也经常有类似的情况,比如两辆汽车在不同地点出发,然后在某个地点相遇,或者两个人从不同的地点出发,最终在某个地点相遇。

在解决这类问题时,我们需要使用一些基本的数学知识与技巧,其中包括公式的推导和应用。

在解决相遇问题时,最基本的思路是根据物体的运动速度和相遇时间来建立方程,并通过解方程来求解问题。

下面我们将以两辆汽车相遇问题为例,详细讲解相遇问题公式的推导过程。

假设有两辆汽车A和B,分别以速度v1和v2向相同方向直线运动,汽车A与汽车B的起点到相遇点的距离为s,相遇时间为t。

根据题意,我们可以得到以下的关系式:s = v1 * t (1)将式(1)、(2)联立,得到:整理得:v1 - v2 = 0即:这个结论告诉我们,只有当两辆汽车的速度相等时,它们才有可能在路上相遇。

当速度不相等时,就无法得到相遇的情况。

接下来我们考虑一个稍微复杂的问题,即两辆汽车在不同地点同时出发,它们的速度分别为v1和v2,且相遇时间为t。

设这两辆汽车在相遇时,汽车A已经行驶了x1的距离,汽车B已经行驶了x2的距离。

则有:根据题意,汽车A和汽车B行驶的时间是相同的,即:将式(3)和(4)带入式(5)和(6)中,得到:x1/v1 + s/v1 = x2/v2 + s/v2(v1 * x1 - v2 * x2) / (v1 * v2) = s * (1/v2 - 1/v1)这个结论说明了两辆汽车相遇时,它们行驶的距离之比等于它们的速度之比。

这个结论在解决相遇问题时非常有用。

在实际问题中,我们还会遇到一些更加复杂的情况,比如两个运动方向不同的物体相遇,或者相遇的时间不同等情况。

针对这些情况,我们需要根据具体的问题特点,选择合适的数学模型进行分析。

相遇问题的求解过程通常都可以归结为建立关系式、解方程和求解问题的过程。

两次相遇行程问题的解法-

两次相遇行程问题的解法-

两次相遇行程问题的解法在小学阶段关于行程的应用题是作为一种专项应用题出现的,简称“行程问题”。

有一种“行程问题”中出现了第二次相遇(即两次相遇)的情况,较难理解。

其实此类应题只要掌握正确的方法,解答起来也十分方便。

例1.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距B地60千米处相遇。

求A、B两地间的路程。

[分析与解]根据题意可画出下面的线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地80千米,说明行完一个全程时,甲行了8O千米。

两车同时出发同时停止,共行了3个全程,说明两车第二次相遇时甲共行了8×3=240(千米),从图中可以看出来甲车实际行了一个全程多60千米,所以A、B两地间的路程就是:240-60=180(千米)例2.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。

求A、B两地间的路程。

[分析与解]根据题意可画出线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地8O千米,说明行完一个全程时,甲行了8O千米。

两车同时出发同时停止,共行了3个全程。

说明两车第二次相遇时甲车共行了:80×3=24O (千米),从图中可以看出来甲车实际行了两个全程少60千米,所以A、B两地间的路程就是:(24O+6O)÷2=150(千米)可见,解答两次相遇的行程问题的关键就是抓住两次相遇共行三个全程,然后再根据题意抓住第一次相遇点与三个全程的关系即可解答出来。

例3 AB两城间有一条公路长240千米,甲乙两车同时从A、B两城出发,甲以每小时45千米的速度从A城到B城,乙以每小时35千米的速度从B城到A城,各自到达对方城市后立即以原速沿原路返回,几小时后,两车在途中第二次相遇?相遇地点离A城多少千米?分析:从图上可以看出,甲乙两人第一次相遇时,行了一个全程。

二次相遇问题的解题思路(附例题及答案)

二次相遇问题的解题思路(附例题及答案)

二次相遇问题的解题思路(附例题及答案)知识要点提示:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。

一般知道AC和AD的距离,主要抓住第二次相遇时走的路程是第一次相遇时走的路程的两倍。

例题:1.甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。

请问A、B两地相距多少千米?A.120B.100C.90D.80【答案】A。

解析:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即54×2=x-54+42,得出x=120。

2.两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A城44千米处相遇。

两城市相距()千米A.200B.150C.120D.100【答案】D。

解析:第一次相遇时两车共走一个全程,第二次相遇时两车共走了两个全程,从A城出发的汽车在第二次相遇时走了52×2=104千米,从B城出发的汽车走了52+44=94千米,故两城间距离为(104+96)÷2=100千米。

