第五章抽样与参数估计

合集下载

抽样分布与参数估计

抽样分布与参数估计

抽样分布与参数估计首先,我们来了解什么是抽样分布。

在统计学中,抽样分布是指从总体中多次抽样得到的样本统计量的分布。

假设我们的总体是指所有感兴趣的个体的集合,而样本是从总体中选取的一部分个体。

抽样分布的形状和性质取决于总体的分布和样本的大小。

通过分析抽样分布,可以得到有关总体参数的有用信息。

例如,我们想要知道一些城市成年人的平均年收入。

在实际情况下,我们无法调查每个人的收入情况,因此我们需要从总体中随机抽取一部分个体作为样本,并计算他们的平均年收入。

如果我们多次从总体中抽取样本并计算平均年收入,然后绘制这些平均值的分布图,我们就可以得到平均年收入的抽样分布。

这个抽样分布将给我们提供有关总体平均年收入的估计和推断。

接下来,我们将讨论参数估计。

参数估计是指使用样本数据来估计总体参数的过程。

总体参数是用于描述总体特征的数值,如总体平均值、总体标准差等。

通过从总体中抽取样本,并计算样本统计量,我们可以利用样本统计量来估计总体参数。

常用的参数估计方法有点估计和区间估计。

点估计是指用单个数值来估计总体参数,例如用样本均值来估计总体均值。

点估计给出了一个单一的值,但不能提供关于估计的精度的信息。

因此,我们常常使用区间估计。

区间估计是指给出一个区间,这个区间内有一定的置信水平使得总体参数落在这个区间内的概率最高。

区间估计能够向我们提供关于估计的精确程度的信息。

区间估计依赖于抽样分布的性质。

中心极限定理是制定抽样分布理论的一个重要原则。

根据中心极限定理,当样本容量足够大时,样本均值的抽样分布将近似于正态分布。

这使得我们可以使用正态分布的性质来计算置信区间。

构建置信区间的一种常用方法是使用样本均值的标准误差。

标准误差是样本均值的标准差,它用来衡量样本均值和总体均值之间的误差。

根据正态分布的性质,当样本容量足够大时,样本均值与总体均值之间的误差可以用标准误差来估计。

通过计算标准误差并结合正态分布的性质,我们可以得到样本均值的置信区间。

曾五一《统计学导论》(第2版)配套题库【课后习题】第五章 抽样分布与参数估计 【圣才出品】

曾五一《统计学导论》(第2版)配套题库【课后习题】第五章 抽样分布与参数估计 【圣才出品】

A.是不可避免要产生的 B.是可以通过改进调查方法消除的
C.是可以事先计算的
D.只有调查结束之后才能计算
【答案】AC
【解析】抽样误差是由于抽样的随机性引起的样本结果与总体之间的误差。抽样误差是
一种随机性误差,只存在概率抽样中,在概率抽样中,抽样误差是不可避免的。但是,用大
数定律的数学公式,是可以事先计算的。
构造的统计量
X S
服从 t n
1
,则置信区间为:
X
t /2
n
1
S n
n
样本均值
X
=12.09,样本标准差
S2 n 1
S
2 15
=0.005,
S15
=0.0707
SX =
S =0.0707/ n
16 =0.0177, t0.025
15
2.131
△= t /2 n 1
S n
=0.0177 2.131=0.038
5.某微波炉生产厂家想要了解微波炉进入居民家庭生活的深度。他们从某地区已购买 了微波炉的 2200 个居民户中用简单随机不还原抽样方法以户为单位抽取了 30 户,询问每 户一个月中使用微波炉的时间。调查结果依次为(单位:分钟)
【答案】A
【解析】 E z 2
,根据公式可知,如果极限误差缩小为原来的二分之一,则在其
n
他条件不变的情况下,样本容量扩大为原来的 4 倍。
4.当样本单位数充分大时,样本估计量充分地靠近总体指标的可能性趋于 1,称为抽 样估计的( )。
A.无偏性 B.一致性 C.有效性 D.充分性 【答案】B 【解析】一致性是指随着样本容量不断增大,样本统计量接近总体参数的可能性就越来 越大,或者,对于任意给定的偏差控制水平,两者间偏差高于此控制水平的可能性越来越小, 接近于 0。用公式表示就是

第5章--抽样分布与参数估计教案资料

第5章--抽样分布与参数估计教案资料

(5)
(5.5)
(6)
(6.5)
(7)
(7.5)
(8)
(8.5)
(9)
9
9,1
9,2
9,3
9,4
9,5
9,6
9,7
9,8
9,9
9,10
(5)
(5.5)
(6)
(6.5)
(7)
(7.5)
(8)
(8.5)
(9)
(9.5)
10
10,1
10,2
10,3
10,4
10,5
10,6
10,7
10,8
10,9
10,10
数是 ,标准差是 ,从这个总体中抽出一 个容量是 n 的样本,则样本平均数 X 也服从 正态分布,其平均数 E( X ) 仍为 ,其标准
差为 。 X 5-19
从正态分布的再生定理可以看出,只要总体 变量服从正态分布,则从中抽取的样本,不管n 是多少,样本平均数都服从正态分布。但是在 客观实际中,总体并非都是正态分布。对于从 非正态分布的总体中抽取的样本平均数的分布 问题,需要由中心极限定理来解决。
第5章--抽样分布与参数估计
第一节 抽样的基本概念与数学原理
一、有关抽样的基本概念 二、大数定理与中心极限定理
5-2
一、有关抽样的基本概念
(一)样本容量与样本个数 1.样本容量。样本是从总体中抽出的部分
单位的集合,这个集合的大小称为样本容量, 一般用n表示,它表明一个样本中所包含的单 位数。
lim
n
1 n
p
n
i 1
X
i
1
(5.5)
5-17
大数定理表明:尽管个别现象受偶然因 素影响,有各自不同的表现。但是,对总体 的大量观察后进行平均,就能使偶然因素的 影响相互抵消,消除由个别偶然因素引起的 极端性影响,从而使总体平均数稳定下来, 反映出事物变化的一般规律。

