2019年中考数学复习【垂径定理的应用】专项精练卷及答案解析

合集下载

部编数学九年级上册专题24.2垂径定理的应用(重点题专项讲练)(人教版)(解析版)含答案

部编数学九年级上册专题24.2垂径定理的应用(重点题专项讲练)(人教版)(解析版)含答案

专题24.2 垂径定理的应用【典例1】如图,有一座圆弧形拱桥,桥下水面宽度AB为12m,拱高CD为4m.(1)求拱桥的半径;(2)有一艘宽为5m的货船,船舱顶部为长方形,并高出水面3.4m,则此货船是否能顺利通过此圆弧形拱桥,并说明理由.(1)根据垂径定理和勾股定理求解;(2)连接ON,OB,根据勾股定理即可得到结论.解:(1)如图,连接ON,OB.∵OC⊥AB,∴D为AB中点,∵AB=12m,∴BD=12AB=6m.又∵CD=4m,设OB=OC=ON=r,则OD=(r﹣4)m.在Rt△BOD中,根据勾股定理得:r2=(r﹣4)2+62,解得r=6.5.∴拱桥的半径为6.5m.(2)∵CD=4m,船舱顶部为长方形并高出水面3.4m,∴CE=4﹣3.4=0.6(m),∴OE=r﹣CE=6.5﹣0.6=5.9(m),在Rt△OEN中,EN2=ON2﹣OE2=6.52﹣5.92=7.44,∴EN m).∴MN=2EN=2×≈5.4m>5m.∴此货船能顺利通过这座拱桥.1.(2022•南海区校级一模)如图,武汉晴川桥可以近似地看作半径为250m的圆弧,桥拱和路面之间用数根钢索垂直相连,其正下方的路面AB长度为300m,那么这些钢索中最长的一根为( )A.50m B.45m C.40m D.60m【思路点拨】设圆弧的圆心为O,过O作OC⊥AB于C,交AB于D,连接OA,先由垂径定理得AC=BC=12AB=150,再由勾股定理求出OC=200,然后求出CD的长即可.【解题过程】解:设圆弧的圆心为O,过O作OC⊥AB于C,交AB于D,连接OA,如图所示:则OA=OD=250,AC=BC=12AB=150,∴OC=200,∴CD=OD﹣OC=250﹣200=50(m),即这些钢索中最长的一根为50m ,故选:A .2.(2022•旌阳区二模)筒车是我国古代发明的一种水利灌溉工具,如图1,筒车盛水桶的运行轨道是以轴心O 为圆心的圆,如图2,已知圆心O 在水面上方,且⊙O 被水面截得弦AB 长为4米,⊙O 半径长为3米.若点C 为运行轨道的最低点,则点C 到弦AB 所在直线的距离是( )A .1米B .2米C .米D .(3+米【思路点拨】连接OC ,OC 交AB 于D ,由垂径定理得AD =BD =12AB =2(米),再由勾股定理得OD 后求出CD 的长即可.【解题过程】解:连接OC ,OC 交AB 于D ,由题意得:OA =OC =3米,OC ⊥AB ,∴AD =BD =12AB =2(米),∠ADO =90°,∴OD ==∴CD=OC﹣OD=(3即点C到弦AB所在直线的距离是(3故选:C.3.(2022•宣州区二模)如图所示的是一圆弧形拱门,其中路面AB=2m,拱高CD=3m,则该拱门的半径为( )A.53m B.2m C.83m D.3m【思路点拨】取圆心为O,连接OA,由垂径定理设⊙O的半径为rm,则OC=OA=rm,由拱高CD=3m,OD=(3﹣r)m,OD⊥AB,由垂径定理得出AD=1m,由勾股定理得出方程r2=12+(3﹣r)2,解得:r=53,得出该拱门的半径为53m,即可得出答案.【解题过程】解:如图,取圆心为O,连接OA,设⊙O的半径为rm,则OC=OA=rm,∵拱高CD=3m,∴OD=(3﹣r)m,OD⊥AB,∵AB=2m,∴AD=BD=12AB=1m,∵OA2=AD2+OD2,∴r2=12+(3﹣r)2,解得:r=5 3,∴该拱门的半径为53 m,故选:A.4.(2021秋•海淀区校级期中)数学活动课上,同学们想测出一个残损轮子的半径,小的解决方案如下:如图,在轮子圆弧上任取两点A,B,连接AB,再作出AB的垂直平分线,交AB于点C,交AB于点D,测出AB,CD的长度,即可计算得出轮子的半径.现测出AB=40cm,CD=10cm,则轮子的半径为( )A.50cm B.35cm C.25cm D.20cm【思路点拨】由垂径定理,可得出BC的长;连接OB,在Rt△OBC中,可用半径OB表示出OC的长,进而可根据勾股定理求出得出轮子的半径,即可得出轮子的直径长.【解题过程】解:设圆心为O,连接OB.Rt△OBC中,BC=12AB=20cm,根据勾股定理得:OC2+BC2=OB2,即:(OB﹣10)2+202=OB2,解得:OB=25;故轮子的半径为25cm.故选:C.5.(2021秋•曾都区期中)在圆柱形油槽内装有一些油,油槽直径MN为10分米.截面如图,油面宽AB 为6分米,如果再注入一些油后,当油面宽变为8分米,油面AB上升( )A.1分米B.4分米C.3分米D.1分米或7分米【思路点拨】实质是求两条平行弦之间的距离.根据勾股定理求弦心距,作和或差分别求解.【解题过程】解:连接OA.作OG⊥AB于G,则在直角△OAG中,AG=3分米,因为OA=5cm,根据勾股定理得到:OG=4分米,即弦AB的弦心距是4分米,同理当油面宽AB为8分米时,弦心距是3分米,当油面没超过圆心O时,油上升了1分米;当油面超过圆心O时,油上升了7分米.因而油上升了1分米或7分米.故选:D.6.(2021秋•宁波期末)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=6cm,则球的半径为( )A.3cm B.134cm C.154cm D.174cm【思路点拨】设球的平面投影圆心为O,过点O作ON⊥AD于点N,延长NO交BC于点M,连接OF,由垂径定理得:NF=EN=12EF=3(cm),设OF=xcm,则OM=(4﹣x)cm,再在Rt△MOF中由勾股定理求得OF的长即可.【解题过程】解:设球的平面投影圆心为O,过点O作ON⊥AD于点N,延长NO交BC于点M,连接OF,如图所示:则NF=EN=12EF=3(cm),∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDNM是矩形,∴MN=CD=6cm,设OF=xcm,则OM=OF,∴ON=MN﹣OM=(6﹣x)cm,在Rt△ONF中,由勾股定理得:ON2+NF2=OF2,即:(6﹣x)2+32=x2,解得:x=15 4,即球的半径长是154cm,故选:C.7.(2022•鄂州)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为( )A .10cmB .15cmC .20cmD .24cm【思路点拨】连接OE ,交AB 于点F ,连接OA ,∵AC ⊥CD 、BD ⊥CD ,由矩形的判断方法得出四边形ACDB 是矩形,得出AB ∥CD ,AB =CD =16cm ,由切线的性质得出OE ⊥CD ,得出OE ⊥AB ,得出四边形EFBD 是矩形,AF =12AB =12×16=8(cm ),进而得出EF =BD =4cm ,设⊙O 的半径为rcm ,则OA =rcm ,OF =OE ﹣EF =(r ﹣4)cm ,由勾股定理得出方程r 2=82+(r ﹣4)2,解方程即可求出半径,继而求出这种铁球的直径.