曲线积分与曲面积分经典例题

合集下载

曲线积分及曲面积分习题46页PPT

曲线积分及曲面积分习题46页PPT

曲线积分
计算
定积分
Stokes公式
计算 曲面积分
Guass公式
计算 重积分
计算上的联系
f(x ,y)d b[y2(x)f(x ,y)d]d y,(x d 面)元
D
a y1(x)
f(x ,y ,z )d V b dy 2 x (x ) dz 2 y (x ,y )f(x ,y ,z )d,(d z体 V)元
闭合
Q P
I
( D
x
)dxdy y
y x 非闭 补充曲线或用公式
例 计算
I (exsinymy)dx(excosym)dy, L
其中L为由点(a,0)到点(0,0)的上半圆周 x2 y2 ax, y0.
解 P (exsiy n m ) e yxco y m s y y
Q (exco ys m )exco ys x x
旋度 rA o ( tR Q )i ( P R ) j ( Q P )k y z z x x y
二、典型例题
对坐标的曲线积分
P(x,y)dxQ(x,y)dy的计算法
L
思路
ILPdxQdy
(x,y)
I
PdxQdy非闭
(x0,y0)
P
Q
ILPdxQ dy0f(x,y)d sl i0m i1f(i,i)si
Ln
l i0im 1[P (i, i) xi Q (i, i) yi]
联 系
L P Q d L x ( d P cy o Q c s) o ds s
计 L f(x, y)ds
f[,]
2 2dt
算 三代一定
()
LPdxQdy
[P(,)Q(,)]dt

第八章 曲线积分与曲面积分(改)

第八章 曲线积分与曲面积分(改)

第八章 曲线积分与曲面积分(A )习题八1、计算下列数量值函数的曲线积分: ⑴22L y ds x y +⎰,其中L 为平面上的上半圆周:221,0x y y +=≥. ⑵⎰+Lds y x )(,其中L 为以(0,0),(2,0),(0,1)为顶点的三角形边界.⑶⎰+Ly x ds e22,其中L 为x 轴,圆周222(0)x y a a +=>,直线y x =在第一象限内所围成扇形的边界.⑷2Ly ds ⎰,其中L 是摆线(sin ),(1cos )x a t t y a t =-=-的一拱(02)t π≤≤.⑸22()Lx y ds -⎰,其中L 为柱面221x y +=与平面0x y z ++=的交线.2、求空间曲线cos ,sin ,(0)tttx e t y e t z e t ---===<<+∞的弧长.3、求均匀摆线弧(sin ),(1cos )(0)x a t t y a t t π=-=-≤≤的重心坐标.4、计算下列数量值函数的曲面积分: ⑴22()xy dS ∑+⎰⎰,其中∑:222()z x y =-+,0z ≥.⑵()x y z dS ∑++⎰⎰,其中∑为平面5y z +=被柱面2225x y +=所截得的部分.⑶22()x y dS ∑+⎰⎰,其中∑是锥面z =及平面1z =所围成的区域的整个边界曲面.⑷2221dS x y z ∑++⎰⎰,其中∑为介于平面0z =和平面(0)z H H =>之间的圆柱面222x y R +=.5、求抛物面22z x y =+被锥面2z =所截下的部分曲面面积.6、计算下列向量值函数在定向曲线上的积分: ⑴22610Lxydx xy dy +⎰,其中L 为曲线2y x =上从点(0,0)到(1,1)的一段弧. ⑵2(sin )Lx y dx +⎰,其中L 为由2,1y x x ==所围区域的边界(逆时针方向). ⑶2222Ly xdx dy x y x y -+++⎰,其中L 是半径为a ,圆心在原点且方向由(,0)A a 到(,0)B a -的上半圆.⑷(2)La y dx xdy -+⎰,其中L 为摆线(s i n ),(1c o sx a t t y a t =-=-从0t =到2t π=的一段.⑸||||Ldx dyx y ++⎰,其中L 为从点(1,0)A 经点(0,1)B 到点(1,0)C -的折线段. ⑹(1)Lxdx ydy x y dz +++-⎰,其中L 是从点(1,1,1)到点(2,3,4)的一段直线.7、设曲线L 是从点(0,0)O 沿圆弧y =到点(1,0)A 的弧段,计算22()(sin )LI x yx dx y x y dy =-++⎰.8、将(,)(,)LP x y dx Q x y dy +⎰化为数量值函数的曲线积分,其中L 为沿圆周222x y y +=(逆时针)从(0,0)到(1,1).9、方向沿纵轴方向,大小等于作用点的横坐标平方的力构成一力场,求质量为m 的质点沿半圆周y =(1,0)-移动到(1,0)时,场力所作的功.10、设位于点(0,1)的质点A 对质点M 的引力大小为2kr (0k >为常数,r 为质点A 与M 之间的距离),质点M 沿曲线y =自(2,0)B 运动到(0,0)O ,求在此运动过程中质点A 对质点M 的引力所作的功.11、利用格林公式计算下列曲线积分: ⑴2(1)Ly dx xydy ++⎰,其中L 为曲线sin y x =和2sin (0)y x x π=≤≤所围区域的正向边界. ⑵(sin )(cos )x x Le y y x dx e y x dy +++-⎰,其中L 为从点(0,0)O 经圆周22(1)1x y -+=的下半部分到点(2,0)A 的一段弧.12、计算曲线积分224Cxdy ydxx y-+⎰,其中C 是以(1,0)为中心,(1)R R ≠为半径的圆周,逆时针方向.13、证明曲线积分(3,4)2322(1,2)(6)(63)xy y dx x y xy dy -+-⎰与路径无关,并求积分值.14、验证22(2cos sin )(2cos sin )x y y x dx y x x y dy -+-在整个xOy 平面内为某一函数的全微分,并求一个这样的函数(,)u x y .15、计算下列向量值函数在定向曲面上的积分: ⑴22()xy zdxdy ∑+⎰⎰,其中∑是球面2221x y z ++=的下半部分的下侧.⑵zdxdy xdydz ydzdx ∑++⎰⎰,其中∑是柱面221x y +=被平面0z =及3z =所截得的在第一卦限内的部分的前侧.⑶2z dxdy ∑⎰⎰,其中∑为平面1x y z ++=在第一卦限部分的上侧. ⑷2x dydz zdxdy ∑+⎰⎰,其中∑为抛物面22(01)z x y z =+≤≤的上侧.16、利用高斯公式计算下列曲面积分: ⑴222x dydz y dzdx z dxdy ∑++⎰⎰,其中∑为平面0x =,0y =,0z =,x y z a ++=(0)a >所围立体的全表面的外侧.⑵32()2xyz dydz x ydzdx zdxdy ∑--+⎰⎰,其中∑为222x y R +=在平面0z =和1z =之间部分圆柱面的外侧.⑶333()()()x yz dydz y xz dzdx z xy dxdy ∑++-++⎰⎰,其中∑为取外侧的球面222x y z z ++=. ⑷222x dydz y dzdx z dxdy ∑++⎰⎰,其中∑为抛物面22(01)z x y z =+≤≤的上侧.17、计算323232()()()xaz dydz y ax dzdx z ay dxdy ∑+++++⎰⎰,其中∑为上半球面z =18、计算xyzA e r =在点()1,1,1P 处的散度,其中r 为矢径:r xi yj zk =++.19、求向量yzi xzj xyk ++穿过圆柱体222,0x y R z H +≤≤≤的全表面∑的外侧的通量.20、利用斯托克斯公式计算曲线积分()()()C z y dx x z dy x y dz -+-+-⎰,其中C 是曲线2212x y x y z ⎧+=⎨-+=⎩从z 轴正向往z 轴负向看C 的方向是顺时针的.(B )单元自我测试题一、填空题(每题4分,共20分)1、设C 为3y x =上点(0,0)到(1,1)的一段弧,则曲线积分C⎰= .(写出定积分形式,不必计算)2、设L 是圆周:2222,0x y z a x y z ⎧++=⎨++=⎩则曲线积分2Lx ds ⎰的值为 .3、设C 是逆时针方向的闭曲线,其方程为22(1)1x y -+=,则222()(2)Cx y d x y x y d y-+-⎰= . 4、设∑是抛物面221(23)z x y =-+在xOy 平面上方部分的下侧,则向量值函数在定向曲面上的积分I Pdydz Qdzdx Rdxdy ∑=++⎰⎰化为数量值函数的曲面积分后,I = .5、向量场()()22,,ln 1z u x y z xy i ye j x z k =+++在点()1,1,0P 的散度divu = .二、单项选择题(每题3分,共15分) 1、曲线积分22()Lx y ds +⎰,其中L 是圆心在原点,半径为a 的圆周,则曲线积分值为( )A .22a π B.3a π C.32a π D.34a π 2、设∑:2222(0)x y z a z ++=≥,1∑为∑在第一卦限的部分,则有( ).A .14xdS xdS ∑∑=⎰⎰⎰⎰ B.14ydS ydS ∑∑=⎰⎰⎰⎰C.14zdS zdS ∑∑=⎰⎰⎰⎰ D.14xyzdS xyzdS ∑∑=⎰⎰⎰⎰3、设L 是从点()0,0沿折线11y x =--至点()2,0A 的折线段,则曲线积分LI ydx xdy =-+⎰=( )A .2- B.1- C.0 D.24、设2()()x ay dx ydyx y +++为某函数的全微分,则常数a =( ).A .1- B.0 C.1 D.2 5、设∑是柱面221,01x y z +=≤≤外侧,()x y z dydz ∑++=⎰⎰( ). A .0 B.1π+ C.1 D.π三、计算下列曲线积分或曲面积分的值(每题6分,共24分)1、设L 是由直线2y x =,2y =和0x =所围成的三角形区域的边界,求Lxyds ⎰.2、2I z dS ∑=⎰⎰,其中∑是球面2222xy z a ++=.3、计算22C I xy dy x ydx +=-⎰,C 为圆周222x y a +=.4、2()I z x dydz zdxdy ∑=++⎰⎰,其中∑是旋转抛物面221()2z x y =+介于0z =及3z =之间部分的下侧.四、(8分)求面密度为1的均匀半球面2222:x y z a ∑++=,0z ≥对z 轴的转动惯量.五、(8分)设曲线C 为抛物线222x y =-上从点(0,1)A 到点(0,1)B -的一段弧,计算22Cxdy ydxI x y -=+⎰.六、(8分)设函数()f x 可导,且(0)1f =,求()f x 使得曲线积分()xLye dx f x dy +⎰在全平面上与路径无关,并计算(1,1)(0,0)()x I ye dx f x dy =+⎰.七、(8分)设∑是平面1x y z ++=在第一卦限部分的上侧,求曲面积分()I x y dydz ydzdx dxdy ∑=+++⎰⎰.八、(9分)计算曲面积分33311()()()22x x dydz y xz dzdx z z dxdy ∑++-+-⎰⎰,其中∑是球面2222x y z z ++=的内侧.(C )提高题1、计算曲面积分zdS ∑⎰⎰,其中∑为锥面z =在柱体222x y x +≤内的部分.2、设S 为椭球面222122x y z ++=的上半部分,点(,,)P x y z S ∈,π为S 在点P 处的切平面,(,,)x y z ρ为点(0,0,0)O 到平面π的距离,求(,,)SzdS x y z ρ⎰⎰.3、设函数(,)Q x y 在xOy 平面上具有一阶连续偏导数,曲线积分2(,)Lx y d xQ x y d y +⎰与路径无关,并且对任意t 恒有(,1)(1,)(0,0)(0,0)2(,)2(,)t t xydx Q x y dy xydx Q x y dy +=+⎰⎰,求(,)Q x y .4、设函数()y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分24()22Ly dx xydyx yϕ++⎰的值恒为同一常数.证明:对右半平面0x >内的任意分段光滑简单闭曲线C ,有24()202Cy dx xydyx y ϕ+=+⎰.5、设函数()f x 在(,)-∞+∞内具有一阶连续导数,L 是上半平面(0)y >内的有向分段光滑曲线,其起点为(,)a b ,终点为(,)c d ,记2221[1()][()1]L xI y f xy dx y f xy dy y y=++-⎰, ⑴ 证明曲线积分I 与路径L 无关; ⑵ 当ab cd =时,求I 的值.6、计算222222()(2)(3)LI y z dx z x dy x y dz=-+-+-⎰,其中L 是平面2x y z ++=与柱面||||1x y +=的交线,从z 轴正向看去,L 为逆时针方向.7、确定常数λ,使向量42(,)2()A x y xy x y i λ=+242()x x y j λ-+在右半平面0x >上的为某二元函数(,)u x y 的梯度,并求(,)u x y .8、已知平面区域{(,)|0,0}D x y x y ππ=≤≤≤≤,L 为D 的正向边界,试证: ⑴sin sin sin sin y x y x LLxe dy ye dx xe dy ye dx ---=-⎰⎰;⑵sin sin 22y x Lxe dy ye dx π--≥⎰.9、求[sin ()](cos )x xI e y b x y dx e y ax dy =-++-⎰,其中,a b 为正常数,L为从点(2,0)A a 沿曲线y =(0,0)O 的弧.10、计算曲面积分2222xdydz z dxdy x y z ∑+++⎰⎰,其中∑是由曲面222x y R +=及两平面z R =,(0)z R R =->所围成立体表面的外侧.11、计算212222()()axdydz z a dxdy x y z ∑++++⎰⎰,其中∑为下半球面z =上侧,a 为大于零的常数.12、计算曲面积分(2)x z dydz zdxdy ∑++⎰⎰,其中∑为有向曲面22z xy =+(01)z ≤≤,其法向量与z 轴正向的夹角为锐角.13、计算曲面积分332223(1)I x dydz y dzdx z dxdy ∑=++-⎰⎰,其中∑是曲面221(0)z x y z =-≥-的上侧.。