(抽样检验)抽样与参数估计最全版

(抽样检验)抽样与参数估计最全版

(抽样检验)抽样与参数估计抽样和参数估计推断统计:利用样本统计量对总体某些性质或数量特征进行推断。

从数据得到对现实世界的结论的过程就叫做统计推断(statisticalinference)。

这个调查例子是估计总体参数(某种意见的比例)的壹个过程。

估计(estimation)是统计推断的重要内容之壹。

统计推断的另壹个主要内容是本章第二节要介绍的假设检验(hypothesistesting)。

因此本节内容就是由样本数据对总体参数进行估计,即:学习目标:了解抽样和抽样分布的基本概念理解抽样分布和总体分布的关系了解点估计的概念和估计量的优良标准掌握总体均值、总体比例和总体方差的区间估计第一节抽样和抽样分布回顾相关概念:总体、个体和样本抽样推断:从所研究的总体全部元素(单位)中抽取壹部分元素(单位)进行调查,且根据样本数据所提供的信息来推断总体的数量特征。

总体(Population):调查研究的事物或现象的全体参数个体(Itemunit):组成总体的每个元素样本(Sample):从总体中所抽取的部分个体统计量样本容量(Samplesize):样本中所含个体的数量壹般将样本单位数不少于三十个的样本称为大样本,样本单位数不到三十个的样本称为小样本。

壹、抽样方法及抽样分布1、抽样方法(1)、概率抽样:根据已知的概率选取样本①、简单随机抽样:完全随机地抽选样本,使得每壹个样本都有相同的机会(概率)被抽中。

注意:在有限总体的简单随机抽样中,由抽样是否具有可重复性,又可分为重复抽样和不重复抽样。

而且,根据抽样中是否排序,所能抽到的样本个数往往不同。

②、分层抽样:总体分成不同的“层”(类),然后在每壹层内进行抽样③、整群抽样:将壹组被调查者(群)作为壹个抽样单位④、等距抽样:在样本框中每隔壹定距离抽选壹个被调查者(2)非概率抽样:不是完全按随机原则选取样本①、非随机抽样:由调查人员自由选取被调查者②、判断抽样:通过某些条件过滤来选择被调查者(3)、配额抽样:选择壹群特定数目、满足特定条件的被调查者2、抽样分布壹般地,样本统计量的所有可能取值及其取值概率所形成的概率分布,统计上称为抽样分布(samplingdistribution)。

曾五一《统计学导论》配套题库【章节题库】第五章 抽样分布与参数估计 【圣才出品】

曾五一《统计学导论》配套题库【章节题库】第五章 抽样分布与参数估计 【圣才出品】

12.样本均值的抽样标准差 x ,( ).
A.随着样本量的增大而变小 B.随着样本量的增大而变大
5 / 30
圣才电子书 十万种考研考证电子书、题库视频学习平台

C.与样本量的大小无关
D.大于总体标准差
【答案】A
【解析】根据样本均值的抽样分布可知,样本均值抽样分布的标准差 x
D.服从 2 分布
【答案】B
【解析】当 n 比较大时,样本均值的抽样分布近似服从正态分布。题中 n 36 30 为
大样本,因此样本均值的抽样分布近似服从正态分布。
5.估计量的含义是指( )。 A.用来估计总体参数的统计量的名称
2 / 30
圣才电子书 十万种考研考证电子书、题库视频学习平台

圣才电子书 十万种考研考证电子书、题库视频学习平台

第五章 抽样分布与参数估计
一、单项选择题 1.抽样分布是指( )。 A.一个样本各观测值的分布 B.总体中各观测值的分布 C.样本统计量的分布 D.样本数量的分布 【答案】C 【解析】统计量是样本的函数,它是一个随机变量。样本统计量的分布称为抽样分布。
2.根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布, 其分布的均值为( )。
A.
B. X C. 2
2 D.
n 【答案】A
【解析】根据中心极限定理,设从均值为 ,方差为 2 的任意一个总体中抽取样本量 为 n 的样本,当 n 充分大时,样本均值的抽样分布近似服从均值为 ,方差为 2 n 的正
n
,样本
量越大,样本均值的抽样标准差就越小。
13.在用正态分布进行置信区间估计时,临界值 1.645 所对应的置信水平是( )。 A.85% B.90% C.95% D.99% 【答案】B 【解析】置信水平是指总体参数值落在样本统计值某一区内的概率;而置信区间是指在

统计学习题区间估计假设检验..

统计学习题区间估计假设检验..

