角平分线性质和判定定理的应用
角平分线性质判定的分析与应用
DOE BCAP 图2角平分线性质判定的分析与应用角平分线的性质定理与判定定理,学生往往由于理解不透,因而在具体应用时不会应用或应用不灵活. 下面就这两个定理作一简要分析并归纳其在数学中的应用,以期对同学们有所帮助.角平分线性质判定定理的分析:一、角平分线性质定理:角平分线上的点到这个角两边的距离相等. 【要点】条件:1. 点在角平分线上,2. 点到两边的距离,结论:3. 距离相等.【符号语言】如图1∵点P 在∠AOB 的平分线上,① PD ⊥OA 于D ,PE ⊥OB 于E ,② ∴PD=PE. ③ 【作用】证线段相等.【辅助线添加提示】存在角平分线上的点, 作此点到角两边的垂线段.【错误警示】1. 学生在具体应用角平分线性质时,在做题步骤中往往出现类似漏写②,即没有点明PD 、PE 是点P 到角两边的距离,而只由①便得③的错误.2. 对定理的图形语言认识不足. 角平分线上的点到角两边的距离是指这个 点到角两边的垂线段的长度,而不是过此 点与角平分线垂直(或仅仅相交)的直线 与角两边相交所得的线段的长度.学生往往出现如下错误:如图2 ∵点P 在∠AOB 的平分线上, ∴PD=PE.二、角平分线判定定理:在一个角的内部,并且到角的两边距离相等的点,在这个角的平分线上.OE PCBDA图1【要点】条件:1. 点在角的内部,2. 点到角两边的距离相等,结论:3. 点在角的平分线上.【解释】到角两边距离相等的点所在的射线有4条,如图3,图中的虚线即是,所以要点1不可缺少.【符号语言】如图1,∵PD ⊥OA 于D ,PE ⊥OB ∴PD=PE ,∴点P 在∠AOB 的平分线上.【作用】:证点在角平分线上,证角相等. 角平分线性质判定定理的应用: 一、性质、判定定理往往同时应用.例1 已知,如图4,ΔABC 的外角∠CBD 和∠BCE 的平分线相交于点F. 求证:点F 在∠DAE 的平分线上.分析:要证点F 在∠DAE 的平分线上, 只要证出点F 到∠DAE 所以添加辅助线,过点F 作FM ⊥AD 于FN ⊥AE 于N ,证出FM=FN 即可. 而已知条件中存在两条角的平分线, 所以作其上的点到角两边的垂线段,过点F 作FH ⊥BC 于点H ,得到FM=FH ,FH=FN ,得FM=FN ,所以点F 在∠DAE 的平分线上.引申:由以上分析可以看出,ΔABC 的一个内角∠A 的平分线与另两个外角的平分线交于一点,此点到三角形三边的距离相等,这样的点在边AC 外和边AB 外还各有一个,一共有三个. 又因为三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等,所以到三角形三边距离相等的点共有四个.二、与等腰三角形、线段垂直平分线的性质判定同时应用.例2 已知,如图5,P 是∠AOB 的平分线上的一点,PC ⊥OA ,PD ⊥OB ,垂足分别为点C 、D.求证:(1)OC=OD ;(2)OP 是CD 的垂直平分线.证明:(1) ∵P 是∠AOB 的平分线上的一点,PC ⊥OA ,PD ⊥OB , ∴PC=PD.∴∠PCD=∠PDC , ∵∠PCO=∠PDO=900, ∴∠OCD=∠OD, ∴OC=OD. (2) ∵PC=PD ,∴点P 在CD 的垂直平分线上, 同理点O 在CD 的垂直平分线上∴OP 是CD 的垂直平分线.点评:此题也可通过三角形全等证明,或通过三线合一证明. 三、 在作图中的应用.例3 如图6,直线距离相等,可供选择的 地址有几处哪一处到 三条公路的距离最近 求作此点.分析:由例1知,可供选择的地址有四处,其中三角形的三条角平分线的交点离三条公路最近. 在作图时,只要作出ΔABC的两条角平分线,它们的交点即为所求.。
角平分线的性质与判定
4321N M A B O D P P CA B M N M N AB DC P ED A BC 角平分线的性质与判定一、知识梳理:1.角平分线的性质定理:角平分线上的点到角两边的距离相等.2.角平分线的判定定理:角的内角到角两边距离相等的点在这个角的平分线上.3.有角平分线时常常通过下列几种情况构造全等三角形.二、典型例题:例1、如图,已知OD 平分∠AOB ,在OA 、OB 边上截取OA =OB ,PM ⊥BD ,PN ⊥AD .求证:PM =PN及时练习:1.如图,CP 、BP 分别平分△ABC 的外角∠BCM 、∠CBN .求证:点P 在∠BAC 的平分线上.2.如图,BD 平分∠ABC ,AB =BC ,点P 是BD 延长线上的一点,PM ⊥AD ,PN ⊥CD .求证:PM =PN例2、如图,已知四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于点E ,且AE =12(AB +AD ),如果 ∠D =120°,求∠B 的度数.及时练习:D CA B D F E BA CD E C A B1.如图,在△ABC 中,CD 平分∠ACB ,AC =5,BC =3.求ACD CBD S S ∆∆.2.在四边形ABCD 中,已知AB =a ,AD =b .且BC =DC ,对角线AC 平分∠BAD ,问a 与b 的大小符合什么条件时,有∠B +∠D =180°,请画图并证明你的结论.例3、如图,在△ABC 中,∠BAC =90°,AB =AC ,BE 平分∠ABC ,CE ⊥BE .求证:CE =12BD.及时练习:1.如图,已知AC ∥BD ,EA 、EB 分别平分∠CAB 、∠DBA ,CD 过点E ,求证:AB =AC +BD .2.如图,在△ABC 中,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F .⑴请你判断FE 和FD 之间的数量关系,并说明理由; ⑵求证:AE +CD =AC .第1题图D C B A第2题图D B C A E P 第3题图Q S R P B A C 第4题图E F B D A C 第5题图E B C A第6题图F E D P A B C 第7题图P A B C E F 第8题图D A B C E 第9题图E D C AB 第10题图K N M QC B A三、课堂练习:1.如图,在Rt △ABC 中,∠C =90°,BD 平分∠ABC 交AC 于D ,若CD =n ,AB =m ,则△ABD 的面积是( ) A .13mn B .12mn C . mn D .2 mn2.如图,已知AB =AC ,BE =CE ,下面四个结论:①BP =CP ;②AD ⊥BC ;③AE 平分∠BAC ;④∠PBC =∠PCB .其中正确的结论个数有( )个A . 1B .2C .3D .43.如图,在△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别是R 、S .