均值比较与T检验
实验五 均值比较与T检验
实验五均值比较与T检验⏹均值(Means)过程对准备比较的各组计算描述指标,进行预分析,也可直接比较。
⏹单样本T检验(One-Samples T Test)过程进行样本均值与已知总体均值的比较。
⏹独立样本T检验(Independent-Samples T Test)过程进行两独立样本均值差别的比较,即通常所说的两组资料的t检验。
⏹配对样本(Paired-Samples T Test)过程进行配对资料的显著性检验,即配对t检验。
⏹单因素方差分析(One-Way ANOVA)过程进行两组及多组样本均值的比较,即成组设计的方差分析,还可进行随后的两两比较,详情请参见单因素方差分析。
预备知识:假设检验的步骤:⏹第一步,根据问题要求提出原假设(Null hypothesis)和备选假设(Alternative hypothesis);⏹第二步,确定适当的检验统计量及相应的抽样分布;⏹第三步,计算检验统计量观测值的发生概率;⏹第四步,给定显著性水平并作出统计决策。
第二步和第三步由SPSS自动完成。
假设检验中的P值⏹P值(P-value)是指在原假设为真时,所得到的样本观察结果或更极端结果的概率,即样本统计量落在观察值以外的概率。
⏹根据“小概率原理”,如果P值非常小,就有理由拒绝原假设,且P值越小,拒绝的理由就越充分。
⏹实际应用中,多数统计软件直接给出P值,其检验判断规则如下(双侧检验):⏹若P值<a,则拒绝原假设;⏹若P值≥ a ,则不能拒绝原假设。
均值比较中原假设H0:μ=μ0(即某一特定值)(适用于单样本情形)或 H0:μ1=μ2。
(适用于两独立样本情形)一、Means(均值)过程选择:分析Analyze==>均值比较Compare Means ==>均值means;1、基本功能分组计算、比较指定变量的描述统计量,还可以给出方差分析表和线性检验结果表。
优点各组的描述指标被放在一起便于相互比较,如果需要还可以直接输出比较结果,无须再次调用其他过程。
SPSS-5-均值比较(t检验)
Test for linearity 检验线性相关性,实际上就是上面 的单因素方差分析。
一、平均数分析(Compare Means Means)
2、例题分析
打开“2000级课堂调查数据.sav”,按性别分组比较政治成绩的平均值、 标准差和方差。 操作:点击Analyze Compare Means Means,在【Dependent List框】 中选入“政治成绩”变量;在【Independent List框】中选入分类变量 “性别”;点击【Options钮】弹出Options对话框,选择需要计算的描述 统计量。 结果分析:统计结果见下表。这里输出的是政治成绩的均数,样本量大小、标 准差和方差。由于我们选择了分组变量“性别”,因此四项指标均给出分 组及合计值,可见以这种方式列出统计量可以非常直观的进行各组间的比 较。
第五讲 均值比较(Compare Means)
P131页
均值比较的假设检验,并非考察的是两样本的 均值是否相等,而是考察两样本所来自的总体的 均值是否相等。由于所要考察的两总体的方差是 未知的,因而两样本的均差假设检验采用t检验。
t检验是用小样本检验总体参数,特点是在总体 方差未知的情况下,可以检验样本平均数的显著 性。
Group Statistics 性 别( t1) 男 女 N 8 11 Mean 63.125 64.909 Std. Deviation 2.4749 7.0492 Std. Error Mean .8750 2.1254
政 治成 绩 ( t7, 分 )
三、两独立样本的均值检验
2、例题分析