统计学习题区间估计假设检验..第五章抽样与参数估计一、单项选择题1、某品牌袋装糖果重量的标准是(500±5)克。

为了检验该产品的重量是否符合标准,现从某日生产的这种糖果中随机抽查10袋,测得平均每袋重量为498克。

下列说法中错误的是( B )A、样本容量为10B、抽样误差为2C、样本平均每袋重量是估计量D、498是估计值2、设总体均值为100,总体方差为25,在大样本情况下,无论总体的分布形式如何,样本平均数的分布都服从或近似服从趋近于( D )A、N(100,25)B、N(100,5/n)C、N(100/n,25)D、N(100,25/n)3、在其他条件不变的情况下,要使置信区间的宽度缩小一半,样本量应增加( C )A、一半B、一倍C、三倍D、四倍4、在其他条件不变时,置信度(1–α)越大,则区间估计的( A )A、误差范围越大B、精确度越高C、置信区间越小D、可靠程度越低5、其他条件相同时,要使抽样误差减少1/4,样本量必须增加( C )A、1/4B、4倍C、7/9D、3倍6、在整群抽样中,影响抽样平均误差的一个重要因素是( C )A、总方差B、群内方差C、群间方差D、各群方差平均数7、在等比例分层抽样中,为了缩小抽样误差,在对总体进行分层时,应使( B )尽可能小A、总体层数B、层内方差C、层间方差D、总体方差8、一般说来,使样本单位在总体中分布最不均匀的抽样组织方式是( D )A、简单随机抽样B、分层抽样C、等距抽样D、整群抽样9、为了了解某地区职工的劳动强度和收入状况,并对该地区各行业职工的劳动强度和收入情况进行对比分析,有关部门需要进行一次抽样调查,应该采用( A )A、分层抽样B、简单随机抽样C、等距(系统)抽样D、整群抽样10、某企业最近几批产品的优质品率分别为88%,85%,91%,为了对下一批产品的优质品率进行抽样检验,确定必要的抽样数目时,P应选( A )A、85%B、87.7%C、88%D、90%二、多项选择题1、影响抽样误差大小的因素有( ADE )A、总体各单位标志值的差异程度B、调查人员的素质C 、样本各单位标志值的差异程度D 、抽样组织方式E 、样本容量2、某批产品共计有4000件,为了了解这批产品的质量,从中随机抽取200件进行质量检验,发现其中有30件不合格。

第五章 参数估计

第五章 参数估计
(总体方差未知时,以样本方差代替)
1
X 2 t n1 n2 2
2
2 Sp
n1
n2
X
1
X 2 z
2
2 S12 S 2 n1 n2
2 Sp
2 2 n1 1S1 n2 1S 2
n1 n2 2
20
例题:

分别在城市1和城市2中随机抽取n1=400, n2=500的职工进行调查,经计算两城市职工的 平均月收入及标准差分别为X1=1650元,
22
思考题:

一个研究机构做了一项调查,以确定稳定的吸 烟者每周在香烟上的消费额。他们抽取49位固 定的吸烟者,发现均值为20元,标准差5元。
1.总体均值的点估计是多少?
2.总体均值μ的95%置信区间是什么?
23
思考题解答:
1.总体均值的点估计是20元。
2.总体均值μ的95%置信区间: 随机变量X表示每周香烟消费额,由题意可知,X=20, S=5,1-α=0.95,α=0.05;n=49 属于大样本,σ 未知以S估计。总体均值μ的95%置信区间为
P z Z z 1 2 2
P L U 1
X P z z 1 2 2 n
Step3:将上面等式进行等价变换即可。
P L U 1
第五章 参数估计
第五章 参数估计

利用样本数据对总体特征进行推断,通常在以下 两种情况下进行:

当总体分布类型已知(如:正态),根据样本数据对 总体分布的未知参数进行估计或检验。参数估 计或参数检验。(如:μ或σ为何?) 当总体分布类型未知或知道很少,根据样本数据 对总体的未知分布的形状或特征进行推断。非参 数检验。(如:是否正态分布?是否随机?)

第五章 抽样法

第五章 抽样法

抽样的作用

抽样调查能够解决全面调查无法或难以解决的问
题。

抽样调查可以补充和订正全面调查的结果。
抽样调查方法可以用于生产过程中产品质量的检
查和控制。 抽样调查方法可以用于对总体的某种假设进行检 验,以判断这种假设的真伪,决定行动的取舍。

抽样中的几个基本术语
总体(Population):调查研究的事物或现象的全体 个体(Item unit):组成总体的每个元素
一、抽样的概念、特点、作用 二、抽样中的基本术语 (一)总体和样本 (二)参数和统计量 (三)样本容量和样本个数 (四)重复抽样和不重复抽样 (五)概率抽样与非概率抽样 (六)抽样框 三、抽样误差
抽样的概念 特点
(一)概念 抽样调查是按照随机原则从全部研究对象中抽取 一部分单位进行观察,并依据获得的数据对全部研 究对象的数量特征做出具有一定可靠性的估计和判 断.达到对现象总体认识的一种方法. (二)特点 它是按照随机原则从总体中抽取样本。 它是由部分推算整体的一种方法。 它是运用概率估计的方法。 抽样误差可事先计算并加以控制。
抽样中的几个基本术语
X
i 1 N
总体均值
X
i
N