若AQ =PQ ,PR =PS ,下列结论:①AS =AR ;②PQ ∥AR ;③△BRP ≌△CSP .其中正确的是( )A . ①③B .②③C .①②D .①②③4.如图,△ABC 中,AB =AC ,AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,则下列四个结论中:①AD 上任意一点到B 、C 的距离相等;②AD 上任意一点到AB 、AC 的距离相等;③AD ⊥BC 且BD =CD ;④∠BDE =∠CDF .其中正确的是( )A .②③B .②④C .②③④D .①②③④5.如图,在Rt △ABC 中,∠ACB =90°,∠CAB =30°,∠ACB 的平分线与∠ABC 的外角平分线交于E 点,则∠AEB 的度数为( )A .50°B .45°C .40°D .35°6.如图,P 是△ABC 内一点,PD ⊥AB 于D ,PE ⊥BC 于E ,PF ⊥AC 于F ,且PD =PE =PF ,给出下列结论:①AD =AF ;②AB +EC =AC +BE ;③BC +CF =AB +AF ;④点P 是△ABC 三条角平分线的交点.其中正确的序号是( )A .①②③④B .①②③C .①②④D .②③④7.如图,点P 是△ABC 两个外角平分线的交点,则下列说法中不正确的是( )A .点P 到△ABC 三边的距离相等B .点P 在∠ABC 的平分线上 C .∠P 与∠B 的关系是:∠P +12∠B =90°D .∠P 与∠B 的关系是:∠B =12∠P8.如图,BD 平分∠ABC ,CD 平分∠ACE ,BD 与CD 相交于D .给出下列结论:①点D 到AB 、AC 的距离相等;②∠BAC =2∠BDC ;③DA =DC ;④DB 平分∠ADC .其中正确的个数是( )A .1个B .2个C .3个D .4个9.如图,△ABC 中,∠C =90°,AD 是△ABC 的角平分线,DE ⊥AB 于E ,下列结论中:①AD 平分∠CDE ;②∠BAC =∠BDE ;③ DE 平分∠ADB ;④AB =AC +BE .其中正确的个数有( )A .3个B .2个C .1个D .4个10.如图,已知BQ 是△ABC 的内角平分线,CQ 是△ACB 的外角平分线,由Q 出发,作点Q 到BC 、AC 和AB 的垂线QM 、QN 和QK ,垂足分别为M 、N 、K ,则QM 、QN 、QK 的关系是_________F B D EC A O F ED A B C l 1l 2l 3第1题图第3题图D C A B P 第4题图F GE P A B C D 第5题图E O D B A C GP F E D C B A 11.如图,AD 是∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB =DC .求证:BE =CF .12.如图,在△ABC 中,AD 是∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:AD ⊥EF .四、巩固提高:1.如图,直线l 1、l 2、l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有( )A .一处B .二处C .三处D .四处2.已知Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =32,且BD :CD =9:7,则D 到AB 边的距离为( )A .18B .16C .14D .123.如图,△ABC 中,∠C =90°,AD 是△ABC 的平分线,有一个动点P 从A 向B 运动.已知:DC =3cm ,DB =4cm ,AD =8cm .DP 的长为x (cm ),那么x 的范围是__________4.如图,已知AB ∥CD ,PE ⊥AB ,PF ⊥BD ,PG ⊥CD ,垂足分别为E 、F 、G ,且PF =PG =PE ,则∠BPD =__________5.如图,已知AB ∥CD ,O 为∠CAB 、∠ACD 的平分线的交点,OE ⊥AC ,且OE =2,则两平行线AB 、CD 间的距离等于__________6.如图,AD 平分∠BAC ,EF ⊥AD ,垂足为P ,EF 的延长线于BC 的延长线相交于点G .求证:∠G =12(∠ACB -∠B )QP C B A 7.如图,在△ABC 中,AB >AC ,AD 是∠BAC 的平分线,P 为AC 上任意一点.求证:AB -AC >P B -P C.8.如图,在△ABC 中,∠BAC =60°,∠ACB =40°,P 、Q 分别在BC 、AC 上,并且AP 、BQ 分别为∠BAC 、∠ABC 的角平分线上.求证:BQ +AQ =AB +BP。
第3节 角平分线的性质及应用
第三节角平分线的性质及应用一、课标导航二、核心纲要1.角平分线的性质定理角的平分线上的点到角的两边的距离相等.如下左图所示:∵OC平分∠AOB,CD⊥OA,CE⊥OB,∴CD=CE.注:考查点到线的距离相等时,可以考虑角平分线的性质.2.角平分线的判定定理到角的两边距离相等的点在角的平分线上.如下中图所示:∵CD⊥OA,CE⊥OB,CD=CE,∴OC平分∠AO B.注:用来证明一条线是一个角的平分线.3.角平分线的画法如下右图所示,已知:∠AO B.作法;(1)以O为圆心,适当长为半径作弧,交OA于点M,交OB于点N.(2)分别以M、N为圆心,大于12MN的长为半径作弧,两弧在∠AOB的内部交于点C.(3)作射线O C.∴射线OC即为所求.4.三角形的角平分线三角形的三个内角的角平分线交于一点,且到三边的距离相等.5.与角平分线有关的辅助线模型(1)在角的平分线上取一点向角的两边作垂线.(点垂线,垂两边,线等全等都出现)如下左图所示,过点C作CD⊥OA,CE⊥OB,则CD=CE,△OCD≌△OCE.(2)在角两边截取相等的线段,构造全等三角形.(角分线,分两边,对称全等要记全)如下图所示:在OA、OB上分别截取OD=OE,连接CD、CE,则△OCD≌△OCE.(3)角平分线+垂线,全等必出现.如下右图所示:延长DC交OB于点E,则△OCD≌△OCE.本节重点讲解:两个定理,两个作法(角平分线的作法和与角平分线有关的辅助线).三、全能突破基础演练1.如图12-3-1所示,OA是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N,若ON=8cm,则OM长为().A.4cm B.5cm C.6cm D.8cm2.如图12-3-2所示,OP平分∠AOB,P A⊥OA,PB⊥OB,垂足分别为A、B.