结果分析:下表为两独立样本t检验表,下面从左到右依次为Levene's方差齐性 检验的F值和F检验的P值(Sig.) 、t值(t)、自由度(df)、P值(Sig.2-tailed)、两 均数的差值(Mean Difference)、差值的标准误(Std. Error Difference)、差值 的95%置信区间。(1)先进行方差齐性检验:F=7.834,P=0.012。由于 P<α ,要拒绝原假设(原假设为两组数据的方差相等或齐性),因此男、 女生政治成绩这两组数据的方差是不相等的。(2)由方差齐性检验的结果 来选择t检验的统计量。由于方差不等,因此选择“Equal Variance not assumed”这一行的t检验值来判断:t=-0.776,P=0.451。因为相伴概率 P>α ,要接受原假设(原假设为两独立样本所来自总体的均值相等),因 此可以认为教科院2000级男生和女生的政治平均成绩没有明显差异。
一 均值比较和T检验及F检验
t
X1 X 2
2 X 2 X X 2 X1
2 1 2
n 1
=
79.5 71 9.1242 9.9402 2 0.704 9.124 9.940 10 1
பைடு நூலகம்
=3.459。 第三步 判断 根据自由度 df n 1 9 ,查 t 值表 t (9)0.05 2.262 , t (9)0.01 3.250 。由于实际计 算出来的 t =3.495>3.250= t (9)0.01 ,则 P 0.01 ,故拒绝原假设。 结论为:两次测验成绩有及其显著地差异。 由以上可以看出,对平均数差异显著性检验比较复杂,究竟使用 Z 检验还是使用 t 检 验必须根据具体情况而定,为了便于掌握各种情况下的 Z 检验或 t 检验,我们用以下一览表 图示加以说明。
已知时,用 Z
X
n
单总体
未知时,用 t
X (df n 1) S n
在这里, S 表示总体标准差的估计量,它与样本标准差 X 的关系是:
S
n X n 1
1 , 2 已知且是独立样本时,用
T 检验原理及公式
t 检验是用 t 分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。 t 检验分为单总体 t 检验和双总体 t 检验。当总体呈正态分布,如果总体标准差未知,而且样 本容量 n <30,那么这时一切可能的样本平均数与总体平均数的离差统计量呈 t 分布。
对于要使用 T 检验进行均值比较的变量应该是正态分布的。 如果分析变量明显是非正态 分布的,应该选择非参数检验过程。
II 双总体 t 检验
双总体 t 检验是检验两个样本平均数与其各自所代表的总体的差异是否显著。双总体 t 检验又分为两种情况 一. 独立样本 t 检验 (检验假设:两个独立样本的 t 检验用于检验两个不相关的样本来自具有相同均值的 总体) 独立样本平均数的显著性检验。各实验处理组之间毫无相关存在,即为独立样本。该检 验用于检验两组非相关样本被试所获得的数据的差异性。 独立样本 T 检验要求被检验的两个样本方差要求具有齐性, 如果不齐, 使用校正公式计 算 T 值和自由度。因此,在输出结果中,应该先检查方差齐性(F 检验) ,根据齐性的结果, 在输出表格中选择 T 检验的结果。 二. 相关(配对)样本 t 检验。 (检验假设:配对样本 t 检验(Paired Sample T test)用于检验两个相关的样本是 否来自具有相同均值的总体) 相关样本平均数差异的显著性检验,用于检验匹配而成的两组被试获得的数据或同组 被试在不同条件下所获得的数据的差异性,这两种情况组成的样本即为相关样本或配对样 本。 现以相关检验为例,说明检验方法。因为独立样本平均数差异的显著性检验完全类似, 只不过 r 0 。 相关样本的 t 检验公式为:
均值比较和T检验
Spss16.0与统计数据分析均值比较和T检验20XX6月13日均值比较和T 检验统计分析常常采取抽取样本的方法,即从总体中随机抽取一定数量的样本进行研究来推论总体的特性。
但是,由于抽取的样本不一定具有完全代表性,样本统计量与总体参数间存在差异,所以不能完全的说明总体的特性。
同时,我们也可以知道,均值不等的两个样本不一定来自均值不同的整体。
对于如何避免这些问题,我们自然可以想均值比较和T 检验 1、Means 过程 1.1 Means 过程概述(1)功能:对数据进行进行分组计算,比较制定变量的描述性统计量包括均值、标准差 、总和、观测量数、方差等一系列单列变量描述性统计量,还可以给出方差分析表和线性检验结果。
(2)计算公式为: nxx ni i∑==1111.2问题举例:比较不同性别同学的体重平均值和方差。