§10_曲线积分和曲面积分习题与答案

§10_曲线积分和曲面积分习题与答案

第十章 曲线积分和曲面积分(A )1、计算下列对弧长的曲线积分 1)ds y x n L)(22+⎰,其中:)20(sin ,cos :π≤≤==t t a y t a x L2),xds L⎰其中围成及为由2x y x y L == 3),2yzds x T⎰其中T 为折线ABCD ,这里A ,B ,C ,D 依次为点(0,0,0),(0,0,2),(1,0,2),(1,3,2) 4),)(22ds y x L+⎰其中L :)20(),cos (sin ),sin (cos π≤≤-=+=t t t t a y t t t a x2 、计算下列对坐标的曲线积分 1),)(22dx y x L-⎰其中L 是2x y =上从(0,0)到(2,4)的一段弧2),xydx L⎰其中L 是222)(a y a x =+-及x 轴围成的在第一象限内的区域的整个边界(逆时针向) 3),ydz dy dx T+-⎰其中T 为有向闭折线ABCA ,这里A ,B ,C 依次为点(1,0,0),(0,1,0),(0,0,1) 4)dy xy y dx xy x L)2()2(22-+-⎰,其中L 是2x y =上从点(-1,1)到(1,1)的一段弧3、利用格林公式,计算下列曲线积分 1),)635()42(dy x y dx y x L-+++-⎰其中L 为三顶点分别为(0,0),(3,0)和(3,2)的三角形正向边界 2),)2sin ()sin 2cos (222dy ye x x dx e y x xy x y x x x L -+-+⎰其中L 为正向星形线)0(323232>=+a a y x3),)3sin 21()cos 2(2223dy y x x y dx x y xy L+-+-⎰其中L 为抛物线22y x π=上由(0,0)到()1,2π的一段弧4、验证下列dy y x Q dx y x P ),(),(+在整个xoy 面内是某个),(y x u 的全微分,并求这样的),(y x u1)dy y x dx y x )2()2(+++2)dy y x x y dx x y y x )sin sin 2()cos cos 2(22-++5 、计算下列对面积的曲面积分 1)⎰⎰∑++,)342(ds z y x 其中∑为平面1432=++zy x 在第一卦限中的部分 2)⎰⎰∑++,)(ds xz yz xy 其中∑为锥面22y x z +=被柱面ax y x 222=+所截得的有限部分6 、计算下列对坐标的曲面积分 1)⎰⎰∑,22zdxdy y x 其中∑是球面2222R z y x =++的下半部分的下侧 2)⎰⎰∑++,yzdzdx xydydz xzdxdy 其中∑是平面1,0,0,0=++===z y x z y x 围成区域的整个边界曲面的外侧7 、利用高斯公式计算曲面积分 1)⎰⎰∑++,333dxdy z dzdx y dydz x 其中∑为球面2222a z y x =++的外侧 2)⎰⎰∑++,zdxdy ydzdx xdydz 其中∑为界于3,0==z z 之间的圆柱体922≤+y x 的整个表面的外侧8 、 求下列向量的散度1)k xy z j xz y i yz x A )()()(222+++++=ϖ 2)k xz j xy i e A xy)cos()cos(2++=ϖ9、求下列向量场A 的旋度1)k x y j z x i y z A )2()3()32(-+-+-=ϖ2)j y x z i y z A )cos ()sin (--+=ϖ(B)1、一段铁丝成半圆形22x a y -=,其上任一点处的线密度的大小等于该点的纵坐标,求其质量. 2、 把xdy ydx x L-⎰2化为对弧长的曲线积分,其中L 为2x y =从点A (-1,1)到B (1,1)的弧段. 3、把xzdz yzdy xyzdx ++⎰Γ化成对弧长的曲线积分,其中Γ为曲线32,,t z t y t x ===0()1≤≤t 一段弧.4、求心形线t a t a y t a t a x 2sin sin 2,2cos cos 2-=-=所围图形的面积.5、求dy y xy x ye dx y xy x e y x x L)322()23(22222-++++++⎰,其中:L 为21x y -=从A (1,0)到B (0,1).6、 把⎰⎰∑++Rdxdy Qdzdx Pdydz 化为对面积的曲面积分,其中1)∑是平面632=+-z y x 在第二卦限部分上侧2)∑是222y x a z --=上侧7 、,2)()(22 zdxdy dzdx zx y dydz yz x +-+-⎰⎰∑其中∑为锥面)0(122≥+-=z y x z 的上侧. 8、dz y x dy x z dx z y )()()(222222-+-+-⎰Γ,其中Γ为柱面122=+y x 与平面1=++z y x 的交线,从z 轴正向看Γ为逆时针方向.(C )1、 计算,)()()(dz y x dy x z dx z y I L -+-+-=⎰其中:L :⎪⎩⎪⎨⎧=+=+,1222hz a x a y x (),0,0>>h a从X 轴正向看去L 为逆时针. 2、 已知曲线积分,)3(33dy x x dx y I L-+=⎰其中L 为)0(222>=+R R y x 正向,求(1) R 为何值时0=I ; (2) 求I 的最大值. 3 、计算=I [][][]dxdy z z y x f dzdx y z y x f dydz x z y x f +++++⎰⎰∑),,(),,(2),,(,其中:),,(z y x f 连续,∑为1=+-z y x 在第Ⅳ卦限部分的上侧.第十章 曲线积分和曲面积分习 题 答 案(A )1、1)122+n aπ 2))12655(121-+ 9)3( )21(2)4(232ππ+a 2、1)1556- 2)32a π- 3)21 4)1514-3、 12)1 0)2 4)32π 4、2221221)1y xy x ++ y x x y cos sin )222+ 5 、614)1 421564)2a 6 、71052)1R π 81)2 7、 5512)1a π π81)2 8、 z y x divA 222)1++= )sin(2)sin()22xz xz xy x yedivA xy--=9、k j i rotA 642)1++= j i rotA +=)2(B )1、提示:222:,2x a y L a yds m L-===⎰,上半圆22a2、提示:222412sin ,411cos ,2tan ,2,:xx xx x y x y L +=+==='=αααds xx y ds xx xxyx xdy ydx x LL L22222241)2()412411(+-=+-+=-⎰⎰⎰3、提示:,3,2,1,,,232t z t y x t z t y t x t t t ='='='===42342429413cos ,9412cos ,9411cos t t t tt t tt ++=++=++=γβα,⎰⎰⎰++=++++=++Γds tt xyzds tt xz t tyz xyz xzdz yzdy xyzdx 424229416941324、2621a ydx xdy s L π=-=⎰ 5、连OA ,OB ,(O (0,0)),使OA ,OB ,L 构成41圆周,τ于是⎰⎰⎰∂∂-∂∂=Dd y P x Q στ)(=0而1,1)3(,13210210-=∴-=-===⎰⎰⎰⎰⎰L B O AO dy y dx x 6、{},3,2,1)1-=h ϖ143cos ,142cos ,141cos =-==γβαds R Q P ds R Q P )32(141)cos cos cos (⎰⎰⎰⎰∑∑+-=++=γβα 2),,2222z y z z x yx a xz y x -=-=---=,1,,⎭⎬⎫⎩⎨⎧=z y z x h ϖ,,,cos 222222222⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++++++=z y x z z y x y z y x x α ⎰⎰⎰⎰∑∑++++=ds zy x R Q P z y x 222(。

第八章 曲线积分和曲面积分题目+简案

第八章 曲线积分和曲面积分题目+简案

的封闭曲线, L 的方向为逆时针方向。
答案:(1)18
(2)16 (3) 2
五、证明: (2x sin y)dx x cos ydy 是某一函数的全微分,并求出一个原函数.
答案:所求原函数为 x2 x sin y C . ( C 为任意常数).
六、⑴在全平面上,证明:曲线积分 y2exdx 2 yexdy 与路径无关,并求 y2exdx 2yexdy L
L
L

P(
x,
y)
2x x2 Q(x, y)(1 x) ds .
十、证明:曲线积分有估计式 P(x, y)dx Q(x, y)dy LM ,其中L 为积分路径的长度, L
M max P2 Q2 . ( x, y)L
答案:证明略.
十一、计算下列曲面积分。
(1)计算曲面积分 dS , 其中 是球面 x2 y2 z2 a2 被平面 z h (0 h a) 截出的
z
顶部.
(2)计算曲面积分 (xz 36x2 9 y2 4z2 )dS, 其中 是 x2 y2 z2 1,其面积为 A.

49
(3)计算 I (x z2 )dydz zdxdy ,其中 是 z 1 (x2 y2 ) 介于平面 z 0 及 z 2
3. 设 为球面 x2 y2 z2 1,则 3x2ds 4 .
1 4. 设 u ln x2 y2 z2 ,则 div(gradu) x2 y2 z2 .
5. 设 是有向光滑曲面,则第二型曲面积分 Pdydz Qdzdx Rdxdy 化为第一型曲面积

(x2 y 2 z )2 3

第十一章 曲线积分与曲面积分(整理解答)

第十一章 曲线积分与曲面积分(整理解答)

第十一章 曲线积分与曲面积分一、 第一类、第二类曲线积分的计算,格林公式 11.6⎰Lxds =( ),其中L 是连接(1,0)及(0,1)的直线段A.21 B. 22 C. 22 D. 2 解:如图所示,L 所在直线方程参数为 1,,01y x x x x =-=≤≤,1102Lxds x x ===⎰⎰⎰所以,选B 。

11.9ds y xL)(22+⎰=( ),其中L 是圆周)20(sin ,cos π≤≤==t t y t xA.π4B.2πC.π2D.π解:2222220()(cos sin )2Lx y ds t t dt πππ+=+==⎰⎰⎰所以,选C 。

11.14 下列为第一类曲线积分的是( ); A .⎰Γs z y x f d ),,(,其中Γ为3R 中的光滑曲线 B .⎰Γx z y x f d ),,(,其中Γ为3R 中的光滑曲线 C .⎰Γy z y x f d ),,(,其中Γ为3R中的光滑曲线 D .⎰Γz z y x f d ),,(,其中Γ为3R中的光滑曲线解:由第一类曲线积分的表示,选A 。

11.18 L 为曲线t y t x sin ,cos ==上0=t 到π=t 的一段弧,则=+⎰Ls y x d )( ( );A. 1-B. 0C. 1D. 2解:()(cos sin )(cos sin )2Lx y ds t t t t dt ππ+=+=+=⎰⎰⎰所以,选D 。

11.21 L 为曲线212y x =上0x =到1x =的一段弧,则d Lx s =⎰ ( ); A.11)3 B .C.21)3 D .解:31121200011d (1)|1)33Lx s x x x ===+=⎰⎰⎰所以,选A 。

11.25 设L 是圆周222x y a +=在第一象限内的弧段,则Ls =⎰( ).(A)ae π; (B)2a π; (C)2a ae π; (D)2a e π.解:L 的参数方程为:cos ,sin ,02x a t y a t t π==≤≤,所以,202a Ls e ae ππ==⎰⎰所以,选C 。

曲线曲面积分(单元练习题)答案

曲线曲面积分(单元练习题)答案

曲线积分与曲面积分单元练习题一、 填空题:1.设L 为122=+y x 上点)0,1(到)0,1(-的上半弧段,则2d Ls ⎰= π2;2.⎰+Cds y x z 22= 285π ,其中C 是曲线⎪⎩⎪⎨⎧===t z t y tx sin 2cos 2介于0=t 到π=t 一段; 3.L 为逆时针方向的圆周:4)3()2(22=++-y x ,则=-⎰Lxdy ydx π8-;4.设C 是由x轴、y轴与直线x+y=1围成的区域的正向边界,则⎰=-Cxdy ydx1-;5. 第一类曲面积分⎰⎰∑dS =的面积∑;6. 设曲面∑为:2222x y z a ++=,则222()xy z dS ∑++=⎰⎰44a π;7.设∑:2222a z y x =++.则dS z ⎰⎰∑2=434a π; 8.格林(Green)公式指出了下列两类积分:_平面上第二类曲线积分和二重积分之间关系。

高斯(Gauss)公式指出了下列两类积分:空间上的第二类曲面积分与三重积分__之间关系。

二、计算题: 1.计算⎰Lds y ,其中L 是抛物线2x y =上自点(0,0)到(1,1)的一段弧。

解12155|)41(121411023212-=+=+⎰x dx x x 。

2.计算⎰Lxyds ,其中L 为从(0,0)到(2,0)的上半圆弧:)0(222≥=+y x y x。

解2sin )cos 1(0=+=⎰⎰πtdt t xyds L3.已知平面曲线弧段L 是圆 4 22=+y x 上从点 ()0,2到()2,0的有向弧段,试计算⎰=Lxydx I .解 ()t d t t I cos 2sin 2cos 220⎰π=dt t t ⎰π-=202sin cos 838-=4.计算224(2)()LI x xy dx x y dy =+++⎰,其中L 为由点(0,0)O 到点(1,1)A 的曲线sin2y x π=.解法一:由于2242,P x xy Q x y =+=+,2P Q x y x∂∂==∂∂,所以积分与路径无关。