下列结论中不一定成立的是()A.P A=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP 3.如图12-3-3所示,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为().A.3:2 B.9:4 C.2:3 D.4:94.如图12-3-4所示,在Rt△ABC中,∠C=90°,BD是∠ABC的平分线,交AC于点D,若CD=n,AB=m,则△ABD的面积是.5.如图12-3-5所示,BD是∠ABC的平分线,AB=CB,点P在BD的延长线上,PM⊥AD,PN ⊥CD,垂足分别是点M、N,求证:PM=PN.6.如图12-3-6所示,在四边形ABCD中,BC>AB,AD=DC,DF⊥BC,BD平分∠AB C.(1)求证:∠BAD+∠BCD=180°.(2)若DF=3,BF=6,求四边形ABCD的面积.7.如图12-3-7所示,D、E、F分别是△ABC的三边上的点,CE=BF,△DCE和△DBF的面积相等,求证:AD平分∠BA C.能力提升8.如图12-3-8所示,∠AOB和一条定长线段a,在∠AOB内找一点P,使点P到OA、OB的距离都等于a,作法如下:(1)作OB的垂线NH,使NH=a,点H为垂足;(2)过点N作NM∥OB;(3)作∠AOB的平分线OP,与NM交于点P;(4)点P即为所求.其中(3)的依据是().A.平行线之间的距离处处相等B.到角的两边距离相等的点在角的平分线上C.角的平分线上的点到角的两边的距离相等D.到线段的两个端点距离相等的点在线段的垂直平分线上9.如图12-3-9所示,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S.若AQ=PQ,PR=PS,QD⊥AP,下列结论:①AS=AR;②AP平分∠BAC;③△BRP≌△CSP;④PQ∥AR.其中正确的是().A.①③B.②③C.①②④D.①②③④10.如图12-3-10所示,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()处.A.1 B.2 C.3D.411.如图12-3-11所示,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BE⊥AD交AC 的延长线于F,E为垂足.则结论:①AD=BF;②CF=CD;③AC+CD=AB;④BE=CF;⑤BF=2BE,其中正确结论的个数是().A.1 B.2 C.3 D.412.如图12-3-12所示,已知AB平行CD,∠CAB,∠ACD的平分线交于点O,OE⊥AC,且OE=2,则两平行线AB、CD之间的距离等于.13.(1)如图12-3-13所示,△ABC的三边AB、BC、CA长分别是20、30、40,三条角平分线将△ABC分成三个三角形,则S△ABO:S△BCO:S△CAO等于.(2)如图12-3-14所示,已知△ABC的周长是18cm,OB、OC分别平分∠ABC和∠ACB,OD ⊥BC于点D,若△ABC的面积为54cm2,则OD= .14.如图12-3-15所示,∠B=∠C=90°,M是BC中点,AM平分∠DAB,求证:DM平分∠AD C.15.如图12-3-16所示,在河中有座水文观测台O,它到河岸以及河上大桥AB的距离相等,一水文数据记录员站在台上,发现桥上有辆漂亮的彩车,从桥头A走到桥头B,问记录员的视线转过多大角度?16.如图12-3-17所示,在△ABC中,PB、PC分别是△ABC的外角的平分线,求证:∠1=∠2.17.已知,如图12-3-18所示,在△ABC和△DCE中,BC=AC,DC=EC,∠ACB=∠DCE,B、C、E三点在一条直线上,A、B、C、D、E、F、G、O为“公交停靠点”,甲公共汽车从A站出发,按照A、F、G、E、C、F的顺序达到F站,乙公共汽车从B哦出发,按照BOFDGDF的顺序达到F站,(1)如果甲乙两公共汽车分别从AB站出发,在各站耽误的时间相同,两车的速度也相同,试问哪一辆公共汽车先达到指定站点?为什么?(2)求证:①∠AFB=∠CDE;②CF平分∠BFE.18.如图12-3-19所示,在△ABC中,BD是∠ABC的平分线,AD⊥BD,垂足为点D,(1)求证:∠2=∠1+∠C;(2)若ED∥BC,∠ABD=28°,求∠ADE的度数.19.如图12-3-20所示,在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点.求证:AB-AC>PB-P C.20.如图12-3-21所示,在△ABC中,AD是∠BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由.中考链接21.(2011·浙江衢州)如图12-3-22所示,OP平分∠MON,P A⊥ON于点A,点Q是射线OM 上的一个动点,若P A=2,则PQ的最小值为().A.1 B.2 C.3 D.422.(2010·青海西宁)八(1)班同学上数学活动课,利用角尺平分一个角(如图12-3-23所示)设计了如下方案:(I)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(II)∠AOB是一个任意角,在边OA、OB上分别取OM=ON,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P 的射线OP就是∠AOB的平分线.(1)方案(I)、方案(II)是否可行?若可行,请证明;若不可行,请说明理由.(2)在方案(I)PM=PN的情况下,继续移动角尺,同时使PM⊥OA,PN⊥O B.此方案是否可行?请说明理由.巅峰突破23.如图12-3-24所示,在Rt△ABC中,∠ACB=90°,∠CAB=60°,∠ACB的平分线与∠ABC 的外角平分线交于点E,则∠AEB=().A.50° B.45° C.40°D.35°24.如图12-3-25所示,在△ABC中,AC=BC,∠ACB=90°,D是AC上一点,且AE垂直BD的延长线于E,AE=12BD,求证:BD是∠ABC的平分线.。
[数学]-必考点05 角平分线的性质与判定-【题型·技巧培优系列】2022-2023学年八年级数学上
11.(2021秋•朝阳期中)在△ABC中,D是BC边上的点(不与点B、C重合),连接AD.
(1)如图1,当点D是BC边上的中点时,S△ABD:S△ACD=;
(2)如图2,当AD是∠BAC的平分线时,若AB=m,AC=n,求S△ABD:S△ACD的值(用含m,n的代数式表示);
③∠BAC=2∠BPC;④S△PAC=S△MAP+S△NCP.其中正确结论序号是.
7.(2021秋•松桃县期末)如图:已知BD=CD,BF⊥AC,CE⊥AB,求证:点D在∠BAC的平分线上.