数据如下表所示:体重表1.3用SPSS 操作过程截图:1.4 结果和讨论p{color:black;font-family:sans-serif;font-size:10pt;font-weight:normal} Your trial period for SPSS for Windows will expire in 14 days.p{color:0;font -family:Monospaced;font-size:13pt;font-style:normal;font-weight:normal;text-decoration:none}MEANS TABLES=体重 BY 性别/CELLS MEAN COUNT STDDEV VAR.MeansCase Processing SummaryCasesIncluded Excluded TotalN Percent N Percent N Percent体重* 性别24 100.0% 0 .0% 24 100.0%由SPSS 计算计算结果可知男同学体重平均值为:56.5,方差为54.091女同学体重平均值为43.833,方差为29.970。
统计学两样本均数比较的t检验
处理方式
对于异常值,可以采用删除、替换或用中位数修正等方式进行处理。具体处理方式应根 据实际情况和数据分布特点进行选择,并确保处理后的数据仍然能够反映总体情况。
实验设计和伦理考虑
实验设计
在进行t检验之前,应进行充分的实验设计, 确保实验的合理性和科学性。实验设计应考 虑各种因素对实验结果的影响,并尽量减小 误差和干扰因素。
确定p值:根据t统计量和自由 度,查表或使用统计软件计算 p值。
步骤1
收集数据:分别从两个独立样 本中收集数据,并记录在表格 中。
步骤3
计算t统计量:根据两组样本的 均数和标准差,计算t统计量。
步骤5
结果解读:根据p值判断两组 样本均数之间的差异是否具有 统计学上的显著性。
结果解读
• 结果解读:根据p值的大小来判断两 组样本均数之间的差异是否具有统计 学上的显著性。通常,如果p值小于 0.05,则认为两组样本均数之间存在 显著差异;如果p值大于0.05,则认 为两组样本均数之间无显著差异。
对差值数据进行描述性统计分析, 计算差值的均值和标准差。
计算t统计量
根据差值的均值、标准差以及自 由度,计算t统计量。
收集两个配对样本的数据
确保两个样本具有相同的样本量, 且每个样本中的数值都是配对的。
判断显著性
பைடு நூலகம்根据t分布表或使用统计软件,查 找对应的p值,判断两个配对样本 均数是否存在显著差异。
结果解读
伦理考虑
在实验设计过程中,还应考虑伦理问题。应 尊重受试者的权益和尊严,确保受试者的安 全和隐私。同时,应遵循国际公认的伦理准 则和法律法规,如《赫尔辛基宣言》等。
06 案例分析
均值比较(T检验,方差检验,非参数检验汇总)
均值⽐较(T检验,⽅差检验,⾮参数检验汇总)⼀、T检验⽤途:⽐较两组数据之间的差异前提:正态性,⽅差齐次性,独⽴性假设:H0: µ0=µ1H1: µ0≠µ1SPSS中对应⽅法:1、单样本T检验(One-sample Test)(1)⽬的:检验单个变量的均值与给定的某个常数是否⼀致。
(2)判断标准:p<0.05;t>1.98即认为是有显著差异的。
2、独⽴样本T检验(Indpendent-Samples T Test)(1)⽬的:检验两个独⽴样本均值是否相等。
(2)判断标准:p<0.05;t>1.98即认为是有显著差异的。
3、配对样本T检验(Paired-Samples T Test)(1)⽬的:检验两个配对样本均值是否相等。
(2)判断标准:p<0.05;t>1.98即认为是有显著差异的。
⼆、⽅差分析⽤途:⽐较多组数据之间的差异前提:正态性,⽅差齐次性,独⽴性假设:H0: µ0=µ1=……H1: µ0,µ1,……不全相等SPSS中对应⽅法:1、单因素⽅差分析(One-way ANOVA)(1)⽬的:检验由单⼀因素影响的多组样本均值差异。
(2)判断标准:p<0.05;t>1.98即认为是有显著差异的。
(3)特别说明:可以进⼀步使⽤LSD,Tukey⽅法检验两两之间的差异。
