福建省莆田市2021届新高考数学一模试卷含解析

合集下载

2021年全国新高考Ⅰ卷数学试题(解析版)

2021年全国新高考Ⅰ卷数学试题(解析版)

2021年普通高等学校招生全国统一考试数学本试卷共4页,22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名.考生号.考场号和座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写再写上上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一.选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ( )A.{}2 B.{}2,3 C.{}3,4 D.{}2,3,4【.案】B 【解析】【分析】利用交集的定义可求A B .【详解】由题设有{}2,3A B ⋂=,故选:B .2. 已知2i z =-,则()i z z +=( )A. 62i -B. 42i- C. 62i+ D. 42i+【答案】C 【解析】【分析】利用复数的乘法和共轭复数的定义可求得结果.【详解】因为2z i =-,故2z i =+,故()()()22262z z i i i i+=-+=+故选:C.3. 已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为( )A. 2 B. 22C. 4D. 42【答案】B【解析】【分析】设圆锥的母线长为l ,根据圆锥底面圆的周长等于扇形的弧长可求得l 的值,即为所求.【详解】设圆锥的母线长为l ,由于圆锥底面圆的周长等于扇形的弧长,则22l ππ=⨯,解得22l =.故选:B.4. 下列区间中,函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是( )A. 0,2π⎛⎫ ⎪⎝⎭ B. ,2ππ⎛⎫ ⎪⎝⎭ C. 3,2ππ⎛⎫ ⎪⎝⎭ D. 3,22ππ⎛⎫⎪⎝⎭【答案】A 【解析】【分析】解不等式()22262k x k k Z πππππ-<-<+∈,利用赋值法可得出结论.【详解】因为函数sin y x =的单调递增区间为()22,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,对于函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭,由()22262k x k k Z πππππ-<-<+∈,解得()22233k x k k Z ππππ-<<+∈,取0k =,可得函数()f x 的一个单调递增区间为2,33ππ⎛⎫- ⎪⎝⎭,则20,,233πππ⎛⎫⎛⎫⊆- ⎪ ⎪⎝⎭⎝⎭,2,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭,A 选项满足条件,B 不满足条件;取1k =,可得函数()f x 的一个单调递增区间为58,33ππ⎛⎫⎪⎝⎭,32,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭且358,,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,358,2,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,CD 选项均不满足条件.故选:A.【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成()sin y A ωx φ=+形式,再求()sin y A ωx φ=+的单调区间,只需把x ωϕ+看作一个整体代入sin y x =的相应单调区间内即可,注意要先把ω化为正数.5. 已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( )A. 13B. 12C. 9D. 6【答案】C 【解析】【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立).故选:C .【点睛】本题关键在于正确理解能够想到求最值的方法,即通过基本不等式放缩得到.6. 若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+( )A. 65- B. 25- C. 25 D. 65【答案】C 【解析】【分析】将式子进行齐次化处理,代入tan 2θ=-即可得到结果.【详解】将式子进行齐次化处理得:()()()22sin sin cos 2sin cos sin 1sin 2sin sin cos sin cos sin cos θθθθθθθθθθθθθθ+++==+++()2222sin sin cos tan tan 422sin cos 1tan 145θθθθθθθθ++-====+++.故选:C .【点睛】易错点睛:本题如果利用tan 2θ=-,求出sin ,cos θθ的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论.7. 若过点(),a b 可以作曲线e xy =的两条切线,则( )A. e ba < B. e ab <C. 0e ba << D. 0eab <<【答案】D 【解析】【分析】根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果【详解】在曲线x y e =上任取一点(),t P t e ,对函数x y e =求导得e x y '=,所以,曲线x y e =在点P 处的切线方程为()t t y e e x t -=-,即()1t t y e x t e =+-,由题意可知,点(),a b 在直线()1t t y e x t e =+-上,可得()()11t t t b ae t e a t e =+-=+-,令()()1tf t a t e =+-,则()()tf t a t e '=-.当t a <时,()0f t '>,此时函数()f t 单调递增,当t a >时,()0f t '<,此时函数()f t 单调递减,所以,()()max af t f a e ==,由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max a b f t e <=,当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0ab e <<时,直线y b =与曲线()y f t =的图象有两个交点.故选:D.【点睛】数形结合是解决数学问题常用且有效的方法8. 有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )A. 甲与丙相互独立 B. 甲与丁相互独立C. 乙与丙相互独立 D. 丙与丁相互独立【答案】B 【解析】【分析】根据独立事件概率关系逐一判断【详解】11561()()()()6636366P P P P =====甲,乙,丙,丁,,1()0()()()()()36P P P P P P =≠==甲丙甲丙,甲丁甲丁,1()()()()0()()36P P P P P P =≠=≠乙丙乙丙,丙丁丁丙,故选:B【点睛】判断事件,A B 是否独立,先计算对应概率,再判断()()()P A P B P AB =是否成立二.选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 有一组样本数据1x ,2x ,…,nx ,由这组数据得到新样本数据1y ,2y ,…,ny ,其中i i y x c=+(1,2,,),i n c =⋅⋅⋅为非零常数,则( )A. 两组样本数据的样本平均数相同B. 两组样本数据的样本中位数相同C. 两组样本数据的样本标准差相同D. 两组样数据的样本极差相同【答案】CD 【解析】【分析】A 、C 利用两组数据的线性关系有()()E y E x c =+、()()D y D x =,即可判断正误;根据中位数、极差的定义,结合已知线性关系可判断B 、D 的正误.【详解】A :()()()E y E x c E x c =+=+且0c ≠,故平均数不相同,错误;B :若第一组中位数为i x ,则第二组的中位数为i i y x c =+,显然不相同,错误;C :()()()()D y D x D c D x =+=,故方差相同,正确;D :由极差的定义知:若第一组的极差为max minx x -,则第二组的极差为max min max min max min()()y y x c x c x x -=+-+=-,故极差相同,正确;故选:CD10. 已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则( )A12OP OP = B. 12AP AP =C.312OA OP OP OP ⋅=⋅ D.123OA OP OP OP ⋅=⋅ 【答案】AC 【解析】【分析】A 、B 写出1OP,2OP 、1AP,2AP 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以221||cos sin 1OP αα=+= ,222||(cos )(sin )1OP ββ=+-= ,故12||||OP OP = ,正确;B :1(cos 1,sin )AP αα=- ,2(cos 1,sin )AP ββ=-- ,所以222221||(cos 1)sin cos 2cos 1sin 2(1cos )4sin 2|sin |22AP αααααααα=-+=-++=-== ,同理222||(cos 1)sin 2|sin |2AP βββ=-+= ,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+ ,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯= ,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+22cos cos sin sin cos sin sin cos cos sin αβαββαββαβ=---cos cos 2sin sin 2cos(2)αβαβαβ=-=+,错误;故选:AC11. 已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A. 点P 到直线AB 的距离小于10B. 点P 到直线AB 的距离大于2C. 当PBA ∠最小时,32PB =D. 当PBA ∠最大时,32PB =【答案】ACD 【解析】【分析】计算出圆心到直线AB 的距离,可得出点P 到直线AB 的距离的取值范围,可判断AB 选项的正误;分析可知,当PBA ∠最大或最小时,PB 与圆M 相切,利用勾股定理可判断CD 选项的正误.【详解】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142x y +=,即240x y +-=,圆心M 到直线AB 的距离为2252541111545512+⨯-==>+,所以,点P 到直线AB 的距离的最小值为115425-<,最大值为1154105+<,A 选项正确,B 选项错误;如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,()()22052534BM =-+-=,4MP =,由勾股定理可得2232BP BM MP =-=,CD 选项正确.故选:ACD.【点睛】结论点睛:若直线l 与半径为r 圆C 相离,圆心C 到直线l 的距离为d ,则圆C 上一点P 到直线l 的距离的取值范围是[],d r d r -+.12. 在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+ ,其中[]0,1λ∈,[]0,1μ∈,则( )A. 当1λ=时,1AB P △的周长为定值B. 当1μ=时,三棱锥1P A BC-的体积为定值C. 当12λ=时,有且仅有一个点P ,使得1A P BP⊥D. 当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P【答案】BD 【解析】【分析】对于A ,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B ,将P 点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值;对于C ,考虑借助向量平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数;对于D ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数.【详解】易知,点P 在矩形11BCC B 内部(含边界).对于A ,当1λ=时,11=BP BC BB BC CC μμ=++,即此时P ∈线段1CC ,1AB P △周长不是定值,故A错误;对于B ,当1μ=时,1111=BP BC BB BB B C λλ=++,故此时P 点轨迹为线段11B C ,而11//B C BC ,11//B C 平面1A BC ,则有P 到平面1A BC 的距离为定值,所以其体积为定值,故B 正确.对于C ,当12λ=时,112BP BC BB μ=+ ,取BC ,11B C 中点分别为Q ,H ,则BP BQ QH μ=+ ,所以P 点轨迹为线段QH ,不妨建系解决,建立空间直角坐标系如图,13,0,12A ⎛⎫⎪ ⎪⎝⎭,()0,0P μ,,10,,02B ⎛⎫ ⎪⎝⎭,则13,0,12A P μ⎛⎫=-- ⎪ ⎪⎝⎭ ,10,,2BP μ⎛⎫=-⎪⎝⎭ ,()10μμ-=,所以0μ=或1μ=.故,H Q 均满足,故C 错误;对于D ,当12μ=时,112BP BC BB λ=+ ,取1BB ,1CC 中点为,M N .BP BM MN λ=+ ,所以P 点轨迹为线段MN .设010,,2P y ⎛⎫ ⎪⎝⎭,因为30,02A ⎛⎫ ⎪ ⎪⎝⎭,,所以031,,22AP y ⎛⎫=- ⎪ ⎪⎝⎭ ,131,,122A B ⎛⎫=-- ⎪ ⎪⎝⎭ ,所以00311104222y y +-=⇒=-,此时P 与N 重合,故D 正确.故选:BD .【点睛】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内.三.填空题:本题共4小题,每小题5分,共20分.13. 已知函数()()322x x x a f x -=⋅-是偶函数,则a =______.【答案】1【解析】【分析】利用偶函数的定义可求参数a 的值.【详解】因为()()322x x x a f x -=⋅-,故()()322x x f x x a --=-⋅-,因为()f x 为偶函数,故()()f x f x -=,时()()332222x x x x x a x a --⋅-=-⋅-,整理得到()()12+2=0x x a --,故1a =,故答案为:114. 已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______.【答案】32x =-【解析】【分析】先用坐标表示P Q ,,再根据向量垂直坐标表示列方程,解得p ,即得结果.【详解】不妨设(,)(6,0),(6,)22p pP p Q PQ p ∴+=- 因为PQ OP ⊥,所以260032p p p p ⨯-=>∴=∴ C 的准线方程为32x =-故答案为:32x =-【点睛】利用向量数量积处理垂直关系是本题关键.15. 函数()212ln f x x x=--的最小值为______.【答案】1【解析】【分析】由解析式知()f x 定义域为(0,)+∞,讨论102x <≤、112x <≤、1x >,并结合导数研究的单调性,即可求()f x 最小值.【详解】由题设知:()|21|2ln f x x x =--定义域为(0,)+∞,∴当102x <≤时,()122ln f x x x =--,此时()f x 单调递减;当112x <≤时,()212ln f x x x =--,有2()20f x x '=-≤,此时()f x 单调递减;当1x >时,()212ln f x x x =--,有2()20f x x '=->,此时()f x 单调递增;又()f x 在各分段的界点处连续,∴综上有:01x <≤时,()f x 单调递减,1x >时,()f x 单调递增;∴()(1)1f x f ≥=故答案为:1.16. 某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折n 次,那么1nkk S==∑______2dm .【答案】 (1). 5 (2). ()41537202n n -+-【解析】【分析】(1)按对折列举即可;(2)根据规律可得n S ,再根据错位相减法得结果.【详解】(1)对折4次可得到如下规格:5124dm dm ⨯,562dm dm ⨯,53dm dm ⨯,3102dm dm⨯,3204dm dm⨯,共5种;(2)由题意可得12120S =⨯,2360S =⨯,3430S =⨯,4515S =⨯, ,()112012n n n S -+=,设()012112011202120312042222n n S -+⨯⨯⨯=++++ ,则()121120111202120312022222n n n n S -+⨯⨯=++++,两式作差得()()12116011201120111112240120240122222212n n n nn n S --⎛⎫- ⎪++⎛⎫⎝⎭=++++-=+- ⎪⎝⎭- ()()112011203120360360222n n n n n -++=--=-,因此,()()4240315372072022nn n n S -++=-=-.故答案为:5;()41537202n n -+-.【点睛】方法点睛:数列求和常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和;(3)对于{}n n a b +结构,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为()0d d ≠,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和.四.解答题:本题共6小题,共70分.解答应写出写出文文字说明.证明过程或演算步骤.17. 已知数列{}n a 满足11a =,11,,2,.nn n a n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.【答案】(1)122,5b b ==;(2)300.【解析】【分析】(1)根据题设中的递推关系可得13n n b b +=+,从而可求{}n b 的通项.(2)根据题设中的递推关系可得{}n a 的前20项和为20S 可化为()2012910210S b b b b =++++- ,利用(1)的结果可求20S .【详解】(1)由题设可得121243212,1215b a a b a a a ==+===+=++=又22211k k a a ++=+,2122k k a a +=+,故2223k k a a +=+即13n n b b +=+即13n n b b +-=所以{}n b 为等差数列,故()21331n b n n =+-⨯=-.(2)设{}n a 的前20项和为20S ,则2012320S a a a a =++++ ,因为123419201,1,,1a a a a a a =-=-=- ,所以()20241820210S a a a a =++++- ()1291091021021023103002b b b b ⨯⎛⎫=++++-=⨯⨯+⨯-= ⎪⎝⎭ .【点睛】方法点睛:对于数列的交叉递推关系,我们一般利用已知的关系得到奇数项的递推关系或偶数项的递推关系,再结合已知数列的通项公式、求和公式等来求解问题.18. 某学校组织“一带一路”知识竞赛,有A ,B 两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束:若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分:B 类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A 类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A 类问题,记X 为小明的累计得分,求X 的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.【答案】(1)见解析;(2)B 类.【解析】【分析】(1)通过题意分析出小明累计得分X 的所有可能取值,逐一求概率列分布列即可.(2)与(1)类似,找出先回答B 类问题的数学期望,比较两个期望的大小即可.【详解】(1)由题可知,X 的所有可能取值为0,20,100.()010.80.2P X ==-=;()()200.810.60.32P X ==-=;()1000.80.60.48P X ==⨯=.所以X 的分布列为(2)由(1)知,()00.2200.321000.4854.4E X =⨯+⨯+⨯=.若小明先回答B 问题,记Y 为小明的累计得分,则Y 的所有可能取值为0,80,100.()010.60.4P Y ==-=;()()800.610.80.12P Y ==-=;()1000.80.60.48P X ==⨯=.所以()00.4800.121000.4857.6E Y =⨯+⨯+⨯=.因为54.457.6<,所以小明应选择先回答B 类问题.19. 记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC∠【答案】(1)证明见解析;(2)7cos 12ABC ∠=.【解析】【分析】(1)根据正弦定理的边角关系有acBD b =,结合已知即可证结论.(2)由题设2,,33b b BD b AD DC ===,应用余弦定理求cos ADB ∠、cos CDB ∠,又ADB CDB π∠=-∠,可得42221123b b a a +=,结合已知及余弦定理即可求cos ABC ∠.【详解】(1)由题设,sin sin a C BD ABC =∠,由正弦定理知:sin sin c b C ABC =∠,即sin sin C cABC b =∠,∴acBD b =,又2b ac =,∴BD b =,得证.(2)由题意知:2,,33b b BD b AD DC ===,∴22222241399cos 24233b b b c c ADB b b b +--∠==⋅,同理2222221099cos 2233b b b a a CDB b b b +--∠==⋅,∵ADB CDB π∠=-∠,∴2222221310994233b b c a b b --=,整理得2221123b a c +=,又2b ac =,∴42221123b b a a +=,整理得422461130a a b b -+=,解得2213a b=或2232a b =,由余弦定理知:222224cos 232a c b a ABC ac b +-∠==-,当2213a b =时,7cos 16ABC ∠=>不合题意;当2232a b=时,7cos 12ABC ∠=;综上,7cos 12ABC ∠=.【点睛】关键点点睛:第二问,根据余弦定理及ADB CDB π∠=-∠得到,,a b c 的数量关系,结合已知条件及余弦定理求cos ABC ∠.20. 如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】(1)详见解析(2) 36【解析】【分析】(1)根据面面垂直性质定理得AO ⊥平面BCD ,即可证得结果;(2)先作出二面角平面角,再求得高,最后根据体积公式得结果.【详解】(1)因为AB=AD,O 为BD 中点,所以AO ⊥BD因为平面ABD 平面BCD =BD ,平面ABD ⊥平面BCD ,AO ⊂平面ABD ,因此AO ⊥平面BCD ,因为CD ⊂平面BCD ,所以AO ⊥CD (2)作EF ⊥BD 于F, 作FM ⊥BC 于M,连FM 因为AO ⊥平面BCD ,所以AO ⊥BD, AO ⊥CD所以EF ⊥BD, EF ⊥CD, BD CD D ⋂=,因此EF ⊥平面BCD ,即EF ⊥BC 因为FM ⊥BC ,FM EF F = ,所以BC ⊥平面EFM ,即BC ⊥MF 则EMF ∠为二面角E-BC-D 的平面角,4EMF π∠=因为BO OD =,OCD 为正三角形,所以OCD 为直角三角形因为2BE ED =,1112(1)2233FM BF ∴==+=从而EF=FM=213AO ∴=AO ⊥ 平面BCD,所以11131133326BCD V AO S ∆=⋅=⨯⨯⨯⨯=【点睛】二面角的求法:一是定义法,二是三垂线定理法,三是垂面法,四是投影法.21. 在平面直角坐标系xOy 中,已知点()117,0F -、()21217,02F MF MF-=,点M 的轨迹为C .(1)求C 的方程;(2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)()221116y x x -=≥;(2)0.【解析】【分析】(1)利用双曲线的定义可知轨迹C 是以点1F 、2F 为左、右焦点双曲线的右支,求出a 、b 的值,即可得出轨迹C 的方程;(2)设点1,2T t ⎛⎫ ⎪⎝⎭,设直线AB 的方程为112y t k x ⎛⎫-=- ⎪⎝⎭,设点()11,A x y 、()22,B x y ,联立直线AB 与曲线C 的方程,列出韦达定理,求出TA TB⋅的表达式,设直线PQ 的斜率为2k ,同理可得出TP TQ⋅的表达式,由TA TB TP TQ⋅=⋅化简可得12k k +的值.【详解】因为12122217MF MF F F -=<=,所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b -=>>,则22a =,可得1a =,2174b a =-=,所以,轨迹C 的方程为()221116y x x -=≥;(2)设点1,2T t ⎛⎫ ⎪⎝⎭,若过点T 的直线的斜率不存在,此时该直线与曲线C 无公共点,不妨直线AB 的方程为112y t k x ⎛⎫-=- ⎪⎝⎭,即1112y k x t k =+-,联立1122121616y k x t k x y ⎧=+-⎪⎨⎪-=⎩,消去y 并整理可得()()222111111621602k x k t k x t k ⎛⎫-+-+-+= ⎪⎝⎭,设点()11,A x y 、()22,B x y ,则112x >且212x >.由韦达定理可得2111221216k k t x x k -+=-,211221116216t k x x k ⎛⎫-+ ⎪⎝⎭=-,所以,()()()()22122121121122112111*********t k x x TA TB k x x k x x k +++⎛⎫⋅=+⋅-⋅-=+⋅-+= ⎪-⎝⎭,设直线PQ 的斜率为2k ,同理可得()()2222212116t k TP TQ k ++⋅=-,因为TA TB TP TQ⋅=⋅,即()()()()22221222121211211616tk t k k k ++++=--,整理可得2212k k =,即()()12120k k k k -+=,显然120k k -≠,故120k k +=.因此,直线AB 与直线PQ 的斜率之和为0.【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22. 已知函数()()1ln f x x x =-.(1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b <+<.【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见解析.【解析】【分析】(1)求出函数的导数,判断其符号可得函数的单调区间;(2)设1211,x x a b ==,原不等式等价于122x x e <+<,前者可构建新函数,利用极值点偏移可证,后者可设21x tx =,从而把12x x e+<转化为()()1ln 1ln 0t t t t -+-<在()1,+∞上的恒成立问题,利用导数可证明该结论成立.【详解】(1)函数的定义域为()0,∞+,又()1ln 1ln f x x x'=--=-,当()0,1x ∈时,()0f x '>,当()1,+x ∈∞时,()0f x '<,故()f x 的递增区间为()0,1,递减区间为()1,+∞.(2)因为ln ln b a a b a b -=-,故()()ln 1ln +1b a a b +=,即ln 1ln +1a b a b +=,故11f f a b ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,设1211,x x a b ==,由(1)可知不妨设1201,1x x <<>.因为()0,1x ∈时,()()1ln 0f x x x =->,(),x e ∈+∞时,()()1ln 0f x x x =-<,故21x e <<.先证:122x x +>,若22x ≥,122x x +>必成立.若22x <, 要证:122x x +>,即证122x x >-,而2021x <-<,故即证()()122f x f x >-,即证:()()222f x f x >-,其中212x <<.设()()()2,12g x f x f x x =--<<,则()()()()2ln ln 2g x f x f x x x '''=+-=---()ln 2x x =--⎡⎤⎣⎦,因为12x <<,故()021x x <-<,故()ln 20x x -->,所以()0g x '>,故()g x 在()1,2为增函数,所以()()10g x g >=,故()()2f x f x >-,即()()222f x f x >-成立,所以122x x +>成立,综上,122x x +>成立.设21x tx =,则1t >,结合ln 1ln +1a b a b +=,1211,x x a b ==可得:()()11221ln 1ln x x x x -=-,即:()111ln 1ln ln x t t x -=--,故11ln ln 1t t tx t --=-,要证:12x x e +<,即证()11t x e +<,即证()1ln 1ln 1t x ++<,即证:()1ln ln 111t t tt t --++<-,即证:()()1ln 1ln 0t t t t -+-<,令()()()1ln 1ln ,1S t t t t t t =-+->,则()()112ln 11ln ln 111t S t t t t t t -⎛⎫'=++--=+- ⎪++⎝⎭,先证明一个不等式:()ln 1xx ≤+.设()()ln 1u x x x=+-,则()1111x u x x x -'=-=++,当10x -<<时,()0u x '>;当x >时,()0u x '<,故()u x 在()1,0-上为增函数,在()0,+∞上为减函数,故()()max 00u x u ==,故()ln 1xx ≤+成立由上述不等式可得当1t >时,112ln 11t t t ⎛⎫+≤<⎪+⎝⎭,故()0S t '<恒成立,故()S t 在()1,+∞上为减函数,故()()10S t S <=,故()()1ln 1ln 0t t t t -+-<成立,即12x x e +<成立.综上所述,112e a b <+<.【点睛】方法点睛:极值点偏移问题,一般利用通过原函数的单调性,把与自变量有关的不等式问题转化与原函数的函数值有关的不等式问题,也可以引入第三个变量,把不等式的问题转化为与新引入变量有关的不等式问题.。