◆◆题型三角的平分线的性质与判定的综合应用
8.(2021秋•鹿邑县月考)如图,在△ABC中,∠ABC的平分线与△ABC的外角∠ACE的平分线交于点P,PD⊥AC于点D,PH⊥BA,交BA的延长线于点H.
(3)如图3,AD平分∠BAC,延长AD到E,使得AD=DE,连接BE,如果AC=2,AB=4,S△BDE=6,那么S△ABC=.
1.(2022春•六盘水期末)如图,BD为∠ABC的角平分线,DE⊥BC于点E,AB=5,DE=2,则△ABD的面积是( )
A.5B.7C.7.5D.10
2.(2022•雁塔区模拟)如图,AB∥CD,BP和CP分别平分∠ABC和∠BCD,AD过点P且与AB垂直.若AD=8,BC=10,则△BCP的面积为( )
A.△ABC三条高线的交点处
B.△ABC三条中线的交点处
C.△ABC三条角平分线的交点处
D.△ABC三边垂直平分线的交点处
【例题20】(2022春•兰州期末)某镇要在三条公路围成的一块三角形平地内修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址( )
A.仅有一处B.有四处C.有七处D.有无数处
(横版)角平分线的性质和判定教案
教学过程一、复习预习角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。
二、知识讲解考点1尺规作图画角平分线(1)、以O为圆心,适当长为半径画弧,交OA于M,交OB于N。
(2)、分别以M、N为圆心,大于1/2MN的长为半径画弧,两弧在∠AOB的内部交于点C。
(3)、画射线OC。
射线OC即为所求.考点2 角平分线的性质定理:角平分线的性质定理:角平分线上的点到这个角的两边的距离相等.定理的数学表示:如图,已知OE是∠AOB的平分线,F是OE上一点,若CF⊥OA于点C,DF⊥OB于点D,则CF =DF.定理的作用:①证明两条线段相等;②用于几何作图问题;考点3 角平分线性质定理的逆定理:角平分线性质定理的逆定理:在角的内部,且到角的两边距离相等的点在这个角的角平分线上.定理的数学表示:如图5,已知点P在∠AOB的内部,且PC⊥OA于C,PD⊥OB于D,若PC=PD,则点P在∠AOB的平分线上.定理的作用:用于证明两个角相等或证明一条射线是一个角的角平分线注意角平分线的性质定理与逆定理的区别和联系 .考点4 关于三角形三条角平分线的定理:(1)关于三角形三条角平分线交点的定理:三角形三条角平分线相交于一点,并且这一点到三边的距离相等.定理的数学表示:如图6,如果AP、BQ、CR分别是△ABC的内角∠BAC、∠ABC、∠ACB的平分线,那么:①AP、BQ、CR相交于一点I;②若ID、IE、IF分别垂直于BC、CA、AB于点D、E、F,则DI=EI=FI.定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题.(2)三角形三条角平分线的交点位置与三角形形状的关系:三角形三个内角角平分线的交点一定在三角形的内部.三、例题精析【例题1】【题干】在△ABC中,∠C是直角,AD平分∠BAC,交BC于点D。
如果AB=8,CD=2,那么△ABD的面积等于。
八年级数学上册《角平分线的性质和判定定理》教案、教学设计
-如果一个角的平分线同时也是这个角的垂直平分线,那么这个角有什么特殊的性质?请给出证明;
-如果一个角的平分线同时也是另一个角的平分线,那么这两个角之间有什么关系?请给出证明。
4.实践活动:
-与同学合作,设计一个关于角平分线的数学小报,内容包括定义、性质、判定定理以及生活中的应用等;
-利用所学知识,尝试解决实际生活中的问题,如测量角度、划分土地等,并撰写解题报告。
2.学生在运用角平分线判定定理解决问题时的逻辑思维能力和解题技巧;
3.学生在合作交流、动手操作等方面的学习习惯和团队协作能力。
针对学情,教师应采取以下策略:
1.设计富有启发性的问题,引导学生主动探究角平分线的性质;
2.创设生活情境,让学生在实际问题中体会角平分线判定定理的应用;
3.注重个体差异,给予学生个性化的指导,提高学生的自主学习能力;
4.加强课堂讨论与交流,培养学生的团队合作意识和解决问题的能力。
三、教学重难点和教学设想
(一)教学重难点
1.重点:角平分线的性质及其应用,角平分线的判定定理。
2.难点:理解并灵活运用角平分线的性质和判定定理解决实际问题。
(二)教学设想
1.创设情境,激发兴趣:
-通过引入生活中的实例,如折纸、剪纸等,让学生感受角平分线的存在和应用,激发学生的学习兴趣;
作业要求:
1.请同学们认真完成作业,书写规范,保持卷面整洁;
2.作业完成后,进行自查,确保解题过程和答案正确;
3.遇到问题时,与同学讨论,或向老师请教,及时解决疑问;
4.作业提交时间:课后第二天。
二、学情分析
八年级学生在前期的数学学习中,已经掌握了角的初步知识,如角的分类、角的度量等。在此基础上,学生对角平分线的性质和判定定理的学习具备了一定的基础。然而,由于学生的认知水平和思维能力存在差异,部分学生可能在理解角平分线的性质和判定定理方面存在困难。
角平分线的性质定理及判定定理
流河路公北M 区CB A 角平分线(线段垂直平分线,等腰三角形) 角平分线的性质定理:角平分线上的点到角的两边的距离相等 用数学符号可表示:∵点P 在∠AOB 的平分线上(或OP 平分∠AOB ) ∴ 角平分线的判定定理:角的内部到角的两边距离相等的点在这个角的平分线上 用数学符号可表示:∵∴点P 在∠AOB 的平分线上(或OP 平分∠AOB )基础闯关1.在△ABC 中,∠C =90°,AD 是∠BAC 的角平分线,若BC =5㎝,BD =3㎝,则点D 到AB 的距离为2.∠AOB 的平分线上一点M ,M 到OA 的距离为1.5㎝,则M 到OB 的距离为 ㎝。
3.如图,∠A =90°,BD 是△ABC 的角平分线,AC =8㎝,DC =3DA ,则点D 到BC 的距离为 。