【解题过程】解:如图,连接OE ,交AB 于点F ,连接OA ,∵AC ⊥CD 、BD ⊥CD ,∴AC ∥BD ,∵AC =BD =4cm ,∴四边形ACDB 是平行四边形,∴四边形ACDB 是矩形,∴AB ∥CD ,AB =CD =16cm ,∵CD 切⊙O 于点E ,∴OE ⊥CD ,∴OE ⊥AB ,∴四边形EFBD 是矩形,AF =12AB =12×16=8(cm ),∴EF =BD =4cm ,设⊙O 的半径为rcm ,则OA =rcm ,OF =OE ﹣EF =(r ﹣4)cm ,在Rt△AOF中,OA2=AF2+OF2,∴r2=82+(r﹣4)2,解得:r=10,∴这种铁球的直径为20cm,故选:C.8.(2022•上海)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为 400π .(结果保留π)【思路点拨】根据垂径定理,勾股定理求出OB2,再根据圆面积的计算方法进行计算即可.【解题过程】解:如图,连接OB,过点O作OD⊥AB于D,∵OD⊥AB,OD过圆心,AB是弦,∴AD=BD=12AB=12(AC+BC)=12×(11+21)=16,∴CD=BC﹣BD=21﹣16=5,在Rt△COD中,OD2=OC2﹣CD2=132﹣52=144,在Rt△BOD中,OB2=OD2+BD2=144+256=400,∴S⊙O=π×OB2=400π,故答案为:400π.9.(2021秋•溧水区期末)在一个残缺的圆形工件上量得弦BC=8cm,BC的中点D到弦BC的距离DE=2cm,则这个圆形工件的半径是 5 cm.【思路点拨】由垂径定理的推论得圆心在直线DE上,设圆心为0,连接OB,半径为R,再由垂径定理得BE=CE=12 BC=4(cm),然后由勾股定理得出方程,解方程即可.【解题过程】解:∵DE⊥BC,DE平分弧BC,∴圆心在直线DE上,设圆心为O,半径为Rcm,如图,连接OB,则OD⊥BC,OE=R﹣DE=(R﹣2)cm,∴BE=CE=12BC=4(cm),在Rt△OEB中,OB2=BE2+OE2,即R2=42+(R﹣2)2,解得:R=5,即这个圆形工件的半径是5cm,故答案为:5.10.(2022•柯桥区一模)《九章算术》是中国传统数学重要的著作之一,奠定了中国传统数学的基本框架.其中卷九中记载了一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”其意思是:如图,AB为⊙O的直径,弦CD⊥AB于点E,BE=1寸,CD=1尺,那么直径AB的长为多少寸?(注:1尺=10寸)根据题意,该圆的直径为 26 寸.【思路点拨】连接OC,由直径AB与弦CD垂直,根据垂径定理得到E为CD的中点,由CD的长求出DE的长,设OC =OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得出方程,解方程求出半径,即可得出直径AB 的长.【解题过程】解:连接OC,∵弦CD⊥AB,AB为圆O的直径,∴E为CD的中点,又∵CD=10寸,∴CE=DE=12CD=5寸,设OC=OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得:OE2+CE2=OC2,即(x﹣1)2+52=x2,解得x=13,∴AB=26寸,即直径AB的长为26寸,故答案为:26.11.(2021秋•瑞安市期末)某公路上有一隧道,顶部是圆弧形拱顶,圆心为O,隧道的水平宽AB为24m,AB离地面的高度AE=10 m,拱顶最高处C离地面的高度CD为18m,在拱顶的M,N处安装照明灯,且M,N离地面的高度相等都等于17m,则MN= 10 m.【思路点拨】根据题意和垂径定理得到CG=8m,AG=12m,CH=1m,根据勾股定理求得半径,进而利用勾股定理求得MH,即可求得MN.【解题过程】解:设CD于AB交于G,与MN交于H,∵CD=18m,AE=10m,AB=24m,HD=17m,∴CG=8m,AG=12m,CH=1m,设圆拱的半径为r,在Rt△AOG中,OA2=OG2+AG2,∴r2=(r﹣8)2+122,解得r=13,∴OC=13m,∴OH=13﹣1=12m,在Rt△MOH中,OM2=OH2+MH2,∴132=122+MH2,解得MH2=25,∴MH=5m,∴MN=10m,故答案为10.12.(2022•荆州)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB=20cm,底面直径BC=12cm,球的最高点到瓶底面的距离为32cm,则球的半径为 7.5 cm(玻璃瓶厚度忽略不计).【思路点拨】设球心为O,过O作OM⊥AD于M,连接OA,设球的半径为rcm,由垂径定理得AM=DM=12AD=6(cm)然后在Rt△OAM中,由勾股定理得出方程,解方程即可.【解题过程】解:如图,设球心为O,过O作OM⊥AD于M,连接OA,设球的半径为rcm,由题意得:AD=12cm,OM=32﹣20﹣r=(12﹣r)(cm),由垂径定理得:AM=DM=12AD=6(cm),在Rt△OAM中,由勾股定理得:AM2+OM2=OA2,即62+(12﹣r)2=r2,解得:r=7.5,即球的半径为7.5cm,故答案为:7.5.13.(2021秋•温州校级月考)如图是郑州圆形“戒指桥”,其数学模型为如图所示.已知桥面跨径AB=20米,D为圆上一点,DC⊥AB于点C,且CD=BC=14米,则该圆的半径长为 26 米.【思路点拨】过O作ON⊥AB于N,过D作DM⊥ON于M,由垂径定理得AN=BN=12AB=10(米),再证四边形DCNM是矩形,则MN=CD=14米,DM=CN=BC+BN=24(米),设该圆的半径长为r米,然后由题意列出方程组,解方程组即可.【解题过程】解:过O作ON⊥AB于N,过D作DM⊥ON于M,如图所示:则AN=BN=12AB=10(米),∠ONC=∠DMN=90°,∵DC⊥AB,∴∠DCN=90°,∴四边形DCNM是矩形,∴MN=CD=14米,DM=CN=BC+BN=24(米),设该圆的半径长为r米,由题意得:ON2=r2−102 OM2=r2−242 OM=ON−14,解得:r=26ON=24 OM=10,即该圆的半径长为26米,故答案为:26.14.(2021秋•金安区校级期末)往直径为680mm的圆柱形油槽内装入一些油以后,截面如图所示,若油面宽AB=600mm,求油的最大深度.【思路点拨】连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD 的长,进而可得出CD的长.【解题过程】解:过点O作OC⊥AB于点D,交弧AB于点C.∵OC⊥AB于点D∴BD=12AB=12×600=300mm,∵⊙O的直径为680mm∴OB=340mm…(5分)∵在Rt△ODB中,OD=160(mm),∴DC=OC﹣OD=340﹣160=180(mm);答:油的最大深度为180mm.15.(2021秋•惠城区校级期中)如图,⊙O为水管横截面,水面宽AB=24cm,水的最大深度为18cm,求⊙O的半径.【思路点拨】由垂径定理可知AD=12cm,设⊙O的半径为rcm,则OD=(18﹣r)cm,在Rt△AOd中,再利用勾股定理即可求出r的值.