福建省莆田市2021届新高考数学模拟试题(3)含解析

福建省莆田市2021届新高考数学模拟试题(3)含解析

福建省莆田市2021届新高考数学模拟试题(3)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.ABC V 中,点D 在边AB 上,CD 平分ACB ∠,若CB a =u u u r r ,CA b =u u u r r ,2a =r,1b =r ,则CD =u u u r ( )A .2133a b +r rB .1233a b +r rC .3455a b +r rD .4355a b +r r【答案】B 【解析】 【分析】由CD 平分ACB ∠,根据三角形内角平分线定理可得BD CBDA CA=,再根据平面向量的加减法运算即得答案. 【详解】CD Q 平分ACB ∠,根据三角形内角平分线定理可得BD CBDA CA=, 又CB a =u u u r r ,CA b =u u u r r,2a =r ,1b =r ,2,2BDBD DA DA∴=∴=. ()22123333CD CB BD CB BA a b a a b ∴=+=+=+-=+u u u r u u u r u u u r u u u r u u u r r r r r r .故选:B . 【点睛】本题主要考查平面向量的线性运算,属于基础题.2.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:====,则按照以上规律,若=“穿墙术”,则n =( )A .48B .63C .99D .120【答案】C 【解析】 【分析】观察规律得根号内分母为分子的平方减1,从而求出n. 【详解】解:观察各式发现规律,根号内分母为分子的平方减1【点睛】本题考查了归纳推理,发现总结各式规律是关键,属于基础题.3.已知实数,x y 满足约束条件30202x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则3z x y =+的最小值为( )A .-5B .2C .7D .11【答案】A 【解析】 【分析】根据约束条件画出可行域,再将目标函数化成斜截式,找到截距的最小值. 【详解】由约束条件30202x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,画出可行域ABC V 如图3z x y =+变为3y x z =-+为斜率为-3的一簇平行线,z 为在y 轴的截距, ∴z 最小的时候为过C 点的时候,解3020x y x y -+=⎧⎨+=⎩得21x y =-⎧⎨=⎩所以()2,1C -,此时()33215z x y =+=⨯-+=- 故选A 项【点睛】本题考查线性规划求一次相加的目标函数,属于常规题型,是简单题. 4.下列命题为真命题的个数是( )(其中π,e 为无理数) 32e >;②2ln 3π<;③3ln 3e<. A .0 B .1C .2D .3【答案】C对于①中,根据指数幂的运算性质和不等式的性质,可判定值正确的;对于②中,构造新函数()2ln ,03f x x x =->,利用导数得到函数为单调递增函数,进而得到()()f f e π>,即可判定是错误的;对于③中,构造新函数()ln ,0f x e x x x =->,利用导数求得函数的最大值为()0f e =,进而得到()30f <,即可判定是正确的.【详解】由题意,对于①中,由239,() 2.2524e ===,可得 2.25e >,根据不等式的性质,32>成立,所以是正确的;对于②中,设函数()2ln ,03f x x x =->,则()10f x x'=>,所以函数为单调递增函数, 因为e π>,则()()ff e π>又由()221ln 10333f e e =-=-=>,所以()0f π>,即2ln 3π>,所以②不正确; 对于③中,设函数()ln ,0f x e x x x =->,则()1e e xf x x x-'=-=,当(0,)x e ∈时,()0f x '>,函数()f x 单调递增, 当(,)x e ∈+∞时,()0f x '<,函数()f x 单调递减,所以当x e =时,函数取得最大值,最大值为()ln 0f e e e e =-=, 所以()3ln330f e =-<,即ln33e <,即3ln 3e<,所以是正确的. 故选:C. 【点睛】本题主要考查了不等式的性质,以及导数在函数中的综合应用,其中解答中根据题意,合理构造新函数,利用导数求得函数的单调性和最值是解答的关键,着重考查了构造思想,以及推理与运算能力,属于中档试题.5.很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以3再加1;如果它是偶数,则将它除以2;如此循环,最终都能够得到1.下图为研究“角谷猜想”的一个程序框图.若输入n 的值为10,则输出i 的值为( )A .5B .6C .7D .8【答案】B 【解析】 【分析】根据程序框图列举出程序的每一步,即可得出输出结果. 【详解】输入10n =,1n =不成立,n 是偶数成立,则1052n ==,011i =+=; 1n =不成立,n 是偶数不成立,则35116n =⨯+=,112i =+=; 1n =不成立,n 是偶数成立,则1682n ==,213i =+=; 1n =不成立,n 是偶数成立,则842n ==,314i =+=;1n =不成立,n 是偶数成立,则422n ==,415i =+=;1n =不成立,n 是偶数成立,则212n ==,516i =+=;1n =成立,跳出循环,输出i 的值为6.故选:B. 【点睛】本题考查利用程序框图计算输出结果,考查计算能力,属于基础题.6.已知向量(1,2),(3,1)a b =-=-r r,则( )rrrrrrrrrr【分析】由题意利用两个向量坐标形式的运算法则,两个向量平行、垂直的性质,得出结论. 【详解】∵向量a =r(1,﹣2),b =r(3,﹣1),∴a r和b r的坐标对应不成比例,故a r、b r不平行,故排除A ; 显然,a r •b =r3+2≠0,故a r、b r不垂直,故排除B ;∴a b -=rr(﹣2,﹣1),显然,a r和a b -rr的坐标对应不成比例,故a r和a b -rr不平行,故排除C ;∴a r •(a b -r r )=﹣2+2=0,故 a r ⊥(a b -r r ),故D 正确,故选:D. 【点睛】本题主要考查两个向量坐标形式的运算,两个向量平行、垂直的性质,属于基础题. 7.若424log 3,log 7,0.7a b c ===,则实数,,a b c 的大小关系为( ) A .a b c >> B .c a b >> C .b a c >> D .c b a >>【答案】A 【解析】 【分析】将a 化成以4 为底的对数,即可判断,a b 的大小关系;由对数函数、指数函数的性质,可判断出,b c 与1的大小关系,从而可判断三者的大小关系. 【详解】依题意,由对数函数的性质可得244log 3log 9log 7a b ==>=.又因为40440.70.71log 4log 7c b =<==<=,故a b c >>.故选:A. 【点睛】本题考查了指数函数的性质,考查了对数函数的性质,考查了对数的运算性质.两个对数型的数字比较大小时,底数相同,则构造对数函数,结合对数的单调性可判断大小;若真数相同,则结合对数函数的图像或者换底公式可判断大小;若真数和底数都不相同,则可与中间值如1,0比较大小.8.已知正四面体A BCD -外接球的体积为,则这个四面体的表面积为( )A .B .C .D .设正四面体ABCD 的外接球的半径R ,将该正四面体放入一个正方体内,使得每条棱恰好为正方体的面对角线,根据正方体和正四面体的外接球为同一个球计算出正方体的棱长,从而得出正四面体的棱长,最后可求出正四面体的表面积. 【详解】将正四面体ABCD 放在一个正方体内,设正方体的棱长为a ,如图所示,设正四面体ABCD 的外接球的半径为R ,则34863R ππ=,得6R =.因为正四面体ABCD 的外接球3a=226R =2.而正四面体ABCD 的每条棱长均为正方体的面对角线长,所以,正四面体ABCD 2a=2224=,因此,这个正四面体的表面积为234163a =故选:B . 【点睛】本题考查球的内接多面体,解决这类问题就是找出合适的模型将球体的半径与几何体的一些几何量联系起来,考查计算能力,属于中档题.9.已知集合{}2{|23,},|1=-<<∈=>A x x x N B x x A ,则集合A B =I ( ) A .{2} B .{1,0,1}-C .{2,2}-D .{1,0,1,2}-【答案】A 【解析】 【分析】化简集合A ,B ,按交集定义,即可求解. 【详解】集合{|23,}{0,1,2}=-<<∈=A x x x N ,本题考查集合间的运算,属于基础题.10.如图,正方体的底面与正四面体的底面在同一平面α上,且//AB CD ,若正方体的六个面所在的平面与直线CE EF ,相交的平面个数分别记为m n ,,则下列结论正确的是( )A .m n =B .2m n =+C .m n <D .8m n +<【答案】A 【解析】 【分析】根据题意,画出几何位置图形,由图形的位置关系分别求得,m n 的值,即可比较各选项. 【详解】如下图所示,CE ⊂平面ABPQ ,从而//CE 平面1111A B PQ ,易知CE 与正方体的其余四个面所在平面均相交, ∴4m =,∵//EF 平面11BPPB ,//EF 平面11AQQ A ,且EF 与正方体的其余四个面所在平面均相交, ∴4n =,∴结合四个选项可知,只有m n =正确. 故选:A. 【点睛】本题考查了空间几何体中直线与平面位置关系的判断与综合应用,对空间想象能力要求较高,属于中档题. 11.()()()()()*121311x x x nx n N +++⋅⋅⋅+∈的展开式中x 的一次项系数为( )A .3n C B .21n C +C .1n n C -D .3112n C +根据多项式乘法法则得出x 的一次项系数,然后由等差数列的前n 项和公式和组合数公式得出结论. 【详解】由题意展开式中x 的一次项系数为21(1)122n n n n C +++++==L . 故选:B . 【点睛】本题考查二项式定理的应用,应用多项式乘法法则可得展开式中某项系数.同时本题考查了组合数公式. 12.已知盒中有3个红球,3个黄球,3个白球,且每种颜色的三个球均按A ,B ,C 编号,现从中摸出3个球(除颜色与编号外球没有区别),则恰好不同时包含字母A ,B ,C 的概率为( ) A .1721B .1928C .79D .2328【答案】B 【解析】 【分析】首先求出基本事件总数,则事件“恰好不同时包含字母A ,B ,C ”的对立事件为“取出的3个球的编号恰好为字母A ,B ,C ”, 记事件“恰好不同时包含字母A ,B ,C ”为E ,利用对立事件的概率公式计算可得; 【详解】解:从9个球中摸出3个球,则基本事件总数为3984C =(个),则事件“恰好不同时包含字母A ,B ,C ”的对立事件为“取出的3个球的编号恰好为字母A ,B ,C ”记事件“恰好不同时包含字母A ,B ,C ”为E ,则339319()128P E C =-=. 故选:B 【点睛】本题考查了古典概型及其概率计算公式,考查了排列组合的知识,解答的关键在于正确理解题意,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。

2021年高考数学试卷(新高考Ⅰ卷)(解析卷)

2021年高考数学试卷(新高考Ⅰ卷)(解析卷)