绕圈问题:3.在一个圆形跑道上,甲从A点、乙从B点同时出发反向而行,8分钟后两人相遇,再过6分钟甲到B点,又过10分钟两人再次相遇,则甲环行一周需要()?A.24分钟B.26分钟C.28分钟D.30分钟【答案】C。

解析:甲、乙两人从第一次相遇到第二次相遇,用了6+10=16分钟。

也就是说,两人16分钟走一圈。

从出发到两人第一次相遇用了8分钟,所以两人共走半圈,即从A到B是半圈,甲从A 到B用了8+6=14分钟,故甲环行一周需要14×2=28分钟。

也是一个倍数关系。

二次相遇问题

二次相遇问题
(70×3 + 30)÷1.5=160(千米)
答:A、B两地相遇160千米。
谈谈这节课你有什么收获?
想一想:这时一共走了多少米?




15米
想一想:是否同时到达对方的出发地?
15米
再想一想:这时一共走了多少米?
15米
观察:小红这时走了几米?小明呢?
小 红
他们走了几秒?


2米
2米
2米
3米
3米
3米

第一次相遇 第二次相遇
总路程 小红走的路程 小明走的路程
15米 6米 9米
45米 18米
想一想:为什么1画在中点
的右边?
变式二
甲、乙两车从A、B两地相向开出到达对方 的出发地立即原速返回后第二次相遇 ,已 知第一次相遇时距离A地70千米,第二次在 距离A地30千米处相遇,A、B两地相距多 少千米?
(70×3 + 30)÷2=120(千米)
答:A、B两地相遇120千米。
变式三
甲、乙两车从A、B两地相向开出到达对方 的出发地立即原速返回后第二次相遇 ,已 知第一次相遇时距离A地70千米,第二次相 遇在离中点的B方向30千米处,A、B两地 相距多少千米?
A
B
答:A、B两地相遇180千米乙。
70千米
30千米
变式一
甲、乙两车从A、B两地相向开出到达对方 的出发地立即原速返回后第二次相遇 ,已
知第一次相遇时距离A地70千米,第二次相 遇在离中点的A方向30千米处,A、B两地 相距多少千米?
甲(70×3 -2 30)中÷1.51=120(千米)
A
B
答:A、B两地相遇120千米。 乙

二次相遇问题的解题思路

二次相遇问题的解题思路

二次相遇问题的解题思路一、直线二次相遇甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少?解:画示意图如下:如图,第一次相遇两人共同走了甲、乙两村间距离,第二次相遇两人已共同走了甲、乙两村间距离的3倍,因此所需时间是40×3÷60=2(小时).从图上可以看出从出发至第二次相遇,小张已走了6×2-2=10(千米).小王已走了 6+2=8(千米).因此,他们的速度分别是小张10÷2=5(千米/小时),小王8÷2=4(千米/小时).答:小张和小王的速度分别是5千米/小时和4千米/小时.知识要点提示:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。

一般知道AC和AD的距离,主要抓住第二次相遇时走的路程是第一次相遇时走的路程的两倍。

例题:1.甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。

请问A、B两地相距多少千米?A.120B.100C.90D.80【答案】A。

解析:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即54×2=x-54+42,得出x=120。

54乘3再减去42=120,再用120减去54加42的和=24因为第一次相遇距离B地54千米,说明行完一个全程乙走了54千米,到甲乙第二次相遇时总共走了三个全程,也就是说,这时乙走了54乘3千米,也就是16 2千米,这个162千米也是乙走完一个全程后还包括多走的42千米,所以用16 2减去42就是一个AB之间的全程。

二次相遇问题的解题思路

二次相遇问题的解题思路

二次相遇问题的解题思路一、直线二次相遇甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少?解:画示意图如下:如图,第一次相遇两人共同走了甲、乙两村间距离,第二次相遇两人已共同走了甲、乙两村间距离的3倍,因此所需时间是40×3÷60=2(小时).从图上可以看出从出发至第二次相遇,小张已走了6×2-2=10(千米).小王已走了6+2=8(千米).因此,他们的速度分别是小张10÷2=5(千米/小时),小王8÷2=4(千米/小时).答:小张和小王的速度分别是5千米/小时和4千米/小时.知识要点提示:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。