曲线积分与曲面积分经典例题

曲线积分与曲面积分经典例题

第十一章 曲线积分与曲面积分内容要点一、引例 设有一曲线形构件所占的位置是xOy 面内的一段曲线L (图10-1-1),它的质量分布不均匀,其线密度为),(y x ρ,试求该构件的质量. 二、第一类曲线积分的定义与性质性质1 设α,β为常数,则⎰⎰⎰+=+L L L ds y x g ds y x f ds y x g y x f ),(),()],(),([βαβα;性质2设L 由1L 和2L 两段光滑曲线组成(记为=L 21L L +),则.),(),(),(2121⎰⎰⎰+=+L L LL ds y x f ds y x f ds y x f注: 若曲线L 可分成有限段,而且每一段都是光滑的,我们就称L 是分段光滑的,在以后的讨论中总假定L 是光滑的或分段光滑的.性质3 设在L 有),(),(y x g y x f ≤,则ds y x g ds y x f LL⎰⎰≤),(),(性质4(中值定理)设函数),(y x f 在光滑曲线L 上连续,则在L 上必存在一点),(ηξ,使s f ds y x f L⋅=⎰),(),(ηξ其中s 是曲线L 的长度.三、第一类曲线积分的计算:)(),(),(βα≤≤⎩⎨⎧==t t y y t x xdt t y t x t y t x f ds y x f L)()(])(),([),(22'+'=⎰⎰βα如果曲线L 的方程为 b x a x y y ≤≤=),(,则dx x y x y x f ds y x f ba L )(1])(,[),(2'+=⎰⎰如果曲线L 的方程为 d y c y x x ≤≤=),(,则dy y x y y x f ds y x f dcL )(1]),([),(2'+=⎰⎰如果曲线L 的方程为 βθαθ≤≤=),(r r ,则θθθθθβαd r r r r f ds y x f L)()()sin ,cos (),(22'+=⎰⎰例5(E03)计算,||⎰Lds y 其中L 为双纽线(图10-1-4))()(222222y x a y x -=+的弧.解 双纽线的极坐标方程为 .2cos 22θa r =用隐函数求导得 ,2sin ,2sin 22ra r a r r θθ-='-='.2sin 2224222θθθθd r a d ra r d r r ds =+='+= 所以 .)22(2sin 4sin 4||2402402a d a d ra r ds y L -==⋅=⎰⎰⎰ππθθθθ 内容要点一、引例:设有一质点在xOy 面内从点A 沿光滑曲线弧L 移动到点B ,在移动过程中,这质点受到力j y x Q i y x P y x F),(),(),(+=的作用,其中),(y x P ,),(y x Q 在L 上连续. 试计算在上述移动过程中变力),(y x F所作的功. 二、 第二类曲线积分的定义与性质:j y x Q i y x P y x A),(),(),(+=⎰⎰+=⋅LLds Q P ds t A )cos cos (βα平面上的第二类曲线积分在实际应用中常出现的形式是⎰+L dy y x Q dx y x P ),(),(⎰⎰+=L L dy y x Q dx y x P ),(),(性质1 设L 是有向曲线弧, L -是与L 方向相反的有向曲线弧,则⎰⎰+-=+-L L dy y x Q dx y x P dy y x Q dx y x P ),(),(),(),(;即第二类曲线积分与积分弧段的方向有关.性质2 如设L 由1L 和2L 两段光滑曲线组成,则⎰⎰⎰+++=+21L L L Qdy Pdx Qdy Pdx Qdy Pdx .三、第二类曲线积分的计算:),(t x x = ),(t y y =⎰+L dy y x Q dx y x P ),(),(⎰'+'=βαdt t y t y t x Q t x t y t x P )}()](),([)()](),([{.如果曲线L 的方程为 ),(x y y =起点为a , 终点为b ,则.)}()](,[)](,[{⎰⎰'+=+ba L dx x y x y x Q x y x P Qdy Pdx如果曲线L 的方程为),(y x x = 起点为c , 终点为d ,则.]}),([)(]),([{⎰⎰+'=+dcLdy y y x Q y x y y x P Qdy Pdx内容要点一、格林公式定理1 设闭区域D 由分段光滑的曲线L 围成,函数),(y x P 及),(y x Q 在D 上具有一阶连续偏导数,则有⎰⎰⎰+=⎪⎪⎭⎫⎝⎛∂∂-∂∂L D Qdy Pdx dxdy y P x Q其中L 是D 的取正向的边界曲线.若在格林公式中,令,,x Q y P =-= 得⎰⎰⎰-=LDydx xdy dxdy 2,上式左端是闭区域D 的面积A 的两倍,因此有 .21⎰-=Lydx xdy A 二、平面曲线积分与路径无关的定义与条件定理2 设开区域D 是一个单连通域,函数),(y x P 及),(y x Q 在D 内具有一阶连续偏导数,则下列命题等价:(1) 曲线积分⎰+LQdy Pdx 在D 内与路径无关;(2)表达式Qdy Pdx +为某二元函数),(y x u 的全微分; (3)xQy P ∂∂=∂∂在D 内恒成立; (4)对D 内任一闭曲线L ,0=+⎰LQdy Pdx .由定理的证明过程可见,若函数),(y x P ,),(y x Q 满足定理的条件,则二元函数⎰+=),(),(00),(),(),(y x y x dy y x Q dx y x P y x u满足 dy y x Q dx y x P y x du ),(),(),(+=, 我们称),(y x u 为表达式dy y x Q dx y x P ),(),(+的原函数.C dy y x P dx y x P y x u yy xx ++=⎰⎰00),(),(),(0或 C dy y x P dx y x P y x u yy xx ++=⎰⎰0),(),(),(0例4 计算,2dxdy e Dy ⎰⎰- 其中D 是以)1,0(),1,1(),0,0(B A O 为顶点的三角形闭区域.解 令,0=P ,2y xe Q -=则 yPx Q ∂∂-∂∂.2y e -= 应用格林公式,得dxdy e Dy ⎰⎰-2⎰++-=BOAB OA y dy xe 2⎰-=OAdy xe y 2⎰-=102dx xe x ).1(211--=e 例5(E03)计算,22⎰+-L y x ydx xdy 其中L 为一条无重点)1(, 分段光滑且不经过原点的连续闭曲线, L 的方向为逆时针方向.解 记L 所围成的闭区域为,D 令,22y x y P +-=,22yx xQ += 则当022≠+y x 时,有 x Q∂∂22222)(y x x y +-=.y P ∂∂=(1) 当D ∉)0,0(时,由格林公式知;022=+-⎰L y x ydxxdy(2) 当D ∈)0,0(时,作位于D 内圆周,:222r y x l =+记1D 由L 和l 所围成,应用格林公式,得⎰⎰=+--+-L l y x ydxxdy y x ydx xdy .02222故⎰+-L y x ydx xdy 22⎰+-=l y x ydxxdy 22⎰+=πθθθ2022222sin cos d rr r ⎰=πθ20d .2π=例6(E04)求椭圆θcos a x =,θsin b y =所围成图形的面积A . 解 所求面积A ⎰-=L ydx xdy 21⎰+=πθθθ2022)sin cos (21d ab ab ⎰=πθ2021d ab.ab π=例7 计算抛物线)0()(2>=+a ax y x 与x 轴所围成的面积. 解 ONA 为直线.0=y 曲线AMO 为 ,x ax y -=].,0[a x ∈ ∴A ⎰-=AMOydx xdy 21⎰⎰-+-=AMOONAydx xdy ydx xdy 2121⎰-=AMOydx xdy 21⎰--⎪⎪⎭⎫⎝⎛-=)(1221a dx x ax dx ax a x ⎰=adx x a4.612a =例10(E06)计算,)8,6()0,1(22⎰++yx ydy xdx 积分沿不通过坐标原点的路径.解 显然,当)0,0(),(≠y x 时, 22y x ydy xdx ++,22y x d +=于是⎰++)8,6()0,1(22yx ydy xdx ⎰+=)8,6()0,1(22y x d )8,6()0,1(22y x +=.9=例 12 验证: 在整个xOy 面内, ydy x dx xy 22+是某个函数的全微分, 并求出一个这样 的函数.证2 利用原函数法求全微分函数).,(y x u 由2xy y u =∂∂),(2222y y x dx xy u ϕ+==⎰其中)(y ϕ是y 的待定函数.由此得).(2y y x yuϕ'+=∂∂ 又u 必须满足 y xyu2=∂∂y x y y x 22)('=+ϕ 0)('=y ϕ ,)(C y =ϕ 所求函数为.2/22C y x u +=例13(E07)设函数),(y x Q 在xoy 平面上具有一阶连续偏导数, 曲线积分与路径无关, 并且对任意t , 总有,),(2),(2),1()0,0()1,()0,0(⎰⎰+=+t t dy y x Q xydx dy y x Q xydx求).,(y x Q解 由曲线积分与路径无关的条件知,2x xQ=∂∂ 于是),(),(2y C x y x Q +=其中)(y C 为待定函数.dy y x Q xydx t ),(2)1,()0,0(+⎰⎰+=102))((dy y C t ,)(102⎰+=dy y C tdy y x Q xydx t ),(2),1()0,0(+⎰⎰+=tdy y C 0))(1(,)(0⎰+=t dy y C t由题意可知⎰+12)(dy y C t .)(0⎰+=tdy y C t两边对t 求导,得)(12t C t +=或.12)(-=t t C 所以.12),(2-+=y x y x Q例14(E08)设曲线积分⎰+Ldy x y dx xy )(2ϕ与路径无关, 其中ϕ具有连续的导数, 且,0)0(=ϕ计算.)()1,1()0,0(2⎰+dy x y dx xy ϕ解 ),(y x P ,2xy =),(y x Q ),(x y ϕ= y P ∂∂)(2xy y ∂∂=,2xy =x Q ∂∂)]([x y xϕ∂∂=).('x y ϕ= 因积分与路径无关散,xQy P ∂∂=∂∂ 由xy x y 2)('=ϕ.)(2C x x +=ϕ由,0)0(=ϕ知0=C .)(2x x =ϕ故⎰+)1,1()0,0(2)(dy x y dx xy ϕ⎰⎰+=1010ydy dx .21= 例15 选取b a ,使表达式dy e y x be dx ae e y x yxyy])1([])1[(++-++++为某一函数的全微分, 并求出这个函数.解 y P ∂∂])1[(y y ae e y x y +++∂∂=,y y ae e +=x Q ∂∂])1([y x e y x be x ++-∂∂=,y x e be -=若表达式全微分式,则,xQy P ∂∂=∂∂即 .y x y x e be ae e -=+得,1-=a .1=b ),(y x u +-+++=⎰xx dx e e x 00])1()10[(⎰+++-yy x C dy e y x e 0])1([C dy e y x e dx e x yy y xx +++-+-+=⎰⎰])1([]1)1[(C ye xe y e x xe yy y x x x +--+-=00][][.))((C e e y x y x +-+=例16(E09)求方程0)3()3(2323=-+-dy y x y dx xy x 的通解. 解 ,6xQxy y P ∂∂=-=∂∂原方程是全微分方程, ⎰⎰+-=yxdy y dx xy x y x u 0323)3(),(,42344224y y x x +-=原方程的通解为.42344224C y y x x =+- 例19求微分方程0)1(222=---+dy y x dx y x x 的通解.解 将题设方程改写为,02222=---+dy y x dx y x x xdx 即,0)()(2222=---+dy y x x d y x x d 将方程左端重新组合,有,0)()(222=--+y x d y x x d故题设方程的通解为 .)(322/322C y x x =-+内容要点一、 第一类曲面积分的概念与性质定义1 设曲面∑是光滑的, 函数),,(z y x f 在∑上有界, 把∑任意分成n 小块i S ∆(i S ∆同时也表示第i 小块曲面的面积),在i S ∆上任取一点),,,(i i i ζηξ作乘积),,2,1(),,(n i S f i i i i =∆⋅ζηξ并作和,),,(1∑=∆⋅ni i i i i S f ζηξ 如果当各小块曲面的直径的最大值0→λ时, 这和式的极限存在,则称此极限值为),,(z y x f 在∑上第一类曲面积分或对面积的曲面积分,记为∑⎰⎰=→∑∆=ni i i i i S f dS z y x f 1),,(lim ),,(ζηξλ 其中),,(z y x f 称为被积函数,∑称为积分曲面. 二、对面积的曲面积分的计算法.),(),(1)],(,,[),,(22⎰⎰⎰⎰++=∑xyD y x dxdy y x z y x z y x z y x f dS z y x f例4计算,dS xyz ⎰⎰∑其中∑为抛物面).10(22≤≤+=z y x z解 根据抛物面22y x z +=对称性,及函数||xyz 关于yOz xOz 、坐标面对称,有dxdy y x y x xy xyzdS dS xyz xy D ⎰⎰⎰⎰⎰⎰'+++=∑=∑2222)2()2(1)(441⎰⎰⎰⎰+=+⋅=20125122220412sin 241sin cos 4ππdr r r tdt rdr r rt t r dt.420151254141512-=⎪⎭⎫ ⎝⎛-=⎰du u u 例5 计算,⎰⎰∑xdS 其中∑是圆柱面,122=+y x 平面2+=x z 及0=z 所围成的空间立体的表面.解,=⎰⎰⎰⎰⎰⎰⎰⎰∑+∑+∑∑321∑∑12,在xOy 面上得投影域.1:22≤+y x D xy于是⎰⎰⎰⎰∑==1,0xyD xdxdy xdS ⎰⎰⎰⎰∑=+=2,011xyD dxdy xxdS将)1:,(313223∑∑∑-±=x y 投影到zOx 面上,得投影域 .10,11:+≤≤≤≤-x y x D xydxdz y y x xdS xdS xdS zx D z x ⎰⎰⎰⎰⎰⎰⎰⎰++=∑+∑=∑221232313,12112211222π=-=-+=⎰⎰⎰⎰+-x D dz x xdxdz x x x xz所以.00ππ=++=∑⎰⎰xdS例8 设有一颗地球同步轨道卫星, 距地面的高度为36000=h km ,运行的角速度与地球自转的角速度相同. 试计算该通讯卫星的覆盖面积与地球表面积的比值(地球半径6400=R km).解 取地心为坐标原点,地心到通讯卫星重心的连线为z 轴,建立如图坐标系.卫星覆盖的曲面∑是上半球面倍半顶角为α的圆锥面所截得的部分.∑的方程为,222y x R z --=它在xOy 面上的投影区域.sin :2222αR y x D xy ≤+于是通讯卫星的覆盖面积为).cos 1(22απ-=R A将h R R +=αcos 代入上式得 .21222h R h R h R R R A +⋅=⎪⎭⎫ ⎝⎛+-=ππ 由此得这颗通讯卫星的覆盖面积与地球表面积之比为%.5.4242≈RAπ 由以上结果可知,卫星覆盖了全球三分之一以上的面积,故使用三颗相隔32π角度的通讯卫星就可以覆盖几乎地球全部表面.内容要点二、第二类曲面积分的概念与性质定义1 设∑为光滑的有向曲面, 其上任一点),,(z y x 处的单位法向量,cos cos cos k j i nγβα++= 又设k z y x R j z y x Q i z y x P z y x A),,(),,(),,(),,(++=其中函数R Q P ,,在∑上有界, 则函数γβαcos cos cos R Q P n v ++=⋅则∑上的第一类曲面积分⎰⎰∑⋅dS n v.)cos cos cos (⎰⎰∑++=dS R Q P γβα称为函数),,(z y x A在有向曲面∑上的第二类曲面积分.三、第二类曲面积分的计算法设光滑曲面∑:),(y x z z =,与平行于z 轴的直线至多交于一点,它在xOy 面上的投影区域为xy D , 则.⎰⎰⎰⎰±=∑yzD dxdy y x z y x R dxdy z y x R )],(,,[),,(.上式右端取“+”号或“-”号要根据γ是锐角还是钝角而定.内容要点一、高斯公式定理1设空间闭区域Ω由分片光滑的闭曲面∑围成,函数),,(z y x P 、),,(z y x Q 、),,(z y x R 在Ω上具有一阶连续偏导数,则有公式⎰⎰⎰⎰⎰∑Ω++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂Rdxdy Qdzdx Pdydz dv z R y Q x P这里∑是Ω的整个边界曲面的外侧, γβαcos ,cos ,cos 是∑上点),,(z y x 处的法向量的方向余弦. 式称为高斯公式.若曲面∑与平行于坐标轴的直线的交点多余两个,可用光滑曲面将有界闭区域Ω分割成若干个小区域,使得围成每个小区域的闭曲面满足定理的条件,从而高斯公式仍是成立的.此外,根据两类曲面积分之间的关系,高斯公式也可表为.)cos cos cos (⎰⎰⎰⎰⎰∑Ω++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂dS R Q P dv z R y Q x P γβα二、通量与散度一般地,设有向量场k z y x R j z y x Q i z y x P z y x A),,(),,(),,(),,(++=,其中函数P 、Q 、R 有一阶连续偏导数,∑是场内的一片有向曲面,n 是曲面∑的单位法向量. 则沿曲面∑的第二类曲面积分⎰⎰⎰⎰⎰⎰∑∑∑++=⋅=⋅=ΦRdxdy Qdzdx Pdydz S d n A S d A称为向量场A通过曲面∑流向指定侧的通量. 而zRy Q x P ∂∂+∂∂+∂∂ 称为向量场A 的散度,记为A div,即zR y Q x P A div ∂∂+∂∂+∂∂= .例4(E04)证明: 若∑为包围有界域Ω的光滑曲面, 则⎰⎰⎰⎰⎰⎰⎰⎰Ω∑Ω⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂+∂∂∂∂-∂∂=∆dV z v z u y v y u x v x u dS n uvudV v其中nu∂∂为函数u 沿曲面∑的外法线方向的方向导数,u ,v 在Ω上具有一阶和二阶连续偏导数,符号222222zy x ∂∂+∂∂+∂∂=∆称为拉普拉斯算子. 这个公式称为格林第一公式.证 因为=∂∂n u γβαcos cos cos z u y u xu∂∂+∂∂+∂∂n u ⋅∇=,其中}cos ,cos ,{cos γβα=n 是∑在点),,(z y x 处 的外法线的方向余弦,于是⎰⎰⎰⎰⎰⎰∑∑∑⋅∇=⋅∇=∂∂dS n u v dS n u v dS nu v)[()(dS z u v y u v x u v ⎰⎰∑⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=γβαcos cos cos dv z u v z y u v y x u v x ⎰⎰⎰Ω⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=.dv z v z u y v y u x v x u udv v ⎰⎰⎰⎰⎰⎰ΩΩ⎝⎛⎪⎭⎫∂∂∂∂+∂∂∂∂+∂∂∂∂+∆=将上式右端移至左端即得所要证明的等式. 例5(E05)求向量场k z j y i x r++=的流量(1) 穿过圆锥)0(222h z z y x ≤≤≤+的底(向上); (2) 穿过此圆锥的侧表面(向外).解 设21,S S 及S 分别为此圆锥的面,侧面及全表面,则穿过全表面向外的流量 Q ⎰⎰+⋅=S S d r⎰⎰⎰=Vdv r div⎰⎰⎰=Vdv 3.3h π=(1)穿过底面向上的流量1Q ⎰⎰+⋅=S S d r⎰⎰=≤+=hz z y x zdxdy 222⎰⎰≤+=222z y x hdxdy .3h π=(2)穿过侧表面向外的流量2Q 1Q Q -=.0=内容要点一、斯托克斯公式定理1 设Γ为分段光滑的空间有向闭曲线,∑是以Γ为边界的分片光滑的有向曲面,Γ的正向与∑的侧符合右手规则,函数),,(),,,(),,,(z y x R z y x Q z y x P 在包含曲面∑在内的一个空间区域内具有一阶连续偏导数, 则有公式dxdy y P x Q dzdx x R z P dydz z Q y R ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂⎰⎰∑.⎰++=LRdz Qdy Pdx公式称为斯托克斯公式.为了便于记忆,斯托克斯公式常写成如下形式:⎰⎰⎰Γ∑++=∂∂∂∂∂∂Rdz Qdy Pdx RQ P zy x dxdy dzdx dydz 利用两类曲面积分之间的关系,斯托克斯公式也可写成.cos cos cos ⎰⎰⎰Γ∑++=∂∂∂∂∂∂Rdz Qdy Pdx dS RQPzy x γβα二、空间曲线积分与路径无关的条件三、环流量与旋度 设向量场,),,(),,(),,(),,(k z y x R j z y x Q i z y x P z y x A++= 则沿场A中某一封闭的有向曲线C 上的曲线积分⎰++=ΓCRdz Qdy Pdx称为向量场A沿曲线C 按所取方向的环流量. 而向量函数⎭⎬⎫⎩⎨⎧∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q y R ,,称为向量场A 的旋度,记为A rot,即.k y P x Q j x R z P i z Q y R A rot ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=旋度也可以写成如下便于记忆的形式:RQ P z y x k j i A rot ∂∂∂∂∂∂=.四、向量微分算子:,k zj y i x ∂∂+∂∂+∂∂=∇ 例 2 计算曲线积分,)()()(222222dz y x dy x z dx z y -+-+-⎰Γ其中Γ是平面2/3=++z y x 截立方体:,10≤≤x ,10≤≤y 10≤≤z 的表面所得的接痕,从x 轴的正向看法,取逆时针方向.解 取∑为题设平面的上侧被Γ所围成部分,则该平面的法向量,3}3,1,1{=n即,31cos cos cos ===λβα原式dS y x x y z y z y x z⎰⎰∑---∂∂∂∂∂∂=222222313131⎰⎰∑++-=dS z y x )(34.293322334-=-=∑⋅-=⎰⎰⎰⎰xyD dxdy dS 例3(E02)计算,)()()(222222⎰Γ+++++dz y x dy z x dx z y 式中Γ是).0,0(2,222222><<=+=++z R r rx y x Rx z y x此曲线是顺着如下方向前进的: 由它所包围在球面Rx z y x 2222=++上的最小区域保持在左方.解 由斯托克斯公式,有 原式⎰⎰∑-+-+-=dS y x x z z y ]cos )(cos )(cos )[(2γβαdS R z y x R y x z R x z y ⎰⎰∑⎥⎦⎤⎢⎣⎡-+-+⎪⎭⎫ ⎝⎛--=)()(1)( ⎰⎰∑-=dS y z )(2(利用对称性)⎰⎰⎰⎰∑=∑=dS R zdS γcos ..2222R r d R Rdxdy rx y x πσ==∑=⎰⎰⎰⎰≤+ 例5(E03)设,32222yz xy y x u -+= 求grad u ; div(grad u );rot(grad u ). 解 gradu ⎭⎬⎫⎩⎨⎧∂∂∂∂∂∂=z u y u x u ,,}.6,4,2{yz xy xy -=div(gradu)⎭⎬⎫⎩⎨⎧∂-∂+∂∂+∂∂=z yz y xy x xy )6()4()2(y x y 642-+=).(4y x -=rot(gradu).,,222222⎭⎬⎫⎩⎨⎧∂∂∂-∂∂∂∂∂∂-∂∂∂∂∂∂-∂∂∂=x y u y x u z x u x z u y z u z y u 因为22232yz xy y x u -+=有二阶连续导数,故二阶混合偏导数与求导次序无关,故rot(gradu).0=注:一般地,如果u 是一单值函数,我们称向量场A=grad u 为势量场或保守场,而u 称为场A的势函数.例6(E04)设一刚体以等角速度k j i z y xωωωω++=绕定轴L 旋转,求刚体内任意一点M 的线速度v的旋度.解 取定轴l 为z 轴,点M 的内径rOM =,k z j y i x ++=则点M 的线速度v r⨯=ωzyx kji z yx ωωω =,)()()(k x y j z x i y z y x x z z yωωωωωω-+-+-=于是v rot x y z x y z z y x kj i y x x z z y ωωωωωω---∂∂∂∂∂∂=)(2k j i z y x ωωω++=.2ω =即速度场v 的旋等于角速度ω的 2 倍.内容要点点函数积分的概念 点函数积分的性质点函数积分的分类及其关系一、点函数积分的概念定义1 设Ω为有界闭区域, 函数))((Ω∈=P P f u 为Ω上的有界点函数. 将形体Ω任意分成n 个子闭区域,,,,21n ∆Ω∆Ω∆Ω 其中i ∆Ω表示第i 个子闭区域, 也表示它的度量, 在i ∆Ω上任取一点i P , 作乘积),,2,1()(n i P f i i =∆Ω并作和∑=∆Ωni iiP f 1)(如果当各子闭区域i ∆Ω的直径中的最大值λ趋近于零时, 这和式的极限存在, 则称此极限为点函数)(P f 在Ω上的积分, 记为⎰ΩΩd P f )(, 即.)(lim )(1∑⎰=→Ω∆Ω=Ωni iiP f d P f λ其中Ω称为积分区域, )(P f 称为被积函数, P 称为积分变量, Ωd P f )(称为被积表达式,Ωd 称为Ω的度量微元.点函数积分具有如下物理意义: 设一物体占有有界闭区域Ω, 其密度为),)((Ω∈=P P f ρ则该物体的质量)0)((,)(≥Ω=⎰ΩP f d P f M特别地, 当1)(≡P f 时, 有).(lim 1度量Ω=∆Ω=Ω∑⎰=→Ωni id λ如果点函数)(P f 在有界闭区域Ω上连续, 则)(P f 在Ω上可积.二、点函数积分的性质设)(),(P g P f 在有界闭区域Ω上都可积, 则有 性质1 .)()()]()([⎰⎰⎰ΩΩΩΩ±Ω=Ω±d P g d P f d P g P f性质2 )()()(为常数k d P f k d P kf ⎰⎰ΩΩΩ=Ω性质3,)()()(21⎰⎰⎰ΩΩΩΩ+Ω=Ωd P f d P f d P f其中,21Ω=ΩΩ 且1Ω与2Ω无公共内点. 性质4 若,,0)(Ω∈≥P P f 则.0)(≥Ω⎰Ωd P f性质5 若,),()(Ω∈≤P P g P f 则.)()(⎰⎰ΩΩΩ≤Ωd P g d P f特别地, 有.|)(|)(⎰⎰ΩΩΩ≤Ωd P f d P f性质6 若)(P f 在积分区域Ω上的最大值为M , 最小值为m , 则.)(Ω≤Ω≤Ω⎰ΩM d P f m性质7 (中值定理)若)(P f 在有界闭区域Ω上连续, 则至少有一点,*Ω∈P 使得.)()(*Ω=Ω⎰ΩP f d P f其中ΩΩ=⎰Ωd P f P f )()(*称为函数)(P f 在Ω上的平均值.三、点函数积分的分类及其关系1.若,],[R b a ⊂=Ω这时],,[),()(b a x x f P f ∈=则.)()(⎰⎰=ΩΩbadx x f d P f (1)这是一元函数)(x f 在区间],[b a 上的定积分. 当1)(=x f 时,a b dx ba-=⎰是区间长.2.右,2R L ⊂=Ω且L 是一平面曲线, 这时,),(),,()(L y x y x f P f ∈=于是⎰⎰=ΩΩLds y x f d P f ),()( (2)当1)(≡P f 时,s ds L =⎰是曲线的弧长. (2)式称为第一类平面曲线积分.3.若,3R ⊂Γ=Ω且Γ是空间曲线, 这时,),,(),,,()(Γ∈=z y x z y x f P f 则.),,()(⎰⎰ΓΩ=Ωds z y x f d P f (3)当1)(≡P f 时,s ds =⎰Γ是曲线的弧长. (3)式称为第一类空间曲线积分.2、3的特殊情形是曲线为直线段, 而直线段上的点函数积分本质上是一元函数的定积分,这说明⎰⎰Γds z y x f ds y x f L),,(,),(可用一次定积分计算, 因此用了一次积分号.4.若,2R D ⊂=Ω且D 是平面区域, 这时,),(),,()(D y x y x f P f ∈= 则⎰⎰⎰=ΩΩDd y x f d P f σ),()( (4)(4)式称为二重积分. 当1),(=y x f 时,σσ=⎰⎰Dd 是平面区域D 的面积.5.若,3R ⊂∑=Ω且∑是空间曲面, 这时,),,(),,,()(∑∈=z y x z y x f P f 则⎰⎰⎰∑Ω=ΩdS z y x f d P f ),,()( (5)(5)式称为第一类曲面积分. 当1)(≡P f 时,S dS =⎰⎰∑是空间曲面∑的面积.由于(5)的特殊情形是平面区域上的二得积分, 说明该积分可化为两次定积分的计算, 因此用二重积分号.6.若3R ⊂Ω为空间立体, 这时,),,(),,,()(Ω∈=z y x z y x f P f 则.),,()(⎰⎰⎰⎰ΩΩ=Ωdv z y x f d P f (5)(6)式称为三重积分. 当1)(≡P f , 则V dv =⎰⎰⎰Ω是空间立体Ω的体积.更进一步, 我们还可以利用点函数积分的概念统一来表述占有界闭区域Ω的物体的重心、转动惯量、引力等物理概念, 此处不再表述.。