2021年普通高等学校招生全国统一考试数学本试卷共4页,22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{}24A x x =-<<,{}2,3,4,5B =,则A B =I ( )A. {}2 B. {}2,3 C. {}3,4 D. {}2,3,4【答案】B 【解析】【分析】利用交集的定义可求A B I .【详解】由题设有{}2,3A B Ç=,故选:B .2. 已知2i z =-,则()i z z +=( )A. 62i - B. 42i- C. 62i+ D. 42i+【答案】C 【解析】【分析】利用复数的乘法和共轭复数的定义可求得结果.【详解】因为2z i =-,故2z i =+,故()()()22262z z i i i i+=-+=+3. ,其侧面展开图为一个半圆,则该圆锥的母线长为( )A. 2B.C. 4D. 【答案】B 【解析】【分析】设圆锥的母线长为l ,根据圆锥底面圆的周长等于扇形的弧长可求得l 的值,即为所求.【详解】设圆锥的母线长为l ,由于圆锥底面圆的周长等于扇形的弧长,则2l p p =l =.故选:B.4. 下列区间中,函数()7sin 6f x x p æö=-ç÷èø单调递增的区间是( )A. 0,2p æöç÷èøB. ,2ππæöç÷èøC. 3,2p p æöç÷èøD. 3,22p p æöç÷èø【答案】A 【解析】【分析】解不等式()22262k x k k Z pppp p -<-<+Î,利用赋值法可得出结论.【详解】因为函数sin y x =的单调递增区间为()22,22k k k Z pp p p æö-+Îç÷èø,对于函数()7sin 6f x x p æö=-ç÷èø,由()22262k x k k Z p p p p p -<-<+Î,解得()22233k x k k Z ppp p -<<+Î,取0k =,可得函数()f x 的一个单调递增区间为2,33p pæö-ç÷èø,则20,,233p p pæöæöÍ-ç÷ç÷èøèø,2,,233p p p p æöæöË-ç÷ç÷èøèø,A 选项满足条件,B 不满足条件;取1k =,可得函数()f x 的一个单调递增区间为58,33p p æöç÷èø,32,,233pp p p æöæöË-ç÷ç÷èøèø且358,,233p p p p æöæöËç÷ç÷èøèø,358,2,233p p p p æöæöËç÷ç÷èøèø,CD 选项均不满足条件.【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成()sin y A ωx φ=+形式,再求()sin y A ωx φ=+的单调区间,只需把x w j +看作一个整体代入sin y x =的相应单调区间内即可,注意要先把w 化为正数.5. 已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ×的最大值为( )A. 13 B. 12C. 9D. 6【答案】C 【解析】【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF æ+ö×≤ç÷èø即可得到答案.【详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF æ+ö×≤=ç÷èø(当且仅当123MF MF ==时,等号成立).故选:C .【点睛】本题关键在于正确理解能够想到求最值的方法,即通过基本不等式放缩得到.6. 若tan 2q =-,则()sin 1sin 2sin cos q q q q+=+( )A. 65-B. 25-C.25D.65【答案】C 【解析】【分析】将式子进行齐次化处理,代入tan 2q =-即可得到结果.【详解】将式子进行齐次化处理得:()()()22sin sin cos 2sin cos sin 1sin 2sin sin cos sin cos sin cos q q q q q q q q q q q q q q+++==+++()2222sin sin cos tan tan 422sin cos 1tan 145q q q q q q q q ++-====+++.【点睛】易错点睛:本题如果利用tan 2q =-,求出sin ,cos q q 的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论.7. 若过点(),a b 可以作曲线e xy =的两条切线,则( )A. e b a <B. e a b <C. 0e b a <<D. 0e ab <<【答案】D 【解析】【分析】根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果【详解】在曲线xy e =上任取一点(),tP t e,对函数xy e=求导得e x y ¢=,所以,曲线xy e =在点P 处的切线方程为()t ty e ex t -=-,即()1t t y e x t e =+-,由题意可知,点(),a b 在直线()1tty e x t e =+-上,可得()()11tttb ae t e a t e =+-=+-,令()()1tf t a t e =+-,则()()tf t a t e ¢=-.当t a <时,()0f t ¢>,此时函数()f t 单调递增,当t a >时,()0f t ¢<,此时函数()f t 单调递减,所以,()()max af t f a e ==,由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max ab f t e <=,当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点.故选:D.【点睛】数形结合是解决数学问题常用且有效的方法8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )A. 甲与丙相互独立 B. 甲与丁相互独立C. 乙与丙相互独立 D. 丙与丁相互独立【答案】B 【解析】【分析】根据独立事件概率关系逐一判断【详解】11561()()()()6636366P P P P =====甲,乙,丙,丁, ,1()0()()()()()36P P P P P P =¹==甲丙甲丙,甲丁甲丁,1()()()()0()()36P P P P P P =¹=¹乙丙乙丙,丙丁丁丙,故选:B【点睛】判断事件,A B 是否独立,先计算对应概率,再判断()()()P A P B P AB =是否成立二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 有一组样本数据1x ,2x ,…,n x ,由这组数据得到新样本数据1y ,2y ,…,n y ,其中i i y x c =+(1,2,,),i n c =×××为非零常数,则( )A. 两组样本数据的样本平均数相同B. 两组样本数据的样本中位数相同C. 两组样本数据的样本标准差相同D. 两组样数据的样本极差相同【答案】CD 【解析】【分析】A 、C 利用两组数据的线性关系有()()E y E x c =+、()()D y D x =,即可判断正误;根据中位数、极差的定义,结合已知线性关系可判断B 、D 的正误.【详解】A :()()()E y E x c E x c =+=+且0c ¹,故平均数不相同,错误;B :若第一组中位数为i x ,则第二组的中位数为i i y x c =+,显然不相同,错误;C :()()()()D y D x D c D x =+=,故方差相同,正确;D :由极差的定义知:若第一组的极差为max min x x -,则第二组的极差为max min max min max min ()()y y x c x c x x -=+-+=-,故极差相同,正确;故选:CD10. 已知O 为坐标原点,点()1cos ,sin P a a ,()2cos ,sin P b b -,()()()3cos ,sin P a b a b ++,()1,0A ,则( )A 12OP OP =uuu r uuur B. 12AP AP =uuu r uuurC. 312OA OP OP OP ×=×uuu r uuu r uuu r uuur D. 123OA OP OP OP ×=×uuu r uuu r uuur uuur 【答案】AC 【解析】.【分析】A 、B 写出1OP uuu r ,2OP uuur 、1AP u u ur ,2AP u u u r 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.【详解】A :1(cos ,sin )OP a a =uuu r ,2(cos ,sin )OP b b =-uuur ,所以1||1OP ==uuu r ,2||1OP ==uuur ,故12||||OP OP =uuu r uuur ,正确;B :1(cos 1,sin )AP a a =-uuu ,2(cos 1,sin )AP b b =--,所以1||2|sin |2AP a =====uuu r,同理2||2|sin |2AP b ==uuur ,故12||,||AP AP uuu r uuur 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP a b a b a b ×=´++´+=+uuu r uuur ,12cos cos sin (sin )cos()OP OP a b a b a b ×=×+×-=+uuu r uuur ,正确;D :由题意得:11cos 0sin cos OA OP a a a ×=´+´=uuu r uuu r ,23cos cos()(sin )sin()OP OP b a b b a b ×=´++-´+uuur uuur22cos cos sin sin cos sin sin cos cos sin a b a b b a b b a b=---cos cos 2sin sin 2cos(2)a b a b a b =-=+,错误;故选:AC11. 已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A. 点P 到直线AB 的距离小于10B. 点P 到直线AB 的距离大于2C. 当PBA Ð最小时,PB =D. 当PBA Ð最大时,PB =【答案】ACD 【解析】【分析】计算出圆心到直线AB 的距离,可得出点P 到直线AB 的距离的取值范围,可判断AB 选项的正误;分析可知,当PBA Ð最大或最小时,PB 与圆M 相切,利用勾股定理可判断CD 选项的正误.【详解】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142x y+=,即240x y +-=,圆心M 到直线AB4=>,所以,点P 到直线AB42-<410+<,A 选项正确,B 选项错误;如下图所示:当PBA Ð最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ^,BM ==,4MP =,由勾股定理可得BP =CD 选项正确.故选:ACD.【点睛】结论点睛:若直线l 与半径为r 圆C 相离,圆心C 到直线l 的距离为d ,则圆C 上一点P 到直线l 的距离的取值范围是[],d r d r -+.12. 在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB l m =+uuu r uuu r uuur,其中[]0,1l Î,[]0,1m Î,则( )A. 当1l =时,1AB P △的周长为定值B. 当1m =时,三棱锥1P A BC -的体积为定值C. 当12l =时,有且仅有一个点P ,使得1A P BP ^D. 当12m =时,有且仅有一个点P ,使得1AB ^平面1AB P 【答案】BD的【解析】【分析】对于A ,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B ,将P 点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值;对于C ,考虑借助向量平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数;对于D ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数.【详解】易知,点P 在矩形11BCC B 内部(含边界).对于A ,当1l =时,11=BP BC BB BC CC m m =++uuu r uuu r uuur uuu r uuuu r,即此时P Î线段1CC ,1AB P △周长不是定值,故A错误;对于B ,当1m =时,1111=BP BC BB BB B C l l =++uuu r uuu r uuur uuur uuuu r,故此时P 点轨迹为线段11B C ,而11//B C BC ,11//B C 平面1A BC ,则有P 到平面1A BC 的距离为定值,所以其体积为定值,故B 正确.对于C ,当12l =时,112BP BC BB m =+uuu r uuur uuur ,取BC ,11B C 中点分别为Q ,H ,则BP BQ QH m =+uuu r uuu r uuur ,所以P 点轨迹为线段QH,不妨建系解决,建立空间直角坐标系如图,1A ö÷÷ø,()0,0P m ,,10,,02B æöç÷èø,则11A P m æö=-ç÷ç÷èøuuur ,10,,2BP m æö=-ç÷èøuuu r ,()10m m -=,所以0m =或1m =.故,H Q 均满足,故C 错误;对于D ,当12m =时,112BP BC BB l =+uuu r uuu r uuur ,取1BB ,1CC 中点为,M N .BP BM MN l =+uuu r uuuu r uuuu r ,所以P 点的轨迹为线段MN .设010,,2P y æöç÷èø,因为0,0A ö÷÷ø,所以01,2AP y æö=ç÷ç÷èøuuu r,11,12A B æö=-ç÷ç÷èøuuur ,所以00311104222y y +-=⇒=-,此时P 与N 重合,故D 正确.故选:BD .【点睛】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内.三、填空题:本题共4小题,每小题5分,共20分.13. 已知函数()()322xx x a f x -=×-是偶函数,则a =______.【答案】1【解析】【分析】利用偶函数的定义可求参数a 的值.【详解】因为()()322xx xa f x -=×-,故()()322x x f x x a --=-×-,因为()f x 为偶函数,故()()f x f x -=,时()()332222xx x x xa x a --×-=-×-,整理得到()()12+2=0x x a --,故1a =,故答案为:114.已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ^,若6FQ =,则C 的准线方程为______.【答案】32x =-【解析】【分析】先用坐标表示P Q ,,再根据向量垂直坐标表示列方程,解得p ,即得结果.【详解】不妨设(,)(6,0),(6,)22p pP p Q PQ p \+=-u u u r 因为PQ OP ^,所以260032p p p p ´-=>\=\Q C 的准线方程为32x =-故答案为:32x =-【点睛】利用向量数量积处理垂直关系是本题关键.15. 函数()212ln f x x x =--的最小值为______.【答案】1【解析】【分析】由解析式知()f x 定义域为(0,)+¥,讨论102x <≤、112x <≤、1x >,并结合导数研究的单调性,即可求()f x 最小值.【详解】由题设知:()|21|2ln f x x x =--定义域为(0,)+¥,∴当102x <≤时,()122ln f x x x =--,此时()f x 单调递减;当112x <≤时,()212ln f x x x =--,有2()20f x x¢=-≤,此时()f x 单调递减;当1x >时,()212ln f x x x =--,有2()20f x x¢=->,此时()f x 单调递增;又()f x 在各分段的界点处连续,∴综上有:01x <≤时,()f x 单调递减,1x >时,()f x 单调递增;∴()(1)1f x f ≥=故答案为:1.16. 某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ´的长方形纸,对折1次共可以得到10dm 12dm ´,20dm 6dm ´两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ´,10dm 6dm ´,20dm 3dm ´三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折n 次,那么1nkk S==å______2dm .【答案】 (1). 5 (2). ()41537202n n -+-【解析】【分析】(1)按对折列举即可;(2)根据规律可得n S ,再根据错位相减法得结果.【详解】(1)对折4次可得到如下规格:5124dm dm ´,562dm dm ´,53dm dm ´,3102dm dm ´,3204dm dm ´,共5种;(2)由题意可得12120S =´,2360S =´,3430S =´,4515S =´,L ,()112012n n n S -+=,设()012112011202120312042222n n S -+´´´=++++L ,则()121120111202120312022222n nn n S -+´´=++++L ,两式作差得()()12116011201120111112240120240122222212n n n nn n S --æö-ç÷++æöèø=++++-=+-ç÷èø-L ()()112011203120360360222n n nn n -++=--=-,因此,()()4240315372072022n n n n S -++=-=-.故答案为:5;()41537202n n -+-.【点睛】方法点睛:数列求和常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和;(3)对于{}n n a b +结构,利用分组求和法;(4)对于11n n a a +ìüíýîþ结构,其中{}na 是等差数列,公差为()0d d ¹,则111111n n n n a a d a a ++æö=-ç÷èø,利用裂项相消法求和.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知数列{}n a 满足11a =,11,,2,.n n n a n a a n ++ì=í+î为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.【答案】(1)122,5b b ==;(2)300.的【解析】【分析】(1)根据题设中的递推关系可得13n n b b +=+,从而可求{}n b 的通项.(2)根据题设中的递推关系可得{}n a 的前20项和为20S 可化为()2012910210S b b b b =++++-L ,利用(1)的结果可求20S .【详解】(1)由题设可得121243212,1215b a a b a a a ==+===+=++=又22211k k a a ++=+,2122k k a a +=+,故2223k k a a +=+即13n n b b +=+即13n n b b +-=所以{}n b 为等差数列,故()21331n b n n =+-´=-.(2)设{}n a 的前20项和为20S ,则2012320S a a a a =++++L ,因为123419201,1,,1a a a a a a =-=-=-L ,所以()20241820210S a a a a =++++-L ()1291091021021023103002b b b b ´æö=++++-=´´+´-=ç÷èøL .【点睛】方法点睛:对于数列的交叉递推关系,我们一般利用已知的关系得到奇数项的递推关系或偶数项的递推关系,再结合已知数列的通项公式、求和公式等来求解问题.18.某学校组织“一带一路”知识竞赛,有A ,B 两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束:若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分:B 类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A 类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A 类问题,记X 为小明的累计得分,求X 的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.【答案】(1)见解析;(2)B 类.【解析】【分析】(1)通过题意分析出小明累计得分X 的所有可能取值,逐一求概率列分布列即可.(2)与(1)类似,找出先回答B 类问题的数学期望,比较两个期望的大小即可.【详解】(1)由题可知,X 的所有可能取值为0,20,100.()010.80.2P X ==-=;()()200.810.60.32P X ==-=;()1000.80.60.48P X ==´=.所以X 的分布列为X20100P0.20.320.48(2)由(1)知,()00.2200.321000.4854.4E X =´+´+´=.若小明先回答B 问题,记Y 为小明的累计得分,则Y 的所有可能取值为0,80,100.()010.60.4P Y ==-=;()()800.610.80.12P Y ==-=;()1000.80.60.48P X ==´=.所以()00.4800.121000.4857.6E Y =´+´+´=.因为54.457.6<,所以小明应选择先回答B 类问题.19. 记ABC V 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C Ð=.(1)证明:BD b =;(2)若2AD DC =,求cos ABCÐ【答案】(1)证明见解析;(2)7cos 12ABC Ð=.【解析】【分析】(1)根据正弦定理的边角关系有acBD b=,结合已知即可证结论.(2)由题设2,,33b bBD b AD DC ===,应用余弦定理求cos ADB Ð、cos CDB Ð,又ADB CDB p Ð=-Ð,可得42221123b b a a +=,结合已知及余弦定理即可求cos ABC Ð..【详解】(1)由题设,sin sin a C BD ABC =Ð,由正弦定理知:sin sin c b C ABC =Ð,即sin sin C cABC b=Ð,∴acBD b=,又2b ac =,∴BD b =,得证.(2)由题意知:2,,33b b BD b AD DC ===,∴22222241399cos 24233b b bc c ADB b b b +--Ð==×,同理2222221099cos 2233b b b a a CDB b b b +--Ð==×,∵ADB CDB p Ð=-Ð,∴2222221310994233b bc a b b --=,整理得2221123b a c +=,又2b ac =,∴42221123b b a a +=,整理得422461130a a b b -+=,解得2213a b =或2232a b =,由余弦定理知:222224cos 232a c b a ABC ac b+-Ð==-,当2213a b =时,7cos 16ABC Ð=>不合题意;当2232a b =时,7cos 12ABC Ð=;综上,7cos 12ABC Ð=.【点睛】关键点点睛:第二问,根据余弦定理及ADB CDB p Ð=-Ð得到,,a b c 的数量关系,结合已知条件及余弦定理求cos ABC Ð.20. 如图,在三棱锥A BCD -中,平面ABD ^平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ^;(2)若OCD V 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45°,求三棱锥A BCD -的体积.【答案】(1)详见解析【解析】【分析】(1)根据面面垂直性质定理得AO ⊥平面BCD ,即可证得结果;(2)先作出二面角平面角,再求得高,最后根据体积公式得结果.【详解】(1)因为AB=AD,O 为BD 中点,所以AO ⊥BD因为平面ABD I 平面BCD =BD ,平面ABD ⊥平面BCD ,AO Ì平面ABD ,因此AO ⊥平面BCD ,因为CD Ì平面BCD ,所以AO ⊥CD (2)作EF ⊥BD 于F, 作FM ⊥BC 于M,连FM 因为AO ⊥平面BCD ,所以AO ⊥BD, AO ⊥CD所以EF ⊥BD, EF ⊥CD, BD CD D Ç=,因此EF ⊥平面BCD ,即EF ⊥BC 因为FM ⊥BC ,FM EF F =I ,所以BC ⊥平面EFM ,即BC ⊥MF 则EMF Ð为二面角E-BC-D 的平面角, 4EMF pÐ=因为BO OD =,OCD V 为正三角形,所以OCD V 为直角三角形因为2BE ED =,1112(1)2233FM BF \==+=从而EF=FM=213AO \=AO ^Q 平面BCD,所以11111332BCD V AO S D =×=´´´=【点睛】二面角的求法:一是定义法,二是三垂线定理法,三是垂面法,四是投影法.21. 在平面直角坐标系xOy 中,已知点()1F 、)21217,02F MF MF -=,点M 的轨迹为C .(1)求C 的方程;(2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ×=×,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)()221116y x x -=≥;(2)0.【解析】【分析】(1)利用双曲线的定义可知轨迹C 是以点1F 、2F 为左、右焦点双曲线的右支,求出a 、b 的值,即可得出轨迹C 的方程;(2)设点1,2T t æöç÷èø,设直线AB 的方程为112y t k x æö-=-ç÷èø,设点()11,A x y 、()22,B x y ,联立直线AB与曲线C 的方程,列出韦达定理,求出TA TB ×的表达式,设直线PQ 的斜率为2k ,同理可得出TP TQ ×的表达式,由TA TB TP TQ ×=×化简可得12k k +的值.【详解】因为12122MF MF F F -=<=所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b-=>>,则22a =,可得1a =,4b ==,所以,轨迹C 的方程为()221116y x x -=≥;(2)设点1,2T t æöç÷èø,若过点T 的直线的斜率不存在,此时该直线与曲线C 无公共点,不妨直线AB 的方程为112y t k x æö-=-ç÷èø,即1112y k x t k =+-,联立1122121616y k x t k x y ì=+-ïíï-=î,消去y 并整理可得()()222111111621602k x k t k x t k æö-+-+-+=ç÷èø,设点()11,A x y 、()22,B x y ,则112x >且212x >.由韦达定理可得2111221216k k t x x k -+=-,211221116216t k x x k æö-+ç÷èø=-,所以,()()()()22122121121122112111*********t k x x TA TB k x x k x x k +++æö×=+×-×-=+×-+=ç÷-èø,设直线PQ 的斜率为2k ,同理可得()()2222212116t k TP TQ k ++×=-,因为TA TB TP TQ ×=×,即()()()()22221222121211211616tk t k k k ++++=--,整理可得2212k k =,即()()12120k k k k -+=,显然120k k -¹,故120k k +=.因此,直线AB 与直线PQ 的斜率之和为0.【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22. 已知函数()()1ln f x x x =-.(1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<.【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+¥;(2)证明见解析.【解析】【分析】(1)求出函数的导数,判断其符号可得函数的单调区间;(2)设1211,x x a b==,原不等式等价于122x x e <+<,前者可构建新函数,利用极值点偏移可证,后者可设21x tx =,从而把12x x e +<转化为()()1ln 1ln 0t t t t -+-<在()1,+¥上的恒成立问题,利用导数可证明该结论成立.【详解】(1)函数的定义域为()0,¥+,又()1ln 1ln f x x x ¢=--=-,当()0,1x Î时,()0f x ¢>,当()1,+x Î¥时,()0f x ¢<,故()f x 的递增区间为()0,1,递减区间为()1,+¥.(2)因为ln ln b a a b a b -=-,故()()ln 1ln +1b a a b +=,即ln 1ln +1a b a b+=,故11f f a b æöæö=ç÷ç÷èøèø,设1211,x x a b==,由(1)可知不妨设1201,1x x <<>.因为()0,1x Î时,()()1ln 0f x x x =->,(),x e Î+¥时,()()1ln 0f x x x =-<,故21x e <<.先证:122x x +>,若22x ≥,122x x +>必成立.若22x <, 要证:122x x +>,即证122x x >-,而2021x <-<,故即证()()122f x f x >-,即证:()()222f x f x >-,其中212x <<.设()()()2,12g x f x f x x =--<<,则()()()()2ln ln 2g x f x f x x x ¢¢¢=+-=---()ln 2x x =--éùëû,因为12x <<,故()021x x <-<,故()ln 20x x -->,所以()0g x ¢>,故()g x 在()1,2为增函数,所以()()10g x g >=,故()()2f x f x >-,即()()222f x f x >-成立,所以122x x +>成立,综上,122x x +>成立.设21x tx =,则1t >,结合ln 1ln +1a b a b+=,1211,x x a b ==可得:()()11221ln 1ln x x x x -=-,即:()111ln 1ln ln x t t x -=--,故11ln ln 1t t tx t --=-,要证:12x x e +<,即证()11t x e +<,即证()1ln 1ln 1t x ++<,即证:()1ln ln 111t t tt t --++<-,即证:()()1ln 1ln 0t t t t -+-<,令()()()1ln 1ln ,1S t t t t t t =-+->,则()()112ln 11ln ln 111t S t t t t t t -æö¢=++--=+-ç÷++èø,先证明一个不等式:()ln 1x x ≤+.设()()ln 1u x x x =+-,则()1111xu x x x -¢=-=++,当10x -<<时,()0u x ¢>;当0x >时,()0u x ¢<,故()u x 在()1,0-上为增函数,在()0,+¥上为减函数,故()()max 00u x u ==,故()ln 1x x ≤+成立由上述不等式可得当1t >时,112ln 11t t t æö+≤<ç÷+èø,故()0S t ¢<恒成立,故()S t 在()1,+¥上为减函数,故()()10S t S <=,故()()1ln 1ln 0t t t t -+-<成立,即12x x e +<成立.综上所述,112e a b<+<.【点睛】方法点睛:极值点偏移问题,一般利用通过原函数的单调性,把与自变量有关的不等式问题转化与原函数的函数值有关的不等式问题,也可以引入第三个变量,把不等式的问题转化为与新引入变量有关的不等式问题.。