X F
i 1 K i
K
i
F
i 1
i
标准差

X
N i 1
i
X
2
N

X
K i 1
i K
X Fi
i
2
F
i 1
抽样中的几个基本术语
总体方差
2
( X i X )2
i 1
N
N

( X i X ) 2 Fi

统计学习题第五章_抽样与抽样估计答案

统计学习题第五章_抽样与抽样估计答案

第五章抽样与抽样估计复习题一、填空题1、在实际工作中,人们通常把n≥30 的样本称为大样本,而把n<30 的样本称为小样本。

2、在抽样估计中,常见的样本统计量有样本均值、样本比例、样本标准差或样本方差以及它们的函数。

3、在研究目的一定的条件下,抽样总体是唯一确定的,而样本则有许多个。

4、在抽样调查中,登记性误差和系统性误差都可以尽量避免,而抽样误差则是不可避免的,但可以计算并加以控制。

5、在抽样估计中,抽样估计量是指用于估计总体参数的样本指标(统计量),评价估计量优劣的标准有无偏性、有效性和一致性。

二、选择题单选题:1、在其它条件不变的情况下,要使抽样平均误差为原来的1/3,则样本单位数必须((2))(1)增加到原来的3倍(2)增加到原来的9倍(3)增加到原来的6倍(4)也是原来的1/32、在总体内部情况复杂,且各单位之间差异程度大,单位数又多的情况下,宜采用((3))(1)简单随机抽样(2)等距抽样(3)分层抽样(4)整群抽样3、某厂产品质量检查,确定按5%的比率抽取,按连续生产时间顺序每20小时抽1小时的全部产进行检验,这种方式是((4))(1)简单随机抽样(2)等距抽样(3)分层抽样(4)整群抽样4、其它条件一定,抽样推断的把握程度提高,抽样推断的准确性就会((2))(1)提高(2)降低(3)不变(4)不一定降低5、在城市电话网的100次通话中,通话持续平均时间为3分钟,均方差为分钟,则概率为时,通话平均持续时间的抽样极限误差为((2))(1)(2)(3)(4)6、假定11亿人口大国和100万人口小国的居民年龄变异程度相同,现在各自用重复抽样方法抽取本国人口的1%计算平均年龄,则平均年龄抽样平均误差((3))(1)两者相等(2)前者比后者大(3)前者比后者小(4)不能确定大小多选题:1、降低抽样误差,可以通过下列那些途径((2)(4)(5))(1)降低总体方差(2)增加样本容量。

(3)减少样本容量(4)改重复抽样为不重复抽样(5)改简单随机抽样为类型抽样2、抽样推断中的抽样误差((1)(5))(1)是不可避免要产生的(2)是可以通过改进调查方法来消除的(3)只有调查后才能计算(4)即不能减少,也不能消除(5)其大小是可以控制的3、抽样极限误差((1)(2)(4))(1)是所有可能的样本指标与总体指标之间的误差范围(2)也叫允许误差 (3)与所做估计的概率保证程度成反比 (4)通常用来表示抽样结果的精确度 4、影响样本容量的因素有((1)(2)(3)(4)(5) ) (1)总体方差(2)所要求的概率保证程度 (3)抽样方法(4)抽样的组织形式(5)允许误差法范围的大小 5、不重复抽样的抽样平均误差( (2)(4) )(1)总是大于重复抽样的抽样平均误差 (2)总是小于重复抽样的抽样平均误差(3)有时大于,有时小于重复抽样的平均误差(4)在Nn很小时,几乎等于重复抽样的抽样平均误差 6、从3000名职工中随机抽取400名调查收入水平,共抽了( (1) (3) (5) ) (1)一个样本 (2)400个样本(3)一个样本总体 (4)400各样本总体 (5)400个样本单位 7、简单随机抽样一般适合于( (1)(3) (5) )(1)具有某种标志的单位均匀分布的总体 (2)具有某种标志的单位存在不同类型的总体 (3)现象的标志变异程度较小的总体 (4)不能形成抽样框的单位 (5)总体单位可以编号的总体三、简答题1、 什么是抽样平均误差影响抽样平均误差的因素有哪些答:抽样平均误差是所有可能的样本指标与被估计的总体参数之间的平均离差,即样本指标的标准差。

统计学(李荣平)2014-5

统计学(李荣平)2014-5

P{t>tα(n)}= h(t;n)dt
t (n)
的数tα(n)为t(n)分布的上α分为点。 例:查表求:t0.05(8), t0.95(8)
o
t (n)
第一节 抽样分布
(三)F 分布
设 U ~ 2(n1 ),V ~ 2(n2 ), 且设 U,V 独立,则称随机变量
F U / n1 V / n2
保证质量,规定σ≤0.6mm时,认为生产过程处于良好控制
状态。为此,每隔一定时间抽取20个零件作为一个样本,并
计算样本方差S2。若P{S2≥c } ≤0.01(此时σ=0.6mm),
则认为生产过程失去控制,必须停产检查,问:
(1)C为何值时,S2≥c的概率才小于或等于0.01? (2)若取得的一个样本的标准差S=0.84,生产过程是
第五章 抽样分布与参数估计

第一节 抽样分布
要 内
第二节 参数点估计

第三节 区间估计
第一节 抽样分布
一、随机样本
总体与个体:试验全部可能的观测值叫总体;试验的 每一个观测值叫个体。
样本容量与样本个数:样本中包含的单位数叫样本容 量;从一个总体中可能抽取多少个样本叫样本个数。
总体容量:总体中所包含的个体数。 有限总体和无限总体:总体容量可数的称有限总体, 不可数的称无限总体。 重置抽样(重复抽样)和无重置抽样(不重复抽样)
X
1 n
n i 1
Xi
为样本均值;称统计量
S 2
1 n1
n i1
(Xi
X )2
为 样本方差 ,称统计量 S
S2
1n
( X X ) 2 为样本标准差 ;统计量
n 1 i1 i