曲线积分与曲面积分

曲线积分与曲面积分

曲线积分与曲面积分例1计算曲线积分AB xyds ⎰,弧AB 为圆周222R y x =+在第二象限的部分。

例2计算||L xy ds ⎰Ñ,L 是圆周222R y x =+的闭路。

例3设L :cos ,=sin ,0x a t y a t t π=≤≤,则第一型曲线积分L=ds ⎰ 例4计算⎰++ABCDA y x dy dx ||||,ABCDA 是以A(1,0),B(0,1),C(-1,0),D(0,-1)为顶点的正方形。

(1|||:|=+y x ABCDA )例5计算⎰+--+L yx dy y x dx y x 22)()(,其中L 是原点为中心的单位圆,沿逆时针方向。

例6计算⎰-++L dy y x dx y x )()(222,其中L 是由A (1,1)、B (3,2)C (3,5)三点构成三角形的边界,沿正向。

例7计算⎰-++L y dy ye x dx x x xy )()sin 32(2,其中L 是沿摆线t y t t x cos 1,sin -=-=,从点(0,0)到点)2,(π的一段。

例8计算第二型曲线积分sin 1()()2y L I e x dy y dx =+--⎰,其中L 为由位于第一象限中直线段1x y +=与位于第二象限中的圆弧221x y +=构成,方向由(1,0)A 到(0,1)B 再到(1,0)C -。

例9求曲线积分(sin 2)(cos 3)x x cI e y y dx e y x dy =+++⎰,其中c 为上半圆周:222(0)x y x y +=≥由点0(0,0)到点(2,0)A . 例10设S 是球面:2222++z =x y a ,则第一型曲面积分222(z )Sx y dS ++=⎰⎰. 例11证明:若L 为平面上封闭曲线,l 为任意方向向量,则0),cos(=⎰Lds n l 其中n 为曲线L 的外法线方向。

例12验证曲线积分(1,2)(0,0)ydx xdy +⎰与路线无关,并求其值.例13设函数),(y x f 在xoy 面上具有一阶连续偏导数,曲线积分⎰+Ldy y x f xydx ),(2与路径无关,且对任意的t 恒有,),(2),(2),1()0,0()1,()0,0(⎰⎰+=+t t dy y x f xydx dy y x f xydx 求),(y x f 。

曲线积分与面曲面积分测试题

曲线积分与面曲面积分测试题

曲线积分与面曲面积分测试题曲线积分与面积分测试题一、曲线积分曲线积分是微积分的一个重要概念,它是沿着曲线上的点按一定方向进行求和的操作。

在常见的数学应用中,曲线积分通常用来求解路径上的物理量或者微分形式的积分。

在进行曲线积分时,我们需要明确路径的参数方程及被积函数。

以一维空间中的曲线为例,设路径的参数方程为r(t) = (x(t), y(t)),其中t为路径的参数,x(t)和y(t)为路径上的点在x轴和y轴上的坐标。

被积函数通常是关于路径上点的某一性质,如速度、质量等。

那么,下面给出一个曲线积分的测试题,供大家复习和巩固对该概念的理解。

测试题1:计算曲线积分设曲线C为参数方程r(t) = (2t, 3t^2),其中t的取值范围为[0, 1]。

计算函数f(x, y) = x^2 + y在曲线C上的曲线积分。

解析:首先,我们需要计算路径的切向量r'(t),即C在t时刻的速度。

由于r(t) = (2t, 3t^2),对t进行求导可得r'(t) = (2, 6t)。

接下来,我们把被积函数f(x, y) = x^2 + y表示为f(r(t)),即f(r(t)) =(2t)^2 + (3t^2) = 4t^2 + 3t^2 = 7t^2。

然后,将r'(t)和f(r(t))相乘,得到被积函数与路径的切向量的点积,即(2, 6t)·(7t^2) = 14t^2 + 42t^3。

最后,对t在[0, 1]的取值范围内进行积分,即∫[0, 1](14t^2 + 42t^3)dt,将被积函数与路径的切向量的点积沿路径上的切向量积分。

计算得到的曲线积分结果为∫[0, 1](14t^2 + 42t^3)dt = 14/3 + 42/4 = 14/3 + 21/2 = 163/6。

二、面积分面积分是微积分的另一个重要概念,它用于计算三维空间中曲面或曲面上的某种物理量的总和。

与曲线积分类似,面积分也需要确定曲面的参数方程及被积函数。

曲线积分与曲面积分试题及解答

曲线积分与曲面积分试题及解答

曲线积分与曲面积分试题及解答B(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--曲线积分与曲面积分 测试题B一、选择(每题6分,共24分) 1、曲线弧上的曲线积分和上的曲线积分有关系( )2、C 为沿以)3,1(),2,2(),1,1(C B A 为顶点的三角形逆时针方向绕一周,则 I=⎰=⋅+++cdy y x dx y x 222)()(2( )(A )⎰⎰--x xdy y x dx 421)( (B )⎰⎰--xxdy y x dx 421)(2(C )[]⎰⎰⎰++-+++1.3212222122)1()4(2)2()2(2dy y dx x x dx x dx x(D ){}[]⎰⎰⎰+++-+-++1.321222212)1()4()4(28dy y dx x x x x dx x3、C 为沿222R y x =+逆时针方向一周,则I=⎰+⋅-σdy xy dx y x 22用格林公式计算得( )(A )⎰⎰Rdr r d 0320πθ (B )⎰⎰Rdr r d 0220πθ(C )⎰⎰-R dr r d 0320cos sin 4θθπ(D )⎰⎰Rdr r d 0320cos sin 4θθπ4、 ∑为)(222y x z +-=在xoy 平面上方部分的曲面,则⎰⎰∑dS = ( )(A)rdr r d r ⎰⎰+πθ200241 (B)rdr r d ⎰⎰+πθ2020241(C)rdr r r d ⎰⎰+-πθ20202241)2( (D)rdr r d ⎰⎰+πθ2020241二、填空(每题6分,共24分) 1、设是M (1,3)沿圆(x -2)2+(y -2)2=2到点N (3,1)的半圆,则积分.2、设f (x )有连续导数,L 是单连通域上任意简单闭曲线,且 则f (x )= .3、由物质沿曲线10,3,2,:32≤≤===t t z t y t x C 分布,其密度为y 2=γ,则它的质量=M. (化为定积分形式即可不必积出)4、=++⎰⎰Sdxdy z dzdx y dydz x 333 ,S 为球面2222a z y x =++的外侧.三、(18分)计算曲线积分,式中L为由点O(0,0)沿直线y=x到点A(1,1)再由点A沿曲线到点B(0,2)的路径.四、(18分)设C为由抛物线y=x2的从(0,0)到(1,1)的一段弧和从(1,1)到(0,0)的直线段组成.试求曲线积分.五、(16分)求向量yz i+xz j+xy k穿过圆柱体x2+y2≤R2,0≤z≤H的全表面∑的外侧的通量.参考答案及评分标准(B)一、1、B2、B 解:利用格林公式)(24,21:y x yP x Qxy x x D xy -=∂∂-∂∂-≤≤≤≤.3、A 解:22222,:y x y Px Q R y x D xy +=∂∂-∂∂≤+利用极坐标化二重积分⎰⎰+xyD dxdy y x )(22 为累次积分⎰⎰R dr r d 0320πθ.4、D 解:dxdy y x ds y x D xy 2222441,2:++=≤+.二、1、0 解:由x Q y P ==,知xQ y P ∂∂=∂∂,故03113)1,3()3,1(=+=+=+⎰⎰⎰⎰⋂dx dy xdy ydx xdy ydx MN .2、c x +2 解:由题意知y y xe yPx f e x Q 222)(=∂∂='=∂∂,即x x f 2)(=',故c x x f +=2)(. 3、⎰++10421dt t t t 解:⎰⎰++==14212dt t t t ds y M C.4、5512a π 解:由高斯公式得原式⎰⎰⎰Ω++=dxdydz z y x )(3222 54022051212sin 3a dr r rdr r d d aa ππθϕϕππ==⋅=⎰⎰⎰⎰. 三、解:xQ y y P xy Q y x P ∂∂=-=∂∂-=-=2,2,22,故积分与路径无关……………………………6分 取OB 为从O 到B 的直线段,则⎰--Lxydy dx y x 2)(22……………………………12分 02)(22=--=⎰OBxydy dx y x …………………………………………………………18分四、解:由于y x P 2+=,y x Q 2-=,故由格林公式 …………………………………………6分()⎰⎰⎰⎰⎰⎰-=-=⎪⎭⎫⎝⎛∂∂-∂∂=DDDyx y x y x y P x Q I d d d d 21d d ⎰⎰⎰-=-=1210d )(d d 2x x x y xxx…………12分12323⎥⎦⎤⎢⎣⎡-=x x 612131-=-= …………………………………………………………18分 五、证明:⎰⎰∑++=Φxydxdy xzdzdx yzdydz ……………………………………………………6分由∑围成立体Ω,用高斯公式得…………………………………………………10分⎰⎰⎰Ω=++=Φ0)000(dv ……………………………………………………………16分。