福建省莆田市2021届新高考第一次大联考数学试卷含解析

福建省莆田市2021届新高考第一次大联考数学试卷含解析

福建省莆田市2021届新高考第一次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={x|–1<x<2},B={x|x>1},则A ∪B= A .(–1,1) B .(1,2) C .(–1,+∞) D .(1,+∞)【答案】C 【解析】 【分析】根据并集的求法直接求出结果. 【详解】∵{|12},{|1}A x x B x =-<<=> , ∴(1,)A B =-+∞U , 故选C. 【点睛】考查并集的求法,属于基础题.2.若函数()2ln f x x x ax =-有两个极值点,则实数a 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .()1,2D .()2,e【答案】A 【解析】试题分析:由题意得()ln 120f x x ax =+-='有两个不相等的实数根,所以()120f x a x-'=='必有解,则0a >,且102f a ⎛⎫>⎪⎝⎭',∴102a <<. 考点:利用导数研究函数极值点【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号. (2)已知函数求极值.求f′(x )―→求方程f′(x )=0的根―→列表检验f′(x )在f′(x )=0的根的附近两侧的符号―→下结论.(3)已知极值求参数.若函数f (x )在点(x 0,y 0)处取得极值,则f′(x 0)=0,且在该点左、右两侧的导数值符号相反. 3.设i 是虚数单位,复数1ii+=( ) A .1i -+B .-1i -C .1i +D .1i -【答案】D 【解析】 【分析】利用复数的除法运算,化简复数1i1i i+=-,即可求解,得到答案. 【详解】 由题意,复数()1i (i)1i 1i i i (i)+⋅-+==-⨯-,故选D . 【点睛】本题主要考查了复数的除法运算,其中解答中熟记复数的除法运算法则是解答的关键,着重考查了运算与求解能力,属于基础题. 4.若a >b >0,0<c <1,则 A .log a c <log b c B .log c a <log c bC .a c <b cD .c a >c b【答案】B 【解析】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <<Q ,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用cy x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较. 5.下列命题为真命题的个数是( )(其中π,e 为无理数)32>;②2ln 3π<;③3ln 3e<. A .0 B .1C .2D .3【答案】C 【解析】 【分析】对于①中,根据指数幂的运算性质和不等式的性质,可判定值正确的;对于②中,构造新函数()2ln ,03f x x x =->,利用导数得到函数为单调递增函数,进而得到()()f f e π>,即可判定是错误的;对于③中,构造新函数()ln ,0f x e x x x =->,利用导数求得函数的最大值为()0f e =,进而得到()30f <,即可判定是正确的.【详解】由题意,对于①中,由239(),() 2.2524e e ===,可得 2.25e >,根据不等式的性质,可得32e >成立,所以是正确的;对于②中,设函数()2ln ,03f x x x =->,则()10f x x'=>,所以函数为单调递增函数, 因为e π>,则()()ff e π>又由()221ln 10333f e e =-=-=>,所以()0f π>,即2ln 3π>,所以②不正确; 对于③中,设函数()ln ,0f x e x x x =->,则()1e e xf x x x-'=-=,当(0,)x e ∈时,()0f x '>,函数()f x 单调递增, 当(,)x e ∈+∞时,()0f x '<,函数()f x 单调递减,所以当x e =时,函数取得最大值,最大值为()ln 0f e e e e =-=, 所以()3ln330f e =-<,即ln33e <,即3ln 3e<,所以是正确的. 故选:C. 【点睛】本题主要考查了不等式的性质,以及导数在函数中的综合应用,其中解答中根据题意,合理构造新函数,利用导数求得函数的单调性和最值是解答的关键,着重考查了构造思想,以及推理与运算能力,属于中档试题.6.网格纸上小正方形边长为1单位长度,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .1B .43C .3D .4【答案】A 【解析】 【分析】采用数形结合,根据三视图可知该几何体为三棱锥,然后根据锥体体积公式,可得结果. 【详解】根据三视图可知:该几何体为三棱锥 如图该几何体为三棱锥A BCD -,长度如上图所以111121,11222MBD DEC BCN S S S ∆∆∆==⨯⨯==⨯⨯= 所以3222BCD MBD DEC BCN S S S S ∆∆∆∆=⨯---=所以113A BCD BCD V S AN -∆=⋅⋅=故选:A 【点睛】本题考查根据三视图求直观图的体积,熟悉常见图形的三视图:比如圆柱,圆锥,球,三棱锥等;对本题可以利用长方体,根据三视图删掉没有的点与线,属中档题.7.己知函数()()1,0,ln ,0,kx x f x x x ->⎧=⎨--<⎩若函数()f x 的图象上关于原点对称的点有2对,则实数k 的取值范围是( ) A .(),0-∞ B .()0,1C .()0,∞+D .10,2⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】考虑当0x >时,1ln kx x -=有两个不同的实数解,令()ln 1h x x kx =-+,则()h x 有两个不同的零点,利用导数和零点存在定理可得实数k 的取值范围. 【详解】因为()f x 的图象上关于原点对称的点有2对,所以0x >时,1ln kx x -=有两个不同的实数解.令()ln 1h x x kx =-+,则()h x 在()0,∞+有两个不同的零点. 又()1kxh x x-'=, 当0k ≤时,()0h x '>,故()h x 在()0,∞+上为增函数,()h x 在()0,∞+上至多一个零点,舍.当0k >时,若10,⎛⎫∈ ⎪⎝⎭x k ,则()0h x '>,()h x 在10,k ⎛⎫⎪⎝⎭上为增函数; 若1,⎛⎫∈+∞⎪⎝⎭x k ,则()0h x '<,()h x 在1,k ⎛⎫+∞ ⎪⎝⎭上为减函数;故()max 11ln h x h k k ⎛⎫==⎪⎝⎭, 因为()h x 有两个不同的零点,所以1ln 0k>,解得01k <<. 又当01k <<时,11e k <且10k h e e ⎛⎫=-< ⎪⎝⎭,故()h x 在10,k ⎛⎫ ⎪⎝⎭上存在一个零点.又22ln +122ln e e e h t et k k k ⎛⎫=-=+- ⎪⎝⎭,其中11t k =>. 令()22ln g t t et =+-,则()2etg t t-'=, 当1t >时,()0g t '<,故()g t 为()1,+∞减函数, 所以()()120g t g e <=-<即20e h k ⎛⎫<⎪⎝⎭. 因为2211e k k k >>,所以()h x 在1,k ⎛⎫+∞ ⎪⎝⎭上也存在一个零点. 综上,当01k <<时,()h x 有两个不同的零点. 故选:B. 【点睛】本题考查函数的零点,一般地,较为复杂的函数的零点,必须先利用导数研究函数的单调性,再结合零点存在定理说明零点的存在性,本题属于难题.8.已知x ,y 满足2y xx y x a ≥⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最大值是最小值的4倍,则a 的值是( )A.4 B.3 4C.211D.14【答案】D【解析】试题分析:先画出可行域如图:由{2y xx y=+=,得(1,1)B,由{x ay x==,得(,)C a a,当直线2z x y=+过点(1,1)B时,目标函数2z x y=+取得最大值,最大值为3;当直线2z x y=+过点(,)C a a时,目标函数2z x y=+取得最小值,最小值为3a;由条件得343a=⨯,所以14a=,故选D.考点:线性规划.9.复数z的共轭复数记作z,已知复数1z对应复平面上的点()1,1--,复数2z:满足122z z⋅=-.则2z等于()A2B.2C10D.10【答案】A【解析】【分析】根据复数1z的几何意义得出复数1z,进而得出1z,由122z z⋅=-得出212zz=-可计算出2z,由此可计算出2z.【详解】由于复数1z对应复平面上的点()1,1--,11z i∴=--,则11z i=-+,122z z⋅=-Q,()()()2121221111iz ii i iz+∴=-===+--+,因此,222112z=+=故选:A.【点睛】本题考查复数模的计算,考查了复数的坐标表示、共轭复数以及复数的除法,考查计算能力,属于基础题.10.已知ABC V 中,2,3,60,2,AB BC ABC BD DC AE EC ==∠=︒==,则AD BE ⋅=u u u r u u u r( )A .1B .2-C .12D .12-【答案】C 【解析】 【分析】以,BA BC u u u r u u u r为基底,将,AD BE u u u r u u u r 用基底表示,根据向量数量积的运算律,即可求解.【详解】222,,33BD DC BD BC AD BD BA BC BA ===-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r,11,22AE EC BE BC BA =∴=+u u u r u u u r u u u r,211()()322AD BE BC BA BC BA ⋅=-⋅+u u u r u u u r u u ur u u u r u u u r u u u r22111362BC BC BA BA =-⋅-u u ur u u u r u u u r u u u r 111123622=-⨯⨯⨯=.故选:C. 【点睛】本题考查向量的线性运算以及向量的基本定理,考查向量数量积运算,属于中档题. 11.设复数121,1z i z i =+=-,则1211z z +=( ) A .1 B .1-C .iD .i -【答案】A 【解析】 【分析】根据复数的除法运算,代入化简即可求解. 【详解】复数121,1z i z i =+=-,则1211z z +1111i i=++- ()()()()111111i ii i i i -+=++--+11122i i-+=+= 故选:A. 【点睛】本题考查了复数的除法运算与化简求值,属于基础题. 12.命题“20,(1)(1)∀>+>-x x x x ”的否定为( ) A .20,(1)(1)∀>+>-x x x x B .20,(1)(1)∀+>-x x x x „ C .20,(1)(1)∃>+-x x x x „ D .20,(1)(1)∃+>-x x x x „【答案】C 【解析】 【分析】套用命题的否定形式即可. 【详解】命题“,()x M p x ∀∈”的否定为“,()x M p x ∃∈⌝”,所以命题“20,(1)(1)∀>+>-x x x x ”的否定为“20,(1)(1)x x x x ∃>+≤-”. 故选:C 【点睛】本题考查全称命题的否定,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。

2021年全国统一高考数学试卷(新高考Ⅰ卷)(含详细解析)

2021年全国统一高考数学试卷(新高考Ⅰ卷)(含详细解析)

2021年全国统一高考数学试卷(新高考Ⅰ卷)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把题卡上对应题目的答案标号涂黑。

如需改动,用皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

(共8题;共40分)1. ( 5分) 设集合A= {x|-2<x<4}. B = {2,3,4,5},则A∩B=()A. {2}B. {2,3}C. {3,4,}D. {2,3,4}2. ( 5分) 已知z=2-i,则( =()A. 6-2iB. 4-2iC. 6+2iD. 4+2i3. ( 5分) 已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A. 2B. 2C. 4D. 44. ( 5分) 下列区间中,函数f(x)=7sin( )单调递增的区间是()A. (0, )B. ( , )C. ( , )D. ( , )5. ( 5分) 已知F1,F2是椭圆C:的两个焦点,点M在C 上,则|MF1|·|MF2|的最大值为()A. 13B. 12C. 9D. 66. ( 5分) 若tan =-2,则 =()A. B. C. D.7. ( 5分) 若过点(a,b)可以作曲线y=e x的两条切线,则()A. e b<aB. e a<bC. 0<a<e bD. 0<b<e a8. ( 5分) 有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A. 甲与丙相互独立B. 甲与丁相互独立C. 乙与丙相互独立D. 丙与丁相互独立二、选择题:本题共4小题。