【解题过程】解:作OD⊥AB于D,交⊙O于E,连接OA,∴AD=12AB=12×24=12cm,设⊙O的半径为rcm,则OD=ED﹣OE=(18﹣r)cm,在Rt△AOD中,由勾股定理得:OA2=OD2+AD2,即r2=(18﹣r)2+122,解得:r=13,即⊙O的半径为13cm.16.(2021秋•奈曼旗期中)如图所示,测得AB是8mm,测得钢珠顶端离零件表面的距离为8mm,求这个圆的直径.【思路点拨】过O作OC⊥AB于C,交优弧AB于D,连接AO,由垂径定理得AC=BC=12AB=4(mm),设⊙O的半径为rmm,则OC=CD﹣OD=(8﹣r)mm,然后在Rt△AOC中,由勾股定理得出方程,解方程即可.【解题过程】解:如图,过O作OC⊥AB于C,交优弧AB于D,连接AO,则AC=BC=12AB=4(mm),CD=8mm,设⊙O的半径为rmm,则OC=CD﹣OD=(8﹣r)mm,在Rt△AOC中,由勾股定理得:42+(8﹣r)2=r2,解得:r=5,即⊙O的半径为5mm,∴⊙O的直径为10mm.17.(2021秋•阜阳月考)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就,它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸).问这块圆形木材的直径(AC)是多少?”如图所示,请根据所学的知识解答上述问题.【思路点拨】设⊙O的半径为x寸.在Rt△ADO中,AD=5寸,OD=(x﹣1)寸,OA=x寸,则有x2=(x﹣1)2+52,解方程即可.【解题过程】解:设⊙O的半径为x寸,∵OE⊥AB,AB=10寸,∴AD=BD=12AB=5寸,在Rt△AOD中,OA=x,OD=x﹣1,由勾股定理得x2=(x﹣1)2+52,解得x=13,∴⊙O的直径AC=2x=26(寸),答:这块圆形木材的直径(AC)是26寸.18.(2021秋•高新区期中)某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面图;(要求尺规作图,保留作图痕迹,不写作法)(2)若这个输水管道有水部分的水面宽AB=32cm,水最深处的地方高度为8cm,求这个圆形截面的半径.【思路点拨】(1)根据尺规作图的步骤和方法做出图即可;(2)先过圆心O作半径OD⊥AB,交AB于点D,设半径为r,得出AD、OD的长,在Rt△AOD中,根据勾股定理求出这个圆形截面的半径.【解题过程】解:(1)如图所示;(2)作OD⊥AB于D,并延长交⊙O于C,则D为AB的中点,∵AB=32cm,∴AD=12AB=16.设这个圆形截面的半径为xcm,又∵CD=8cm,∴OC=x﹣8,在Rt△OAD中,∵OD2+AD2=OA2,即(x﹣8)2+162=x2,解得,x=20.∴圆形截面的半径为20cm.19.(2021秋•黔西南州期末)如图,在一座圆弧形拱桥,它的跨度AB为60m,拱高PM为18m,当洪水泛滥到跨度只有30m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有4m,即PN=4m时,试通过计算说明是否需要采取紧急措施.【思路点拨】由垂径定理可知AM=BM、A′N=B′N,利用AB=60,PM=18,可先求得圆弧所在圆的半径,再计算当PN =4时A′B′的长度,与30米进行比较大小即可.【解题过程】解:设圆弧所在圆的圆心为O,连接OA、OA′,设半径为x米,则OA=OA′=OP,由垂径定理可知AM=BM,A′N=B′N,∵AB=60米,∴AM=30米,且OM=OP﹣PM=(x﹣18)米,在Rt△AOM中,由勾股定理可得AO2=OM2+AM2,即x2=(x﹣18)2+302,解得x=34,∴ON=OP﹣PN=34﹣4=30(米),在Rt△A′ON中,由勾股定理可得A′N=16(米),∴A′B′=32米>30米,∴不需要采取紧急措施.20.(2021秋•余干县期中)如图是某蔬菜基地搭建一座圆弧型蔬菜棚,跨度AB=3.2米,拱高CD=0.8米(C为AB的中点,D为弧AB的中点).(1)求该圆弧所在圆的半径;(2)在距蔬菜棚的一端0.4米处竖立支撑杆EF,求支撑杆EF的高度.【思路点拨】(1)设弧AB所在的圆心为O,D为弧AB的中点,CD⊥AB于C,延长DC至O点,设⊙O的半径为R,利用勾股定理求出即可;(2)利用垂径定理以及勾股定理得出HF的长,再求出EF的长即可.【解题过程】解:(1)设弧AB所在的圆心为O,D为弧AB的中点,CD⊥AB于C,延长DC经过O点,则BC=12AB=1.6(米),设⊙O的半径为R,在Rt△OBC中,OB2=OC2+CB2,∴R2=(R﹣0.8)2+1.62,解得R=2,即该圆弧所在圆的半径为2米;(2)过O作OH⊥FE于H,则OH=CE=1.6﹣0.4=1.2=65(米),OF=2米,在Rt△OHF中,HF== 1.6(米),∵HE=OC=OD﹣CD=2﹣0.8=1.2(米),∴EF=HF﹣HE=1.6﹣1.2=0.4(米),即支撑杆EF的高度为0.4米.21.如图①,圆形拱门屏风是中国古代家庭中常见的装饰隔断,既美观又实用,彰显出中国元素的韵味.图②是一款拱门的示意图,其中C为AB中点,D为拱门最高点,线段CD经过圆心,已知拱门的半径为1.5m,拱门最下端AB=1.8m.(1)求拱门最高点D到地面的距离;(2)现需要给房间内搬进一个长和宽为2m,高为1.2m的桌子,已知搬桌子的两名工人在搬运时所抬高度相同,且高度为0.5m 2.236)【思路点拨】(1)如图②中,连接AO.利用勾股定理求出OC即可;(2)如图②﹣1,弦EF=2m,且EF⊥CD,连接OE.求出CJ即可.【解题过程】解:(1)如图②中,连接AO.∵CD⊥AB,CD经过圆心O,∴AC=CB=0.9m,∴OC= 1.2(m),∴CD=OD+PC=1.5+1.2=2.7(m),∴拱门最高点D到地面的距离为2.7m;(2)如图②﹣1,弦EF=2m,且EF⊥CD,连接OE.∵CD⊥EF,CD经过圆心,∴EJ=JF=1m,≈1.118,∴OJ=2∴CJ=1.2﹣1.118=0.082(m),∵0.5>0.082,∴搬运该桌子时能够通过拱门.22.(2021秋•姑苏区校级月考)诗句“君到姑苏见,人家尽枕河”所描绘的就是有东方威尼斯之称的水城苏州.小勇要帮忙船夫计算一艘货船是否能够安全通过一座圆弧形的拱桥,现测得桥下水面AB宽度16m时,拱顶高出水平面4m,货船宽12m,船舱顶部为矩形并高出水面3m.(1)请你帮助小勇求此圆弧形拱桥的半径;(2)小勇在解决这个问题时遇到困难,请你判断一下,此货船能顺利通过这座拱桥吗?说说你的理由.【思路点拨】(1)根据垂径定理和勾股定理求解;(2)连接ON,利用勾股定理求出EN,得出MN的长,即可得到结论.【解题过程】解:(1)如图,连接OB.∵OC⊥AB,∴D为AB中点,∵AB=16m,∴BD=12AB=8(m),又∵CD=4m,设OB=OC=r,则OD=(r﹣4)m.在Rt△BOD中,根据勾股定理得:r2=(r﹣4)2+82,解得r=10.答:此圆弧形拱桥的半径为10m.(2)此货船不能顺利通过这座拱桥,理由如下:连接ON,∵CD=4m,船舱顶部为长方形并高出水面3m,∴CE=4﹣3=1(m),∴OE=r﹣CE=10﹣1=9(m),在Rt△OEN中,由勾股定理得:EN∴MN=2EN=<12m.∴此货船B不能顺利通过这座拱桥.。