曲线积分与 曲面积分测试题

曲线积分与 曲面积分测试题

曲线积分与曲面积分测试题1. 计算曲线积分 $\int_C e^{x^2} dx + 2xy dy$,其中 $C$ 为从点 $(0,0)$ 到点 $(2,1)$ 的直线段。

答案:$\frac{1}{2}(e^4-1)$2. 计算曲面积分 $\iint_S (x+y+z)\ dS$,其中 $S$ 是球面$x^2+y^2+z^2=9$ 的上半部分。

答案:$\frac{27\pi}{2}$3. 计算曲线积分 $\int_C xy\ dx + x^2y^2\ dy$,其中 $C$ 为以原点为中心,半径为 $3$ 的圆周。

答案:$0$4. 计算曲面积分 $\iint_S x^2\ dS$,其中 $S$ 是球面$x^2+y^2+z^2=4$ 的下半部分。

答案:$\frac{4\pi}{3}$5. 计算曲线积分 $\int_C (y+z)\ dx + (z+x)\ dy + (x+y)\ dz$,其中 $C$ 为从点 $(0,0,0)$ 到点 $(1,2,3)$ 的直线段。

答案:$8$6. 计算曲面积分 $\iint_S yz\ dS$,其中 $S$ 是球面$x^2+y^2+z^2=1$ 的外侧。

答案:$0$7. 计算曲线积分 $\int_C x\ dy - y\ dx$,其中 $C$ 为以原点为中心,半径为 $2$ 的圆周。

答案:$-4\pi$8. 计算曲面积分 $\iint_S z\ dS$,其中 $S$ 是柱面$x^2+y^2=1$ 的侧面,$z$ 在 $[0,2]$ 之间。

答案:$2\pi$9. 计算曲面积分 $\iint_S xy\ dS$,其中 $S$ 是抛物面$z=x^2+y^2$ 在 $z\leq 1$ 的部分。

答案:$\frac{8}{3}$10. 计算曲线积分 $\int_C \frac{x\ dy - y\ dx}{x^2+y^2}$,其中$C$ 为以原点为中心,半径为 $2$ 的逆时针方向圆周。

第十一章 曲线积分与曲面积分(题库)答案

第十一章 曲线积分与曲面积分(题库)答案
x y
解: P x, y y e x , Q x, y 3 x e y ,
P Q 1, 3 y x
dxdy 2dxdy 2 ab y e dx 3x e dy = x y
x y C
Q
P
D
D
29.(11-3)计算曲线积分
2 xy 2 y dx x
L
2
4 x dy ,其中 L 取正向的圆周 x 2 y 2 9 .
解:设 P 2 xy 2 y, Q
x2 4x ,
Q P 2x 4 2 x 2, x y
2
B. 6S
C. 12S
D.
24S
L
x 上自点 A 1,1 到点 B 1, 1 之间的一段弧,则 I yds (
C. 1
2 2
D. 1
设 C 为沿 x y R 逆时针方向一周的闭合曲线,则曲线积分
2 2 I x ydx xy dy 应用格林公式计算得( A ) C
2
0 x 2 ,计算
2
L
x 1 x ds .
解:直接代公式化第一类平面曲线积分为定积分得

L
xds
2
0
x 1 y2 dx
0
x 1 4 x 2 dx
1 1 2 2 2 1 4 x d 1 4 x 2 8 0 3 1 2 2 2 1 4 x 8 3 2 0

L
x 2 ds
2 . 3
2.
7. (11-1)设 L 为连接 (1,0) 及 (0,1) 两点的直线段,则 8. (11-1)计算曲线积分

第8章 曲线积分与曲面积分题

第8章 曲线积分与曲面积分题

第8章 曲线积分与曲面积分例1 计算⎰Lxydx ,其中L 为抛物线x y =2上从点A (1,-1)到点B (1,1)的一段弧(图8-2)图8-2图8-3解 将方程看成2y x =,y 从-1变到1。

因此54522)(1151141122=⎥⎦⎤⎢⎣⎡=='=---⎰⎰⎰y dy y dy y y y xydx L .例2 计算⎰Ldx y 2其中L 为(图8-3)(1) 半径为a 、圆心为原点、按逆时针方向绕行的上半圆周; (2) 从点A (a ,0)沿x 轴到点B (-a ,0)的直线段. 解 (1)L 是参数方程θθsin ,cos a y a x ==当参数θ从0变到π的曲线弧。

因此)(cos )cos 1()sin (sin 023222⎰⎰⎰-=-=ππθθθθθd ad a a dx y L3033343c o s c o s a a -=⎥⎦⎤⎢⎣⎡-=πθθ. (2) 现在,L 的方程为x y ,0=从a 变到 –a . 所以002==⎰⎰-aaLdx dx y 。

例3 计算⎰+Ldy x xydx 22,其中L 为(图8-4):(1) 抛物线2x y =上从)0,0(O 到)1,1(B 的一段弧;(2) 抛物线2y x =上从)0,0(O 到)1,1(B 的一段弧;(3) 有向折线OAB ,这里O 、A 、B 依次是(0,0),(1,0),(1,1). 解 (1)化为对x 的定积分.x x y L ,:2=从0变到1,所以14)22(2131222==⋅+⋅=+⎰⎰⎰dx x dx x x xx dy x xydx L。

(2)化为对y 的定积分.y y x L ,:2=从0变到1,所以15)22(21410422==+⋅⋅=+⎰⎰⎰dx y dy y y y y dy x xydx L.(3)⎰⎰⎰+++=+ABOALdy x xydx dy x xydx dy xxydx 222222在 OA 上,x y .0=从0变到1,所以.0)002(2122=⋅+⋅=+⎰⎰dx x x dy x xydx OA在 AB 上,y x ,1=从0变到1,所以 .1)102(212=+⋅=+⎰⎰dy y dy x xydx AB从而 11022=+=+⎰Ldy xxydx .例4 计算曲线积分⎰++Lydz zdy dx y x 32,其中L 是抛物面224y x z --=与平面3=z 的交线,其正向与z 轴正向成右手系(将右手除拇指外的四个手指依L 的正向握起时,拇指则指向z 轴正向).解 在方程组⎩⎨⎧=--=3,422z y x z 中消去z ,得L (如图8-5)的方程为⎩⎨⎧==+3,122z y x L 的参数方程为πθθθ20,3,sin ,cos ≤≤===z y x ,所以.80)sin 4cos 3sin )sin 1(]0cos 3)sin (sin [cos 206420204223232πθθθθθθθθθθθθθππππ-=+--=+--=++-=++⎰⎰⎰⎰⎰d d d d ydzzdy dx y x L例5 设一个质点在),(y x M 处受力F 的作用,F 的大小与M 到原点O 的距离成正比,F 的方向恒指向原点.此质点由点A (a ,0)沿椭圆12222=+by a x 按逆时针方向移动到点B (0,b ),求力F 所作的功W.解 .2y OM y x OM +=+=→→2x ||j,i由假设有F =)(j i y x k +-,其中0>k 是比例常数.于是⎰⎰⎰⋂⋂⋂+-=-=⋅=ABABABydy xdx k kydy -kxdx d W r F .利用椭圆的参数方程:⎩⎨⎧==tb y t a x sin cos 起点A 、终点B 分别对应参数0,2π.于是).(2sin cos )()cos sin sin cos (2220222022b a k dt t t b a k dt t t b t t a k W -=-=+--=⎰⎰ππ8.2 向量值函数在有向曲面上的积分例1 计算曲面积分⎰⎰∑++dxdy z dzdx y dydz x 222,其中∑是长方体Ω的整个表面的外测, Ω}.0,0.0|),,{(c z b y a x z y x ≤≤≤≤≤≤=解 把有向曲面∑分成一下六部分:)0,0(:1b y a x c z ≤≤≤≤=∑的上侧 )0,0(0:2b y a x z ≤≤≤≤=∑的下侧)0,0(:3c z b y a x ≤≤≤≤=∑的前侧 )0,0(0:4c z b y x ≤≤≤≤=∑的后侧 )0,0(:5c z a x b y ≤≤≤≤=∑的右侧 )0,0(0:6c z a x y ≤≤≤≤=∑的左侧除43∑∑、外,其余四片曲面在yOz 面上的投影为零,因此⎰⎰⎰⎰⎰⎰∑∑∑+=43222dydz x dydz x dydz x 右公式(4)就有bc a dydz dydz a dydz x yzyzD D 2220=-=⎰⎰⎰⎰⎰⎰∑类似地可得abc dydz zacb dydz y2222==⎰⎰⎰⎰∑∑于是所求曲面积分为.)(abc c b a ++例2 计算曲面积分⎰⎰∑xyzdxdy ,其中∑是球面1222=++z y x 外测在0,0≥≥y x 的部分.解 把∑分为1∑和2∑两部分(图10-23),1∑的方程为2211y x z ---=,2∑的方程为2221y x z --=⎰⎰⎰⎰⎰⎰∑∑∑+=12xyzdxdy xyzdxdy xyzdxdy .上式右端的第一个积分的积分曲面2∑取上侧,第二个积分的积分曲面1∑取下侧,因此分别应用公式(3)及(3’),就有.12)1(1222222⎰⎰⎰⎰⎰⎰⎰⎰--=------=∑xyxyxyD D D dxdy y x xy dxdy y x xy dxdy y x xy xyzdxdy其中xy D 是1∑和2∑在xOy 面上的投影区域,就是位于第一象限内的扇形122≤+y x)0,0(≥≥y x .利用极坐标计算这个二重积分如下:,15215211sin 1cos sin 212123202222=⋅=-2=-=--⎰⎰⎰⎰⎰⎰ρρρθθθρρρθθρπd d d d dxdy y x xy xyxyD D从而.152=⎰⎰∑xyzdxdy 例3 计算曲面积分⎰⎰∑-+zdxdy dydz x z )(2,其中∑是旋转抛物面)(2122y x z +=介于平面0=z 及2=z 之间的部分的下侧. 解 由两类积分曲面之间的联系(9),可得⎰⎰⎰⎰⎰⎰∑∑∑+=+=+dxdy x z dS x z dydz x z γααcos cos )(cos )()(222 在曲面∑上,有 .11cos ,1cos 2222yx yx x ++-=++=γα故⎰⎰∑-+zdxdy dydz x z )(2⎰⎰∑--+=.]))([(2dxdy z x x z 再按对坐标的曲面积分的计算法,便得⎰⎰⎰⎰⎭⎬⎫⎩⎨⎧+--⋅⎥⎦⎤⎢⎣⎡++-=-+∑xy D dxdy y x x x y x zdxdy dydz x z .)(21)()(41)(222222 注意到0)(4122=+⎰⎰xyD dxdy y x x ,故⎰⎰⎰⎰⎰⎰=+=⎥⎦⎤⎢⎣⎡++=-+∑202222022228)21cos ()(21)(πρρρθρθπd d dxdy y x x zdxdydydz x zxy D8.3 各种积分之间的联系例1 求椭圆θθsin ,cos b y a x ==所围成图形的面积A.解 根据公式(4)有.21)sin cos (2121202022ab d ab d an ab ydx xdy A L πθθθθππ==+=-=⎰⎰⎰例2 计算曲线积分⎰++-=Ly dy ye x dx y x I )3()2(2,其中L 是由直线1=+y x 位于第一象限的线段及圆弧122=+y x 位于第二象限的部分组成,方向如图8-11所示.图 8-11解 作线段CA ,则CA L ⋃构成闭合曲线,并取正向,设它围成的区域为D ,由于y ye x Q y x P +=-=3,22在D 上满足格林公式的条件,所以有。