4.如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,下列结论错误的是( ) A 、PD =PE B 、OD =OE C 、∠DPO =∠EPO D 、PD =OD5.三角形中到三边距离相等的点是( )A 、三条边的垂直平分线的交点B 、三条高的交点C 、三条中线的交点D 、三条角平分线的交点6.到一个角的两边距离相等的点在 .7.如图,要在河流的南边,公路的左侧M 处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A 点处的距离为1cm (指图上距离),则图中工厂的位置应在 ,理由是 .8.三角形中,到三边距离相等的点是(A )三条高线交点.(B )三条中线交点.(C )三条角平分线交点.(D )三边垂直平分线交点.9.如果一个三角形的一条角平分线恰好是对边上的高,那么这个三角形是 ODPEBA 第3题图D ABC21D APOE B第4题图FEDCBAF E DCBA(A )直角三角形.(B )等腰三角形.(C )等边三角形.(D )等腰直角三角形 10.如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC于F ,M 为AD 上任意一点,则下列结论错误的是 (A )DE =DF . (B )ME =MF . (C )AE =AF . (D )BD =DC .二.解答题:1.如图,AD 是∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB =DC , 求证:BE =CF 。
角平分线的性质和判定练习
专题二 角平分线的性质一、知识归纳1、角平分线的性质定理:角平分线上的点到角两边的距离相等;2、角平分线的判定定理:到角两边距离相等的点在角平分线上。
二、知识应用例1、△ABC 中,AD 是它的角平分线,且BD =CD ,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F,求证:EB =FC例2、已知BF ⊥AC 于点F ,CE ⊥AB 于点E ,BF 和CE 交于点D ,且BE =CF ,求证:AD 平分∠BAC .变式练习:1、∠AOB 的平分线上一点M ,M 到 OA 的距离为1.5 cm ,则M 到OB 的距离为_________.2、如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,下列结论错误的是( )A 、PD =PEB 、OD =OEC 、∠DPO =∠EPOD 、PD =OD3.如图,∠AOB =60°,CD ⊥OA 于D ,CE ⊥OB 于E ,且CD =CE ,则∠DOC =_________.4.如图,在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E ,且DE =3 cm ,BD =5 cm ,则BC =_____cm . 21D APO EB(第2题) A B D CF E 第3题 第4题D C AE B5.如图在△ABC 中,∠ACB =90°,BE 平分∠ABC ,DE ⊥AB 于D ,如果AC =3 cm ,那么AE +DE 等于( )A .2 cmB .3 cmC .4 cmD .5 cm6.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6㎝,则△DEB 的周长为( )A 、4㎝B 、6㎝C 、10㎝D 、不能确定ED CB A7、 已知:如图,在R t △ABC 中,∠C =90°,D 是AC 上一点,DE ⊥AB 于E , 且DE =DC .(1)求证:BD 平分∠ABC ;(2)若∠A =36°,求∠DBC 的度数.8.如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB .。
人教版八年级数学上册12.3第2课时角的平分线的判定及性质的应用
上,且DC=EF,△BCD与△BEF的面积相等.求证: 4.如图,B是∠CAF内一点,点D在AC上,点E在AF上,且DC=EF,△BCD与△BEF的面积相等.求证:AB平分∠CAF.
例2 如图,∠ABC的平分线与∠ACB的外角平分线相交于点D,连接AD. (3)若BC=12,AD=13,求S△AMD.
1 2
S梯形ABCD.
∵S梯形ABCD=12 (CD+AB)·BC=12 ×13×12=78,
∴S△AMD=12 ×78=39.
ห้องสมุดไป่ตู้ 练习
1.教材P50 练习第2题. 2.如图,点P是∠MON内一点,PA⊥ON于点A, PB⊥OM于点B,且PA=PB.若∠MON=50°,C为OA 上一点且∠OPC=30°,则∠PCA的度数为( B ) A.50° B.55° C.60° D.80°
AB平分∠CAF. (3)若BC=12,AD=13,求S△AMD.
(1)若连接AM,则AM是否平分∠BAD?请证明你的结论;
∴∠BFD=∠CED=90°.
证∴ 明D如C证·下BM:=明过点EM:F作·BMN过E. ⊥A点D于点BE.作BM⊥AC于点M,BN⊥AF于点N.
(3) 我们能不能证明上面的结论?
(1)若连接AM,则AM是否平分∠BAD?请证明你的结论; 3-5,要在S区建一个集贸市场,使它到公路、铁路的距离相等,并且离公路与铁路的交叉处500m,这个集贸市场应建于何处(在图上
标如出图它 12又的. 位∵置,比M例尺E为⊥1:200A00)D? ,∠B=90°,∴AM平分∠BAD;
∵S梯形ABCD= (CD+AB)·BC= ×13×12=78,∴S△AMD= ×78=39.
4.如图,B是∠CAF内一点,点D在AC上,点E在AF上,且DC=EF,△BCD与△BEF的面积相等.求证:AB平分∠CAF.
怎样应用角平分线的性质定理和判定定理
怎样应用角平分线的性质定理和判定定理
【能力挑战】
能力挑战1、如图所示,已知ABC ∆中,AD 平分BC 于D ,若AB DE ⊥于E ,AC DF ⊥于F ,DE=DF . 求证:(1)AD 平分BAC ∠;(2)AE=AF ;(3)AB=AC .
能力挑战2、如图所示,已知ABC ∆中,AD 平分BAC ∠交BC 于D ,E 、F 分别是AB 、AC (或它们的延长线)上的点,且︒=∠+∠180BAC EDF .求证:DE=DF .
能力挑战3、已知:如图所示,AB=CD ,CDE ABE S S ∆∆=.求证:DOE BOE ∠=∠.
A
D
B
C
F E A
E
F
C
B
A
E
C
D
B O
1、如图所示,在ABC ∆中,以AB 、AC 为边向外作等边ABF ∆和等边ACE ∆,连结BE 、CF 交于点O ,
求证:AO 平分EOF ∠.
2、已知:如图所示,BE 平分ABC ∠,CE 平分ACD ∠,BE 、CE 相交于E .求证:E 在FAC ∠的平分线上.
3、已知如图所示,ABC ∆的C B ∠∠,的外角平分线交于点D ,求证:AD 是BAC ∠的平分线.
4、如图所示,在ABC ∆中,D 为BC 的中点,AB DE ⊥于E ,AC DF ⊥于F ,AB=AC ,求证:DE=DF .