2、多因素⽅差分析(Univariate)(1)⽬的:检验由多个因素影响的多组样本均值差异。
(2)判断标准:p<0.05;t>1.98即认为是有显著差异的。
(3)特别说明:可以进⼀步使⽤LSD,Tukey⽅法检验两两之间的差异。
三、⾮参数检验⽤途:⽐较多组数据之间的差异,独⽴性等前提:没有严格限制,适⽤于母体不服从正态分布或分布情况不明时,亦可以适⽤于离散和连续数据。
SPSS中对应⽅法:1、卡⽅检验(Chi-Square)(1)⽬的:检验某个连续变量是否与理论的某种分布相⼀致;检验某个分类变量出现的概率是否等于给定的概率;检验两个分类变量是否相互独⽴;检验两种⽅法的结果是否⼀致;检验控制某种或某⼏种分类因素的作⽤后,另两个分类变量是否相互独⽴。
均值比较与T检验
Spss16.0与统计数据分析上机实验报告一、实验目的:1、掌握均值比较,用于计算指定变量的综合描述统计量;2、掌握单样本T检验(One-Sample T Test),检验单个变量的均值与假设检验之间是否存在差异;3、掌握独立样本T检验(Independent Sample T Test),用于检验两组来自独立总体的样本,其独立总体的均值或中心位置是否一样;4、掌握配对样本T检验(Paired-Sample T Test),用于检验两个相关的样本是否来自具有相同均值的总体。
二、实验内容:1.表5.14是某班级学生的高考数学成绩,试分析该班的数学成绩与全国的平均成绩70分之间是否有显著性差异。
表5.14 某班学生数学成绩解:由上表可看出,双尾检测概率P值为0.002,小于0.05,故拒绝零假设,也就是说在显著性水平0.05下,该班的数学成绩与全国的平均成绩70分之间有显著性差异。
2.在某次测试中,随机抽取男女同学的成绩各10名,数据如下:男:99 79 59 89 79 89 99 82 80 85女:88 54 56 23 75 65 73 50 80 65假设样本总体服从正态分布,比较在致信度为95%的情况下男女得分是否有显著性差异。
解:结果分析:对于齐次性,这里采用的是F检验,表中第二列是F统计量的值,为1.607,第三列是对应的概率P值,为0.221>0.05,可以认为两个总体的方差无显著性差异,即方差具备齐性。
在方差相等的情况下,两独立样本T检验结果应看表中的“Equal variances assumed”一行,第5列是相应的双尾检测概率为0.007<0.05,故拒绝零假设,即认为在致信度为95%的情况下男女得分有显著性差异。
3.某医疗机构为研究某种减肥药的疗效,对16位肥胖者进行为期半年的观察测试,测试指标为使用该药之前和之后的体重,数据如表5.15所示。
假设体重近似服从正态分布,试分析服药前后,体重是否有显著变化。
SPSS均值比较与T检验
.
7
H 西0 南财经大学出版社
5.1 统计推断与假设检验
2、假设检验的几个概念 (4) 概率p值
SPSS16.0与统计数据分析
p值是当零假设正确时,观测到的样本信息出现的概率。 如果这个概率很小,以至于几乎不可能在零假设正确时出现 目前的观测数据时,我们就拒绝零假设。p值越小,拒绝零假 设的理由就越充分。但怎样的p值才算“小”呢?通常是与预 先设定的显著性水平 值比较,若 值为0.05,p值小于0.05则 认为该概率值足够小,应拒绝零假设。
.
8
H 西0 南财经大学出版社
5.1 统计推断与假设检验
SPSS16.0与统计数据分析
3、假设检验的基本步骤
➢第1步 给出检验问题的原假设;
根据检验问题的要求,将需要检验的最终结果作为零假 设。例如,需要检验某学校的高考数学平均成绩是否同往年 的平均成绩一样,都为75,由此可做出零假设,H0 :75
④配对样本T检验(Paired-Sample T Test),用于检 验两个相关的样本是否来自具有相同均值的总体。
.
4
H 西0 南财经大学出版社
5.1 统计推断与假设检验
SPSS16.0与统计数据分析
2、假设检验的几个概念
(1)统计假设
➢ 原假设:在很多情况下,我们给出一个统计假设仅仅是
为了拒绝它。例如,如果我们要判断给定的一枚硬币是
.