福建省莆田市2021届新高考数学仿真第一次备考试题含解析

福建省莆田市2021届新高考数学仿真第一次备考试题含解析

福建省莆田市2021届新高考数学仿真第一次备考试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设,,D E F 分别为ABC ∆的三边BC,CA,AB 的中点,则EB FC +=( ) A .12AD B .AD C .BCD .12BC 【答案】B 【解析】 【分析】根据题意,画出几何图形,根据向量加法的线性运算即可求解. 【详解】根据题意,可得几何关系如下图所示:()12EB BC BA =-+,()12FC CB CA =-+ ()()1122EB FC BC BA CB CA +=-+-+1122AB AC AD =+= 故选:B 【点睛】本题考查了向量加法的线性运算,属于基础题.2.如图,正方体1111ABCD A B C D -中,E ,F ,G ,H 分别为棱1AA 、1CC 、11B C 、11A B 的中点,则下列各直线中,不与平面1ACD 平行的是( )A .直线EFB .直线GHC .直线EHD .直线1A B【答案】C【解析】 【分析】充分利用正方体的几何特征,利用线面平行的判定定理,根据//EF AC 判断A 的正误.根据1111//,//GH A C A C AC ,判断B 的正误.根据11//,EH C D C D 与 1D C 相交,判断C 的正误.根据11//A B D C ,判断D 的正误.【详解】在正方体中,因为//EF AC ,所以//EF 平面1ACD ,故A 正确.因为1111//,//GH A C A C AC ,所以//GH AC ,所以//GH 平面1ACD 故B 正确. 因为11//A B D C ,所以1//A B 平面1ACD ,故D 正确.因为11//,EH C D C D 与 1D C 相交,所以 EH 与平面1ACD 相交,故C 错误. 故选:C 【点睛】本题主要考查正方体的几何特征,线面平行的判定定理,还考查了推理论证的能力,属中档题.3.将函数的图象向左平移6π个单位长度,得到函数g(x)的图象,给出下列关于g(x)的结论:①它的图象关于直线x=59π对称; ②它的最小正周期为23π; ③它的图象关于点(1118π,1)对称;④它在[51939ππ,]上单调递增. 其中所有正确结论的编号是( ) A .①② B .②③C .①②④D .②③④【答案】B 【解析】 【分析】根据函数()sin y A ωx φ=+图象的平移变换公式求出函数()g x 的解析式,再利用正弦函数的对称性、单调区间等相关性质求解即可. 【详解】因为3π)+1,由()sin y A ωx φ=+图象的平移变换公式知,函数g(x)=2sin[3(x+6π)-3π]+1=2sin(3x+6π)+1,其最小正周期为23T π=,故②正确; 令3x+6π=kπ+2π,得x=3k π+9π(k ∈Z),所以x=59π不是对称轴,故①错误; 令3x+6π=kπ,得x=3k π-18π(k ∈Z),取k=2,得x=1118π,故函数g(x)的图象关于点(1118π,1)对称,故③正确; 令2kπ-2π≤3x+6π≤2kπ+2π,k ∈Z ,得23k π-29π≤x≤23k π+9π,取k=2,得109π≤x≤139π,取k=3,得169π≤x≤199π,故④错误;故选:B 【点睛】本题考查()sin y A ωx φ=+图象的平移变换和正弦函数的对称性、单调性和最小正周期等性质;考查运算求解能力和整体代换思想;熟练掌握正弦函数的对称性、单调性和最小正周期等相关性质是求解本题的关键;属于中档题、常考题型4.如果实数x y 、满足条件10{1010x y y x y -+≥+≥++≤,那么2x y -的最大值为( )A .2B .1C .2-D .3-【答案】B 【解析】 【分析】 【详解】解:当直线2x y z -=过点()0,1A -时,z 最大,故选B5.等差数列{}n a 中,1510a a +=,47a =,则数列{}n a 前6项和6S 为()A .18B .24C .36D .72【答案】C 【解析】 【分析】由等差数列的性质可得35a =,根据等差数列的前n 项和公式163466622a a a aS ++=⨯=⨯可得结果. 【详解】∵等差数列{}n a 中,1510a a +=,∴3210a =,即35a =,∴163465766636222a a a a S +++=⨯=⨯=⨯=, 故选C. 【点睛】本题主要考查了等差数列的性质以及等差数列的前n 项和公式的应用,属于基础题.6.某人用随机模拟的方法估计无理数e 的值,做法如下:首先在平面直角坐标系中,过点1,0A 作x 轴的垂线与曲线xy e =相交于点B ,过B 作y 轴的垂线与y 轴相交于点C (如图),然后向矩形OABC 内投入M 粒豆子,并统计出这些豆子在曲线xy e =上方的有N 粒()N M <,则无理数e 的估计值是( )A .NM N-B .MM N-C .M NN- D .M N【答案】D 【解析】 【分析】利用定积分计算出矩形OABC 中位于曲线xy e =上方区域的面积,进而利用几何概型的概率公式得出关于e 的等式,解出e 的表达式即可. 【详解】在函数xy e =的解析式中,令1x =,可得y e =,则点()1,B e ,直线BC 的方程为y e =,矩形OABC 中位于曲线xy e =上方区域的面积为()()1101xxS e e dx ex e =-=-=⎰,矩形OABC 的面积为1e e ⨯=, 由几何概型的概率公式得1N M e =,所以,M e N=. 故选:D. 【点睛】本题考查利用随机模拟的思想估算e 的值,考查了几何概型概率公式的应用,同时也考查了利用定积分计算平面区域的面积,考查计算能力,属于中等题.7.若直线240x y m ++=经过抛物线22y x =的焦点,则m =( ) A .12B .12-C .2D .2-【答案】B 【解析】 【分析】计算抛物线的交点为10,8⎛⎫⎪⎝⎭,代入计算得到答案.【详解】22y x =可化为212x y =,焦点坐标为10,8⎛⎫⎪⎝⎭,故12m =-.故选:B . 【点睛】本题考查了抛物线的焦点,属于简单题.8.若()()()32z i a i a R =-+∈为纯虚数,则z =( ) A .163i B .6i C .203i D .20【答案】C 【解析】 【分析】根据复数的乘法运算以及纯虚数的概念,可得结果. 【详解】()()()32326z i a i a a i =-+=++-∵()()()32z i a i a R =-+∈为纯虚数, ∴320a +=且60a -≠ 得23a =-,此时203z i =故选:C.【点睛】本题考查复数的概念与运算,属基础题.9.函数()y f x =,x ∈R ,则“()y xf x =的图象关于y 轴对称”是“()y f x =是奇函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】根据函数奇偶性的性质,结合充分条件和必要条件的定义进行判断即可. 【详解】设()()g x xf x =,若函数()y f x =是R 上的奇函数,则()()()()g x xf x xf x g x -=--==,所以,函数()y xf x =的图象关于y 轴对称.所以,“()y f x =是奇函数”⇒“()y xf x =的图象关于y 轴对称”;若函数()y f x =是R 上的偶函数,则()()()()()g x xf x xf x xf x g x -=--=-==,所以,函数()y xf x =的图象关于y 轴对称.所以,“()y xf x =的图象关于y 轴对称”⇒“()y f x =是奇函数”.因此,“()y xf x =的图象关于y 轴对称”是“()y f x =是奇函数”的必要不充分条件. 故选:B. 【点睛】本题主要考查充分条件和必要条件的判断,结合函数奇偶性的性质判断是解决本题的关键,考查推理能力,属于中等题.10.在ABC ∆中,30C =︒,2cos 3A =-,2AC =,则AC 边上的高为( )A B .2C D .2【答案】C 【解析】 【分析】结合正弦定理、三角形的内角和定理、两角和的正弦公式,求得BC 边长,由此求得AC 边上的高. 【详解】过B 作BD CA ⊥,交CA 的延长线于D .由于2cos 3A =-,所以A 为钝角,且25sin 1cos 3A A =-=,所以()()sin sin sin CBA CBA A C π∠=-∠=+5321152sin cos cos sin 32A C A C -=+=⨯-⨯=.在三角形ABC 中,由正弦定理得sin sin a b A B=,即1525152-=-,所以25BC =.在Rt BCD ∆中有1sin 2552BD BC C ==⨯=,即AC 边上的高为5. 故选: C【点睛】本小题主要考查正弦定理解三角形,考查三角形的内角和定理、两角和的正弦公式,属于中档题. 11.在正方体1111ABCD A B C D -中,点E ,F ,G 分别为棱11A D ,1D D ,11A B 的中点,给出下列命题:①1AC EG ⊥;②//GC ED ;③1B F ⊥平面1BGC ;④EF 和1BB 成角为4π.正确命题的个数是( ) A .0 B .1C .2D .3【答案】C 【解析】 【分析】建立空间直角坐标系,利用向量的方法对四个命题逐一分析,由此得出正确命题的个数. 【详解】设正方体边长为2,建立空间直角坐标系如下图所示,()()()12,0,0,0,2,2,2,1,2AC G ,()()()()()()10,2,0,1,0,2,0,0,0,2,2,2,0,0,1,2,2,0C E D B F B .①,()()112,2,2,1,1,0,2200AC EG AC EG =-=⋅=-++=,所以1AC EG ⊥,故①正确.②,()()2,1,2,1,0,2GC ED =--=--,不存在实数λ使GC ED λ=,故//GC ED 不成立,故②错误. ③,()()()112,2,1,0,1,2,2,0,2B F BG BC =---=-=-,1110,20B F BG B F BC ⋅=⋅=≠,故1B F ⊥平面1BGC 不成立,故③错误.④,()()11,0,1,0,0,2EF BB =--=,设EF 和1BB 成角为θ,则1122cos222EF BB EF BB θ⋅-===⨯⋅,由于0,2πθ⎛⎤∈ ⎥⎝⎦,所以4πθ=,故④正确.综上所述,正确的命题有2个. 故选:C【点睛】本小题主要考查空间线线、线面位置关系的向量判断方法,考查运算求解能力,属于中档题. 12.要得到函数312y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数323y x π⎛⎫=- ⎪⎝⎭图象上所有点的横坐标( )A .伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移4π个单位长度 B .伸长到原来的2倍(纵坐标不变),再将得到的图像向左平移4π个单位长度 C .缩短到原来的12倍(纵坐标不变),再将得到的图象向左平移524π个单位长度 D .缩短到原来的12倍(纵坐标不变),再将得到的图象向右平移1124π个单位长度【答案】B 【解析】 【分析】 【详解】分析:根据三角函数的图象关系进行判断即可.详解:将函数3sin 23y x π⎛⎫=-⎪⎝⎭图象上所有点的横坐标伸长到原来的2倍(纵坐标不变), 得到1323233y sinx sin x ππ=⨯-=-()(), 再将得到的图象向左平移4π个单位长度得到333412y sinx sin x ()(),πππ=-+=- 故选B .点睛:本题主要考查三角函数的图象变换,结合ω和ϕ的关系是解决本题的关键. 二、填空题:本题共4小题,每小题5分,共20分。

福建省莆田市2021届新高考数学考前模拟卷(3)含解析

福建省莆田市2021届新高考数学考前模拟卷(3)含解析

福建省莆田市2021届新高考数学考前模拟卷(3)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{|12},{|15}=-<=-A x x B x x 剟?,定义集合*{|,,}==+∈∈A B z z x y x A y B ,则*(*)B A B 等于( )A .{|61}-<x x …B .{|112}<x x …C .{|110}-<x x …D .{|56}-<x x …【答案】C 【解析】 【分析】根据*A B 定义,求出*A B ,即可求出结论. 【详解】因为集合{|15}=-B x x 剟,所以{|51}=--B x x 剟, 则*{|61}=-<A B x x …,所以*(*){|110}=-<B A B x x …. 故选:C. 【点睛】本题考查集合的新定义运算,理解新定义是解题的关键,属于基础题. 2.某几何体的三视图如右图所示,则该几何体的外接球表面积为( )A .12πB .16πC .24πD .48π【答案】A 【解析】 【分析】由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,结合直观图判断外接球球心的位置,求出半径,代入求得表面积公式计算. 【详解】由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,高为2, 底面为等腰直角三角形,斜边长为22,如图:ABC ∆∴的外接圆的圆心为斜边AC 的中点D ,OD AC ⊥,且OD ⊂平面SAC ,2SA AC ==Q ,SC ∴的中点O 为外接球的球心,∴半径3R =∴外接球表面积4312S ππ=⨯=.故选:A 【点睛】本题考查了由三视图求几何体的外接球的表面积,根据三视图判断几何体的结构特征,利用几何体的结构特征与数据求得外接球的半径是解答本题的关键.3.已知函数1,0()ln ,0x xf x x x x⎧<⎪⎪=⎨⎪>⎪⎩,若函数()()F x f x kx =-在R 上有3个零点,则实数k 的取值范围为( ) A .1(0,)eB .1(0,)2eC .1(,)2e-∞ D .11(,)2e e【答案】B 【解析】 【分析】根据分段函数,分当0x <,0x >,将问题转化为()f x k x=的零点问题,用数形结合的方法研究. 【详解】 当0x <时,()21f x k xx==,令()()2312g ,'0x g x x x ==->,()g x 在()0x ∈-∞,是增函数,0k >时,()f x k x=有一个零点,当0x >时,()2ln f x xk xx==,令()()23ln 12ln h ,x x x h x x x -'== 当(0,)x e ∈时,'()0h x >,∴()h x 在(0,)e 上单调递增, 当(,)x e ∈+∞时,'()0h x <,∴()h x 在(,)e +∞上单调递减, 所以当x e =时,()h x 取得最大值12e, 因为()()F x f x kx =-在R 上有3个零点, 所以当0x >时,()f x k x=有2个零点, 如图所示:所以实数k 的取值范围为1(0,)2e综上可得实数k 的取值范围为1(0,)2e, 故选:B 【点睛】本题主要考查了函数的零点问题,还考查了数形结合的思想和转化问题的能力,属于中档题.4.在平面直角坐标系中,经过点(22,2)P -,渐近线方程为2y x =的双曲线的标准方程为( )A .22142-=x yB .221714x y -=C .22136x y -=D .221147y x -=【答案】B 【解析】 【分析】根据所求双曲线的渐近线方程为y 2x =,可设所求双曲线的标准方程为222x y -=k .再把点(22,2代入,求得 k 的值,可得要求的双曲线的方程.∵双曲线的渐近线方程为y =∴设所求双曲线的标准方程为222x y -=k .又(在双曲线上,则k=16-2=14,即双曲线的方程为222x y 14-=,∴双曲线的标准方程为22x y 1714-=故选:B 【点睛】本题主要考查用待定系数法求双曲线的方程,双曲线的定义和标准方程,以及双曲线的简单性质的应用,属于基础题.5.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()e x f x x =+,则32(2)a f =-,2(log 9)b f =,c f =的大小关系为( )A .a b c >>B .a c b >>C .b a c >>D .b c a >>【答案】C 【解析】 【分析】根据函数的奇偶性得3322(2)(2)a f f =-=3222,log 9的大小,根据函数的单调性可得选项.【详解】依题意得3322(2)(2)a f f =-=,322223log 8log 9<==<=<Q,当0x ≥时,()e x f x x =+,因为1e >,所以xy e =在R 上单调递增,又y x =在R 上单调递增,所以()f x 在[0,)+∞上单调递增,322(log 9)(2)f f f ∴>>,即b a c >>,故选:C. 【点睛】本题考查函数的奇偶性的应用、幂、指、对的大小比较,以及根据函数的单调性比较大小,属于中档题. 6.已知不重合的平面,,αβγ 和直线l ,则“//αβ ”的充分不必要条件是( ) A .α内有无数条直线与β平行 B .l α⊥ 且l β⊥C .αγ⊥ 且γβ⊥D .α内的任何直线都与β平行【答案】B 【解析】 【分析】根据充分不必要条件和直线和平面,平面和平面的位置关系,依次判断每个选项得到答案.A. α内有无数条直线与β平行,则,αβ相交或//αβ,排除;B. l α⊥ 且l β⊥,故//αβ,当//αβ,不能得到l α⊥ 且l β⊥,满足;C. αγ⊥ 且γβ⊥,//αβ,则,αβ相交或//αβ,排除;D. α内的任何直线都与β平行,故//αβ,若//αβ,则α内的任何直线都与β平行,充要条件,排除. 故选:B . 【点睛】本题考查了充分不必要条件和直线和平面,平面和平面的位置关系,意在考查学生的综合应用能力.7.已知命题2:21,:560p x m q x x -<++<,且p 是q 的必要不充分条件,则实数m 的取值范围为( )A .12m >B .12m ≥C .1m >D .m 1≥【答案】D 【解析】 【分析】求出命题q 不等式的解为23x <<,p 是q 的必要不充分条件,得q 是p 的子集,建立不等式求解. 【详解】解:Q 命题2:21,:560p x m q x x -<++<,即: 23x <<,p 是q 的必要不充分条件,(2,3)(,21,)m ∴⊆-∞+,213m ∴+≥,解得m 1≥.实数m 的取值范围为m 1≥.故选:D . 【点睛】本题考查根据充分、必要条件求参数范围,其思路方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时, 一定要注意区间端点值的检验.8.已知m ∈R ,复数113z i =+,22z m i =+,且12z z ⋅为实数,则m =( ) A .23-B .23C .3D .-3【答案】B 【解析】把22z m i =-和 113z i =+代入12z z ⋅再由复数代数形式的乘法运算化简,利用虚部为0求得m 值. 【详解】因为()()()()12132632z z i m i m m i ⋅=+-=++-为实数,所以320m -=,解得23m =. 【点睛】本题考查复数的概念,考查运算求解能力.9.如图,在三棱锥D ABC -中,DC ⊥平面ABC ,AC BC ⊥,2AC BC CD ===,E ,F ,G 分别是棱AB ,AC ,AD 的中点,则异面直线BG 与EF 所成角的余弦值为A .0B .63C 3D .1【答案】B 【解析】 【分析】 【详解】根据题意可得BC ⊥平面ACD ,EF BC ∥,则CBG ∠即异面直线BG 与EF 所成的角,连接CG ,在Rt CBG △中,cos BCCBG BG∠=,易得22BD AD AB ===所以6BG =所以cos CBG ∠=66=,故选B .10.正方形ABCD 的边长为2,E 是正方形内部(不包括正方形的边)一点,且2AE AC ⋅=u u u r u u u r,则()2AE AC +u u u r u u u r 的最小值为( )A .232B .12C .252D .13【答案】C 【解析】 【分析】分别以直线AB 为x 轴,直线AD 为y 轴建立平面直角坐标系,设(,)E x y ,根据2AE AC ⋅=u u u r u u u r,可求1x y +=,而222()(2)(2)AE AC x y u u u r u u u r+=+++,化简求解.解:建立以A 为原点,以直线AB 为x 轴,直线AD 为y 轴的平面直角坐标系.设(,)E x y ,(0,2)x ∈,(0,2)y ∈,则(,)AE x y =u u u r ,(2,2)AC =u u u r ,由2AE AC ⋅=u u u r u u u r,即222x y +=,得1x y +=.所以222()(2)(2)AE AC x y u u u r u u u r +=+++224()8x y x y =++++22213x x =-+=21252()22x -+,所以当12x =时,2()AE AC +u u u r u u u r 的最小值为252. 故选:C. 【点睛】本题考查向量的数量积的坐标表示,属于基础题.11.已知定义在R 上的偶函数()f x 满足(2)()f x f x +=-,且在区间[]1,2上是减函数,令12121ln 2,,log 24a b c -⎛⎫=== ⎪⎝⎭,则()()(),,f a f b f c 的大小关系为( )A .()()()f a f b f c <<B .()()()f a f c f b <<C .()()()f b f a f c <<D .()()()f c f a f b <<【答案】C 【解析】 【分析】可设[]0,1x ∈,根据()f x 在R 上为偶函数及(2)()f x f x +=-便可得到:()()(2)f x f x f x =-=-+,可设1x ,[]20,1x ∈,且12x x <,根据()f x 在[]1,2上是减函数便可得出12()()f x f x <,从而得出()f x 在[]0,1上单调递增,再根据对数的运算得到a 、b 、c 的大小关系,从而得到()()(),,f a f b f c 的大小关系. 【详解】解:因为ln1ln 2ln e <<,即01a <<,又12124b -⎛⎫== ⎪⎝⎭,12log 21c ==-设[]0,1x ∈,根据条件,()()(2)f x f x f x =-=-+,[]21,2x -+∈; 若1x ,[]20,1x ∈,且12x x <,则:1222x x -+>-+;()f x Q 在[]1,2上是减函数;12(2)(2)f x f x ∴-+<-+;12()()f x f x ∴<;()f x ∴在[]0,1上是增函数;所以()()()20f b f f ==,()()()11f c f f =-=∴()()()f b f a f c <<故选:C 【点睛】考查偶函数的定义,减函数及增函数的定义,根据单调性定义判断一个函数单调性的方法和过程:设12x x <,通过条件比较1()f x 与2()f x ,函数的单调性的应用,属于中档题.12.抛物线22y x =的焦点为F ,则经过点F 与点()2,2M 且与抛物线的准线相切的圆的个数有( )A .1个B .2个C .0个D .无数个【答案】B 【解析】 【分析】圆心在FM 的中垂线上,经过点F ,M 且与l 相切的圆的圆心到准线的距离与到焦点F 的距离相等,圆心在抛物线上,直线与抛物线交于2个点,得到2个圆. 【详解】因为点(2,2)M 在抛物线22y x =上, 又焦点1(2F ,0),由抛物线的定义知,过点F 、M 且与l 相切的圆的圆心即为线段FM 的垂直平分线与抛物线的交点, 这样的交点共有2个,故过点F 、M 且与l 相切的圆的不同情况种数是2种. 故选:B . 【点睛】本题主要考查抛物线的简单性质,本题解题的关键是求出圆心的位置,看出圆心必须在抛物线上,且在垂直平分线上.二、填空题:本题共4小题,每小题5分,共20分。