统计学课件05第5章抽样与参数估计

统计学课件05第5章抽样与参数估计

反映样本数据的集中趋势和平均水平。
样本方差
定义
样本方差是每个样本数据与样本均值差的平方和的平均值,即 $s^2 = frac{1}{n} sum_{i=1}^{n} (x_i - overline{x})^2$。
计算方法
先计算每个样本数据与样本均值的差,然后将差平方,最后求和平 均。
作用
反映样本数据的离散程度和波动情况。
样本量的确定
根据调查目的和精度要求确定样 本量:精度要求越高,需要的样
本量越大。
根据总体规模和抽样方法确定样 本量:总体规模越大,需要的样 本量越大;分层或整群抽样较简 单随机抽样需要的样本量更大。
根据调查资源确定样本量:资源 有限时,需要在满足调查目的和 精度要求的前提下,合理确定样
本量。
02 参数估计
大数定律的数学表达
设随机变量X1,X2,...,Xn是相互独立的,且具有相同的分布函数F(x),则对于任意正实数ε,有 lim(n->∞)P(|X1+X2+...+Xn/n-E(X))/ε)=0,其中E(X)是随机变量X的期望值。
大数定律的实例
在抛硬币实验中,随着实验次数的增加,正面朝上的频率将趋近于0.5。
中心极限定理
中心极限定理定义
中心极限定理是指在大量独立同分布的随机变量中,不论 这些随机变量的分布是什么,它们的平均值的分布总是趋 近于正态分布。
中心极限定理的数学表达
设随机变量X1,X2,...,Xn是相互独立的,且具有相同的分布 函数F(x),则对于任意实数x,有lim(n->∞)P(∑Xi≤x)=∫(∞->x)F(t)dt。
样本分布的性质
无偏性
如果样本统计量的数学期 望等于总体参数,则该统 计量是无偏的。

第5章抽样调查及参数估计(练习题)

第5章抽样调查及参数估计(练习题)

第五章抽样调查及参数估计5.1 抽样与抽样分布5.2 参数估计的基本方法5.3 总体均值的区间估计5.4 总体比例的区间估计5.5 样本容量的确定一、简答题1.什么是抽样推断?用样本指标估计总体指标应该满足哪三个标准才能被认为是优良的估计?2.什么是抽样误差,影响抽样误差的主要因素有哪些?3.简述概率抽样的五种方式二、填空题1.抽样推断是在随机抽样的基础上,利用样本资料计算样本指标,并据以推算总体数量特征的一种统计分析方法。

2.从全部总体单位中随机抽选样本单位的方法有两种,即重复抽样和不重复抽样。

3.常用的抽样组织形式有简单随机抽样、类型抽样、等距抽样、整群抽样等四种。

4.影响抽样误差大小的因素有总体各单位标志值的差异程度、抽样单位数的多少、抽样方法和抽样调查的组织形式。

5.总体参数区间估计必须具备估计值、概率保证程度或概率度、抽样极限误差等三个要素。

6.从总体单位数为N的总体中抽取容量为n的样本,在重复抽样和不重复抽样条件下,可能的样本个数分别是______________和_____________。

7.简单随机_抽样是最基本的抽样组织方式,也是其他复杂抽样设计的基础。

8.影响样本容量的主要因素包括总体各单位标志变异程度_、__允许的极限误差Δ的大小、_抽样方法_、抽样方式、抽样推断的可靠程度F(t)的大小等。

三、选择题1.抽样调查需要遵守的基本原则是( B )。

A.准确性原则 B.随机性原则 C.代表性原则 D.可靠性原则2.抽样调查的主要目的是( A )。

A.用样本指标推断总体指标 B.用总体指标推断样本指标C.弥补普查资料的不足 D.节约经费开支3.抽样平均误差反映了样本指标与总体指标之间的( B )。

A.实际误差 B.实际误差的平均数C.可能的误差范围 D.实际的误差范围4.对某种连续生产的产品进行质量检验,要求每隔一小时抽出10分钟的产品进行检验,这种抽查方式是( D )。

A.简单随机抽样 B.类型抽样 C.等距抽样 D.整群抽样5.在其他情况一定的情况下,样本单位数与抽样误差之间的关系是( B )。

抽样与参数估计

抽样与参数估计

第四章抽样与参数估计推断统计:利用样本统计量对总体某些性质或数量特点进行推断。

从数据得到对现实世界的结论的过程就叫做统计推断(statistical inference)。

那个调查例子是估量总体参数(某种意见的比例)的一个过程。

估量(estimation) 是统计推断的重要内容之一。

统计推断的另一个要紧内容是本章第二节要介绍的假设检验(hypothesis testing) 。

因此本节内容确实是由样本数据对总体参数进行估量,即:学习目标:了解抽样和抽样分布的差不多概念明白得抽样分布与总体分布的关系了解点估量的概念和估量量的优良标准把握总体均值、总体比例和总体方差的区间估量第一节抽样与抽样分布回忆相关概念:总体、个体和样本抽样推断:从所研究的总体全部元素(单位)中抽取一部分元素(单位)进行调查,并依照样本数据所提供的信息来推断总体的数量特点。