一般知道AC和AD的距离,主要抓住第二次相遇时走的路程是第一次相遇时走的路程的两倍。

例题:1.甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。

请问A、B两地相距多少千米?A.120B.100C.90D.80【答案】A。

解析:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即54×2=x-54+42,得出x=120。

54乘3再减去42=120,再用120减去54加42的和=24因为第一次相遇距离B地54千米,说明行完一个全程乙走了54千米,到甲乙第二次相遇时总共走了三个全程,也就是说,这时乙走了54乘3千米,也就是16 2千米,这个162千米也是乙走完一个全程后还包括多走的42千米,所以用162减去42就是一个AB之间的全程。

二次相遇问题的解题思路

二次相遇问题的解题思路

二次相遇问题的解题思路一、直线二次相遇甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少?解:画示意图如下:如图,第一次相遇两人共同走了甲、乙两村间距离,第二次相遇两人已共同走了甲、乙两村间距离的3倍,因此所需时间是40×3÷60=2(小时).从图上可以看出从出发至第二次相遇,小张已走了6×2-2=10(千米).小王已走了 6+2=8(千米).因此,他们的速度分别是小张10÷2=5(千米/小时),小王8÷2=4(千米/小时).答:小张和小王的速度分别是5千米/小时和4千米/小时.知识要点提示:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。

一般知道AC和AD的距离,主要抓住第二次相遇时走的路程是第一次相遇时走的路程的两倍。

例题:1.甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。

请问A、B两地相距多少千米?A.120B.100C.90D.80【答案】A。

解析:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即54×2=x-54+42,得出x=120。

54乘3再减去42=120,再用120减去54加42的和=24因为第一次相遇距离B地54千米,说明行完一个全程乙走了54千米,到甲乙第二次相遇时总共走了三个全程,也就是说,这时乙走了54乘3千米,也就是16 2千米,这个162千米也是乙走完一个全程后还包括多走的42千米,所以用16 2减去42就是一个AB之间的全程。

两次相遇问题公式的推导

两次相遇问题公式的推导

两次相遇问题公式的推导
两次相遇问题公式的推导
设A、B两地的距离为S,第一次相遇地点时距离B地S1,第二次相遇时距离A地S2,那么S=3S1-S2(双边公式)。

第一次相遇甲的路程为:S- S1 乙的路程为:S1 第二次相遇甲的路程为:2S-S2 乙的路程为:S+ S2
由于甲与乙两次相遇用的时间相同,因此两次相遇路程之比等于甲、乙的速度之比,
即 V甲 S- S1 2
V乙
=
S1
=
2S-SS+ S2
简化:2SS2
1-S1S2=S+SS2-SS1-S1S2→2S1=S+S2-S1→S=3S1-S2 S2 S1

② ① A
B
设A、B两地的距离为S,第一次相遇地点时距离B地S1,第二次相遇时距离B地S2,那么S=(3S1+S2)/2(单边公式)。

由图可知双边公式中的S2相当于单边公式中的S-S2,代入双边公式可得出S=3S1-
(S-S2)→2S=3S1+S2→S=(3S1+S2)/2 S2 S1
② ① A
B

甲乙
感谢您的阅读,祝您生活愉快。

二次相遇问题的解题思路

二次相遇问题的解题思路

二次相遇问题的解题思路一、直线二次相遇甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回)。

在出发后40分钟两人第一次相遇。

小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少?解:画示意图如下:如图,第一次相遇两人共同走了甲、乙两村间距离,第二次相遇两人已共同走了甲、乙两村间距离的3倍,因此所需时间是40×3÷60=2(小时)。

从图上可以看出从出发至第二次相遇,小张已走了6×2—2=10(千米).小王已走了 6+2=8(千米)。

因此,他们的速度分别是小张10÷2=5(千米/小时),小王8÷2=4(千米/小时).答:小张和小王的速度分别是5千米/小时和4千米/小时。

知识要点提示:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。

一般知道AC和AD的距离,主要抓住第二次相遇时走的路程是第一次相遇时走的路程的两倍。

例题:1.甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。

请问A、B两地相距多少千米?A。

120B。

100C.90D。

80【答案】A.解析:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即54×2=x-54+42,得出x=120。

54乘3再减去42=120,再用120减去54加42的和=24因为第一次相遇距离B地54千米,说明行完一个全程乙走了54千米,到甲乙第二次相遇时总共走了三个全程,也就是说,这时乙走了54乘3千米,也就是16 2千米,这个162千米也是乙走完一个全程后还包括多走的42千米,所以用16 2减去42就是一个AB之间的全程。