B
A
D
E
F A
C
D B
A
B
C
D
A B
C
E
F。
人教版数学八年级上册《角平分线的判定》教学设计
人教版数学八年级上册《角平分线的判定》教学设计一. 教材分析人教版数学八年级上册《角平分线的判定》是初中数学的重要内容,主要让学生了解角平分线的性质和判定方法。
本节内容是在学生学习了角的概念、垂线的性质等知识的基础上进行学习的,为后续学习几何中的线段和平面的位置关系打下基础。
本节课的主要内容包括角平分线的定义、判定定理及其应用。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和空间想象力,他们对角、线段等基本几何概念有了一定的了解。
但是,对于角平分线的性质和判定方法,学生可能还比较陌生,需要通过实例和操作来加深理解。
此外,学生可能对几何图形的直观感知能力较强,但对于用数学语言来描述和证明几何性质的能力还需加强。
三. 教学目标1.知识与技能:使学生了解角平分线的定义,掌握角平分线的判定方法,能运用角平分线的性质解决一些简单的问题。
2.过程与方法:通过观察、操作、猜想、验证等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和探究精神。
四. 教学重难点1.重点:角平分线的定义,角平分线的判定方法。
2.难点:角平分线性质的证明,角平分线在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例引入角平分线,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、操作、猜想、验证,培养学生的思维能力。
3.小组合作学习:鼓励学生之间相互讨论、交流,提高学生的合作意识。
六. 教学准备1.教具:三角板、直尺、圆规、多媒体设备。
2.学具:学生用三角板、直尺、圆规。
3.教学素材:角平分线的实例、图片、动画等。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的角平分线的实例,如钟表指针、蝴蝶翅膀等,引导学生观察并思考:这些实例中有什么共同特点?从而引出本节课的主题——角平分线。
2.呈现(10分钟)(1)介绍角平分线的定义:角平分线是指从一个角的顶点出发,把这个角分成两个相等的角的射线。
内错角的角平分线
内错角的角平分线内错角是指不相邻的两条边交叉且内部不重叠的两个角。
在几何学中,角平分线是指将角分成两个相等的角的直线。
在本文中,我们将探讨内错角的角平分线以及相关性质和应用。
一、内错角的定义和性质1. 内错角的定义:内错角是指在一个多边形的边上取一点,使得通过这个点可以将不相邻的两边分为两个内角和两个错角。
内错角的特点是两个角的和等于180度。
2. 角平分线的定义:角平分线是指一条直线,将角分为两个相等的角的情况。
3. 内错角的角平分线:对于一个内错角,其角平分线是通过内错角的顶点和内错角的一个错角点的直线。
二、角平分线的性质和判断方法1. 角平分线的性质:a. 角平分线将角分成两个相等的角。
b. 角平分线上的任意一点到角的两边的距离相等。
c. 在角的内部,离顶点更近的一边上的点到角平分线的距离小于离顶点更远的一边上的点到角平分线的距离。
2. 判断角平分线的方法:a. 角平分线可以通过直观判断,通过观察角的对称性可以估计出角平分线的位置。
b. 利用角平分线的性质,可以使用作图工具如直尺和量角器来精确绘制角平分线。
三、内错角的角平分线的应用1. 帮助求解几何问题:在解题过程中,可以利用内错角的角平分线的性质来辅助求解。
通过判定角平分线的位置,可以得到角的度数和位置信息,进而推导解决问题。
2. 帮助构造几何图形:在几何图形的构造过程中,内错角的角平分线可以用来确定一些关键点的位置,使得几何图形更加美观和准确。
3. 帮助证明几何定理:内错角的角平分线在证明一些几何定理时起到重要作用,通过利用角平分线的性质和位置关系,可以推导出一些重要的结论和定理。
综上所述,内错角的角平分线是一条通过内错角的顶点和一个错角点的直线,能够将内错角分为两个相等的角。
通过观察内错角的对称性和角平分线的性质,可以判断角平分线的位置。
内错角的角平分线在几何问题的求解、几何图形的构造和定理的证明中具有重要的应用价值。
深入理解和应用内错角的角平分线,可以提高几何学习的效果,并在实际问题解决中发挥重要作用。
全等三角形角平分线的判定
全等三角形角平分线的判定一、概述全等三角形是几何学中重要的概念之一,它指的是具有相同形状和大小的两个三角形。
在判定两个三角形是否全等时,角平分线是一个重要的判定条件之一。
本文将详细探讨全等三角形角平分线的判定方法。
二、角平分线的定义和性质角平分线是指从一个角的顶点出发,将该角分成两个相等的角的线段。
在三角形中,每个内角都有一条角平分线。
角平分线的性质如下: 1. 角平分线将角分成两个相等的角。
2. 三角形的三条角平分线交于一点,该点称为角平分点。
3. 角平分线与三角形的边相交,将边分成两个与角平分线所在直线段成比例的线段。
三、全等三角形的定义和判定条件全等三角形是指具有相同形状和大小的两个三角形。
判定两个三角形全等的条件有多种,其中之一就是角平分线的相等性。
以下是判定两个三角形全等的常用条件:1. SSS(边-边-边):若两个三角形的三条边分别相等,则它们全等。
2. SAS(边-角-边):若两个三角形的两边和夹角分别相等,则它们全等。
3. ASA(角-边-角):若两个三角形的两角和一边分别相等,则它们全等。
4. AAS(角-角-边):若两个三角形的两角和一边分别相等,则它们全等。
5. RHS(直角-斜边-高):若两个直角三角形的斜边和高分别相等,则它们全等。
四、角平分线的判定方法在判定两个三角形全等时,我们可以利用角平分线的相等性来简化判定过程。
以下是角平分线的判定方法: 1. 若两个三角形的一个内角的角平分线分别与另一个三角形的两个内角的角平分线相等,则这两个三角形全等。
2. 若两个三角形的两个内角的角平分线分别与另一个三角形的两个内角的角平分线相等,则这两个三角形全等。
3. 若两个三角形的一个内角的角平分线分别与另一个三角形的一个内角的角平分线相等,并且这两个内角的角平分线所在直线段成比例,则这两个三角形全等。
五、示例分析下面通过一个示例来说明角平分线的判定方法。
假设有两个三角形ABC和DEF,已知∠A = ∠D,∠B = ∠E,AD/DE = BC/EF。
湘教版:角平分线的性质与判定(经典题型)