2021年全国统一新高考数学试卷(新高考1卷)

2021年全国统一新高考数学试卷(新高考1卷)

2021年全国统一新高考数学试卷(新高考Ⅰ卷)一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{|24}A x x =-<<,{2B =,3,4,5},则(A B = )A.{2}B.{2,3}C.{3,4}D.{2,3,4}2.已知2z i =-,则()(z z i +=)A.62i -B.42i -C.62i +D.42i+,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.C.4D.4.下列区间中,函数()7sin(6f x x π=-单调递增的区间是()A.(0,)2πB.(2π,)πC.3(,)2ππD.3(2π,2)π5.已知1F ,2F 是椭圆22:194x y C +=的两个焦点,点M 在C 上,则12||||MF MF ⋅的最大值为()A.13B.12C.9D.66.若tan 2θ=-,则sin (1sin 2)(sin cos θθθθ+=+)A.65-B.25-C.25D.657.若过点(,)a b 可以作曲线x y e =的两条切线,则()A.b e a<B.a e b<C.0b a e <<D.0ab e <<8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立二、选择题:本题共4小题,每小题5分,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.有一组样本数据1x ,2x ,⋯,n x ,由这组数据得到新样本数据1y ,2y ,⋯,n y ,其中(1i i y x c i =+=,2,⋯,)n ,c 为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样本数据的样本极差相同10.已知O 为坐标原点,点1(cos ,sin )P αα,2(cos ,sin )P ββ-,3(cos()P αβ+,sin())αβ+,(1,0)A ,则()A.12||||OP OP = B.12||||AP AP =C.312OA OP OP OP ⋅=⋅ D.123OA OP OP OP ⋅=⋅ 11.已知点P 在圆22(5)(5)16x y -+-=上,点(4,0)A ,(0,2)B ,则()A.点P 到直线AB 的距离小于10B.点P 到直线AB 的距离大于2C.当PBA ∠最小时,||PB =D.当PBA ∠最大时,||PB =12.在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[0λ∈,1],[0μ∈,1],则()A.当1λ=时,△1AB P 的周长为定值B.当1μ=时,三棱锥1P A BC -的体积为定值C.当12λ=时,有且仅有一个点P ,使得1A P BP⊥D.当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P三、填空题:本题共4小题,每小题5分,共20分。

2021~2022学年福建省莆田市高三(第一次)模拟考试试卷+答案解析(附后)

2021~2022学年福建省莆田市高三(第一次)模拟考试试卷+答案解析(附后)

2021~2022学年福建省莆田市高三(第一次)模拟考试试卷1. 如图所示,有P、N两块质量相同的物块,在物块P上施加一沿水平方向的外力F,使它们叠放在竖直面上且处于静止状态,下列说法正确的是( )A. 物块P一定受到4个力的作用B. 物块P一定受到3个力的作用C. 物块N一定受到4个力的作用D. 物块N可能受到6个力的作用2. 三根通电长直导线均固定且互相平行,导线通入大小相等的恒定电流,方向如图所示,其中导线A,B 垂直纸面且在同一水平面上,导线C 垂直纸面并在导线A 的正下方。

下列说法正确的是( )A. 导线B 对导线A 的安培力方向竖直向上B. 导线C 对导线A 的安培力方向竖直向下C. 若解除导线C 的固定,则其仍可能处于静止状态D. 若把导线C 固定在导线A 和导线B 正中间,则导线C 受到的安培力为03. 如图所示,a、b、c、d为一矩形的四个顶点,一匀强电场的电场强度方向与该矩形平行。

已知a、b、c三点的电势分别为、,。

ab的长为6cm,bc 的长为8cm,下列说法正确的是( )A. 该匀强电场的电场强度大小为B. 把一带电荷量为的正点电荷从d点移动到矩形中心处的过程中,电场力做的功为C. 矩形abcd电势最高的点的电势为1VD. 矩形abcd上电势最低的点的电势为4. 随着宇宙航天技术不断地发展,人类也越来越向往探索其他的外星文明。

若有一个和地球类似的星球,其质量和地球质量几乎相等,半径却达到了地球半径的3倍,则该星球的第一宇宙速度与地球的第一宇宙速度的大小之比约为( )A. B. C. D. 95. 抗战时期,某战士居高临下向敌方工事内投掷手榴弹,该战士从同一位置先后投出甲、乙两颗手榴弹,手榴弹在空中的运动可视为平抛运动,最后均落在敌方工事的同一水平面上,手榴弹的轨迹如图所示,下列说法正确的是( )A. 甲在空中运动的时间比乙的长B. 甲、乙在空中运动的时间相同C. 甲刚被抛出时的速度比乙的大D. 甲、乙刚被抛出时的速度相同6. 一辆质量为的小汽车以的速度在平直公路上匀速行驶,司机突然发现前方125m处有障碍物,立即紧急刹车,汽车恰好在障碍物前停止。

2021年新高考一卷数学试卷解析

2021年新高考一卷数学试卷解析

2021年新高考一卷数学试卷解析
2021年全国新高考数学一卷是一份难度较高的试卷,以下是具体的解析:
1. 整体难度:该试卷整体难度较大,其中尤以最后两道大题为甚,很多考生在最后的时间里未能完成这些题目。

这需要考生在平时的学习和训练中,注重提高解题速度和准确度,同时也需要培养面对难题的应对策略。

2. 知识点覆盖面:该试卷对高中数学的主要知识点进行了全面的覆盖,包括代数、几何、概率统计等方面。

这有助于全面考察考生的数学知识储备和运用能力。

3. 题目类型:该试卷采用了多种类型的题目,如计算题、证明题、应用题等。

这有助于考察考生在不同题型下的解题能力和思维方式。

4. 创新性:与往年相比,该试卷在题目设计和知识点考察上具有一定的创新性。

例如,有些题目考察了考生对数学概念和方法的深度理解,而有些题目则考察了考生在解决实际问题方面的能力。

5. 考生反映:据考生反映,该试卷难度较大,部分题目较为新颖,需要考生具备较强的思维能力和应变能力。

同时,也有部分考生认为该试卷的题目设计较为合理,能够全面考察考生的数学能力和素质。

总的来说,2021年全国新高考数学一卷是一份难度较高、知识点覆盖面广、题目类型多样、具有创新性的试卷。

考生需要在平时的学习和训练中,注重提高解题速度和准确度,同时也需要培养面对难题的应对策略。

福建省莆田市2021届新高考数学模拟试题(2)含解析

福建省莆田市2021届新高考数学模拟试题(2)含解析

福建省莆田市2021届新高考数学模拟试题(2)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若两个非零向量a r 、b r 满足()()0a b a b +⋅-=r r r r ,且2a b a b +=-r r r r ,则a r 与b r 夹角的余弦值为( )A .35B .35±C .12D .12±【答案】A 【解析】 【分析】设平面向量a r 与b r的夹角为θ,由已知条件得出a b =r r ,在等式2a b a b +=-r r r r 两边平方,利用平面向量数量积的运算律可求得cos θ的值,即为所求. 【详解】设平面向量a r 与b r的夹角为θ,()()22220a b a b a b a b +⋅-=-=-=r r r r r r r r Q ,可得a b =r r ,在等式2a b a b +=-r r r r 两边平方得22222484a a b b a a b b +⋅+=-⋅+r r r r r r r r ,化简得3cos 5θ=.故选:A. 【点睛】本题考查利用平面向量的模求夹角的余弦值,考查平面向量数量积的运算性质的应用,考查计算能力,属于中等题.2.已知函数2,()5,x x x af x x x a⎧-≤=⎨->⎩(0a >),若函数()()4g x f x x =-有三个零点,则a 的取值范围是( )A .(0,1)[5,)+∞UB .6(0,)[5,)5+∞U C .(1,5] D .6(,5]5【答案】A 【解析】 【分析】分段求解函数零点,数形结合,分类讨论即可求得结果. 【详解】作出2y x x =-和5y x =-,4y x =的图像如下所示:函数()()4g x f x x =-有三个零点, 等价于()y f x =与4y x =有三个交点, 又因为0a >,且由图可知,当0x ≤时()y f x =与4y x =有两个交点,A O , 故只需当0x >时,()y f x =与4y x =有一个交点即可. 若当0x >时,()0,1a ∈时,显然y =y (y )与y =4|y |有一个交点y ,故满足题意; 1a =时,显然y =y (y )与y =4|y |没有交点,故不满足题意;()1,5a ∈时,显然y =y (y )与y =4|y |也没有交点,故不满足题意; [)5,a ∈+∞时,显然()y f x =与4y x =有一个交点C ,故满足题意.综上所述,要满足题意,只需a ∈(0,1)[5,)+∞U . 故选:A. 【点睛】本题考查由函数零点的个数求参数范围,属中档题.3.已知命题2:21,:560p x m q x x -<++<,且p 是q 的必要不充分条件,则实数m 的取值范围为( )A .12m >B .12m ≥C .1m >D .m 1≥【答案】D 【解析】 【分析】求出命题q 不等式的解为23x <<,p 是q 的必要不充分条件,得q 是p 的子集,建立不等式求解. 【详解】解:Q 命题2:21,:560p x m q x x -<++<,即: 23x <<,p 是q 的必要不充分条件,(2,3)(,21,)m ∴⊆-∞+,213m ∴+≥,解得m 1≥.实数m 的取值范围为m 1≥.故选:D . 【点睛】本题考查根据充分、必要条件求参数范围,其思路方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时, 一定要注意区间端点值的检验.4.一个几何体的三视图如图所示,正视图、侧视图和俯视图都是由一个边长为a 的正方形及正方形内一段圆弧组成,则这个几何体的表面积是( )A .234a π⎛⎫-⎪⎝⎭B .262a π⎛⎫-⎪⎝⎭C .264a π⎛⎫-⎪⎝⎭D .2364a π⎛⎫-⎪⎝⎭【答案】C 【解析】 【分析】画出直观图,由球的表面积公式求解即可 【详解】这个几何体的直观图如图所示,它是由一个正方体中挖掉18个球而形成的,所以它的表面积为2222213346484a S a a a a πππ⎛⎫⎛⎫=+-+⨯=- ⎪ ⎪⎝⎭⎝⎭.故选:C【点睛】本题考查三视图以及几何体的表面积的计算,考查空间想象能力和运算求解能力.5.我们熟悉的卡通形象“哆啦A 梦”的长宽比为2:1.在东方文化中通常称这个比例为“白银比例”,该比例在设计和建筑领域有着广泛的应用.已知某电波塔自下而上依次建有第一展望台和第二展望台,塔顶到塔底的高度与第二展望台到塔底的高度之比,第二展望台到塔底的高度与第一展望台到塔底的高度之比皆等于“白银比例”,若两展望台间高度差为100米,则下列选项中与该塔的实际高度最接近的是( ) A .400米 B .480米 C .520米 D .600米【答案】B 【解析】 【分析】根据题意,画出几何关系,结合各线段比例可先求得第一展望台和第二展望台的距离,进而由比例即可求得该塔的实际高度. 【详解】设第一展望台到塔底的高度为x 米,塔的实际高度为y 米,几何关系如下图所示:由题意可得1002xx +=,解得()10021x =;且满足2100yx =+ 故解得塔高()100220021480y x =+=≈米,即塔高约为480米.故选:B 【点睛】本题考查了对中国文化的理解与简单应用,属于基础题.6.根据如图所示的程序框图,当输入的x 值为3时,输出的y 值等于( )A .1B .eC .1e -D .2e -【答案】C 【解析】 【分析】根据程序图,当x<0时结束对x 的计算,可得y 值. 【详解】由题x=3,x=x-2=3-1,此时x>0继续运行,x=1-2=-1<0,程序运行结束,得1y e -=,故选C . 【点睛】本题考查程序框图,是基础题.7.已知S n 为等比数列{a n }的前n 项和,a 5=16,a 3a 4=﹣32,则S 8=( ) A .﹣21 B .﹣24C .85D .﹣85【答案】D 【解析】 【分析】由等比数列的性质求得a 1q 4=16,a 12q 5=﹣32,通过解该方程求得它们的值,求首项和公比,根据等比数列的前n 项和公式解答即可. 【详解】设等比数列{a n }的公比为q , ∵a 5=16,a 3a 4=﹣32, ∴a 1q 4=16,a 12q 5=﹣32, ∴q =﹣2,则11a =,则881[1(2)]8512S ⨯--==-+,故选:D. 【点睛】本题主要考查等比数列的前n 项和,根据等比数列建立条件关系求出公比是解决本题的关键,属于基础题. 8.新闻出版业不断推进供给侧结构性改革,深入推动优化升级和融合发展,持续提高优质出口产品供给,实现了行业的良性发展.下面是2012年至2016年我国新闻出版业和数字出版业营收增长情况,则下列说法错误的是( )A .2012年至2016年我国新闻出版业和数字出版业营收均逐年增加B .2016年我国数字出版业营收超过2012年我国数字出版业营收的2倍C .2016年我国新闻出版业营收超过2012年我国新闻出版业营收的1.5倍D .2016年我国数字出版营收占新闻出版营收的比例未超过三分之一 【答案】C 【解析】 【分析】通过图表所给数据,逐个选项验证. 【详解】根据图示数据可知选项A 正确;对于选项B :1935.5238715720.9⨯=<,正确;对于选项C :16635.3 1.523595.8⨯>,故C 不正确;对于选项D :123595.878655720.93⨯≈>,正确.选C.【点睛】本题主要考查柱状图是识别和数据分析,题目较为简单. 9.已知复数z 满足i z11=-,则z =( ) A .1122i + B .1122i - C .1122-+iD .1122i --【答案】B 【解析】 【分析】利用复数的代数运算法则化简即可得到结论. 【详解】由i z11=-,得()()11111111222i i z i i i i ++====+--+, 所以,1122z i =-. 故选:B. 【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,属于基础题.10.在三棱锥P ABC -中,AB BP ⊥,AC PC ⊥,AB AC ⊥,22PB PC ==,点P 到底面ABC 的距离为2,则三棱锥P ABC -外接球的表面积为( ) A .3π B .3π C .12πD .24π【答案】C 【解析】 【分析】首先根据垂直关系可确定OP OA OB OC ===,由此可知O 为三棱锥外接球的球心,在PAB ∆中,可以算出AP 的一个表达式,在OAG ∆中,可以计算出AO 的一个表达式,根据长度关系可构造等式求得半径,进而求出球的表面积. 【详解】取AP 中点O ,由AB BP ⊥,AC PC ⊥可知:OP OA OB OC ===,O ∴为三棱锥P ABC -外接球球心,过P 作PH ⊥平面ABC ,交平面ABC 于H ,连接AH 交BC 于G ,连接OG ,HB ,HC ,PB PC =Q ,HB HC ∴=,AB AC ∴=,G ∴为BC 的中点由球的性质可知:OG ⊥平面ABC ,OG//PH ∴,且112OG PH ==. 设AB x =,22PB =Q 211822AO PA x ∴==+1222AG BC x ==Q ,∴在OAG ∆中,222AG OG OA +=, 即222211822x x ⎛⎫⎛⎫+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,解得:2x =, ∴三棱锥P ABC -的外接球的半径为:()()2221122422322x AO +=+==,∴三棱锥P ABC -外接球的表面积为2412S R ππ==.故选:C . 【点睛】本题考查三棱锥外接球的表面积的求解问题,求解几何体外接球相关问题的关键是能够利用球的性质确定外接球球心的位置.11.某几何体的三视图如图所示,若图中小正方形的边长均为1,则该几何体的体积是( )A .16163π+B .8163π+C .32833π+ D .321633π+ 【答案】B 【解析】该几何体是直三棱柱和半圆锥的组合体,其中三棱柱的高为2,底面是高和底边均为4的等腰三角形,圆锥的高为4,底面半径为2,则其体积为111V 44244223π=⨯⨯⨯+⨯⨯⨯⨯, 8163π=+.故选B点睛:由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整. 12.若2m >2n >1,则( ) A .11m n> B .πm ﹣n >1C .ln (m ﹣n )>0D .1122log m log n >【答案】B 【解析】 【分析】根据指数函数的单调性,结合特殊值进行辨析. 【详解】若2m >2n >1=20,∴m >n >0,∴πm ﹣n >π0=1,故B 正确; 而当m 12=,n 14=时,检验可得,A 、C 、D 都不正确, 故选:B . 【点睛】此题考查根据指数幂的大小关系判断参数的大小,根据参数的大小判定指数幂或对数的大小关系,需要熟练掌握指数函数和对数函数的性质,结合特值法得出选项. 二、填空题:本题共4小题,每小题5分,共20分。