中考数学专题复习《垂径定理》测试卷-附带答案

中考数学专题复习《垂径定理》测试卷-附带答案

中考数学专题复习《垂径定理》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________ 1.如图 在O 中 直径AB 垂直弦CD 于点E 连接,,AC AD BC 作CF AD ⊥于点F 交线段OB 于点G (不与点,O B 重合) 连接OF .(1)若1BE = 求GE 的长.(2)求证:2BC BG BO =⋅.(3)若FO FG = 猜想CAD ∠的度数 并证明你的结论.2.如图 AB 是O 直径 直线l 经过O 上一点C 过点A 作直线l 的垂线.垂足为D .连接AC .已知AC 平分DAB ∠.(1)求证:直线l 与O 相切(2)若70DAB ∠=︒ 3CD = 求O 的半径.(参考数据:sin350.6︒≈cos350.8︒≈.tan350.7︒≈)3.如图 AC 与BD 相交于点E 连接AB CD CD DE =.经过A B C 三点的O 交BD 于点F 且CD 是O 的切线.(1)连接AF 求证:AF AB =(2)求证:2AB AE AC =⋅(3)若2AE = 6EC = 4BE = 则O 的半径为 . 4.如图 四边形ABCD 内接于O 对角线,AC BD 交于点E 连接OE .若,AC BD O ⊥的半径为,r OE m =.(1)若ABC BAD ∠=∠ 求证:OE 平分AEB ∠(2)试用含,r m 的式子表示22AC BD +的值(3)记ADE BCE ABE CDE 的面积分别为1S 2S 3S 4S 当求证:AC BD =.5.如图 AB 是O 的直径 ,C D 是O 上两点 且AD CD = 连接BC 并延长与过点D 的O 的切线相交于点E 连接OD .(1)证明:OD 平分ADC ∠(2)若44,tan 3DE B == 求CD 的长. 6.已知BC 是O 的直径 点D 是BC 延长线上一点 AB AD = AE 是O 的弦 30AEC ∠=︒.(1)求证:直线AD 是O 的切线(2)若AE BC ⊥ 垂足为M O 的半径为10 求AE 的长.7.已知 在O 中 AB 为弦 点C 在圆内 连接AC BC OC 、、,ACO BCO ∠=∠.(1)如图1 求证:AC BC =(2)如图2 延长AC BC 、交O 于点E D 、 连接DE 求证:AB DE ∥(3)如图3 在(2)的条件下 设O 的半径为,3R DE R = 弦FG 经过点C 连接BG BF 、 72,3,33DBF DBG CG R ∠=∠== 求线段CF 的长. 8.已知点,,A B C 在O 上.(1)如图① 过点A 作O 的切线EF 交BC 延长线于点,E D 是弧BC 的中点 连接DO 并延长 交BC 于点G 交O 于点H 交切线EF 于点F 连接,BA BH .若24ABH ∠=︒ 求E ∠的大小(2)如图① 若135AOC B ∠+∠=︒ O 的半径为5 8BC = 求AB 的长. 9.如图 A B C D 分别为O 上一点 连AB AC BC BD CD AC 垂直于BD 于E AC BC = 连CO 并延长交BD 于F .(1)求证:CD CF =(2)若10BC = 6BE = 求O 的半径.10.如图 在 Rt ABC △中 90C ∠=︒,AD 平分 BAC ∠ 交 BC 于点D 点O 是边 AB 上的点 以点O 为圆心 OD 长为半径的圆恰好经过点A 交AC 于点E 弦 EF AB ⊥于点G .(1)求证:BC 是O 的切线.(2)若 12AG EG ==,,求O 的半径.(3)设O 与AB 的另一个交点为 H 猜想AH AE CE 之间的数量关系 并说明理由. 11.如图 在ABC 中 90ACB ∠=︒ 5AB = 1AD = BD BC = 以BD 为直径作O 交BC 于点E 点F 为AC 边上一点 连接EF 过点A 作AG EF ⊥ 垂足为点G =BAC GAF ∠∠.(1)求证:EG 为O 的切线(2)求BE 的长.12.如图 四边形ABCD 中 90B C ∠=∠=︒ 点E 是边BC 上一点 且DE 平分AEC ∠ 作ABE的外接圆O.(1)求证:DC是O的切线(2)若O的半径为5 2CE=求BE与DE的长.13.如图1 在直角坐标系中以原点O为圆心半径为10作圆交x轴于点A B,(点A⊥(点D在点E上方)连在点B的左边).点C为直径AB上一动点过点C作弦DE AB∥交圆O于另一点记为点F.直线EF交x轴于点G连接接AE过点D作DF AE,,.OE BF AD(1)若80∠=︒求ADFBOE∠的度数(2)求证:OE BF∥(3)若2=请直接写出点C横坐标.OG CG14.如图AB为O的弦C为AB的中点D为OC延长线上一点连接BO并延长交O于点E交直线DA于点F B D∠=∠.(1)求证:DA为O的切线(2)若42EF=求弦AB的长度.AF=2⊥交O于B C两点.连15.如图在O中M为半径OA上一点.过M作弦BC OA=.接BO并延长交O于点D连接AD交BC于点E.已知EB ED(1)求证:60CD =︒(2)探究线段CE EM 长度之间的数量关系 并证明.参考答案:1.(1)1(3)45︒2.(2)2583.4.(2)()222242AC BD r m +=-5.(2)6.(2)AE =7.(3)21349CF =8.(1)48E ∠=︒ (2)9.51010.(2)52(3)2AH AE CE =+11.(2)16512.(2)6BE = 25DE =13.(1)100︒(3)点C 555-14.28215.(2)2CE EM =。