角平分线的性质与判定1、角平分线:把一个角为两个相同的角的射线叫该角的平分线;2、角平分线的性质定理:角平分线上的点到的距离相等:①平分线上的点;②点到边的距离;3、角平分线的判定定理:到角的两边的距离相等的点一、角平分线的性质定理例1.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=11cm,BD=7cm,那么点D 到直线AB的距离是cm.变式1.如图,在△ABC中,∠C=90°,AD是△ABC的一条角平分线.若AC=6,AB=10,则点D到AB边的距离为()A.2B.2.5C.3D.4二:角平分线的性质定理的逆定理例1.如图,已知BE⊥AC,CF⊥AB,垂足分别为E,F,BE,CF相交于点D,若BD=CD.求证:AD平分∠BAC.三、常见题型(一)利用角平分线的性质求线段长度例1.如图所示,在Rt△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E.求证:△DBE的周长等于AB.变式1.如图,在△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足是点E,AC=DE+BD.(1)求∠BAD的度数;(2)若△DBE的周长为4cm,则AB=.变式2.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC 上,且BD=DF.(1)求证:CF=EB;(2)试判断AB与AF,EB之间存在的数量关系.并说明理由.(二)利用角平分线的性质求角度问题例1.如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,P A=PC.求证:∠PCB+∠BAP=180°.变式1.已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)若连接AM,则AM是否平分∠BAD?请你证明你的结论;(2)线段DM与AM有怎样的位置关系?请说明理由.(3)CD、AB、AD间?直接写出结果(三)利用角平分线解决与面积有关的问题例1.如图,BD是△ABC的角平分线,△ABC的面积为60,AB=15,BC=9,求△ABD的面积.变式1 如图,已知△ABC的周长是22,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是多少?(四)角平分线性质定理的逆定理应用例1.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF求证:AD平分∠BAC.变式1.如图,△ABC中,P是角平分线AD,BE的交点.求证:点P在∠C的平分线上.(五)角平分线性质定理的实际应用例1.已知:如图,直线l1,l2,l3表示三条相互交叉的公路,现要建一个塔台,若要求它到三条公路的距离都相等,试问:(1)可选择的地点有几处?(2)你能画出塔台的位置吗?变式1.如图:某地要在三条公路围成的一块平地上修建一个公园,要使公园到三条公路的距离相等,应在何处修建?(使用尺规作图,保留作图痕迹)并证明你的观点.。
初二讲义角平分线的判定与性质
第7 讲角平分线的判定与性质【知识点与方法梳理】角平分线的性质定理:角平分线上的点到角两边的距离相等。
角平分线的判定定理:到一个角的两边的距离相等的点,在这个角的平分线上。
角平分线的作法(尺规作图)①以点0为圆心,任意长为半径画弧,交OA 0B于C、D两点;②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线0P射线0P即为所求.角平分线的性质及判定1. 角平分线的性质:角的平分线上的点到角的两边的距离相等. 推导已知:0C平分/ MON P是0C上任意一点,PAL OM PB丄ON垂足分别为点A、点B. 求证:P心PB. 证明:T PAL OM PB丄ON•••/ PAO=Z PBO= 90°T OC平分/ MON•i/ 1 = / 2在厶PAO?3 PBC中,•••△ PAO^A PBO••• P心PB几何表达:(角的平分线上的点到角的两边的距离相等)T OP平分/ MO N/ 1 = / 2),PALOM PB丄ON•PA= PB.2角平分线的判定:至V角的两边的距离相等的点在角的平分线上. 推导:已知:点P是/ MOF内一点,PAI OMT A,PB丄ON于B,且PA= PB.求证:点P在/ MON勺平分线上.证明:连结0PPA-PBQP= OP在Rt △ PAO ffi Rt △ PBO中, 1•Rt △ PAO^ Rt △ PBO( HL)••/ 1 = / 2•OP平分/ MON即点P在/MON勺平分线上.几何表达:(到角的两边的距离相等的点在角的平分线上.)T PAL OM PB丄ON PA= PB•/ 1 = / 2 (OP平分/ MON【经典例题】例1.已知:如图,△ ABC 中, Z C=90o ,人。
是厶ABC 的角平分线, 求证:CF=EB例2.已知:如图,AD BE 是厶ABC 的两条角平分线,AD BE 相 交于O 点 求证:O 在Z C 的平分线上例3.如图AB// CD Z B = 90°, E 是BC 的中点。
角平分线的原理及应用
角平分线的原理及应用角平分线的原理及应用1. 介绍角平分线的概念和定义角平分线是指将一个角分成两个相等的角的直线。
具体来说,对于一个角ABC,如果有一条线段AD,且AD等于BD,那么AD就是角ABC的平分线。
角平分线可以通过作图和计算来确定,它从角的顶点向角的两边延伸。
2. 角平分线的原理与性质角平分线有一些重要的原理和性质,下面将逐一介绍。
2.1 角平分线将角分成相等的两个角根据角平分线的定义,角平分线将一个角分成两个相等的角。
这是角平分线的基本性质之一。
2.2 角平分线与角的两边相交于角的顶点角平分线与角的两边相交于角的顶点。
这是角平分线的另一个重要性质。
具体来说,如果一条线段与角的两边相交于角的顶点,并且将这个角分成两个相等的角,那么这条线段就是角的平分线。
2.3 角平分线对称地分割角的两边角平分线将角的两边对称地分割成相等的线段。
也就是说,将角的两边上的点与角的顶点连线后,由角平分线分割的两个线段的长度相等。
3. 角平分线的一些常见应用3.1 三角形内部角平分线定理在一个三角形中,如果一条线段从一个角的顶点出发,并且平分了这个角,那么这条线段分割了相对应的边,并且这些分割线段的比值等于相邻两边的比值。
这个定理可以用于解决一些与三角形有关的问题。
3.2 角平分线判定角的大小关系通过角平分线可以判断两个角的大小关系。
如果两个角的平分线相交且交点在角的内部,那么这两个角的大小关系可以根据平分线分割角的两边的长度来确定,长度较长的一边对应的角较大。
3.3 三角形外角平分线定理在一个三角形中,如果从三角形的一个外角作出一条平分线,那么这条平分线将另外两个内角分割成相等的角。
这个定理可以应用于解决一些与三角形外角有关的问题。
总结回顾:角平分线是将一个角分成相等的两个角的直线。
它具有多个重要性质,如:将角分成相等的两个角、与角的两边相交于角的顶点等。
角平分线可以运用于三角形内部角平分线定理、判定角的大小关系以及三角形外角平分线定理等问题的求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
11
3
A.4 B. 2 C. 3 D.2
4.(2017·铁岭 9 题3 分)如图,在△ABC 中,AB=5,AC=4,BC=3,分
别以点 A,点 B为圆心,大于12AB 的长为半径画弧,两弧相交于点 M,N,作 D
直线MN 交 AB 于点 O,连接 CO,则 CO 的长是( ) A.1.5 B.2 C.2.4 D.2.5
知识技能要求 过程性要求
具体内容
了理掌 运 经 体 探 解解握 用 历 验 索
利用尺规基本作图
√
尺 利用基本作图作三角形
规 作
过平面上的点作圆
√ √
√
图 尺规作图的步骤 (已知、求作)
√
1.了解尺规作图的步骤;
2.会五种基本作图,并能利用五个基本作图解决一 些实际问题。
一、基本尺规作图 1、作一条线段等于已知线段; 2、作一个角等于已知角; 3、作已知线段的垂直平分线; 4、作已知角的平分线. 5、过直线外一点作直线的垂线.