福建省莆田市2021届新高考数学一月模拟试卷含解析

福建省莆田市2021届新高考数学一月模拟试卷含解析

福建省莆田市2021届新高考数学一月模拟试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知23C π=,1c =.当,a b 变化时,若z b a λ=+存在最大值,则正数λ的取值范围为 A .(0,1) B .(0,2) C .1(,2)2D .(1,3)【答案】C 【解析】 【分析】 【详解】 因为23C π=,1c =,所以根据正弦定理可得sin sin sin a b c A B C ===,所以a A =,b B =,所以sin()])sin 32z b a B A B B B λλλπ=+==+-=-+])B B φ=+,其中tan φ=,03B π<<, 因为z b a λ=+存在最大值,所以由2,2B k k φπ+=+π∈Z ,可得22,62k k k φπππ+<<π+∈Z ,所以tan φ>>,解得122λ<<,所以正数λ的取值范围为1(,2)2,故选C . 2.已知圆锥的高为3,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积与圆锥的体积的比值为( ) A .53B .329C .43D .259【答案】B 【解析】 【分析】计算求半径为2R =,再计算球体积和圆锥体积,计算得到答案. 【详解】如图所示:设球半径为R ,则()223R R =-+,解得2R =. 故求体积为:3143233V R ππ==,圆锥的体积:21333V π=⨯=,故12329V V =.故选:B .【点睛】本题考查了圆锥,球体积,圆锥的外接球问题,意在考查学生的计算能力和空间想象能力. 3.已知函数()2tan()(0)f x x ωω=>的图象与直线2y =的相邻交点间的距离为π,若定义{},max ,,a a b a b b a b⎧=⎨<⎩…,则函数()max{()h x f x =,()cos }f x x 在区间3,22ππ⎛⎫⎪⎝⎭内的图象是( ) A . B .C .D .【答案】A 【解析】 【分析】由题知()2tan()(0)f x x ωω=>,利用T πω=求出ω,再根据题给定义,化简求出()h x 的解析式,结合正弦函数和正切函数图象判断,即可得出答案. 【详解】根据题意,()2tan()(0)f x x ωω=>的图象与直线2y =的相邻交点间的距离为π, 所以()2tan()(0)f x x ωω=> 的周期为π, 则1Tππωπ===,所以{}2sin ,,2()max 2tan ,2sin 32tan ,,2x x h x x x x x ππππ⎧⎛⎤∈ ⎪⎥⎪⎝⎦==⎨⎛⎫⎪∈ ⎪⎪⎝⎭⎩,由正弦函数和正切函数图象可知A 正确. 故选:A. 【点睛】本题考查三角函数中正切函数的周期和图象,以及正弦函数的图象,解题关键是对新定义的理解. 4.已知正三角形ABC 的边长为2,D 为边BC 的中点,E 、F 分别为边AB 、AC 上的动点,并满足2AE CF =u u u v u u u v ,则DE DF ⋅u u u v u u u v的取值范围是( )A .11[,]216- B .1(,]16-∞ C .1[,0]2-D .(,0]-∞【答案】A 【解析】 【分析】建立平面直角坐标系,求出直线:1)AB y x =+,:1)AC y x =-设出点(1)),(,1))E m m F n n +-,通过||2||AE CF =u u u r u u u r,找出m 与n 的关系.通过数量积的坐标表示,将DE DF ⋅u u u r u u u r表示成m 与n 的关系式,消元,转化成m 或n 的二次函数,利用二次函数的相关知识,求出其值域,即为DE DF ⋅u u u r u u u r的取值范围. 【详解】以D 为原点,BC 所在直线为x 轴,AD 所在直线为y 轴建系,设(1,0),(1,0)A B C -,则直线:1)AB y x =+,:1)AC y x =-设点(1)),(,1))E m m F n n +-,10,01m n -≤<<≤所以(),(1,1))AE m CF n n ==--u u u r u u u r由||2||AE CF =u u u r u u u r 得224(1)m n =- ,即2(1)m n =- ,所以22713(1)(1)4734()816DE DF mn m n n n n ⋅=-+-=-+-=--+u u u r u u u r ,由12(1)0m n -≤=-<及01n <≤,解得112n ≤<,由二次函数2714()816y n =--+的图像知,11[,]216y ∈-,所以DE DF ⋅u u u r u u u r 的取值范围是11[,]216-.故选A .【点睛】本题主要考查解析法在向量中的应用,以及转化与化归思想的运用.5.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想的内容是:每个大于2的偶数都可以表示为两个素数的和,例如:422=+,633=+,835=+,那么在不超过18的素数中随机选取两个不同的数,其和等于16的概率为( ) A .121B .221C .115D .215【答案】B 【解析】 【分析】先求出从不超过18的素数中随机选取两个不同的数的所有可能结果,然后再求出其和等于16的结果,根据等可能事件的概率公式可求. 【详解】解:不超过18的素数有2,3,5,7,11,13,17共7个,从中随机选取两个不同的数共有2721C =,其和等于16的结果(3,13),(5,11)共2种等可能的结果, 故概率221P =. 故选:B. 【点睛】古典概型要求能够列举出所有事件和发生事件的个数,本题不可以列举出所有事件但可以用分步计数得到,属于基础题.6.已知函数2()e (2)e x x f x t t x =+--(0t ≥),若函数()f x 在x ∈R 上有唯一零点,则t 的值为( ) A .1 B .12或0 C .1或0 D .2或0【答案】C 【解析】 【分析】求出函数的导函数,当0t >时,只需(ln )0f t -=,即1ln 10t t -+=,令1()ln 1g t t t=-+,利用导数求其单调区间,即可求出参数t 的值,当0t =时,根据函数的单调性及零点存在性定理可判断; 【详解】 解:∵2()e (2)e xx f x t t x =+--(0t ≥),∴()()2()2e(2)e 1e 12e 1xx x x f x t t t '=+--=-+,∴当0t >时,由()0f x '=得ln x t =-,则()f x 在(),ln t -∞-上单调递减,在()ln ,t -+∞上单调递增, 所以(ln )f t -是极小值,∴只需(ln )0f t -=, 即1ln 10t t -+=.令1()ln 1g t t t =-+,则211()0g t t t'=+>,∴函数()g t 在(0,)+∞上单调递增.∵(1)0g =,∴1t =;当0t =时,()2e x f x x =--,函数()f x 在R 上单调递减,∵(1)2e 10f =--<,2(2)22e 0f --=->,函数()f x 在R 上有且只有一个零点,∴t 的值是1或0. 故选:C 【点睛】本题考查利用导数研究函数的零点问题,零点存在性定理的应用,属于中档题.7.过抛物线22(0)y px p =>的焦点作直线交抛物线于A B ,两点,若线段AB 中点的横坐标为3,且8AB =,则抛物线的方程是( )A .22y x =B .24y x =C .28y x =D .210y x =【答案】B 【解析】 【分析】利用抛物线的定义可得,12||||||22p pAB AF BF x x =+=+++,把线段AB 中点的横坐标为3,||8AB =代入可得p 值,然后可得出抛物线的方程. 【详解】设抛物线22(0)y px p =>的焦点为F,设点()()1122,,,A x y B x y ,由抛物线的定义可知()1212||||||22p pAB AF BF x x x x p =+=+++=++, 线段AB 中点的横坐标为3,又||8AB =,86p ∴=+,可得2p =, 所以抛物线方程为24y x =. 故选:B. 【点睛】本题考查抛物线的定义、标准方程,以及简单性质的应用,利用抛物线的定义是解题的关键.8.已知函数()(1)(2)x e f x m x x e -=---(e 为自然对数底数),若关于x 的不等式()0f x >有且只有一个正整数解,则实数m 的最大值为( )A .32e e+B .22e e +C .32e e -D .22e e -【答案】A 【解析】 【分析】若不等式()0f x >有且只有一个正整数解,则(1)y m x =-的图象在()y g x =图象的上方只有一个正整数值,利用导数求出()g x 的最小值,分别画出()y g x =与(1)y m x =-的图象,结合图象可得. 【详解】解:()(1)(2)0xf e e x m x x =--->-, ∴(1)(2)x m x x e e ->-+, 设()(2)xy g x x e e ==-+, ∴()(1)x g x x e '=-,当1x >时,()0g x '>,函数()g x 单调递增, 当1x <时,()0g x '<,函数()g x 单调递减, ∴()(1)0g x g ≥=,当x →+∞时,()f x →+∞,当x →-∞,()f x e →, 函数(1)y m x =-恒过点()1,0,分别画出()y g x =与(1)y m x =-的图象,如图所示,,若不等式()0f x >有且只有一个正整数解,则(1)y m x =-的图象在()y g x =图象的上方只有一个正整数值,∴3(31)(32)e m e -≤-+且(21)(22)x m e e ->-+,即32(3)m g e e ≤=+,且m e >∴32e ee m +<≤,故实数m 的最大值为32e e+,故选:A 【点睛】本题考查考查了不等式恒有一正整数解问题,考查了利用导数研究函数的单调性,考查了数形结合思想,考查了数学运算能力.9.已知等差数列{}n a 的前n 项和为n S ,且2550S =,则1115a a +=( ) A .4 B .8C .16D .2【答案】A 【解析】 【分析】利用等差的求和公式和等差数列的性质即可求得. 【详解】()1252512511152550442a a S a a a a +==⇒+=⇒+=.故选:A . 【点睛】本题考查等差数列的求和公式和等差数列的性质,考查基本量的计算,难度容易.10.地球上的风能取之不尽,用之不竭.风能是淸洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,2014年累计装机容量就突破了100GW ,达到114.6GW ,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图. 根据所给信息,正确的统计结论是( )A .截止到2015年中国累计装机容量达到峰值B .10年来全球新增装机容量连年攀升C .10年来中国新增装机容量平均超过20GWD .截止到2015年中国累计装机容量在全球累计装机容量中占比超过13【答案】D【解析】 【分析】先列表分析近10年全球风力发电新增装机容量,再结合数据研究单调性、平均值以及占比,即可作出选择. 【详解】 年份 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 累计装机容量 158.1 197.2 237.8 282.9 318.7 370.5 434.3 489.2 542.7 594.1 新增装机容量39.140.645.135.851.863.854.953.551.4中国累计装机装机容量逐年递增,A 错误;全球新增装机容量在2015年之后呈现下降趋势,B 错误;经计算,10年来中国新增装机容量平均每年为19.77GW ,选项C 错误;截止到2015年中国累计装机容量197.7GW ,全球累计装机容量594.1158.1436GW -=,占比为45.34%,选项D 正确.故选:D 【点睛】本题考查条形图,考查基本分析求解能力,属基础题.11.函数()()()sin 0,0f x x ωϕωϕπ=+><<的图象如图所示,为了得到()cos g x x ω=的图象,可将()f x 的图象( )A .向右平移6π个单位 B .向右平移12π个单位C .向左平移12π个单位D .向左平移6π个单位 【答案】C 【解析】 【分析】根据正弦型函数的图象得到()sin 23f x x π⎛⎫=+ ⎪⎝⎭,结合图像变换知识得到答案.【详解】由图象知:7212122T T ππππ=-=⇒=,∴2ω=. 又12x π=时函数值最大,所以2221223k k πππϕπϕπ⨯+=+⇒=+.又()0,ϕπ∈, ∴3πϕ=,从而()sin 23f x x π⎛⎫=+⎪⎝⎭,()cos 2sin 2sin 22123g x x x x πππ⎡⎤⎛⎫⎛⎫==+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 只需将()f x 的图象向左平移12π个单位即可得到()g x 的图象,故选C. 【点睛】已知函数()sin (0,0)y A x B A ωϕω=++>>的图象求解析式 (1)max min max min ,22y y y y A B -+==.(2)由函数的周期T 求2,.T πωω= (3)利用“五点法”中相对应的特殊点求ϕ,一般用最高点或最低点求. 12.下列函数中,在定义域上单调递增,且值域为[)0,+∞的是( ) A .()lg 1y x =+ B .12y x =C .2x y =D .ln y x =【答案】B 【解析】 【分析】分别作出各个选项中的函数的图象,根据图象观察可得结果. 【详解】对于A ,()lg 1y x =+图象如下图所示:则函数()lg 1y x =+在定义域上不单调,A 错误; 对于B ,12y x x ==的图象如下图所示:则y x =在定义域上单调递增,且值域为[)0,+∞,B 正确;对于C ,2xy =的图象如下图所示:则函数2xy =单调递增,但值域为()0,∞+,C 错误;对于D ,ln y x =的图象如下图所示:则函数ln y x =在定义域上不单调,D 错误. 故选:B . 【点睛】本题考查函数单调性和值域的判断问题,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。