总体(Population):调查研究的事物或现象的全体参数个体(Item unit):组成总体的每个元素样本(Sample):从总体中所抽取的部分个体统计量样本容量(Sample size):样本中所含个体的数量一样将样本单位数许多于三十个的样本称为大样本,样本单位数不到三十个的样本称为小样本。

一、抽样方法及抽样分布1、抽样方法(1)、概率抽样:依照已知的概率选取样本①、简单随机抽样:完全随机地抽选样本,使得每一个样本都有相同的机会(概率)被抽中。

注意:在有限总体的简单随机抽样中,由抽样是否具有可重复性,又可分为重复抽样与不重复抽样。

而且,依照抽样中是否排序,所能抽到的样本个数往往不同。

②、分层抽样:总体分成不同的“层”(类),然后在每一层内进行抽样③、整群抽样:将一组被调查者(群)作为一个抽样单位④、等距抽样:在样本框中每隔一定距离抽选一个被调查者(2)非概率抽样:不是完全按随机原则选取样本①、非随机抽样:由调查人员自由选取被调查者②、判定抽样:通过某些条件过滤来选择被调查者(3)、配额抽样:选择一群特定数目、满足特定条件的被调查者2、抽样分布一样地,样本统计量的所有可能取值及其取值概率所形成的概率分布,统计上称为抽样分布(sampling distribution)。

第五抽样分布与参数估计第一第二

第五抽样分布与参数估计第一第二

类型组的样本单位数。
3、等距抽样(系统抽样、机械抽 样)
概念:将总体各单位标志值按某一标志顺序排
队,然而按一定的间隔抽取样本单位。
排队的方法:①按无关标志 ②按有关标志
抽取样本单位的方法
◦ ①按相等的距离取样 ②对称等距取样
抽取第一个样本单位的方法
◦ ①随机抽取
②居中抽取
4、整群抽样
概念:把总体分为若干群,从总体群中抽取若干样 本群,对抽中的群进行全数登记调查。 如:某水泥厂一昼夜的产量为14400袋,现每隔 144分钟抽取1分钟的水泥(10袋)检查平均每袋 重量和一级品率
例子
根据古典概率定义可算出,抛一枚质地均匀的硬币, 出现正面与出现反面的概率都是0.5。历史上有很
多人都曾经做过抛硬币试验。
试验者
试验次数
正面出现的频率
蒲丰
4040
0.5069
K.皮尔逊
12000
0.5016
K.皮尔逊
24000
0.5005
罗曼诺夫斯基
80640
0.4979
第二节
抽样分布
一、三种分布含义
第五抽样分布与参数估计第一第二
第一节
抽样的基本概念
(二)样本容量与样本个数
1.样本容量
◦ 是一个样本中所包含的单位数。
2.样本个数
◦ 即样本可能数目。是指从一个总体中可能抽取多少个样本。 与抽样方法有关。
(三)抽样方法
1、重复抽样
◦ 从总体的N 个单位中要随机抽取一个容量为n的样本,每次 从总体中抽出一个单位后,经过调查又把它放回到总体中, 重新再参加下一次抽选。
类型组,然后从各类型组中采用简单随机抽样方式或 其它方式抽取样本单位。