曲线与曲面积分习题参考答案

曲线与曲面积分习题参考答案

十 曲线积分与曲面积分习题(一) 对弧长的曲线积分1. 计算ds y x L⎰+)(22,其中L 为圆周t a y t a x sin ,cos == )20(π≤≤t .解32032222202222222cos sin )sin cos ()(a dt a dt t a t a t a t a ds y x Lπππ==++=+⎰⎰⎰.2. 计算ds x L⎰,其中L 为由直线x y =及抛物线2x y =所围成的区域的整个边界.解 )12655(1214121210-+=++=⎰⎰⎰dx x x dx x ds x L. 3.计算⎰Lyds ,其中L 是抛物线x y 42=上从)0,0(O 到)2,1(A 的一段弧.解⎰L y d s =dy y y dy y y ⎰⎰+=+202202421)2(1 )122(34)4(4412202-=++=⎰y d y . 4.计算⎰+Lds y x )(,其中L 为从点)0,0(O 到)1,1(A 的直线段.解⎰+L ds y x )(=23211)(10=++⎰x x . 5.计算⎰L xyzds ,其中L 是曲线2321,232,t z t y t x ===)10(≤≤t 的一段. 解 ⎰Lx y z d s =⎰⎰+=++13102223)1(232)2(121232dt t t t dt t t t t t =143216.6.计算L⎰ ,其中L 为圆周222x y a +=,直线y x =及x 轴在第一象限所围成的扇形的整个边界.解L⎰ =⎰1L +⎰2L +⎰3L=dx e dt t a t a edx eax aa x⎰⎰⎰+++++024022222201)sin ()cos (11π=(2)14ae a π+-7.设在xoy 面内有一分布着质量的曲线L ,在点(),x y 处它的线密度为(),x y μ,试用对弧长的曲线积分分别表达(1)这条曲线弧对x 轴,y 轴的转动惯量,x y I I ; (2) 这条曲线弧的质心坐标,x y . 解 (1)⎰=Lx dS yI 2μ ⎰=Ly dS x I 2μ(2)⎰⎰=L L dSy x dS y x x x ),(),(μμ ⎰⎰=LL dSy x dS y x y y ),(),(μμ (二) 对坐标的曲线积分1.计算⎰+Lxdy ydx ,其中L 为圆周t R y t R x sin ,cos ==上对应t 从0到2π的一段弧. 解⎰+Lx d y y d x =0]cos cos )sin (sin [20=+-⎰dt t tR R t R t R π2.计算⎰+Lydx xdy ,其中L 分别为(1)沿抛物线22x y =从)0,0(O 到)2,1(B 的一段; (2)沿从)0,0(O 到)2,1(B 的直线段.; (3)沿封闭曲线OABO ,其中)0,1(A ,)2,1(B .解 (1)⎰=+=122)24(dx x x x I .(2)2)22(1=+=⎰dx x x I .(3)⎰+Lydx xdy =⎰⎰⎰++BOABOA=210(22)0dy x x dx +++=⎰⎰.3.计算⎰-+++Ldz y x zdy xdx )1(,其中Γ是从点)1,1,1(到点)4,3,2(的一段直线.解 直线方程为312111-=-=-z y x ,其参数方程为13,12,1+=+=+=t z t y t x ,t 从0变到1.13])13(3)12(2)1[(1=+++++=⎰dt t t t I .4.计算2()Lxydx x y dy x dz +-+⎰,其中L 是螺旋线bt z t a y t a x ===,sin ,cos 从0=t 到π=t 上的一段.解 dt t b a t a t a t a t a t a t a I ⎰+-+-∙=π22]cos cos )sin cos ()sin (sin cos [)(222b a a +=π.5.设Γ为曲线23,,x t y t z t ===上相应于t 从0变到1的曲线弧.把对坐标的曲线积分Pdx Qdy Rdz Γ++⎰化成对弧长的曲线积分.解 由于)3,2,1()3,2,1(),,(2y x t t dt dz dt dy dt dx ==,故229411c o s y x ++=α,229412cos yx x ++=β,229413cos yx y ++=γ.(cos cos cos )Pdx Qdy Rdz P Q R dS αβγΓΓ++=++⎰⎰=dS yx yR xQ P ⎰Γ++++2294132.(三) 格林公式及应用1.计算⎰-L ydy x dx xy 22,其中L 为圆周222a y x =+,取逆时针方向. 解⎰-Lydy x dx xy22=0)22(=--⎰⎰Ddxdy xy xy2.计算⎰+--Ldy y x dx y x )sin ()(22,其中L 是在圆周22x x y -=上由点)0,0(到点)1,1( 的一段弧.解 y x P -=2,)sin (2y x Q +-= ()122017sin sin 246I x x x x dx =---=-⎰ 3. 计算(1)()xxL ye dx x e dy +++⎰,其中L 为椭圆22221x y a b +=的上半周由点(,0)A a 到(,0)B a -的弧段.解 x ye P +=1,x e x Q +=⎰⎰-=+11L L L I =2aD adxdy dx ab a π--=-⎰⎰⎰4. 计算3222(2cos )(12sin 3)Lxy y x dx y x x y dy -+-+⎰,其中L 为在抛物线22x y π=上由点(0,0)到,12π⎛⎫⎪⎝⎭的一段弧. 解 322cos P xy y x =-,2212sin 3Q y x x y =-+ ⎰⎰⎰--=+211L L L L I =0)4321(00122-+--⎰⎰⎰y y dxdy D π=42π5. 计算⎰+-L y x xdy ydx )(222,其中L 为圆周2)1(22=+-y x ,L 的方向为逆时针方向. 解 )(222y x y P +=,)(222y x x Q +-=,当022≠+y x 时, yPy x y x x Q ∂∂=+-=∂∂)(22222 L 所围区域为D ,由于D ∈)0,0(,故不能直接用格林公式.选适当小的0>r ,作位于D 内的小圆周222:r y x l =+.记L 与l 所围区域为1D ,在1D 上应用格林公式,得⎰+-L y x xdyydx )(222-⎰+-l y x xdy ydx )(222=0其中l 取逆时针方向.所以⎰+-L y x xdyydx )(222=⎰+-l y x xdy ydx )(222=πθθπ=--⎰20222222cos sin r r r . 6. 计算星形线t a y t a x 33sin ,cos ==,)20(π≤≤t 所围成区域的面积.解 ⎰-=L ydx xdy A 21=2024224283)cos sin 3sin cos 3(a dt t t a t t a ππ=+⎰7. 证明曲线积分(2,1)423(1,0)(2)(4)xy y dx x xy dy -+-⎰在整个xoy 面内与路径无关,并计算积分值.解 (1)42y xy P -=,324xy x Q -=xQy x y P ∂∂=-=∂∂342在整个xoy 面上成立 故曲线积分(2,1)423(1,0)(2)(4)xy y dx x xy dy -+-⎰在整个xoy 面内与路径无关.(2)⎰⎰+=21L L I =8.验证dy x xydx 22+在整个xoy 平面内是某一函数),(y x u 的全微分,并求这样的一个),(y x u .解 (1)验证略;(2)y x dy x y x u yABOA2020),(=+=+=⎰⎰⎰9.试用曲线积分求dy y x dx y x )cos ()sin 2(++的原函数. 解 y x P sin 2+=,y x Q cos =,xQ y y P ∂∂==∂∂cos 在整个xoy 面上成立 所以 ⎰++=),()0,0()cos ()sin 2(),(y x dy y x dx y x y x u=y x x ydy x xdx yxsin cos 220+=+⎰⎰+C.(四) 对面积的曲面积分1.计算⎰⎰∑+dS y x)(22,其中∑是锥面22y x z +=及平面1=z 所围成的区域的整个边界曲面. 解⎰⎰∑+dS y x)(22=⎰⎰⎰⎰∑∑+21=⎰⎰⎰⎰+++++xyxyD D y x dxdy y x dxdy z z y x )(1)(222222 ⎰⎰++=xyD dxdy y x )()12(22=π212+. 2. 计算⎰⎰∑++dS zy x )223(,其中∑为平面1432=++z y x 在第一卦限的部分.解 d x d y y x y x I xyD ⎰⎰-+-+--++=22)34()2(1))321(223(, =⎰⎰⎰⎰-+=+x D dy y dx dxdy y xy 23302)265(361)265(361 =614)42741549(361202=+-⎰dx x x . (x y x D xy 2330,20:-<<<<) 3.计算⎰⎰∑dS z 2,其中∑为球面2222a z y x =++. 解⎰⎰∑dS z 2=⎰⎰⎰⎰--=++--xyxyD D y x dxdy y x a a dxdy z z y x a2222222221)(2=42022342a d a d a aπρρρθπ=-⎰⎰4.计算⎰⎰∑++dS z y x )(,∑是球面0,222≥=++z a z y x .有问题 解 ⎰⎰----++=xyD dxdy y x a y x a y x I 222222)(=⎰⎰⎰⎰--+--+xyxyD D dxdy y x a dxdy y x a y x )()(222222 =πρρρθπ2)(002220=-+⎰⎰ad a d 5.求抛物面壳221()(01)2z x y z =+≤≤的质量,此壳的面密度为z μ=. 解 ⎰⎰∑=zdS M =dxdy y x y x xyD 22221)(21+++⎰⎰=2012d d πρ⎰(五) 对坐标的曲面积分1.计算⎰⎰∑zdxdy y x22,其中∑是球面2222R z y x =++的下半部分的下侧.解⎰⎰∑zdxdy y x22=dxdy y x R y x xyD ⎰⎰--2222=24220cos sin Rd πθρθρ⎰⎰ =72105R π2.计算⎰⎰∑++yzdzdx xydydzxzdxdy ,其中∑是平面1,0,0,0=++===z y x z y x 所围成的空间区域的整个边界曲面的外侧. 解 4321∑+∑+∑+∑=∑0321===⎰⎰⎰⎰⎰⎰∑∑∑⎰⎰⎰⎰--=++∑xyD dxdy y x x yzdzdx xydydz xzdxdy )1(34=dy xy x x dx x⎰⎰---10102)(3=85. 3.计算⎰⎰∑++=dxdy z h dxdz y g dydz x f I )()()(,其中h g f ,,为已知连续函数,∑为平行六面体c z b y a x ≤≤≤≤≤≤Ω0,0,0:表面的外侧. 解 654321∑+∑+∑+∑+∑+∑=∑⎰⎰⎰⎰⎰⎰+-==∑yzyzD D dydz a f dydz f dydz x f I )()0()(1=bc f a f )]0()([-⎰⎰⎰⎰⎰⎰+-==∑yzyzD D dxdz b g dxdz g dxdz y g I )()0()(2=ac g b g )]0()([-ab h c h I )]0()([3-=所以321I I I I ++==ab h c h ac g b g bc f a f )]0()([)]0()([)]0()([-+-+-. 4.计算⎰⎰∑++dxdy z dzdx y dydz x 222,其中∑为半球面222y x a z --=的上侧.解⎰⎰⎰⎰⎰⎰∑∑∑+=21222dydz x dydz x dydz x=0)()(222222=-----⎰⎰⎰⎰dydz z y a dydz z y a yzyzD D 同理:02=⎰⎰∑dzdx y 4202222222)()(a d a d dxdy y x a dxdy z aD xyπρρρθπ=-=--=⎰⎰⎰⎰⎰⎰∑故⎰⎰∑++dxdy z dzdx y dydz x 222=42a π. 5.计算⎰⎰∑++zdxdy ydzdx xdydz ,其中∑是柱面122=+y x 被0=z 及3=z 所截得的在第一卦限内的部分的前侧. 解⎰⎰∑=0zdxdy⎰⎰⎰⎰⎰⎰-=-=∑1032211dz y dy dydz y xdydz yzDπθθθθππ43)2cos 1(23cos 320202=+==⎰⎰d d同理:π43=⎰⎰∑ydzdx 故⎰⎰∑++zdxdy ydzdx xdydz =π23. 6.设∑为平面x z a +=在柱面222x y a +=内那一部分的上侧,下面两个积分的解法是否正确?如果不对,给出正确解法. (1)3()()x z dS a dS a a ∑∑+==⨯∑=⎰⎰⎰⎰的面积; (2)3()()x z dxdy a dxdy a a ∑∑+==⨯∑=⎰⎰⎰⎰的面积. 解 (1)正确;(2)错误.正确解法是:()x z dxdy a dxdy ∑∑+=⎰⎰⎰⎰=3adxdy a xyD π=⎰⎰.(六) 高斯公式利用高斯公式计算: 1.计算⎰⎰∑++dxdy z dzdx y dydz x 333,其中∑为球面2222a z y x=++的内侧.解 2223()I x y z dv Ω=-++⎰⎰⎰2403sin Rd d r dr ππθϕϕ=-⎰⎰⎰5125R π=- 2.计算⎰⎰∑++zdxdy ydzdx xdydz ,其中∑是曲面22y x z +=在第一卦限中10≤≤z 部分的下侧.解 补充曲面:)0,0,1(,1:221≥≥≤+=∑y x y x z ,取上侧; )1,10(,0:22≤≤≤≤=∑z x x y ,取左侧;)1,10(,0:23≤≤≤≤=∑z y y x ,取后侧.∑,1∑,2∑和3∑构成闭曲面,所围的空间闭区域记为Ω,由高斯公式,得⎰⎰∑++zdxdy ydzdx xdydz =⎰⎰⎰⎰⎰⎰⎰⎰∑∑∑∑+∑+∑+∑---++321zdxdy ydzdx xdydz=003+++⎰⎰⎰⎰⎰⎰⎰ΩzxxyD D dzdx dxdy dv=ππρρθρπ=+⎰⎰⎰43110202dz d d .3.计算⎰⎰∑+++-dxdy xz y dzdx x dydz z x y )()(22,∑为正方体Ω的表面并取外侧,其中 {(,,)|0,0,0}x y z x a y a z a Ω=≤≤≤≤≤≤.解 ()I y x dv Ω=+⎰⎰⎰=400)(a dz y x dy dx aaa=+⎰⎰⎰ 4.计算⎰⎰∑++dS z y x )cos cos cos (222γβα,其中∑是由222z y x =+及)0(>=h h z 所围成的闭曲面的外侧,γβαcos ,cos ,cos 是此曲面的外法线的方向余弦. 解 2()2()2I x y z d x d y d z x y d x d y d z z d x d y d zΩΩΩ=++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰=2220()xyxyh D D dxdy zdz h x y dxdy +=--⎰⎰⎰⎰=412h π.(七) 斯托克斯公式1.计算⎰-+-++Ldz z y dy z x dx z y )()()2(,其中L 为平面1=++z y x 与各坐标面的交线,取逆时针方向为正向. 解 由斯托克斯公式,得⎰-+-++Ldz z y dy z x dx z y )()()2(=()()()R Q P R Q P dydz dzdx dxdy y z z x x y∑∂∂∂∂∂∂-+-+-∂∂∂∂∂∂⎰⎰ =⎰⎰∑-+dxdy dzdx dydz 2=⎰⎰⎰⎰⎰⎰-+=xyzxyzD D D dxdy dzdx dydz 2=1. 2.计算⎰-+-+-Ldz x y dy z x dx y z )()()(,其中L 是从)0,0,(a 经)0,,0(a 和),0,0(a 回到)0,0,(a 的三角形.解 由斯托克斯公式,得⎰-+-+-Ldz x y dy z x dx y z )()()(=()()()R Q P R Q P dydz dzdx dxdy y z z x x y∑∂∂∂∂∂∂-+-+-∂∂∂∂∂∂⎰⎰ =2242222a dxdy dxdy dydz dxdy dydz xyxyyzD D D ==+=+⎰⎰⎰⎰⎰⎰⎰⎰∑. (八) 曲线积分与曲面积分自测题1.计算曲线积分 (1)ds y x L⎰+22,其中L 为圆周ax y x =+22;解 :cos (-)22L r a ππθθ=≤≤)d s d d a θθθ==cos r a θ==ds y x L⎰+22=222cos 2a ad a ππθθ-=⎰ .(2)⎰Lzds ,其中Γ为曲线)0(,sin ,cos 0t t t z t t y t t x ≤≤===;解d s t d t=⎰Lz d s=0322(2)3t t +-=⎰ (3)⎰+-Lxdy dx y a )2(,其中L 为摆线)cos 1(),sin (t a y t t a x -=-=上对应t 从0到π2的一段弧;解⎰+-Lx d y dx y a )2(=20{[(2(1cos ))](1cos )(sin )sin }a a t a t a t t a t dt π---+-⎰=2220sin 2at tdt a ππ=-⎰. (4)⎰Γ-+-dz x yzdy dx z y 2222)(,其中Γ是曲线32,,t z t y t x ===上由01=t 到12=t 的一段弧;解⎰Γ-+-dz x yzdy dx z y2222)(=14623220[()1223]t t t t t t t dt -+-⎰=16401(3)35t t dt -=⎰(5)⎰-+-Lx x dyy e dx y y e )2cos ()2sin (,其中L为上半圆周0,)(222≥=+-y a y a x 沿逆时针方向;解 补充积分路径1:0L y =,x 从0到2a. sin 2,cos 2xxP e y y Q e yy =-=-11(s i n 2)(c o s 2)xx LL L L ey y dx e y dy +-+-=-⎰⎰⎰=220()(sin 020)0ax D Q Pdxdy e dx a x y π∂∂---+=∂∂⎰⎰⎰2.计算曲面积分 (1)⎰⎰∑++222z y x dS ,其中∑是介于平面0=z 及H z =之间的圆柱面222R y x =+; 解x =,dS ==⎰⎰∑++222z y x dS=12∑∑+⎰⎰⎰⎰=yzD+yzD=221yzD R z =+⎰⎰=2arctanHR π. (2) ⎰⎰∑-+-+-dxdy y x dzdx x z dydz z y )()()(222,其中∑为锥面)0(22h z y x z ≤≤+=的外侧;解 11I ∑+∑∑=-⎰⎰⎰⎰=()P Q Rdxdydz x y z Ω∂∂∂++∂∂∂⎰⎰⎰2()xyD x y dxdy --⎰⎰ =44044h h ππ-=-.(3)⎰⎰∑++zdxdy ydzdx xdydz ,其中∑为半球面22y x R z --=的上侧;解11I ∑+∑∑=-⎰⎰⎰⎰=()P Q R dxdydz x y z Ω∂∂∂++∂∂∂⎰⎰⎰0xyD dxdy -⎰⎰ =3302dv R πΩ-=⎰⎰⎰.(4)⎰⎰∑++++3222)(z y x zdxdyydzdx xdydz ,其中∑为曲面)0(9)1(16)2(5122≥-+-=-z y x z 的上侧;解 0I = (利用高斯公式) (5) ⎰⎰∑xyzdxdy ,其中∑为球面)0,0(1222≥≥=++y x z y x 外侧. 解⎰⎰∑xyzdxdy =12xyzdxdy xyzdxdy ∑∑+⎰⎰⎰⎰=12022cos sin xyD d r r πθθθ=⎰⎰⎰⎰=215. 3.证明:22yx ydyxdx ++在整个xoy 平面除去y 的负半轴及原点的区域G 内是某个二元函数的全微分,并求出一个这样的二元函数.解 在整个xoy 平面除去y 的负半轴及原点的区域G 是单连通域.在G 内,222()Q xy Px x y y ∂-∂==∂+∂, 所以存在(,)u x y ,使22xdx ydydu x y+=+. 取积分路径:(1,0)(,0)(,)x x y →→(,)22222(1,0)10(,)x y yx xdx ydy x y u x y dx dy x y x x y +==+++⎰⎰⎰=221ln()2x y +. 4.计算⎰Γ-+-++dz x y dy z x dx z y )()()2(,其中Γ为平面1=++z y x 与各坐标面的交线,从z 轴正向看取逆时针方向. 解 由斯托克斯公式,得⎰-+-++Ldz z y dy z x dx z y )()()2(=()()()R Q P R Q Pdydz dzdx dxdy y z z x x y∑∂∂∂∂∂∂-+-+-∂∂∂∂∂∂⎰⎰ =⎰⎰∑-+dxdy dzdx dydz 2=⎰⎰⎰⎰⎰⎰-+=xyzxyzD D D dxdy dzdx dydz 2=1.5.求均匀曲面222y x a z --=的质心的坐标.解 设面密度为ρ,重心(,,)x y z 由对称性:0x y ==2200xyaD M dS πρρ∑===⎰⎰⎰=22a πρ2112xyD z zdS Ma ρπ∑==⎰⎰=2a 故重心的坐标为(0,0,)2a .。