部编数学九年级上册专题24.1垂径定理(重点题专项讲练)(人教版)(解析版)含答案

部编数学九年级上册专题24.1垂径定理(重点题专项讲练)(人教版)(解析版)含答案

专题24.1 垂径定理【典例1】如图,在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点.(1)求证:AC=BD;(2)连接OA、OC,若OA=6,OC=4,∠OCD=60°,求AC的长.(1)过O作OH⊥CD于H,根据垂径定理得到CH=DH,AH=BH,即可得出结论;(2)过O作OH⊥CD于H,连接OD,由垂径定理得CH=DH=12CD,再证△OCD是等边三角形,得CD=OC=4,则CH=2,然后由勾股定理即可解决问题.(1)证明:过O作OH⊥CD于H,如图1所示:∵OH⊥CD,∴CH=DH,AH=BH,∴AH﹣CH=BH﹣DH,∴AC=BD;(2)解:过O作OH⊥CD于H,连接OD,如图2所示:则CH=DH=12 CD,∵OC=OD,∠OCD=60°,∴△OCD是等边三角形,∴CD=OC=4,∴CH=2,∴OH=∴AH∴AC=AH﹣CH=2.1.(2022•芜湖一模)已知⊙O的直径CD=10,AB是⊙O的弦,AB=8,且AB⊥CD,垂足为M,则AC 的长为( )A.B.C.D.【思路点拨】连接OA,由AB⊥CD,根据垂径定理得到AM=4,再根据勾股定理计算出OM=3,然后分类讨论:当如图1时,CM=8;当如图2时,CM=2,再利用勾股定理分别计算即可.【解题过程】解:连接OA,∵AB⊥CD,∴AM=BM=12AB=12×8=4,在Rt△OAM中,OA=5,∴OM=3,当如图1时,CM=OC+OM=5+3=8,在Rt△ACM中,AC=当如图2时,CM=OC﹣OM=5﹣3=2,在Rt△ACM中,AC=故选:C.2.(2022春•江夏区校级月考)如图,在⊙O中,弦AB=5,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为( )A.5B.2.5C.3D.2【思路点拨】连接OD,如图,利用勾股定理得到CD,利用垂线段最短得到当OC⊥AB时,OC最小,再求出CD即可.【解题过程】解:连接OD,如图,∵CD⊥OC,∴∠DCO=90°,∴CD=当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时D、B两点重合,∴CD=CB=12AB=12×5=2.5,即CD的最大值为2.5,故选:B.3.(2022•山海关区一模)已知⊙O的直径CD=10,CD与⊙O的弦AB垂直,垂足为M,且AM=4.8,则直径CD上的点(包含端点)与A点的距离为整数的点有( )A.1个B.3个C.6个D.7个【思路点拨】利用勾股定理得出线段AD和AC的长,根据垂线段的性质结合图形判断即可.【解题过程】解:∵CD是直径,∴OC=OD=12CD=12×10=5,∵AB⊥CD,∴∠AMC=∠AMD=90°,∵AM=4.8,∴OM==1.4,∴CM=5+1.4=6.4,MD=5﹣1.4=3.6,∴AC=8,AD=6,∵AM=4.8,∴A点到线段MD的最小距离为4.8,最大距离为6,则A点到线段MD的整数距离有5,6,A点到线段MC的最小距离为4.8,最大距离为8,则A点到线段MC的整数距离有5,6,7,8,直径CD上的点(包含端点)与A点的距离为整数的点有6个,故选:C.4.(2022•博山区一模)如图,在平面直角坐标系中,半径为5的⊙E与y轴交于点A(0,﹣2),B(0,4),与x轴交于C,D,则点D的坐标为( )A.0)B.(−4+0)C.(−40)D.0)【思路点拨】过O点作EH⊥AB于H,EF⊥CD于F,连接ED,如图,根据垂径定理得到CF=DF,AH=BH=3,所以OH=1,再利用勾股定理计算出EH=4,则EF=1,OF=4,接着利用勾股定理计算出FD,然后计算出OD,从而得到D点坐标.【解题过程】解:过O点作EH⊥AB于H,EF⊥CD于F,连接ED,如图,则CF=DF,AH=BH∵A(0,﹣2),B(0,4),∴AB=6,∴BH=3,∴OH=1,在Rt△BHE中,EH4,∵四边形EHOF为矩形,∴EF=OH=1,OF=EH=4,在Rt△OEF中,FD==∴OD=FD﹣OF=4,∴D(4,0).故选:B .5.(2022•新洲区模拟)如图,点A ,C ,D 均在⊙O 上,点B 在⊙O 内,且AB ⊥BC 于点B ,BC ⊥CD 于点C ,若AB =4,BC =8,CD =2,则⊙O 的面积为( )A .125π4B .275π4C .125π9D .275π9【思路点拨】利用垂径定理和勾股定理建立方程求出ON ,再求出半径后,根据圆面积的计算方法进行计算即可.【解题过程】解:如图,连接OA 、OC ,过点O 作OM ⊥CD 于M ,MO 的延长线于AB 延长线交于N ,则四边形BCMN 是矩形,∵OM ⊥CD ,CD 是弦,∴CM =DM =12CD =1=BN ,∴AN =AB +BN =4+1=5,设ON =x ,则OM =8﹣x ,在Rt △AON 、Rt △COM 中,由勾股定理得,OA 2=AN 2+ON 2,OC 2=OM 2+CM 2,∵OA =OC ,∴AN 2+ON 2=OM 2+CM 2,即52+x 2=(8﹣x )2+12,解得x =52,即ON =52,∴OA 2=52+(52)2=1254,∴S⊙O=π×OA2=1254π,故选:A.6.(2021秋•延平区校级期末)在Rt△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3,若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为( )A.910B.65C.85D.125【思路点拨】由题意可知,C、O、G三点在一条直线上OG最小,MN最大,再由勾股定理求得AB,然后由三角形面积求得CF,最后由垂径定理和勾股定理即可求得MN的最大值.【解题过程】解:过O作OG⊥AB于G,连接OC、OM,∵DE=3,∠ACB=90°,OD=OE,∴OC=12DE=32,只有C、O、G三点在一条直线上OG最小,∵OM=3 2,∴只有OG最小,GM才能最大,从而MN有最大值,过C作CF⊥AB于F,∴G和F重合时,MN有最大值,∵∠ACB=90°,BC=3,AC=4,∴AB==5,∵12AC•BC=12AB•CF,∴CF=AC×BCAB=4×35=125,∴OG=CF﹣OC=125−32=910,∴MG===6 5,∴MN=2MG=12 5,故选:D.7.(2022•吴忠模拟)如图,AB是⊙O的直径,且CD⊥AB于E,若AE=1,∠D=30°,则AB= 4 .【思路点拨】根据含30度角的直角三角形的性质求出AD,根据垂径定理求出AC=AD,求出AC=AD=2,根据圆周角定理求出∠ACB=90°,∠B=∠D=30°,再根据含30度角的直角三角形的性质得出AB=2AC即可.【解题过程】解:∵CD⊥AB,∴∠AED=90°,∵AE=1,∠D=30°,∴AD=2AE=2,∠ABC=∠D=30°,∵AB⊥CD,AB过圆心O,∴AC=AD,∴AC=AD=2,∵AB是⊙O的直径,∴∠ACB=90°,∴AB=2AC=2×2=4,故答案为:4.8.