第5章抽样分布与参数估计

第5章抽样分布与参数估计

第5章抽样分布与参数估计在统计学中,抽样分布与参数估计是重要的概念。

抽样分布是指从总体中随机抽取样本,计算样本统计量,然后将这些统计量进行分布的过程。

参数估计是通过样本数据对总体参数进行估计的方法。

首先,我们来了解抽样分布。

在统计学中,我们通常很难直接获得总体数据,因为总体数据往往很大,难以收集。

因此,我们采用抽样的方式来获取样本数据,并通过样本数据来推断总体特征。

抽样分布是指在重复抽取样本的过程中得到的统计量的分布。

抽样分布的中心趋于总体参数,而抽样分布的形状可以通过中心极限定理进行描述。

中心极限定理认为,当样本数量足够大时,样本均值的抽样分布近似服从正态分布,且均值等于总体均值。

这对于统计推断和参数估计具有重要意义。

其次,我们来了解参数估计的概念及其方法。

参数估计是指根据样本数据对总体参数进行估计的统计方法。

常见的参数包括总体均值、总体方差等。

参数估计可以分为点估计和区间估计两种方法。

点估计是指通过样本数据计算得到的单个数值来估计总体参数。

常用的点估计方法包括最大似然估计和矩估计。

最大似然估计是基于样本的观测值选择使得观测值出现的概率最大的参数值作为估计值的方法。

矩估计是通过样本矩与总体矩的对应关系来估计总体参数的方法。

区间估计是指对总体参数给出一个区间估计值,该区间包含了真实参数值的概率。

常用的区间估计方法包括置信区间估计和预测区间估计。

置信区间估计是通过样本数据计算得到的一个区间,可以包含真实参数值的概率。

置信区间的置信水平是指在多次重复抽样中,这个区间包含了真实参数值的概率。

预测区间估计是在给定自变量取值的情况下,通过样本数据对应的因变量的取值的一个区间估计。

总之,抽样分布与参数估计是统计学中重要的概念和方法。

通过抽样分布可以了解样本统计量的分布情况,而参数估计可以通过样本数据对总体参数进行估计。

这些概念和方法对于数据分析和决策具有重要的实际应用价值。

第五章 抽样估计

第五章  抽样估计
3.题型:(1)已知 ,求F(t)(2)已知F(t),求区间(实值求 )
步骤: 步骤:
例题1.(题型一)
某乡水道总面积2000亩,从中随机抽取40亩(重复抽样),每亩产量资料如下:
每亩产量(斤)
亩数
x
xf
(x- ) f
400—450
450—500
500—550
550—600
600—650
650—700
1)常用的参数和统计量(指标:平均指标和变异指标)
对于数量标志,计算平均指标和变异指标( )
对于品质标志,计算成数指标(结构相对指标)来表示某种性质的单位数在总体全部单位数中所占的比重。即p=(n1/n),则总体中不具有某种性质的单位数在总体中所占的比重为:q=1-p
如果进行对品质标志是非标志进行赋值,即:定义为“1”和“0”,则有:
(五)抽样估计的置信度
前面我们学习了两种误差,即平均误差和极限误差,这两种误差有着不同的含义。
抽样平均误差反映抽样误差一般水平,是样本资料和总体之间所有离差值的一个平均数。极限误差指进行抽样在统计工作前设立的一个误差最大值。二者的关系是 ( )用抽样误差概率度来表示的。
我们客观地承认,只要进行抽样调查,必然存在误差,并且根据经验或工作要求,我们可以设置一个误差最大值,但要使抽样调查结果一定符合误差在极限误差范围内,却并非能够实现。所以要保证误差不超过一定范围的,只能给一定程度的概率保证程度。抽样估计置信度就是表明抽样指标和总体指标的误差不超过一定范围的概率保证程度。
如:t=1 F(t)=P=68.27%查《正态分布概率分t=2 F(t)=F(2)=P=95.45%布表》
t=3 F(t)=F(3)=P=99.73%
t=1.64 F(t)=90%
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

影响区间宽度的因素
1. 数据的离散程度,用 数据的离散程度, σ 来测度 2. 样本容量n, 样本容量n 3. 置信水平 (1 - α),影 响 Z 的大小 极限误差
∇ x = zα
σ
n
2
抽样平均误差
第三节 总体均值和总体比例 的区间估计
一. 总体均值的区间估计 二. 总体比例的区间估计 三. 样本容量的确定
样本均值的分布与总体分布的比较
总体分布
.3 P(x)
抽样分布
.3 .2 .1 0 1 2 3 4
.2 .1 0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 x
µ = 2.5
σ2 =1.25
µx = 2.5 2 σx = 0.625
样本均值的抽样分布 与中心极限定理
当总体服从正态分布N 当总体服从正态分布N ~ (µ,σ2 )时,来自该总体的所 有容量为n的样本的均值 也服从正态分布, 有容量为n的样本的均值X也服从正态分布,X 的 数学期望为µ 方差为σ 数学期望为µ,方差为σ2/n。即X~N(µ,σ2/n)
90%的样本 90%的样本 95% 的样本 99% 的样本
由于样本均值的抽样分布服从正态分布, 由于样本均值的抽样分布服从正态分布,
X
σ2
n = σ X2
σ2 N µ, n
Z=
标准化
X−µ
σ
n
Z
N ( 0,1)

n
给定
1 − α 查正态分布双侧表,可得临界值 查正态分布双侧表,
置信区间
均 值 σ2 已知 σ2 未知
比例
方差
落在总体均值某一区间内的样本
X σ2 N µ, n
X = µ ± Zσx
2.58σ µ - 2.58σx
_ σx
σ2
n
= σ X2
µ -1.65 σx
µ
+1.65σ µ +1.65σx
µ + 2.58x
X
µ -1.96 σx
+1.96σ µ +1.96σx
(n−1 s )
2
σ
2