福建省莆田市2021届新第一次高考模拟考试数学试卷含解析

福建省莆田市2021届新第一次高考模拟考试数学试卷含解析

福建省莆田市2021届新第一次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知双曲线C 的一个焦点为()0,5,且与双曲线2214x y -=的渐近线相同,则双曲线C 的标准方程为( )A .2214y x -= B .221520y x -= C .221205x y -= D .2214x y -= 【答案】B【解析】【分析】根据焦点所在坐标轴和渐近线方程设出双曲线的标准方程,结合焦点坐标求解.【详解】∵双曲线C 与2214x y -=的渐近线相同,且焦点在y 轴上, ∴可设双曲线C 的方程为2214y x k k-=,一个焦点为()0,5, ∴425k k +=,∴5k =,故C 的标准方程为221520y x -=. 故选:B【点睛】此题考查根据双曲线的渐近线和焦点求解双曲线的标准方程,易错点在于漏掉考虑焦点所在坐标轴导致方程形式出错.2.在复平面内,31i i +-复数(i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】【分析】将复数化简得=12z i +,12z i =-,即可得到对应的点为()1,2-,即可得出结果.【详解】 3(3)(1)12121(1)(1)i i i z i z i i i i +++===+⇒=---+,对应的点位于第四象限. 故选:D .【点睛】本题考查复数的四则运算,考查共轭复数和复数与平面内点的对应,难度容易.3.设椭圆E :()222210x y a b a b+=>>的右顶点为A ,右焦点为F ,B 、C 为椭圆上关于原点对称的两点,直线BF 交直线AC 于M ,且M 为AC 的中点,则椭圆E 的离心率是( )A .23B .12C .13D .14【答案】C【解析】【分析】连接OM ,OM 为ABC ∆的中位线,从而OFM AFB ∆∆:,且12OF FA =,进而12c a c =-,由此能求出椭圆的离心率.【详解】如图,连接OM ,Q 椭圆E :()222210x y a b a b +=>>的右顶点为A ,右焦点为F , B 、C 为椭圆上关于原点对称的两点,不妨设B 在第二象限,直线BF 交直线AC 于M ,且M 为AC 的中点∴OM 为ABC ∆的中位线,∴OFM AFB ∆∆:,且12OFFA =, 12c a c ∴=-, 解得椭圆E 的离心率13c e a ==. 故选:C【点睛】 本题考查了椭圆的几何性质,考查了运算求解能力,属于基础题.4.复数5i 12i +的虚部是 ( ) A .i B .i - C .1 D .1-【答案】C【解析】因为()()()512510*********i i i i i i i i -+===+++- ,所以5i 12i+的虚部是1 ,故选C. 5.()()()cos 0,0f x A x A ωϕω=+>>的图象如图所示,()()sin g x A x ωϕ=--,若将()y f x =的图象向左平移()0a a >个单位长度后所得图象与()y g x =的图象重合,则a 可取的值的是( )A .112πB .512πC .712πD .11π12【答案】B【解析】 【分析】根据图象求得函数()y f x =的解析式,即可得出函数()y g x =的解析式,然后求出变换后的函数解析式,结合题意可得出关于a 的等式,即可得出结果.【详解】由图象可得1A =,函数()y f x =的最小正周期为23471T πππ⎛⎫-= ⎪⎝⎭=⨯,22T πω∴==, 777cos 2cos 112126f πππϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Q , 则()726k k Z πϕππ+=+∈,()26k k Z πϕπ∴=-+∈,取6πϕ=-, ()cos 26f x x π⎛⎫∴=- ⎪⎝⎭,则()2sin 2cos 263g x x x ππ⎛⎫⎛⎫=-+=+ ⎪ ⎪⎝⎭⎝⎭, ()()cos 226g x f x a x a π⎛⎫∴=+=+- ⎪⎝⎭,22263a k πππ-=+,可得()512a k k Z ππ=+∈, 当0k =时,512a π=. 故选:B.【点睛】本题考查利用图象求函数解析式,同时也考查了利用函数图象变换求参数,考查计算能力,属于中等题.6.集合{}|M y y x ==∈Z 的真子集的个数为( ) A .7B .8C .31D .32 【答案】A【解析】【分析】计算{}M =,再计算真子集个数得到答案.【详解】{}{}|M y y x ==∈=Z ,故真子集个数为:3217-=.故选:A .【点睛】本题考查了集合的真子集个数,意在考查学生的计算能力. 7.已知函数22,0,()1,0,x x x f x x x ⎧-=⎨+<⎩…,则((1))f f -=( ) A .2B .3C .4D .5【答案】A【解析】【分析】根据分段函数直接计算得到答案.【详解】 因为22,0,()1,0,x x x f x x x ⎧-=⎨+<⎩…所以2((1))(2)222f f f -==-=. 故选:A .【点睛】本题考查了分段函数计算,意在考查学生的计算能力.8.设过点(),P x y 的直线分别与x 轴的正半轴和y 轴的正半轴交于,A B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2BP PA =u u u v u u u v ,且1OQ AB ⋅=u u u v u u u v ,则点P 的轨迹方程是( )A .()223310,02x y x y +=>> B .()223310,02x y x y -=>> C .()223310,02x y x y -=>> D .()223310,02x y x y +=>> 【答案】A【解析】【分析】设,A B 坐标,根据向量坐标运算表示出2BP PA =u u u r u u u r,从而可利用,x y 表示出,a b ;由坐标运算表示出1OQ AB ⋅=u u u r u u u r ,代入,a b 整理可得所求的轨迹方程.【详解】设(),0A a ,()0,B b ,其中0a >,0b >2BP PA =u u u r u u u r Q ()(),2,x y b a x y ∴-=--,即()22x a x y b y ⎧=-⎨-=-⎩ 30230x a b y ⎧=>⎪∴⎨⎪=>⎩ ,P Q Q 关于y 轴对称 (),Q x y ∴- ()(),,1OQ AB x y a b ax by ∴⋅=-⋅-=+=u u u r u u u r ()223310,02x y x y ∴+=>> 故选:A【点睛】本题考查动点轨迹方程的求解,涉及到平面向量的坐标运算、数量积运算;关键是利用动点坐标表示出变量,根据平面向量数量积的坐标运算可整理得轨迹方程.9.双曲线﹣y 2=1的渐近线方程是( ) A .x±2y=0B .2x±y=0C .4x±y=0D .x±4y=0【答案】A【解析】试题分析:渐近线方程是﹣y 2=1,整理后就得到双曲线的渐近线. 解:双曲线其渐近线方程是﹣y 2=1 整理得x±2y=1. 故选A .点评:本题考查了双曲线的渐进方程,把双曲线的标准方程中的“1”转化成“1”即可求出渐进方程.属于基础题.10.已知函数()ln f x x ax b =++的图象在点(1,)a b +处的切线方程是32y x =-,则a b -=( ) A .2B .3C .-2D .-3 【答案】B【解析】【分析】根据(1)3f '=求出2,a =再根据(1,)a b +也在直线32y x =-上,求出b 的值,即得解.【详解】 因为1()f x a x'=+,所以(1)3f '= 所以13,2a a +==,又(1,)a b +也在直线32y x =-上,所以1a b +=,解得2,1,a b ==-所以3a b -=.故选:B【点睛】本题主要考查导数的几何意义,意在考查学生对这些知识的理解掌握水平.11.以()3,1A -,()2,2B-为直径的圆的方程是 A .2280x y x y +---= B .2290x y x y +---=C .2280x y x y +++-=D .2290x y x y +++-= 【答案】A【解析】【分析】 设圆的标准方程,利用待定系数法一一求出,,a b r ,从而求出圆的方程.【详解】设圆的标准方程为222()()x a y b r -+-=,由题意得圆心(,)O a b 为A ,B 的中点, 根据中点坐标公式可得32122a -==,12122b -+==,又||2AB r ===,所以圆的标准方程为: 221117()()222x y -+-=,化简整理得2280x y x y +---=, 所以本题答案为A.【点睛】本题考查待定系数法求圆的方程,解题的关键是假设圆的标准方程,建立方程组,属于基础题. 12.已知0x =是函数()(tan )f x x ax x =-的极大值点,则a 的取值范围是A .(,1)-∞-B .(,1]-∞C .[0,)+∞D .[1,)+∞【答案】B【解析】【分析】【详解】 方法一:令()tan g x ax x =-,则(())f x x g x =⋅,21()cos g'x a x =-, 当1a ≤,(,)22x ππ∈-时,'()0g x ≤,()g x 单调递减, ∴(,0)2x π∈-时,()(0)0g x g >=,()()0f x x g x =⋅<,且()()()>0f x xg'x g x '=+,∴()0f 'x >,即()f x 在(,0)2π-上单调递增,(0,)2x π∈时,()(0)0g x g <=,()()0f x x g x =⋅<,且()()+()<0f 'x =xg'x g x , ∴()0f 'x <,即()f x 在(0,)2π上单调递减,∴0x =是函数()f x 的极大值点,∴1a ≤满足题意;当1a >时,存在(0,)2t π∈使得cos t =,即'()0g t =, 又21()cos g'x a x =-在(0,)2π上单调递减,∴,()0x t ∈时,()(0)0g x g >=,所以()()0f x x g x =⋅>, 这与0x =是函数()f x 的极大值点矛盾.综上,1a ≤.故选B .方法二:依据极值的定义,要使0x =是函数()f x 的极大值点,须在0x =的左侧附近,()0f x <,即tan 0ax x ->;在0x =的右侧附近,()0f x <,即tan 0ax x -<.易知,1a =时,y ax =与tan y x =相切于原点,所以根据y ax =与tan y x =的图象关系,可得1a ≤,故选B .二、填空题:本题共4小题,每小题5分,共20分。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建省莆田市2021届新高考数学一模试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知直线22y x a =-是曲线ln y x a =-的切线,则a =( ) A .2-或1 B .1-或2 C .1-或12D .12-或1 【答案】D 【解析】 【分析】求得直线22y x a =-的斜率,利用曲线ln y x a =-的导数,求得切点坐标,代入直线方程,求得a 的值.【详解】直线22y x a =-的斜率为1, 对于ln y x a =-,令11y x '==,解得1x =,故切点为()1,a -,代入直线方程得212a a -=-,解得12a =-或1. 故选:D 【点睛】本小题主要考查根据切线方程求参数,属于基础题.2.若23455012345(21)(21)(21)(21)(21)a a x a x a x a x a x x +-+-+-+-+-=,则2a 的值为( )A .54B .58C .516D .532【答案】C 【解析】 【分析】 根据551[(21)1]32x x =-+,再根据二项式的通项公式进行求解即可. 【详解】 因为551[(21)1]32x x =-+,所以二项式5[(21)1]x -+的展开式的通项公式为:55155(21)1(21)r r r r r r T C x C x --+=⋅-⋅=⋅-,令3r =,所以2235(21)T C x =⋅-,因此有32255111545323232216C C a ⨯=⋅=⋅=⨯=. 故选:C 【点睛】本题考查了二项式定理的应用,考查了二项式展开式通项公式的应用,考查了数学运算能力3.若实数,x y 满足不等式组121210x y x y x y +≥-⎧⎪-≤-⎨⎪--≤⎩,则234x y -+的最大值为( )A .1-B .2-C .3D .2【答案】C 【解析】 【分析】作出可行域,直线目标函数对应的直线l ,平移该直线可得最优解. 【详解】作出可行域,如图由射线AB ,线段AC ,射线CD 围成的阴影部分(含边界),作直线:2340l x y -+=,平移直线l ,当l 过点(1,1)C 时,234z x y =-+取得最大值1. 故选:C .【点睛】本题考查简单的线性规划问题,解题关键是作出可行域,本题要注意可行域不是一个封闭图形. 4.已知,m n 表示两条不同的直线,αβ,表示两个不同的平面,且,m n αβ⊥⊂,则“αβ⊥”是“//m n ”的( )条件. A .充分不必要 B .必要不充分C .充要D .既不充分也不必要【答案】B 【解析】 【分析】根据充分必要条件的概念进行判断. 【详解】对于充分性:若αβ⊥,则,m n 可以平行,相交,异面,故充分性不成立;若//m n ,则,n n αβ⊥⊂,可得αβ⊥,必要性成立. 故选:B 【点睛】本题主要考查空间中线线,线面,面面的位置关系,以及充要条件的判断,考查学生综合运用知识的能力.解决充要条件判断问题,关键是要弄清楚谁是条件,谁是结论.5.已知函数()()222ln 25f x a x ax =+++.设1a <-,若对任意不相等的正数1x ,2x ,恒有()()12128f x f x x x -≥-,则实数a 的取值范围是( )A .()3,1--B .()2,1--C .(],3-∞-D .(],2-∞-【答案】D 【解析】 【分析】求解()f x 的导函数,研究其单调性,对任意不相等的正数12,x x ,构造新函数,讨论其单调性即可求解. 【详解】()f x 的定义域为()0,∞+,()()2221224ax a a f x ax x x+++'=+=, 当1a <-时,()0f x '<,故()f x 在()0,∞+单调递减; 不妨设12x x <,而1a <-,知()f x 在()0,∞+单调递减, 从而对任意1x 、()20,x ∈+∞,恒有()()12128f x f x x x -≥-,即()()12128f x f x x x -≥-,()()()12218f x f x x x -≥-,()()112288f x x f x x ≥++,令()()8g x f x x =+,则()2248a g x ax x+'=++,原不等式等价于()g x 在()0,∞+单调递减,即1240a ax x+++≤, 从而()222214122121x x a x x ---≤=-++,因为()22212221x x --≥-+, 所以实数a 的取值范围是(],2-∞- 故选:D.【点睛】此题考查含参函数研究单调性问题,根据参数范围化简后构造新函数转换为含参恒成立问题,属于一般性题目.6. “1cos 22α=-”是“3k παπ=+,k Z ∈”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件【答案】B 【解析】 【分析】先求出满足1cos 22α=-的α值,然后根据充分必要条件的定义判断. 【详解】 由1cos 22α=-得2223k παπ=±,即3k παπ=±,k Z ∈ ,因此“1cos 22α=-”是“3k παπ=+,k Z ∈”的必要不充分条件.故选:B . 【点睛】本题考查充分必要条件,掌握充分必要条件的定义是解题基础.解题时可根据条件与结论中参数的取值范围进行判断. 7.设复数z 满足i(i i2i z z -=-为虚数单位),则z =( ) A .13i 22- B .13i 22+ C .13i 22--D .13i 22-+ 【答案】B 【解析】 【分析】 易得2i1iz +=-,分子分母同乘以分母的共轭复数即可. 【详解】由已知,i i 2z z -=+,所以2i (2i)(1i)13i 13i 1i 2222z ++++====+-. 故选:B. 【点睛】本题考查复数的乘法、除法运算,考查学生的基本计算能力,是一道容易题.8.已知双曲线C :2214x y -=,1F ,2F 为其左、右焦点,直线l 过右焦点2F ,与双曲线C 的右支交于A ,B 两点,且点A 在x 轴上方,若223AF BF =,则直线l 的斜率为( )A .1B .2-C .1-D .2【答案】D 【解析】 【分析】由|AF 2|=3|BF 2|,可得223AF F B u u u u v u u u u v=.设直线l 的方程x =m >0,设()11,A x y ,()22,B x y ,即y 1=﹣3y 2①,联立直线l 与曲线C,得y 1+y 2=y 1y 2=214m -③,求出m 的值即可求出直线的斜率. 【详解】双曲线C :2214x y -=,F 1,F 2为左、右焦点,则F 20),设直线l 的方程x =,m >0,∵双曲线的渐近线方程为x =±2y ,∴m≠±2,设A (x 1,y 1),B (x 2,y 2),且y 1>0,由|AF 2|=3|BF 2|,∴223AF F B u u u u v u u u u v =,∴y 1=﹣3y 2①由22{440x my x y =--=,得()22410m y -++=∴△=()2﹣4(m 2﹣4)>0,即m 2+4>0恒成立,∴y 1+y 2=24m --②,y 1y 2=214m -③,联立①②得22204y m -=->-,联立①③得2221304y m -=<-,2y ∴=2221123y m =-即:221123m =-⎝⎭,0m >,解得:12m =,直线l 的斜率为2, 故选D . 【点睛】本题考查直线与双曲线的位置关系,考查韦达定理的运用,考查向量知识,属于中档题. 9.在等差数列{}n a 中,若n S 为前n 项和,911212a a =+,则13S 的值是( ) A .156 B .124C .136D .180【答案】A 【解析】 【分析】因为711911212a a a a +==+,可得712a =,根据等差数列前n 项和,即可求得答案. 【详解】Q 711911212a a a a +==+,∴712a =, ∴()113137131313121562a a S a +===⨯=.故选:A. 【点睛】本题主要考查了求等差数列前n 项和,解题关键是掌握等差中项定义和等差数列前n 项和公式,考查了分析能力和计算能力,属于基础题.10.盒子中有编号为1,2,3,4,5,6,7的7个相同的球,从中任取3个编号不同的球,则取的3个球的编号的中位数恰好为5的概率是( ) A .235B .835C .635D .37【答案】B 【解析】 【分析】由题意,取的3个球的编号的中位数恰好为5的情况有1142C C ,所有的情况有37C 种,由古典概型的概率公式即得解. 【详解】由题意,取的3个球的编号的中位数恰好为5的情况有1142C C ,所有的情况有37C 种 由古典概型,取的3个球的编号的中位数恰好为5的概率为:114237835C C P C ==故选:B 【点睛】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.11.若()5211x a x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为-12,则实数a 的值为( )A .-2B .-3C .2D .3【答案】C 【解析】 【分析】先研究511x ⎛⎫- ⎪⎝⎭的展开式的通项,再分()2x a +中,取2x 和a 两种情况求解.【详解】因为511x ⎛⎫- ⎪⎝⎭的展开式的通项为()5151r r r r T C x -+=-,所以()5211x a x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为:()32320551112(1)0x C C x a a -+--=--=-,解得2a =, 故选:C. 【点睛】本题主要考查二项式定理的通项公式,还考查了运算求解的能力,属于基础题. 12.方程2(1)sin 10x x π-+=在区间[]2,4-内的所有解之和等于( ) A .4 B .6C .8D .10【答案】C 【解析】 【分析】画出函数sin y x =π和12(1)y x =--的图像,sin y x =π和12(1)y x =--均关于点()1,0中心对称,计算得到答案. 【详解】2(1)sin 10x x π-+=,验证知1x =不成立,故1sin 2(1)x x π=--,画出函数sin y x =π和12(1)y x =--的图像,易知:sin y x =π和12(1)y x =--均关于点()1,0中心对称,图像共有8个交点,故所有解之和等于428⨯=. 故选:C .【点睛】本题考查了方程解的问题,意在考查学生的计算能力和应用能力,确定函数关于点()1,0中心对称是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。

相关文档
最新文档