(2022•烟台模拟)如图,AB是⊙O的直径,弦CD交AB于点P,AP=4,BP=12,∠APC=30°,则CD的长为【思路点拨】过O作OI⊥CD于I,连接OD,求出半径OD=OA=8,求出OP,根据含30度角的直角三角形的性质求出OI,根据勾股定理求出DI,根据垂径定理求出DI=CI,再求出CD即可.【解题过程】解:过O作OI⊥CD于I,连接OD,则∠OID=∠OIP=90°,∵AP=4,BP=12,∴直径AB=4+12=16,即半径OD=OA=8,∴OP=OA﹣AP=8﹣4=4,∵∠IPO=∠APC=30°,∴OI=12OP=12×4=2,由勾股定理得:DI==∵OI⊥CD,OI过圆心O,∴DI=CI=即CD=DI+CI=故答案为:9.(2022•桥西区校级模拟)如图,AB是⊙C的弦,直径MN⊥AB于点O,MN=10,AB=8,如图以O为原点建立坐标系.我们把横纵坐标都是整数的点叫做整数点,则线段OC长是 3 ,⊙C上的整数点有 12 个.【思路点拨】过C作直径UL∥x轴,连接AC,根据垂径定理求出AO=BO=4,根据勾股定理求出OC,再得出答案即可.【解题过程】解:过C作直径UL∥x轴,连接CA,则AC=12×10=5,∵MN过圆心C,MN⊥AB,AB=8,∴AO=BO=4,∠AOC=90°,由勾股定理得:CO3,∴ON=5﹣3=2,OM=5+3=8,即A(﹣4,0),B(4,0),M(0,8),N(0,﹣2),同理还有弦QR=AB=8,弦WE=TS=6,且WE、TS、QR都平行于x轴,Q(﹣4,6),R(4,6),W(﹣3,7),E(3,7),T(﹣3,﹣1),S(3,﹣1),U(﹣5,3),L (5,3),即共12个点,故答案为:3;12.10.(2022•商城县三模)如图所示的网格中,每个小正方形的边长均为1,点A、B、C均在小正方形的顶点上,点C 同时也在AB 上,若点P 是BC 的一个动点,则△ABP 面积的最大值是 −8 .【思路点拨】作AB 的垂直平分线交AB 于D ,交AB 于E ,圆心为0,则点O 在DE 上,连接AE 、BE ,CF ⊥OE 于F ,如图,设⊙O 的半径为r ,OD =x ,利用勾股定理得到r 2=x 2+42①,r 2=(x +2)2+22②,则利用②﹣①可求出得x =2,所以r =DE =2,然后根据三角形面积公式,点P 点与点E 重合时,△ABP 面积的最大值.【解题过程】解:作AB 的垂直平分线交AB 于D ,交AB 于E ,圆心为0,则点O 在DE 上,连接AE 、BE ,CF ⊥OE 于F ,如图,设⊙O 的半径为r ,OD =x ,在Rt △BOD 中,r 2=x 2+42①,在Rt △OCF 中,r 2=(x +2)2+22②,②﹣①得4+4x +4﹣16=0,解得x =2,∴OD =2,∴r =∴DE =OE ﹣OD =2,∵点P 是BC 的一个动点,∴点P 点与点E 重合时,△ABP 面积的最大值,最大值为12×8×(2)=8.故答案为:8.11.(2022春•徐汇区校级期中)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,且CE=CB,若BE=2AE,CD=5,那么⊙O的半径为【思路点拨】先证明△AFO和△BCE是等边三角形,设DE=x,根据CD=5列方程,求出x得到AD【解题过程】解:如图,记DC与⊙O交于点F,连接AF、OF、OB,过点C作CT⊥AB于点T,连接OE,OT.∵D为半径OA的中点,CD⊥OA,∴FD垂直平分AO,∴FA=FO,又∵OA=OF,∴△AOF是等边三角形,∴∠OAF=∠AOF=∠AFO=60°,∵CE=CB,CT⊥EB,∴ET=TB,∵BE=2AE,∴AE=ET=BT,∵AD=OD,∴DE∥OT,∴∠AOT=∠ADE=90°,∴OE=AE=ET,∵OA=OB,∴∠OAE=∠OBT,∵AO=BO,AE=BT,∴△AOE≌△BOT(SAS),∴OE=OT,∴OE=OT=ET,∴∠ETO=60°,∴∠OAB=∠OBA=30°,∠AED=∠CEB=60°,∴△CEB是等边三角形,∴CE=CB=BE,设DE=x,∴AE=2x,BE=CE=4x,∴CD=5x=5,∴x=1,∴AD∴AO=故答案为:12.(2022•盐城)证明:垂直于弦AB的直径CD平分弦以及弦所对的两条弧.【思路点拨】先根据已知画图,然后写出已知和求证,再进行证明即可.【解题过程】如图,CD为⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为M.求证:AM=BM,AC=BC,AD=BD.证明:连接OA、OB,∵OA=OB,∴△OAB是等腰三角形,∵AB⊥CD,∴AM=BM,∠AOC=∠BOC,∴AC=BC,AD=BD.13.(2021秋•鼓楼区校级期末)如图,AB是⊙O的直径,弦CD⊥AB于点E,若BE=5,CD=6,求AE 的长.【思路点拨】根据垂径定理和勾股定理求出圆的半径,进而求出AE的长即可.【解题过程】解:如图,连接OC,∵CD⊥AB,AB是直径,∴CE=DE=12CD=3,在Rt△COE中,设半径为r,则OE=5﹣r,OC=r,由勾股定理得,OE2+CE2=OC2,即(5﹣r)2+32=r2,解得r =3.4,∴AE =AB ﹣BE =3.4×2﹣5=1.8,答:AE 的长为1.8.14.(2021秋•芜湖月考)如图,在△ABC 中AB =5,AC =4,BC =2,以A 为圆心,AB 为半径作⊙A ,延长BC 交⊙A 于点D ,试求CD 的长.【思路点拨】过点A 作AE ⊥BD 于点E ,如图,则DE =BE ,利用双勾股得到AC 2﹣CE 2=AB 2﹣BE 2,即42﹣(BE ﹣2)2=52﹣BE 2,解方程得到BE =134,然后计算BD ﹣BC 即可.【解题过程】解:过点A 作AE ⊥BD 于点E ,连接AD ,如图,则DE =BE ,在Rt △ACE 中,AE 2=AC 2﹣CE 2,在Rt △ABE 中,AE 2=AB 2﹣BE 2,∴AC 2﹣CE 2=AB 2﹣BE 2,即42﹣(BE ﹣2)2=52﹣BE 2,解得BE =134,∴CD =BD ﹣BC =2BE ﹣2=2×134−2=92.答:CD 的长为92.15.(2022•江西开学)如图,在⊙O 中,弦AB ∥CD ,AB =8,CD =6,AB ,CD 之间的距离为1.(1)求圆的半径.(2)将弦AB 绕着圆心O 旋转一周,求弦AB 扫过的面积.【思路点拨】(1)过点O作OF⊥CD于点F,交AB于点E,连接OA、OD,即可得出DF=CF=3,再因为AB∥CD,则可得到OE⊥AB,进而得到AE=BE=4,最后根据勾股定理计算即可;(2)先判断出将弦AB绕着圆心O旋转一周,得到的图形,再根据圆面积公式计算即可.【解题过程】解:(1)如图,过点O作OF⊥CD于点F,交AB于点E,连接OA、OD,则DF=CF=3,∵AB∥CD,∴OE⊥AB,∴AE=BE=4,设OE=x,则OF=x+1,根据题意可得:x2+42=(x+1)2+32,∴x=3,∴=5;(2)将弦AB绕着圆心O旋转一周,得到的图形是以点O为圆心,以3为半径的圆与以5为半径的圆所围成的环形,故弦AB扫过的面积为π×52﹣π×32=16π.16.(2021秋•玄武区校级月考)如图,AB是⊙O直径,弦CD⊥AB于点E,过点C作DB的垂线,交AB 的延长线于点G,垂足为点F,连结AC.(1)求证:AC=CG;(2)若CD=EG=8,求⊙O的半径.