【对应训练】 1.(2017·襄阳)如图,在△ABC 中,∠ACB=90°,∠A=30°,BC=4, 以点 C 为圆心,CB 长为半径作弧,交 AB 于点 D;再分别以点 B 和点 D 为圆
心,大于12BD 的长为半径作弧,两弧相交于点 E,作射线 CE 交 AB 于点 F,则
AF 的长为( B )
尺规作图
(1)能用尺规完成以下基本作图:作一条线段等于 已知线段;作一个角等于已知角;作一个角的平分 线;作一条线段的垂直平分线;过一点作已知直线 的垂线。 (2)会利用基本作图作三角形:已知三边、两边及 其夹角、两角及其夹边作三角形;已知底边及底边 上的高线作等腰三角形;已知一直角边和斜边作直 角三角形。 (3)会利用基本作图完成:过不在同一直线上的三 点作圆;作三角形的外接圆、内切圆;作圆的内接 正方形和正六边形。 (4)在尺规作图中,了解作图的道理,保留作图的 痕迹,不要求写出作法。
作法:
作线段AB=m;
在AB的同旁 作∠A=∠1,作∠B=∠2,
1
2
∠A与∠B的另一边相交于C。
则△ABC就是所求作的图形
(三角形)。
1
2
考点1尺规作图 1.(2016·铁岭7题3分)如图,∠MAN=63°,进 行如下操作:以射线AM上一点B为圆心,以线段 BA长为半径作弧,交射线AN于点C.连接BC,则 ∠BCN的度数是( ) A 54° B 63° C 117° D 126°
(2015广东省)如图所示,已知△ABC(AC<AB <BC),用尺规在线段BC上确定一点P,使得PA+ PC=BC,则符合要求的作图痕迹是( )
考点 1 尺规作图及相关计算 【例 以下步骤作图: ①以 A 为圆心,任意长为半径作弧,分别交 AB,AD 于点 M,N;②分别以
M,N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点 P;③作 AP 射线, 15
交边 CD 于点 Q,若 DQ=2QC,BC=3,则平行四边形 ABCD 的周长为______.
【 分 析 】 根 据 角平 分 线 的 性 质可 知 ∠DAQ= ∠BAQ, 再 由 平 行 四 边 形 的 性质 得 出 CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD 是等腰三角形,据此可得出 DQ =AD,进而可得出结论.
A.5
B.6
C.7
D.8
2.(2017·邵阳)如图所示,已知∠AOB=40°,现按照以下步骤作图: ①在 OA,OB 上分别截取线段 OD,OE,使 OD=OE;②分别以 D,E 为 圆心,以大于12DE 的长为半径画弧,在∠AOB 内两弧交于点 C;③作射线 OC. 则∠AOC 的大小为_2_0_°_____.
已知:如图,线段m,n, ∠1.
求作:△ABC,使∠A=∠1,AB=m,AC=n.
作法:
作∠A=∠1; 在AB上截取AB=m ,AC=n;
11
连接BC。
则△ABC就是所求作的
三角形。
111
6(3)、已知两角及夹边作三角形。 (课本的P11)
已知:如图,∠1,∠2,线段m .
求作:△ABC,使∠A=∠1,∠B=∠2,AB=m.
(3)作法:应用“五种基本作图”,一般不需要 写作法,但图中必须保留作图的痕迹;
(4)证明:为了验证所作图形的正确性,把图作 出后,需再根据已知的定义、公理、定理等, 结合作法来证明所作出的图形完全符合题设条 件; (5)讨论:研究是不是在任何已知的条件下都能 作出图形;在哪些情况下,问题有一个解、多 个解或者没有解; (6)结论:对所作图形下结论.
2.(2014·葫芦岛7题2分)观察图中尺规作图痕 迹,下列结论错误的是 ( C) A.PQ为∠APB的平分线 B.PA=PB C.点A、B到PQ的距离不相等 D.∠APQ=∠BPQ
3.(2016·锦州 6 题 2 分)如图,在△ABC 中,∠C=90°,分别以点 A、 B 为圆心,大于12AB 长为半径画弧,两弧分别交于 M、N 两点,过 M、N 两 点的直线交 AC 于点 E.若 AC=6,BC=3,则 CE 的长为( )
5、过一点作已知直线的垂线
6(1)、已知三边作三角形。 已知:如图,线段a,b,c. 求作:△ABC,使AB = c,AC = b,BC = a. 作法:
作线段AB = c; 以A为圆心b为半径作弧, 以B为圆心a为半径作弧与 前弧相交于C; 连接AC,BC。 则△ABC就是所求作的三角形。
6(2)、已知两边及夹角作三角形。 (课本的P9)
考点二 动手作图
(2015青岛市)用圆规、直尺作图,不写作法,但 要保留作图痕迹. 已知:线段c,直线l及l外一点A. 求作:Rt△ABC,使直角边为AC(AC⊥l,垂足为 C),斜边AB=c.
考点三 相关的计算和证明
1.与尺规作图有关的计算:结合所求量,将其与题中所涉及的图形的基本性质 及尺规作图中所作图形的性质相联系,如角平分线性质定理,垂直平分线的性质,作弧时涉 及的相等的线段等.
2.尺规作图的一般步骤: (1)已知:明确已知的线段和角,以及所要求作 的图形; (2)求作:将所求作图形符合的条件一一具体化