3
西南财经大学出版社
5.1 统计推断与假设检验
SPSS16.0与统计数据分析
1、参数检验
①均值比较(Means),用于计算指定变量的 综合描述统计量;
Compare Means子菜单
②单样本T检验(One-Sample T Test),检验单个 变量的均值与假设检验值之间是否存在差异;
第5章-SPSS均值比较、T检验和方差分析
本例中大于相伴概率0.461,大于显著水 平0.05,不能拒绝方差相等的假设,可 以认为两个学校学生数学成绩方差无显 著差异;
在方差相等时看T检验结果,T检验值等 于相伴概率0.423,大于显著水平0.05,不 能拒绝T检验的零假设,可以认为两个学 校学生数学平均成绩无显著差异。
多重比较
3个组之间的相伴概率都小于显著水平0.05, 说明3个组之间都存在显著差别
作业3 方差分析
某百货公司的营销部根据不同家庭的价 值观细分了女性服装市场,分为保守型 、传统型和潮流型,另外调查了不同类 型家庭收入,见下表(单位:千元)。 能否推断出不同类型的家庭的收入是否 存在明显不同?
保守型家庭收入
一、Means过程
Means过程是按用户指定条件,对样本进 行分组计算均值和标准差。
计算公式:
n
x1i
x1
i 1
n
例1
以下是某个班同学的数学成绩,比较不同性别 同学的数学成绩平均值和方差。
性别 male female
数学 99 79 59 89 79 89 99 88 54 56 23 70 80 67
作业
一家企业生产某种产品,随机抽取50 名工人,分成两个组,每组25名工人, 用A方法生产所需时间:
6.8
5
7.9
5.2
7.6
6.1
6.2
7.1
4.6
6
6.4
6.1
6.6
7.7
6.4
5
5.9
5.2
6.5
7.4
7.1
6.1
5
6.3
7
作业
用B方法生产所需时间:
5.2
6.7
均值比较与t检验
均值比较与t检验第3章均值比较与t检验(t代表平均值间的差距p代表的是可信度)3.1样本平均数与总体平均数差异显著性检验在实际工作中,我们往往需要检验一个样本平均数与已知的总体平均数是否有显著差异,即检验该样本是否来自某一总体,已知的总体平均数一般为一些公认的理论数值、经验数值或期望数值,比较的目的是推断样本所代表的未知总体均数与已知总体均数有无差别。
例题:已知玉米单交种群单105的平均穗重为300g,喷药后随机抽取9个果穗称重,穗重分别为:308、305、311、298、315、300、321、294、320g,问喷药前后果穗穗重差异是否显著。
结果界面包括描述性统计量表(One-SampleStatitic)和t检验表(One-SampleTet)两个表格。
描述性统计量表中输出样本含量、均数、标准差和标准误;t检验表中显示t值(t)自由度(df)、双尾P值(Sig.2-tailed)、样本均数与已知总体均数的差值(MeanDifference)、差值的95%或99%置信区间的上限与下限(95%ConfidenceIntervaloftheDifference,Lower,Upper)。
3.2独立样本t检验在实际工作中,还经常会遇到推断两个样本平均数差异是否显著的问题,以了解两样本所属总体的平均数是否相同。
因试验设计不同,一般可分为:非配对或成组设计两样本平均数的差异显著性检验和配对设计两样本平均数的差异显著性检验。
非配对设计或成组设计是指当进行只有两个处理的试验时,将试验单位完全随机地分成两个组,然后对两组随机施加一个处理。
在这种设计中两组的试验单位相互独立,所得的两个样本相互独立,其含量不一定相等。
例题:某家禽研究所对粤黄鸡进行饲养对比试验,试验时间为60天,增重结果如下,问两种饲料对粤黄鸡的增重效果有无显著差异?t检验表(Independent-SampleTet)较为复杂,第一部分列出的是两样本方差齐性检验(Levene'TetforEqualityofVariance)的F值(F)和显著概率值(Sig.)。
均值比较t检验的前提条件
均值比较t检验的前提条件说到均值比较t检验的前提条件,是不是觉得有点儿复杂?一提到这些术语,很多人脑袋就开始冒烟,心里想着:这东西到底是怎么回事?没那么难!咱们今天就来聊聊,轻松又简单地搞定这个话题。
大家拿好小板凳,准备好喝口水,我这就给你讲讲什么是“t检验”的前提条件,保证你听得懂,也能学得会。
t检验是干嘛的?你可以把它想象成一种“比较武器”,它用来帮助我们比较两个群体的平均值(均值)到底有没有显著差异。
比如说,你做了一个小实验,想知道男生和女生的身高是不是有明显差别,t检验就能告诉你答案。
哎呀,别看这个工具名字很专业,实际上它并不难,学会了也不容易晕头转向。