【思路点拨】(1)利用等角的余角证明∠D=∠G,再根据圆周角定理得到∠A=∠D,所以∠A=∠G,从而得到结论;(2)连接OC,如图,设⊙O的半径为r,根据等腰三角形的性质和垂径定理得到AE=EG=8,EC=ED=4,则OE=8﹣r,利用勾股定理得r2=(8﹣r)2+42,然后解方程即可.【解题过程】(1)证明:∵DF⊥CG,CD⊥AB,∴∠DEB=∠BFG=90°,∵∠DBE=∠GBF,∴∠D=∠G,∵∠A=∠D,∴∠A=∠G,∴AC=CG;(2)解:连接OC,如图,设⊙O的半径为r.∵CA=CG,CD⊥AB,∴AE=EG=8,EC=ED=4,∴OE=AE﹣OA=8﹣r,在Rt△OEC中,∵OC2=OE2+EC2,∴r2=(8﹣r)2+42,解得r=5,∴⊙O的半径为5.17.(2022•白云区二模)已知:如图,A,B是半圆O上的两点,CD是⊙O的直径,∠AOD=80°,B是AD 的中点.(1)在CD上求作一点P,使得AP+PB最短;(2)若CD=4cm,求AP+PB的最小值.【思路点拨】(1)作出B关于CD的对称点B′,连接AB′,交CD于P点,P就是所求的点;(2)延长AO交圆与E,连接OB′,B′E,可以根据圆周角定理求得∠AOB′的度数,根据等腰三角形的性质求得∠A的度数,然后在直角△AEB′中,解直角三角形即可求解.【解题过程】解:(1)作BB′⊥CD,交圆于B′,然后连接AB′,交CD于P点,P就是所求的点;(2)延长AO交圆于E,连接OB′,B′E.∵BB′⊥CD∴BD=B′D,∵∠AOD=80°,B是AD的中点,∴∠DOB′=12∠AOD=40°.∴∠AOB′=∠AOD+∠DOB′=120°,又∵OA=OB′,∴∠A=180°−∠AOB′2=30°.∵AE是圆的直径,∴∠AB′E=90°,∴直角△AEB′中,B′E=12AE=12×4=2,∴AB′=.18.(2022•中山市模拟)已知:如图,在⊙O中,AB、AC为互相垂直的两条弦,OD⊥AB,OE⊥AC,D、E 为垂足.(1)若AB=AC,求证:四边形ADOE为正方形.(2)若AB>AC,判断OD与OE的大小关系,并证明你的结论.【思路点拨】(1)连接OA,根据垂径定理得出AE=CE,AD=BD,根据AB=AC求出AE=AD,再根据矩形的判定和正方形的判定推出即可;(2)根据勾股定理得出OE2=OA2﹣AE2,OD2=OA2﹣AD2,根据AB>AC求出AD>AE,再得出答案即可.【解题过程】(1)证明:连接OA,∵OD⊥AB,OE⊥AC,OD和OE都过圆心O,∴∠OEA=∠ODA=90°,AE=CE,AD=BD,∵AC=AB,∴AE=AD,∵AB、AC为互相垂直的两条弦,∴∠EAD=90°,即∠OEA=∠EAD=∠ODA=90°,∴四边形EADO是正方形(有一组邻边相等的矩形是正方形);(2)解:OD<OE,证明:∵AB>AC,AE=CE,AD=BD,∴AD>AE,在Rt△ODA和Rt△OEA中,由勾股定理得:OE2=OA2﹣AE2,OD2=OA2﹣AD2,∴OD2<OE2,即OD<OE.19.(2022•全椒县一模)如图,⊙O中两条互相垂直的弦AB,CD交于点E.(1)OM⊥CD于点M,CD=24,⊙O的半径长为OM的长.(2)点G在BD上,且AG⊥BD交CD于点F,求证:CE=EF.【思路点拨】(1)连接OD,由垂径定理和勾股定理可得答案;(2)连接AC,由垂直的定义及等腰三角形的性质可得结论.【解题过程】(1)解:如图,连接OD,∵OM⊥CD,OM过圆心,CD=24,∴DM=CM=12CD=12,∠OMD=90°,由勾股定理得,OM=4,即OM的长为4;(2)证明:如图,连接AC,∵AG⊥BD,∴∠DGF=90°,∴∠DFG+∠D=90°,∵AB⊥CD,∴∠CEA=90°,∴∠C+∠EAC=90°,∵∠EAC=∠D,∠DFG=∠AFC,∴∠C=∠AFC,∴AF=AC,∵AB⊥CD,∴CE=EF.20.(2022•合肥模拟)如图,在⊙O中,AB,AC为弦,CD为直径,AB⊥CD于E,BF⊥AC于F,BF与CD相交于G.(1)求证:ED=EG;(2)若AB=8,OG=1,求⊙O的半径.【思路点拨】(1)连接BD,容易得到∠GBE和∠DBE相等,利用ASA证明△BGE和△BDE全等即可;(2)连接OA,设OA=r,则DG=r+1,根据ED=EG容易求出OE=r−12,再根据垂径定理求出AE的值,最后在Rt△OAE中根据勾股定理求出r的值即可.【解题过程】(1)证明:如图:连接BD,∵AB⊥CD于E,BF⊥AC于F,∴∠CFG=∠GEB,∵∠CGF=∠BGE,∴∠C=∠GBE,∵∠C=∠DBE,∴∠GBE=∠DBE,∵AB⊥CD于E,∴∠GEB=∠DEB,在△GBE和△DBE中,∠GEB=∠DEBBE=BE∠GBE=∠DBE,∴△BGE≌△BDE(ASA),∴ED=EG.(2)解:如图:连接OA,设OA=r,则DG=r+1,由(1)可知ED=EG,∴OE=r−1 2,∵AB⊥CD于E,AB=8,∴AE=BE=4,∴在Rt△OAE中,根据勾股定理得:OE2+AE2=OA2,即(r−12)2+42=r2,解得:r=13 3,即⊙O的半径为13 3.21.(2021•遵义一模)在《折叠圆形纸片》综合实践课上,小东同学展示了如下的操作及问题:(1)如图1,⊙O1的半径为4cm,通过折叠圆形纸片,使得劣弧AB沿弦AB折叠后恰好过圆心O1,求,AB长;(2)如图2,O2C⊥弦AB,垂足为点C,劣弧AB沿弦AB折叠后经过O2C的中点D,AB=10cm,求⊙O 的半径.【思路点拨】(1)过点O1作O1F⊥AB于F,得出O1F=12O1F,再根据勾股定理,即可得出结论;(2)同(1)的方法先判断出O2C=2rcm,再根据勾股定理建立方程求解,即可得出结论.【解题过程】解:(1)如图1,过点O1作O1F⊥AB于F,并延长O1F交虚线劣弧AB于E,∴AB=2AF,由折叠知,EF=O1F=12O1E=12×4=2(cm),连接O1A,在Rt△O1FA中,O1A=4,根据勾股定理得,AF cm),∴AB=2AF=;(2)如图2,延长O2C交虚线劣弧AB于G,由折叠知,CG=CD,∵D是O2C的中点,∴CD=O2D,∴CG=CD=O2D,设⊙O2的半径为3rcm,则O2C=2r(cm),∵O2C⊥弦AB,∴AC=12AB=5(cm),连接O2A,在Rt△ACO2中,根据勾股定理得,(3r)2﹣(2r)2=25,∴r∴O2A=3r=cm),即⊙O2的半径为.22.(2021•浙江自主招生)以O为圆心,1为半径的圆内有一定点A,过A引互相垂直的弦PQ,RS.求PQ+RS的最大值和最小值.【思路点拨】设OA=a(定值),过O作OB⊥PQ,OC⊥RS,B、C为垂足,设OB=x,OC=y,0≤x≤a,(0≤y≤a),由勾股定理得出x,y,a的关系,再由垂径定理PQ和RS,最后由完全平方公式求得最大值和最小值.【解题过程】解:如图,设OA=a(定值),过O作OB⊥PQ,OC⊥RS,B、C为垂足,设OB=x,OC=y,0≤x≤a,(0≤y≤a),且x2+y2=a2.所以PQ=2PB=RS=所以PQ+RS=2∴(PQ+RS)2=4(2﹣a2而x2y2=x2(a2﹣x2)=﹣(x2−a22)2+a44.当x2=a22时,(x2y2)最大值=a4 4.此时PQ+RS=当x2=0或x2=a2时,(x2y2)最小值=0,=2(1+此时(PQ+RS)最小值。