2 (n−1)
将χ2(n – 1)称为自由度为(n-1)的卡方分布 1)称为自由度为( 1)的卡方分布
卡方 (χ2) 分布
选择容量为n 选择容量为 的
总体
不同容量样本的抽样分布
n=1 n=4 n=10
简单随机样本
σ µ
计算样本方差S 计算样本方差 2
计算卡方值
n=20
χ2 = (n-1)S2/σ2
使得下式成立
−Z p X − µ p Z = 1− α P α α2 σ 2 n 对括号里不等式移项, P − Zα ⋅ σ 2 n p X − µ p Zα ⋅ σ
2
= 1−α n
2
P -X − Z α ⋅ σ 2 P X + Zα ⋅ σ 2 即
.3 .2 .1 0 1 2 3 4
µ=
∑X
i= 1
N
i
N
N
= 2.5
σ = i=1
2
(Xi − µ)2 ∑ N
=1.25
样本均值的抽样分布
(一个例子)
现从总体中抽取n 现从总体中抽取n=2的简单随机样本,在重复 的简单随机样本, 抽样条件下,共有4 16个样本。 抽样条件下,共有42=16个样本。所有样本的结果 如下表
n n
p − µ p − X+Z α ⋅ σ f + µ f + X-Z α ⋅ σ
2
= 1−α n = 1−α n
= 1−α P X − Zα ⋅ σ p µ p X+Z α ⋅ σ 2 2 n n 表示, X 落在以 µ 为中心的一个区间概率为1 − α
较大的样本容量
P(X )
B A
较小的样本容量
µ
X
区间估计
区间估计
(概念要点)
1. 根据一个样本的观察值给出总体参数的估计范围 2. 给出总体参数落在这一区间的概率 3. 例如: 总体均值落在50~70之间,置信度为 95%
置信区间 样本统计量 (点估计) 点估计)
置信下限
置信上限
置信区间估计
(内容)
16个样本的均值(x) 个样本的均值( ) 个样本的均值
第一个 观察值 .3 .2 .1 0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 x P(x)
第二个观察值 1 1.0 1.5 2.0 2.5 2 1.5 2.0 2.5 3.0 3 2.0 2.5 3.0 3.5 4 2.5 3.0 3.5 4.0
总体均值的区间估计
(σ2已知)
总体均值的置信区间
(σ2 已知)
1. 假定条件
• • 总体服从正态分布,且总体方差( 总体服从正态分布,且总体方差(σ2)已知 如果不是正态分布,可以由正态分布 正态分布来近似 30) 如果不是正态分布,可以由正态分布来近似 (n ≥ 30) 大样本
根据大数定律,样本分还是 2. 使用正态分布统计量Z 趋近正态分布,只是由样本 x −µ Z= ~ N(0,1 ) 均值估计该非正态总体具体 分布的参数 σ n 3. 总体均值 µ 在1-α置信水平下的置信区间为 置信水平下的置信区间为 σ σ , x + Zα 2 x −Zα 2 n n
第五章 抽样与参数估计
参数估计在统计方法中的地位
统计方法
描述统计 推断统计
参数估计
假设检验
学习目标
1. 2. 3. 4. 了解抽样和抽样分布的基本概念 理解抽样分布与总体分布的关系 了解点估计的概念和估计量的优良标准 掌握总体均值、 掌握总体均值、总体比例和总体方差的区 间估计
样本均值的抽样分布
抽样分布
(概念要点)
1. 所有样本指标(如均值、比例、方差等) 所形成的分布称为抽样分布 2. 是一种理论概率分布 3. 随机变量是 样本统计量
• 样本均值, 样本比例等
4. 结果来自容量相同的所有可能样本
样本均值的抽样分布
(一个例子)
【例】设一个总体,含有4个元素(个体),即总体单 设一个总体,含有4个元素(个体) 位数N 位数 N=4 。 4 个个体分别为 X1=1 、 X2=2 、 X3=3 、 X4=4 个个体分别为X 。总体的均值、方差及分布如下 总体的均值、 均值和方差 总体分布
µ
P
x ˆ p
s2 x1 − x2 ˆ1 ˆ p − p2
2 2 s1 s2
σ2 µ1 −µ2
P −P 1 2
2 2 σ1 σ2
点估计
点估计
(概念要点)
1. 从总体中抽取一个样本,根据该样本的统计 量对总体的未知参数作出一个数值点的估计
例如: 用样本均值作为总体未知均值的估计值 就是一个点估计
2. 点估计没有给出估计值接近总体未知参数程 度的信息 3. 点估计的方法有数字特征值估计法、顺序统 计量法、最大似然法、最小二乘法等
一个任意分 布的总体
σ σx = n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
µx = µ
X
样本方差的抽样分布
样本方差的分布
设总体服从正态分布N 设总体服从正态分布N ~ (µ,σ2 ), X1,X2, …,Xn为来自该正态总体的样本,则样本方 为来自该正态总体的样本, 差 s2 的分布为
总体均值的区间估计
(正态总体:实例)
【 例 】 某种零件 解:已知X ~N(µ, 0.152), x =2.14, n=9, 14, 长度服从正态分 1-α = 0.95,Zα/2=1.96 95, 布 , 从该批产品 总体均值µ的置信区间为 中随机抽取9件 σ σ x − Zα 2 , x + Zα 2 , 测得其平均长 n n 度为21. mm 。 度为 21.4 mm。 0.15 0.15 已知总体标准差 = 21.4 −1.96 ,21.4 +1.96 σ =0.15mm,试 15mm, 9 9 建立该种零件平 = (21.302 21.498) , 均长度的置信区 可以95% 可以95%的概率保证该种零件的平均长 间 , 给定置信水 度在21.302~21. mm之间 度在21.302~21.498 mm之间 平为0 95。 平为0.95。
1 2 3 4
样本均值的抽样分布
所有样本均值的均值和方差
1.0+1.5+L 4.0 + µx = = = 2.5 = µ M 16
i= 1
n
∑x
1 i=
n
i
σ =
2 x
∑(x − µ )
i x
2
M (1.0 − 2.5)2 +L+ (4.0 − 2.5)2 σ2 = = 0.625 = 16 n
式中:M 式中:M为样本数目 比较及结论:1. 比较及结论:1. 样本均值的均值(数学期望)等于总体均值 2. 样本均值的方差等于总体方差的1/n 样本均值的方差等于总体方差的1/n
F
T 统计量的分布
T 统计量的分布
设X1,X2,…,Xn是来自正态总体N~(µ,σ2 )的一个样 是来自正态总体N~(µ 本, 称 (X −µ) T= 为统计量,它服从自由度为( 为统计量,它服从自由度为(n-1)的t 分布 S/ n
t 分布
标准正态分布 t (df = 13)
正态分布
t (df = 5)
计算出所有的
χ2
χ 2值
均值的标准误
1. 所有可能的样本均值的标准差,测度所有 样本均值的离散程度 2. 小于总体标准差 3. 计算公式为
相关文档
最新文档