可是,问题来了,什么样的情况才能用t检验呢?这就是咱们今天要说的前提条件了。
第一条,数据得是独立的。
什么意思呢?就是你研究的两组数据得互不干扰。
举个例子,你不能拿一个班里的男生和女生来做对比,然后发现两组人情感上有很深的纠葛,结果就不公平了。
假如你想比较A班和B班的成绩,记住,A班和B班的数据得互不相关,不能有交集、不能有影响。
咱说白了,就是要给每个人一把独立的伞,别让两把伞碰到一起,数据自然就靠谱。
第二条,数据得符合正态分布。
这里听着有点拗口,但它其实就是告诉你,数据要像一个标准的钟形曲线那样分布。
什么意思呢?也就是大部分数据应该集中在平均值附近,只有少部分数据会出现在两边——这就是正态分布。
比如你测量100个同学的身高,大部分人应该差不多,而特别高或者特别矮的那几个人就是少数。
哎,数据不符合正态分布该怎么办呢?别担心,有些时候我们可以通过一些方法让数据接近正态分布,比如通过转换数据来“救救场”。
再往下看,数据得是连续的。
这里面有点小陷阱哦。
什么叫连续数据?就是数据之间的差距是可测量、可以分得很细的。
例如身高、体重这些都是连续数据,你可以知道一个人身高175.2厘米,另一个是175.5厘米,细得很。
可如果你用“满意”或者“不满意”这种二选一的选项,哎,那就不适合t检验了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 配对样本t检验的不同之处
• 慢性气管炎病人与健康人血液胆碱酯酶活性测定
慢性支气管炎病人血液中胆碱酯酶活性常常偏高。某高 校将同性别同年龄的病人与健康人配成8对,能否通过测量 值作出结论认为病人血液中胆碱酯酶活性的确比健康人偏 高?
• 执行【Analyze】/【Compare Means】/【Paired-Sample T Test】命令,弹出如下图所示对话框。
• 男女身高比较
已知从甲、乙两地各抽取60名12岁的学生,其中 男女各占一半,利用【Means】过程比较身高是否 受地区和性别的影响。执行【Analyze】/ 【Compare Means】/【Means】命令,弹出如图所 示对话框
体重为 因变量
地区和 性别作 为同层
变量
选择描 述性统
别
正常饲料组
维生素E缺乏饲料组
1
37.2
25.7
2
20.9
25.1
3
31.4
18.8
4
41.4
33.5
5
39.8
34.0
6
39.3
.2
8
31.9
18.3
谢谢捧场
设有甲、乙两种安眠药,比较它们的治疗效果。以X表示 失眠病人服从甲药后睡眠时间延长的时数;用Y表示服乙药 后睡眠时间延长的时数。现在独立观察16个病人,其中8人 服甲药,另8人服乙药,延长时数如表所示。
假设X与Y都服从正态分布。试问,这两种药的疗效有无显 著差异。
• 执行【Analyze】/【Compare Means】/【IndependentSample T Test】命令,弹出下图所示对话框。
2、假设不同 在独立两样本t检验中,H0为假设两样本均值相等。H1为
假设两样本均值不相等。
3、统计量计算不同
◆注意
1、两样本必须是独立的。
2、样本来自的总体要服从正态分布。
3、在进行独立两样本t检验之前,要通 过F检验来看两样本的方差是否相等。 从而选取恰当的统计方法。
• 安眠葯疗效差别检验
如果两组数据没有差别,那么其样本差值的均值应该在0附 近波动。否则为两组数据是有差别的。这种方法的本质就 是在对配对样本的差值同总体均值0做单样本t检验。
◆注意
单样本t检验和独立两样本t检验样本内部数据的 顺序是可以任意调换。而配对样本t检验的样本必 须是一一对应的。样本内数据的顺序不能随意交 换顺序。
新教学 原教学 方法 方 法
83
78
69
65
87
88
93
91
78
72
59
59
2、对某校学生的抽样调查数据如下表。
编号 1 2 3 4 5 6 7 8 9 10
性别 男 男 男 男 男 女 女 女 女 女
身高(厘米) 176 155 154.6 161.5 161.3 158 161 162 154.3 144
(2)分组变量设置为两层,则输出一个交叉表格。
将“sex”作为第一层分组变量,“area”作为第二层分组变量, 二者之间是有层次关系的,所以最后输出的是先按性别分组,在 同一性别内再按地区分组的一张基本信息表。
3.3 单样本t检验的一般步骤
◆ 注意
• 1、检验统计量未落入拒绝域内,仅仅是不 拒绝它,并不能代表就一定要接受它。
体重(千克) 47.5 37.8 38.6 41.6 43.3 47.3 47.4 47 38.8 33.8
问:(1)男性的身高与女性的身高是否相等? (2)学生的体重是否等于45公斤?