二次相遇问题的解题思路

二次相遇问题的解题思路

二次相遇问题的解题思路一、直线二次相遇甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少?解:画示意图如下:如图,第一次相遇两人共同走了甲、乙两村间距离,第二次相遇两人已共同走了甲、乙两村间距离的3倍,因此所需时间是40×3÷60=2(小时).从图上可以看出从出发至第二次相遇,小张已走了6×2-2=10(千米).小王已走了 6+2=8(千米).因此,他们的速度分别是小张10÷2=5(千米/小时),小王8÷2=4(千米/小时).答:小张和小王的速度分别是5千米/小时和4千米/小时.知识要点提示:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。

一般知道AC和AD的距离,主要抓住第二次相遇时走的路程是第一次相遇时走的路程的两倍。

例题:1.甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。

请问A、B两地相距多少千米?A.120B.100C.90D.80【答案】A。

解析:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即54×2=x-54+42,得出x=120。

54乘3再减去42=120,再用120减去54加42的和=24因为第一次相遇距离B地54千米,说明行完一个全程乙走了54千米,到甲乙第二次相遇时总共走了三个全程,也就是说,这时乙走了54乘3千米,也就是16 2千米,这个162千米也是乙走完一个全程后还包括多走的42千米,所以用16 2减去42就是一个AB之间的全程。

二次相遇问题的解题思路

二次相遇问题的解题思路

二次相遇问题的解题思路一、直线二次相遇甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回). 在出发后 40分钟两人第一次相遇. 小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇. 问小张和小王的速度各是多少?解:画示意图如下:如图,第一次相遇两人共同走了甲、乙两村间距离,第二次相遇两人已共同走了甲、乙两村间距离的3倍,因此所需时间是40× 3÷ 60= 2(小时) .从图上可以看出从出发至第二次相遇,小张已走了6× 2-2 =10(千米) .小王已走了 6 +2=8(千米) .因此,他们的速度分别是小张10÷ 2=5(千米 / 小时),小王8÷ 2=4(千米 / 小时).答:小张和小王的速度分别是5千米/ 小时和 4千米/ 小时.知识要点提示:甲从 A地出发,乙从 B 地出发相向而行,两人在 C地相遇,相遇后甲继续走到 B 地后返回,乙继续走到A地后返回,第二次在D地相遇。

一般知道AC和 AD的距离,主要抓住第二次相遇时走的路程是第一次相遇时走的路程的两倍。

例题:1. 甲乙两车同时从A、B两地相向而行,在距 B地 54 千米处相遇,它们各自到达对方车站后立即返回,在距 A 地 42 千米处相遇。

请问A、B 两地相距多少千米?A.120B.100C.90D.80【答案】 A。

解析:设两地相距x 千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即 54× 2=x -54+42 ,得出 x=120。

54 乘3 再减去42=120 ,再用 120 减去 54 加 42 的和=24因为第一次相遇距离B地54 千米,说明行完一个全程乙走了54 千米,到甲乙第二次相遇时总共走了三个全程,也就是说,这时乙走了54 乘 3 千米,也就是162 千米,这个162千米也是乙走完一个全程后还包括多走的42 千米,所以用162 减去 42 就是一个 AB之间的全程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两次相遇问题公式的推导
设 A 、B 两地的距离 为 S ,第一次相遇地点时距离 B 地S 1,
第二次相遇时距离 A 地 S 2,那么 S=3S 1-S 2(双边公式)。

第一次相遇甲的路程 为:S- S 1
乙的路程 为:S 1
第二次相遇甲的路程 为:2S-S 2
乙的路程 为:S+ S 2
由于甲与乙两次相遇用的 时间相同,因此两次相遇路程
之比等于甲、乙的速度之比,即
V 甲 S- S 1 2S-S 2
V 乙
=
=
S 1
S+ S 2
简化:2SS 1-S 1S 2=S 2
+SS 2-SS 1-S 1S 2→ 2S 1=S+S 2-S 1→ S=3S 1-S 2
S 2
S 1




A
B
设 A 、B 两地的距离 为 S ,第一次相遇地点时距离 B 地S 1,第二次相遇时距离 B 地 S 2,那么 S=(3S 1+S 2)/2(单边公式)。

由图可知双边公式中的 S 2 相当于单边公式中的 S-S 2,
代入双边公式可得出 S=3S-(S-S )→2S=3S +S → S=(3S +S )/2
1
2
1 2
1
2
S 2
S 1




A
B。

相关文档
最新文档