(完整版)第十章曲线积分与曲面积分练习题

(完整版)第十章曲线积分与曲面积分练习题

第十章 曲线积分与曲面积分§10.1 对弧长曲线的积分一、判断题1.若f(x)在(-+∞∞,)内连续,则⎰badx x f )(也是对弧长的曲线积分。

( )2.设曲线L 的方程为x=)(y ϕ在[βα,]上连续可导则⎰⎰'+=Ldyy y y f ds y x f βαϕϕ2)]([1)),((),(( )二、填空题1.将⎰+Lds y x)(22,其中L 为曲线x=a(cost+tsint),y=a(sint-tcost)()20π≤≤t 化为定积分的结果是 。

2.⎰+L ds y x )(= ,其中L 为连接(1,0)和(0,1)两点的直线段。

三、选择题1.⎰+Lds y x )(22=( ),其中L 为圆周122=+y x (A )⎰02πθd (B )⎰πθ2d (C )⎰πθ22d r (D )⎰πθ22d2.⎰Lxds =( ),L 为抛物线2x y =上10≤≤x 的弧段。

(A ))155(121- (B ))155(- (C )121 (D ))155(81-四、计算⎰+Cds y x )(,其中C 为连接点(0,0)、(1,0)、(0,1)的闭折线。

五、计算⎰++L ds z y x )2(22,其中L 为⎩⎨⎧=++=++02222z y x R z y x六、计算⎰+Ln ds y x)(22,L 为上半圆周:)(222N n R y x ∈=+七、计算⎰+Ly x ds e22,其中L 为圆周222a y x =+,直线y=x 和y=0在第一象限内围成扇形的边界。

八、求半径为a ,中心角为ϕ2的均匀圆弧(ρ=1)的重心。

§10.2 对坐标的曲线积分一、判断题1.定积分也是对坐标的曲线积分。

( ) 2.022=+-⎰L y x ydx xdy ,其中L 为圆周122=+y x 按逆时针方向转一周。

( )二、填空题1.ydz x dy y dx x 2233++⎰Γ= ,其中Γ是从点A (1,2,3)到点B (0,0,0)的直线段AB 。

深圳大学-高等数学专题-例题线面积分

深圳大学-高等数学专题-例题线面积分

所以
I
c a
1 b
1
b2
f
(bx)
dx
d b
c y2
1
y2
fБайду номын сангаас
(cy)dy
c a
c
bf (bx)dx
d cf (cy)dy c c c a
bc
f (t)dt
cd
f (t)dt
ba
b
d b d b ab
bc
c a cd
f (t)dt
d b ab
当 ab
cd
cd
L 是上半平面( y 0)内的有向分段光滑曲线,其起点
为 (a,b),终点为(c, d ) ,记
I 1[1 y 2 f (xy)]dx x [ y2 f (xy) 1]dy
Ly
y2
(1) 证明曲线积分 I 与路径无关;
(2) 当ab cd 时,求 I 的值.
【分析】本题主要考查第二类曲线积分与路径无关
2x2
y2
2
2
d
y2
C(x)
解得 从而
(y)
2x2 y4
y2 2x2
y4
C(x)
P(x, y)
( y)
2x2 y4
y2 2x2
y4
C(x)