• 1.双样本T检验(Independent-Samples T Test过 程)
• 分别测得14例老年性慢性支气管炎病人及11例健 康人的尿中17酮类固醇排出量(mg/dl)如下,试 比较两组均数有无差别。
●Test Variables: 用于选入需要分 析的变量。
●Test Value框: 在此处输入已知 的总体均值,默 认值为0。
●Options:弹出 Options对话框
• 结果解读
• 1、单样本统计表 • 2、单样本t检验
1 2
3.4 独立两样本t检验
与单样本t检验的不同
1、比较内容不同 单样本t检验是检验样本均值和总体均值是否相等。而独立 两样本t检验是检验两个独立样本的均值是否相等。
• 结果解读 1、分组统计量
• 2、独立两样本t检验
方差齐次性检验 t检验结果
3.5 配对样本t检验
• 原理概述 1、配对样本t检验是配对设计的样本差数的均值同总体均值0
比较的t检验。
2、配对样本t检验是针对配对数据的t检验。其检验方法是首 先求出每对样本的差值,然后比较样本差值的均值和总体 均值0之间的关系。
• 2、样本来自的总体要服从正态分布。
• 铁水含碳量抽样数据 已知某炼铁厂铁水含量服从均值为4.53的正态分布,某日 随机测定了9炉铁水,含碳量如下表所示
问该日铁水平均含碳量是否仍为4.53。
• 执行【Analyze】/【Compare Means】/【One-Sample T Test】命令,弹出如下图所示对话框
病 2.90 5.41 5.48 4.60 4.03 5.10 人 4.97 4.24 4.36 2.72 2.37 2.09
7.10 5.92
健 5.18 8.79 3.14 6.46 3.72 6.64 康 5.60 4.57 7.71 4.99 4.01 人
• 2.成对样本T检验(Paired-Samples T Test过程)
• 某单位研究饲料中缺乏维生素E与肝中维生素A含 量的关系,将大白鼠按性别、体重等配为8对,每 对中两只大白鼠分别喂给正常饲料和维生素E缺乏 饲料,一段时期后将之宰杀,测定其肝中维生素A 含量(mol/L)如下,问饲料中缺乏维生素E对鼠 肝中维生素A含量有无影响?
大白鼠对 肝中维生素A含量(mol/L)
计量
输出的 统计量
定义是 否进行 分组第 一层变 量的方 差分析 和线性
检验
身高与性别的比较
身高与地区的比较
选取不同分层变量对结果的影响
(1)分组变量设置为一层,则输出两个独立的表格。
将两个分组变量“sex”和“area”定义在同一层内,即二者 是平等的关系,所以会分别按照性别和地区分组输出两张基本信 息表。
• 结果解读 1、分组统计量
2、配对结果相关分析
3、配对样本t检验
实验
•序号新教学方法原教学方法
• 1、为了研究两种教学方法 的效果。选择了6对智商、 年龄、阅读能力、家庭条 件都相同的儿童进行了实 验。结果(测试分数)如 下:
• 问:能否认为新教学方法 等于(优于)原教学方法 ?
序号
1 2 3 4 5 6