P(x, 0)
(0)
2x2

C(x)
(0)
2x2
P(x,
y)
y2 2x2
y4
(0)
2x2
又由
P(x,
y)
( y)
2x2 y4
段 L1,
原式 ex sin y b x y dx ex cos y ax dy
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章 曲线积分与曲面积分内容要点一、引例 设有一曲线形构件所占的位置是xOy 面内的一段曲线L (图10-1-1),它的质量分布不均匀,其线密度为),(y x ρ,试求该构件的质量. 二、第一类曲线积分的定义与性质性质1 设α,β为常数,则⎰⎰⎰+=+L L L ds y x g ds y x f ds y x g y x f ),(),()],(),([βαβα;性质2设L 由1L 和2L 两段光滑曲线组成(记为=L 21L L +),则.),(),(),(2121⎰⎰⎰+=+L L LL ds y x f ds y x f ds y x f注: 若曲线L 可分成有限段,而且每一段都是光滑的,我们就称L 是分段光滑的,在以后的讨论中总假定L 是光滑的或分段光滑的.性质3 设在L 有),(),(y x g y x f ≤,则ds y x g ds y x f LL⎰⎰≤),(),(性质4(中值定理)设函数),(y x f 在光滑曲线L 上连续,则在L 上必存在一点),(ηξ,使s f ds y x f L⋅=⎰),(),(ηξ其中s 是曲线L 的长度.三、第一类曲线积分的计算:)(),(),(βα≤≤⎩⎨⎧==t t y y t x xdt t y t x t y t x f ds y x f L)()(])(),([),(22'+'=⎰⎰βα如果曲线L 的方程为 b x a x y y ≤≤=),(,则dx x y x y x f ds y x f ba L )(1])(,[),(2'+=⎰⎰如果曲线L 的方程为 d y c y x x ≤≤=),(,则dy y x y y x f ds y x f dcL )(1]),([),(2'+=⎰⎰如果曲线L 的方程为 βθαθ≤≤=),(r r ,则θθθθθβαd r r r r f ds y x f L)()()sin ,cos (),(22'+=⎰⎰例5(E03)计算,||⎰Lds y 其中L 为双纽线(图10-1-4))()(222222y x a y x -=+的弧.解 双纽线的极坐标方程为 .2cos 22θa r =用隐函数求导得 ,2sin ,2sin 22ra r a r r θθ-='-='.2sin 2224222θθθθd r a d ra r d r r ds =+='+= 所以 .)22(2sin 4sin 4||2402402a d a d ra r ds y L -==⋅=⎰⎰⎰ππθθθθ 内容要点一、引例:设有一质点在xOy 面内从点A 沿光滑曲线弧L 移动到点B ,在移动过程中,这质点受到力j y x Q i y x P y x F),(),(),(+=的作用,其中),(y x P ,),(y x Q 在L 上连续. 试计算在上述移动过程中变力),(y x F所作的功. 二、 第二类曲线积分的定义与性质:j y x Q i y x P y x A),(),(),(+=⎰⎰+=⋅LLds Q P ds t A )cos cos (βα平面上的第二类曲线积分在实际应用中常出现的形式是⎰+L dy y x Q dx y x P ),(),(⎰⎰+=L L dy y x Q dx y x P ),(),(性质1 设L 是有向曲线弧, L -是与L 方向相反的有向曲线弧,则⎰⎰+-=+-L L dy y x Q dx y x P dy y x Q dx y x P ),(),(),(),(;即第二类曲线积分与积分弧段的方向有关.性质2 如设L 由1L 和2L 两段光滑曲线组成,则⎰⎰⎰+++=+21L L L Qdy Pdx Qdy Pdx Qdy Pdx .三、第二类曲线积分的计算:),(t x x = ),(t y y =⎰+L dy y x Q dx y x P ),(),(⎰'+'=βαdt t y t y t x Q t x t y t x P )}()](),([)()](),([{.如果曲线L 的方程为 ),(x y y =起点为a , 终点为b ,则.)}()](,[)](,[{⎰⎰'+=+ba L dx x y x y x Q x y x P Qdy Pdx如果曲线L 的方程为),(y x x = 起点为c , 终点为d ,则.]}),([)(]),([{⎰⎰+'=+dcLdy y y x Q y x y y x P Qdy Pdx内容要点一、格林公式定理1 设闭区域D 由分段光滑的曲线L 围成,函数),(y x P 及),(y x Q 在D 上具有一阶连续偏导数,则有⎰⎰⎰+=⎪⎪⎭⎫⎝⎛∂∂-∂∂L D Qdy Pdx dxdy y P x Q其中L 是D 的取正向的边界曲线.若在格林公式中,令,,x Q y P =-= 得⎰⎰⎰-=LDydx xdy dxdy 2,上式左端是闭区域D 的面积A 的两倍,因此有 .21⎰-=Lydx xdy A 二、平面曲线积分与路径无关的定义与条件定理2 设开区域D 是一个单连通域,函数),(y x P 及),(y x Q 在D 内具有一阶连续偏导数,则下列命题等价:(1) 曲线积分⎰+LQdy Pdx 在D 内与路径无关;(2)表达式Qdy Pdx +为某二元函数),(y x u 的全微分; (3)xQy P ∂∂=∂∂在D 内恒成立; (4)对D 内任一闭曲线L ,0=+⎰LQdy Pdx .由定理的证明过程可见,若函数),(y x P ,),(y x Q 满足定理的条件,则二元函数⎰+=),(),(00),(),(),(y x y x dy y x Q dx y x P y x u满足 dy y x Q dx y x P y x du ),(),(),(+=, 我们称),(y x u 为表达式dy y x Q dx y x P ),(),(+的原函数.C dy y x P dx y x P y x u yy xx ++=⎰⎰00),(),(),(0或 C dy y x P dx y x P y x u yy xx ++=⎰⎰0),(),(),(0例4 计算,2dxdy e Dy ⎰⎰- 其中D 是以)1,0(),1,1(),0,0(B A O 为顶点的三角形闭区域.解 令,0=P ,2y xe Q -=则 yPx Q ∂∂-∂∂.2y e -= 应用格林公式,得dxdy e Dy ⎰⎰-2⎰++-=BOAB OA y dy xe 2⎰-=OAdy xe y 2⎰-=102dx xe x ).1(211--=e 例5(E03)计算,22⎰+-L y x ydx xdy 其中L 为一条无重点)1(, 分段光滑且不经过原点的连续闭曲线, L 的方向为逆时针方向.解 记L 所围成的闭区域为,D 令,22y x y P +-=,22yx xQ += 则当022≠+y x 时,有 x Q∂∂22222)(y x x y +-=.y P ∂∂=(1) 当D ∉)0,0(时,由格林公式知;022=+-⎰L y x ydxxdy(2) 当D ∈)0,0(时,作位于D 内圆周,:222r y x l =+记1D 由L 和l 所围成,应用格林公式,得⎰⎰=+--+-L l y x ydxxdy y x ydx xdy .02222故⎰+-L y x ydx xdy 22⎰+-=l y x ydxxdy 22⎰+=πθθθ2022222sin cos d rr r ⎰=πθ20d .2π=例6(E04)求椭圆θcos a x =,θsin b y =所围成图形的面积A . 解 所求面积A ⎰-=L ydx xdy 21⎰+=πθθθ2022)sin cos (21d ab ab ⎰=πθ2021d ab.ab π=例7 计算抛物线)0()(2>=+a ax y x 与x 轴所围成的面积. 解 ONA 为直线.0=y 曲线AMO 为 ,x ax y -=].,0[a x ∈ ∴A ⎰-=AMOydx xdy 21⎰⎰-+-=AMOONAydx xdy ydx xdy 2121⎰-=AMOydx xdy 21⎰--⎪⎪⎭⎫⎝⎛-=)(1221a dx x ax dx ax a x ⎰=adx x a4.612a =例10(E06)计算,)8,6()0,1(22⎰++yx ydy xdx 积分沿不通过坐标原点的路径.解 显然,当)0,0(),(≠y x 时, 22y x ydy xdx ++,22y x d +=于是⎰++)8,6()0,1(22yx ydy xdx ⎰+=)8,6()0,1(22y x d )8,6()0,1(22y x +=.9=例 12 验证: 在整个xOy 面内, ydy x dx xy 22+是某个函数的全微分, 并求出一个这样 的函数.证2 利用原函数法求全微分函数).,(y x u 由2xy y u =∂∂),(2222y y x dx xy u ϕ+==⎰其中)(y ϕ是y 的待定函数.由此得).(2y y x yuϕ'+=∂∂ 又u 必须满足 y xyu2=∂∂y x y y x 22)('=+ϕ 0)('=y ϕ ,)(C y =ϕ 所求函数为.2/22C y x u +=例13(E07)设函数),(y x Q 在xoy 平面上具有一阶连续偏导数, 曲线积分与路径无关, 并且对任意t , 总有,),(2),(2),1()0,0()1,()0,0(⎰⎰+=+t t dy y x Q xydx dy y x Q xydx求).,(y x Q解 由曲线积分与路径无关的条件知,2x xQ=∂∂ 于是),(),(2y C x y x Q +=其中)(y C 为待定函数.dy y x Q xydx t ),(2)1,()0,0(+⎰⎰+=102))((dy y C t ,)(102⎰+=dy y C tdy y x Q xydx t ),(2),1()0,0(+⎰⎰+=tdy y C 0))(1(,)(0⎰+=t dy y C t由题意可知⎰+12)(dy y C t .)(0⎰+=tdy y C t两边对t 求导,得)(12t C t +=或.12)(-=t t C 所以.12),(2-+=y x y x Q例14(E08)设曲线积分⎰+Ldy x y dx xy )(2ϕ与路径无关, 其中ϕ具有连续的导数, 且,0)0(=ϕ计算.)()1,1()0,0(2⎰+dy x y dx xy ϕ解 ),(y x P ,2xy =),(y x Q ),(x y ϕ= y P ∂∂)(2xy y ∂∂=,2xy =x Q ∂∂)]([x y xϕ∂∂=).('x y ϕ= 因积分与路径无关散,xQy P ∂∂=∂∂ 由xy x y 2)('=ϕ.)(2C x x +=ϕ由,0)0(=ϕ知0=C .)(2x x =ϕ故⎰+)1,1()0,0(2)(dy x y dx xy ϕ⎰⎰+=1010ydy dx .21= 例15 选取b a ,使表达式dy e y x be dx ae e y x yxyy])1([])1[(++-++++为某一函数的全微分, 并求出这个函数.解 y P ∂∂])1[(y y ae e y x y +++∂∂=,y y ae e +=x Q ∂∂])1([y x e y x be x ++-∂∂=,y x e be -=若表达式全微分式,则,xQy P ∂∂=∂∂即 .y x y x e be ae e -=+得,1-=a .1=b ),(y x u +-+++=⎰xx dx e e x 00])1()10[(⎰+++-yy x C dy e y x e 0])1([C dy e y x e dx e x yy y xx +++-+-+=⎰⎰])1([]1)1[(C ye xe y e x xe yy y x x x +--+-=00][][.))((C e e y x y x +-+=例16(E09)求方程0)3()3(2323=-+-dy y x y dx xy x 的通解. 解 ,6xQxy y P ∂∂=-=∂∂原方程是全微分方程, ⎰⎰+-=yxdy y dx xy x y x u 0323)3(),(,42344224y y x x +-=原方程的通解为.42344224C y y x x =+- 例19求微分方程0)1(222=---+dy y x dx y x x 的通解.解 将题设方程改写为,02222=---+dy y x dx y x x xdx 即,0)()(2222=---+dy y x x d y x x d 将方程左端重新组合,有,0)()(222=--+y x d y x x d故题设方程的通解为 .)(322/322C y x x =-+内容要点一、 第一类曲面积分的概念与性质定义1 设曲面∑是光滑的, 函数),,(z y x f 在∑上有界, 把∑任意分成n 小块i S ∆(i S ∆同时也表示第i 小块曲面的面积),在i S ∆上任取一点),,,(i i i ζηξ作乘积),,2,1(),,(n i S f i i i i =∆⋅ζηξ并作和,),,(1∑=∆⋅ni i i i i S f ζηξ 如果当各小块曲面的直径的最大值0→λ时, 这和式的极限存在,则称此极限值为),,(z y x f 在∑上第一类曲面积分或对面积的曲面积分,记为∑⎰⎰=→∑∆=ni i i i i S f dS z y x f 1),,(lim ),,(ζηξλ 其中),,(z y x f 称为被积函数,∑称为积分曲面. 二、对面积的曲面积分的计算法.),(),(1)],(,,[),,(22⎰⎰⎰⎰++=∑xyD y x dxdy y x z y x z y x z y x f dS z y x f例4计算,dS xyz ⎰⎰∑其中∑为抛物面).10(22≤≤+=z y x z解 根据抛物面22y x z +=对称性,及函数||xyz 关于yOz xOz 、坐标面对称,有dxdy y x y x xy xyzdS dS xyz xy D ⎰⎰⎰⎰⎰⎰'+++=∑=∑2222)2()2(1)(441⎰⎰⎰⎰+=+⋅=20125122220412sin 241sin cos 4ππdr r r tdt rdr r rt t r dt.420151254141512-=⎪⎭⎫ ⎝⎛-=⎰du u u 例5 计算,⎰⎰∑xdS 其中∑是圆柱面,122=+y x 平面2+=x z 及0=z 所围成的空间立体的表面.解,=⎰⎰⎰⎰⎰⎰⎰⎰∑+∑+∑∑321∑∑12,在xOy 面上得投影域.1:22≤+y x D xy于是⎰⎰⎰⎰∑==1,0xyD xdxdy xdS ⎰⎰⎰⎰∑=+=2,011xyD dxdy xxdS将)1:,(313223∑∑∑-±=x y 投影到zOx 面上,得投影域 .10,11:+≤≤≤≤-x y x D xydxdz y y x xdS xdS xdS zx D z x ⎰⎰⎰⎰⎰⎰⎰⎰++=∑+∑=∑221232313,12112211222π=-=-+=⎰⎰⎰⎰+-x D dz x xdxdz x x x xz所以.00ππ=++=∑⎰⎰xdS例8 设有一颗地球同步轨道卫星, 距地面的高度为36000=h km ,运行的角速度与地球自转的角速度相同. 试计算该通讯卫星的覆盖面积与地球表面积的比值(地球半径6400=R km).解 取地心为坐标原点,地心到通讯卫星重心的连线为z 轴,建立如图坐标系.卫星覆盖的曲面∑是上半球面倍半顶角为α的圆锥面所截得的部分.∑的方程为,222y x R z --=它在xOy 面上的投影区域.sin :2222αR y x D xy ≤+于是通讯卫星的覆盖面积为).cos 1(22απ-=R A将h R R +=αcos 代入上式得 .21222h R h R h R R R A +⋅=⎪⎭⎫ ⎝⎛+-=ππ 由此得这颗通讯卫星的覆盖面积与地球表面积之比为%.5.4242≈RAπ 由以上结果可知,卫星覆盖了全球三分之一以上的面积,故使用三颗相隔32π角度的通讯卫星就可以覆盖几乎地球全部表面.内容要点二、第二类曲面积分的概念与性质定义1 设∑为光滑的有向曲面, 其上任一点),,(z y x 处的单位法向量,cos cos cos k j i nγβα++= 又设k z y x R j z y x Q i z y x P z y x A),,(),,(),,(),,(++=其中函数R Q P ,,在∑上有界, 则函数γβαcos cos cos R Q P n v ++=⋅则∑上的第一类曲面积分⎰⎰∑⋅dS n v.)cos cos cos (⎰⎰∑++=dS R Q P γβα称为函数),,(z y x A在有向曲面∑上的第二类曲面积分.三、第二类曲面积分的计算法设光滑曲面∑:),(y x z z =,与平行于z 轴的直线至多交于一点,它在xOy 面上的投影区域为xy D , 则.⎰⎰⎰⎰±=∑yzD dxdy y x z y x R dxdy z y x R )],(,,[),,(.上式右端取“+”号或“-”号要根据γ是锐角还是钝角而定.内容要点一、高斯公式定理1设空间闭区域Ω由分片光滑的闭曲面∑围成,函数),,(z y x P 、),,(z y x Q 、),,(z y x R 在Ω上具有一阶连续偏导数,则有公式⎰⎰⎰⎰⎰∑Ω++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂Rdxdy Qdzdx Pdydz dv z R y Q x P这里∑是Ω的整个边界曲面的外侧, γβαcos ,cos ,cos 是∑上点),,(z y x 处的法向量的方向余弦. 式称为高斯公式.若曲面∑与平行于坐标轴的直线的交点多余两个,可用光滑曲面将有界闭区域Ω分割成若干个小区域,使得围成每个小区域的闭曲面满足定理的条件,从而高斯公式仍是成立的.此外,根据两类曲面积分之间的关系,高斯公式也可表为.)cos cos cos (⎰⎰⎰⎰⎰∑Ω++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂dS R Q P dv z R y Q x P γβα二、通量与散度一般地,设有向量场k z y x R j z y x Q i z y x P z y x A),,(),,(),,(),,(++=,其中函数P 、Q 、R 有一阶连续偏导数,∑是场内的一片有向曲面,n 是曲面∑的单位法向量. 则沿曲面∑的第二类曲面积分⎰⎰⎰⎰⎰⎰∑∑∑++=⋅=⋅=ΦRdxdy Qdzdx Pdydz S d n A S d A称为向量场A通过曲面∑流向指定侧的通量. 而zRy Q x P ∂∂+∂∂+∂∂ 称为向量场A 的散度,记为A div,即zR y Q x P A div ∂∂+∂∂+∂∂= .例4(E04)证明: 若∑为包围有界域Ω的光滑曲面, 则⎰⎰⎰⎰⎰⎰⎰⎰Ω∑Ω⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂+∂∂∂∂-∂∂=∆dV z v z u y v y u x v x u dS n uvudV v其中nu∂∂为函数u 沿曲面∑的外法线方向的方向导数,u ,v 在Ω上具有一阶和二阶连续偏导数,符号222222zy x ∂∂+∂∂+∂∂=∆称为拉普拉斯算子. 这个公式称为格林第一公式.证 因为=∂∂n u γβαcos cos cos z u y u xu∂∂+∂∂+∂∂n u ⋅∇=,其中}cos ,cos ,{cos γβα=n 是∑在点),,(z y x 处 的外法线的方向余弦,于是⎰⎰⎰⎰⎰⎰∑∑∑⋅∇=⋅∇=∂∂dS n u v dS n u v dS nu v)[()(dS z u v y u v x u v ⎰⎰∑⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=γβαcos cos cos dv z u v z y u v y x u v x ⎰⎰⎰Ω⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=.dv z v z u y v y u x v x u udv v ⎰⎰⎰⎰⎰⎰ΩΩ⎝⎛⎪⎭⎫∂∂∂∂+∂∂∂∂+∂∂∂∂+∆=将上式右端移至左端即得所要证明的等式. 例5(E05)求向量场k z j y i x r++=的流量(1) 穿过圆锥)0(222h z z y x ≤≤≤+的底(向上); (2) 穿过此圆锥的侧表面(向外).解 设21,S S 及S 分别为此圆锥的面,侧面及全表面,则穿过全表面向外的流量 Q ⎰⎰+⋅=S S d r⎰⎰⎰=Vdv r div⎰⎰⎰=Vdv 3.3h π=(1)穿过底面向上的流量1Q ⎰⎰+⋅=S S d r⎰⎰=≤+=hz z y x zdxdy 222⎰⎰≤+=222z y x hdxdy .3h π=(2)穿过侧表面向外的流量2Q 1Q Q -=.0=内容要点一、斯托克斯公式定理1 设Γ为分段光滑的空间有向闭曲线,∑是以Γ为边界的分片光滑的有向曲面,Γ的正向与∑的侧符合右手规则,函数),,(),,,(),,,(z y x R z y x Q z y x P 在包含曲面∑在内的一个空间区域内具有一阶连续偏导数, 则有公式dxdy y P x Q dzdx x R z P dydz z Q y R ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂⎰⎰∑.⎰++=LRdz Qdy Pdx公式称为斯托克斯公式.为了便于记忆,斯托克斯公式常写成如下形式:⎰⎰⎰Γ∑++=∂∂∂∂∂∂Rdz Qdy Pdx RQ P zy x dxdy dzdx dydz 利用两类曲面积分之间的关系,斯托克斯公式也可写成.cos cos cos ⎰⎰⎰Γ∑++=∂∂∂∂∂∂Rdz Qdy Pdx dS RQPzy x γβα二、空间曲线积分与路径无关的条件三、环流量与旋度 设向量场,),,(),,(),,(),,(k z y x R j z y x Q i z y x P z y x A++= 则沿场A中某一封闭的有向曲线C 上的曲线积分⎰++=ΓCRdz Qdy Pdx称为向量场A沿曲线C 按所取方向的环流量. 而向量函数⎭⎬⎫⎩⎨⎧∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q y R ,,称为向量场A 的旋度,记为A rot,即.k y P x Q j x R z P i z Q y R A rot ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=旋度也可以写成如下便于记忆的形式:RQ P z y x k j i A rot ∂∂∂∂∂∂=.四、向量微分算子:,k zj y i x ∂∂+∂∂+∂∂=∇ 例 2 计算曲线积分,)()()(222222dz y x dy x z dx z y -+-+-⎰Γ其中Γ是平面2/3=++z y x 截立方体:,10≤≤x ,10≤≤y 10≤≤z 的表面所得的接痕,从x 轴的正向看法,取逆时针方向.解 取∑为题设平面的上侧被Γ所围成部分,则该平面的法向量,3}3,1,1{=n即,31cos cos cos ===λβα原式dS y x x y z y z y x z⎰⎰∑---∂∂∂∂∂∂=222222313131⎰⎰∑++-=dS z y x )(34.293322334-=-=∑⋅-=⎰⎰⎰⎰xyD dxdy dS 例3(E02)计算,)()()(222222⎰Γ+++++dz y x dy z x dx z y 式中Γ是).0,0(2,222222><<=+=++z R r rx y x Rx z y x此曲线是顺着如下方向前进的: 由它所包围在球面Rx z y x 2222=++上的最小区域保持在左方.解 由斯托克斯公式,有 原式⎰⎰∑-+-+-=dS y x x z z y ]cos )(cos )(cos )[(2γβαdS R z y x R y x z R x z y ⎰⎰∑⎥⎦⎤⎢⎣⎡-+-+⎪⎭⎫ ⎝⎛--=)()(1)( ⎰⎰∑-=dS y z )(2(利用对称性)⎰⎰⎰⎰∑=∑=dS R zdS γcos ..2222R r d R Rdxdy rx y x πσ==∑=⎰⎰⎰⎰≤+ 例5(E03)设,32222yz xy y x u -+= 求grad u ; div(grad u );rot(grad u ). 解 gradu ⎭⎬⎫⎩⎨⎧∂∂∂∂∂∂=z u y u x u ,,}.6,4,2{yz xy xy -=div(gradu)⎭⎬⎫⎩⎨⎧∂-∂+∂∂+∂∂=z yz y xy x xy )6()4()2(y x y 642-+=).(4y x -=rot(gradu).,,222222⎭⎬⎫⎩⎨⎧∂∂∂-∂∂∂∂∂∂-∂∂∂∂∂∂-∂∂∂=x y u y x u z x u x z u y z u z y u 因为22232yz xy y x u -+=有二阶连续导数,故二阶混合偏导数与求导次序无关,故rot(gradu).0=注:一般地,如果u 是一单值函数,我们称向量场A=grad u 为势量场或保守场,而u 称为场A的势函数.例6(E04)设一刚体以等角速度k j i z y xωωωω++=绕定轴L 旋转,求刚体内任意一点M 的线速度v的旋度.解 取定轴l 为z 轴,点M 的内径rOM =,k z j y i x ++=则点M 的线速度v r⨯=ωzyx kji z yx ωωω =,)()()(k x y j z x i y z y x x z z yωωωωωω-+-+-=于是v rot x y z x y z z y x kj i y x x z z y ωωωωωω---∂∂∂∂∂∂=)(2k j i z y x ωωω++=.2ω =即速度场v 的旋等于角速度ω的 2 倍.内容要点点函数积分的概念 点函数积分的性质点函数积分的分类及其关系一、点函数积分的概念定义1 设Ω为有界闭区域, 函数))((Ω∈=P P f u 为Ω上的有界点函数. 将形体Ω任意分成n 个子闭区域,,,,21n ∆Ω∆Ω∆Ω 其中i ∆Ω表示第i 个子闭区域, 也表示它的度量, 在i ∆Ω上任取一点i P , 作乘积),,2,1()(n i P f i i =∆Ω并作和∑=∆Ωni iiP f 1)(如果当各子闭区域i ∆Ω的直径中的最大值λ趋近于零时, 这和式的极限存在, 则称此极限为点函数)(P f 在Ω上的积分, 记为⎰ΩΩd P f )(, 即.)(lim )(1∑⎰=→Ω∆Ω=Ωni iiP f d P f λ其中Ω称为积分区域, )(P f 称为被积函数, P 称为积分变量, Ωd P f )(称为被积表达式,Ωd 称为Ω的度量微元.点函数积分具有如下物理意义: 设一物体占有有界闭区域Ω, 其密度为),)((Ω∈=P P f ρ则该物体的质量)0)((,)(≥Ω=⎰ΩP f d P f M特别地, 当1)(≡P f 时, 有).(lim 1度量Ω=∆Ω=Ω∑⎰=→Ωni id λ如果点函数)(P f 在有界闭区域Ω上连续, 则)(P f 在Ω上可积.二、点函数积分的性质设)(),(P g P f 在有界闭区域Ω上都可积, 则有 性质1 .)()()]()([⎰⎰⎰ΩΩΩΩ±Ω=Ω±d P g d P f d P g P f性质2 )()()(为常数k d P f k d P kf ⎰⎰ΩΩΩ=Ω性质3,)()()(21⎰⎰⎰ΩΩΩΩ+Ω=Ωd P f d P f d P f其中,21Ω=ΩΩ 且1Ω与2Ω无公共内点. 性质4 若,,0)(Ω∈≥P P f 则.0)(≥Ω⎰Ωd P f性质5 若,),()(Ω∈≤P P g P f 则.)()(⎰⎰ΩΩΩ≤Ωd P g d P f特别地, 有.|)(|)(⎰⎰ΩΩΩ≤Ωd P f d P f性质6 若)(P f 在积分区域Ω上的最大值为M , 最小值为m , 则.)(Ω≤Ω≤Ω⎰ΩM d P f m性质7 (中值定理)若)(P f 在有界闭区域Ω上连续, 则至少有一点,*Ω∈P 使得.)()(*Ω=Ω⎰ΩP f d P f其中ΩΩ=⎰Ωd P f P f )()(*称为函数)(P f 在Ω上的平均值.三、点函数积分的分类及其关系1.若,],[R b a ⊂=Ω这时],,[),()(b a x x f P f ∈=则.)()(⎰⎰=ΩΩbadx x f d P f (1)这是一元函数)(x f 在区间],[b a 上的定积分. 当1)(=x f 时,a b dx ba-=⎰是区间长.2.右,2R L ⊂=Ω且L 是一平面曲线, 这时,),(),,()(L y x y x f P f ∈=于是⎰⎰=ΩΩLds y x f d P f ),()( (2)当1)(≡P f 时,s ds L =⎰是曲线的弧长. (2)式称为第一类平面曲线积分.3.若,3R ⊂Γ=Ω且Γ是空间曲线, 这时,),,(),,,()(Γ∈=z y x z y x f P f 则.),,()(⎰⎰ΓΩ=Ωds z y x f d P f (3)当1)(≡P f 时,s ds =⎰Γ是曲线的弧长. (3)式称为第一类空间曲线积分.2、3的特殊情形是曲线为直线段, 而直线段上的点函数积分本质上是一元函数的定积分,这说明⎰⎰Γds z y x f ds y x f L),,(,),(可用一次定积分计算, 因此用了一次积分号.4.若,2R D ⊂=Ω且D 是平面区域, 这时,),(),,()(D y x y x f P f ∈= 则⎰⎰⎰=ΩΩDd y x f d P f σ),()( (4)(4)式称为二重积分. 当1),(=y x f 时,σσ=⎰⎰Dd 是平面区域D 的面积.5.若,3R ⊂∑=Ω且∑是空间曲面, 这时,),,(),,,()(∑∈=z y x z y x f P f 则⎰⎰⎰∑Ω=ΩdS z y x f d P f ),,()( (5)(5)式称为第一类曲面积分. 当1)(≡P f 时,S dS =⎰⎰∑是空间曲面∑的面积.由于(5)的特殊情形是平面区域上的二得积分, 说明该积分可化为两次定积分的计算, 因此用二重积分号.6.若3R ⊂Ω为空间立体, 这时,),,(),,,()(Ω∈=z y x z y x f P f 则.),,()(⎰⎰⎰⎰ΩΩ=Ωdv z y x f d P f (5)(6)式称为三重积分. 当1)(≡P f , 则V dv =⎰⎰⎰Ω是空间立体Ω的体积.更进一步, 我们还可以利用点函数积分的概念统一来表述占有界闭区域Ω的物体的重心、转动惯量、引力等物理概念, 此处不再表述.。

相关文档
最新文档