初三垂径定理练习试题和答案解析

初三垂径定理练习试题和答案解析

垂径定理一.选择题★1.如图1,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,那么弦AB的长是()A.4 B.6 C.7 D.8答案:D★★2.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM 长的最小值为()A.2 B.3 C.4 D.5答案:B★★3.过⊙O内一点M的最长弦为10 cm,最短弦长为8cm,则OM的长为()A.9cm B.6cm C.3cm D.cm41答案:C★★4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA、OB在O 点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()A.12个单位 B.10个单位 C.1个单位 D.15个单位答案:B★★5.如图,O⊙的直径AB垂直弦CD于P,且P是半径OB的中点,6cmCD ,则直径AB的长是()A. B. C. D.答案:D★★6.下列命题中,正确的是()A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必经过这条弦所在圆的圆心D.在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心答案:D★★★7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( )A.5米 B.8米 C.7米 D.53米答案:B★★★8.⊙O的半径为5cm,弦AB//CD,且AB=8cm,CD=6cm,则AB与CD之间的距离为( )A. 1 cm B. 7cm C. 3 cm或4 cm D. 1cm 或7cm答案:D★★★9.已知等腰△ABC的三个顶点都在半径为5的⊙O上,如果底边BC的长为8,那么BC边上的高为( )A.2 B.8 C.2或8 D.3答案:C二.填空题★1.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为 cm 答案:5 cm★2.在直径为10cm的圆中,弦AB的长为8cm,则它的弦心距为 cm答案:3 cm★3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于答案:6★★4.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为 cm 答案:5 cm★★5.如图,⊙O的直径AB垂直于弦CD,垂足为E,若∠COD=120°,OE=3厘米,则CD=厘米图 4答案:★★6.半径为6cm的圆中,垂直平分半径OA的弦长为 cm.答案:★★7.过⊙O内一点M的最长的弦长为6cm,最短的弦长为4cm,则OM的长等于cm★★8.已知AB是⊙O的直径,弦CD⊥AB,E为垂足,CD=8,OE=1,则AB=____________ 答案:★★9.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD =l,则弦AB的长是答案:6★★10.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,则中间柱CD的高度为 m答案:4★★11.如图,在直角坐标系中,以点P为圆心的圆弧与轴交于A、B两点,已知P(4,2)和A(2,0),则点B的坐标是答案:(6,0)★★12.如图,AB 是⊙O 的直径,OD ⊥AC 于点D ,BC=6cm ,则OD= cm答案:3★★13.如图,矩形ABCD 与圆心在AB 上的圆O 交于点G 、B 、F 、E ,GB=10,EF=8,那么AD=答案:3★★14.如图,⊙O 的半径是5cm ,P 是⊙O 外一点,PO=8cm ,∠P=30º,则AB= cmPBAO答案:6★★★15.⊙O 的半径为13 cm ,弦AB ∥CD ,AB =24cm ,CD =10cm ,那么AB 和CD 的距离是 Cm 答案:7cm 或17cm★★★16.已知AB 是圆O 的弦,半径OC 垂直AB ,交AB 于D ,若AB=8,CD=2,则圆的半径为 答案:5★★★17.一个圆弧形门拱的拱高为1米,跨度为4米,那么这个门拱的半径为米 答案:52★★★18.在直径为10厘米的圆中,两条分别为6厘米和8厘米的平行弦之间的距离是厘米 答案:7或1★★★19.如图,是一个隧道的截面,如果路面AB 宽为8米,净高CD 为8米,那么这个 隧道所在圆的半径OA 是___________米答案:5★★★20.如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点D 。

垂径定理练习题答案

垂径定理练习题答案

垂径定理练习题答案垂径定理练习题答案垂径定理是解决几何问题的重要定理之一,它在许多几何证明和计算中起着重要的作用。

本文将通过几个垂径定理的练习题来探讨其应用。

练习题一:在一个直角三角形ABC中,AB = 5 cm,BC = 12 cm。

点D是AC 边上的一个点,使得BD是三角形ABC的高。

求BD的长度。

解答:根据垂径定理,如果一条线段与另一条线段垂直且过其中点,那么这条线段就是另一条线段的垂径。

在这个问题中,BD是三角形ABC的高,所以BD 与AC垂直。

又因为BD过AC的中点,所以BD是AC的垂径。

根据垂径定理,AC的长度等于BD的两倍。

所以AC = 2BD。

根据勾股定理,可以得到AC的长度:AC² = AB² + BC²AC² = 5² + 12²AC² = 25 + 144AC² = 169AC = √169AC = 13 cm将AC的长度代入前面的等式中,可以得到:13 = 2BDBD = 13 / 2BD = 6.5 cm所以BD的长度为6.5 cm。

练习题二:在一个平行四边形ABCD中,对角线AC与BD相交于点O。

已知AB = 8 cm,AD = 6 cm,求AC的长度。

解答:根据垂径定理,如果一条线段与另一条线段垂直且过其中点,那么这条线段就是另一条线段的垂径。

在这个问题中,对角线AC与BD相交于点O,所以AC与BD垂直。

又因为AC过BD的中点,所以AC是BD的垂径。

根据垂径定理,BD的长度等于AC的两倍。

所以BD = 2AC。

根据平行四边形的性质,对角线互相平分。

所以AO = OC,BO = OD。

根据勾股定理,可以得到AO和BO的长度:AO² = AB² + BO²AO² = 8² + (AC/2)²AO² = 64 + (AC/2)²BO² = AD² + BD²BO² = 6² + (2AC)²BO² = 36 + 4AC²由于AO = OC,所以AO² = OC²。

中考数学复习:垂径定理(圆)(综合提升训练必备)(含解析)

中考数学复习:垂径定理(圆)(综合提升训练必备)(含解析)

2019年中考数学复习:垂径定理(圆)一、选择题(共15小题)1、如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值为( )A。

1ﻩB、ﻩC、D、2、如图,梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm、以BC上一点O 为圆心的圆经过A、D两点,且∠AOD=90°,则圆心O到弦AD的距离是( )A、cmﻩB、cm C、cmﻩD、cm3。

如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是( )A、4ﻩB、ﻩC、D、4、已知⊙O的半径为10,P为⊙O内一点,且OP=6,则过P点,且长度为整数的弦有( )A。

5条ﻩB。

6条ﻩC、8条D。

10条5、已知⊙O的半径OA=2,弦AB,AC的长分别是2,2,则∠BAC的度数为()A、15°B、75°C、15°或75°ﻩD、15°或45°6、如图,四边形PAOB是扇形OMN的内接矩形,顶点P在上,且不与M,N重合,当P点在上移动时,矩形PAOB的形状、大小随之变化,则AB的长度()A、变大B、变小C、不变D。

不能确定7、给出下列四个命题:(1)假如某圆锥的侧面展开图是半圆,则其轴截面一定是等边三角形;(2)若点A在直线y=2x﹣3上,且点A到两坐标轴的距离相等,则点A在第一或第四象限;(3)半径为5的圆中,弦AB=8,则圆周上到直线AB的距离为2的点共有四个; (4)若A(a,m)、B(a﹣1,n)(a〉0)在反比例函y=的图象上,则m〈n、其中,正确命题的个数是( )A、1个ﻩB。

2个C、3个ﻩD、4个8、已知⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,则AB和CD 的距离为( )A、2cmﻩB。

14cmﻩC、2cm或14cmﻩD、10cm或20cm9、已知⊙O的半径为3,△ABC内接于⊙O,AB=3,AC=3,D是⊙O上一点,且AD =3,则CD的长应是( )A。

2019届北师大版九年级数学下册练习:3.3 垂径定理

2019届北师大版九年级数学下册练习:3.3 垂径定理

3.3 垂径定理基础题知识点1 垂径定理1.如图所示,⊙O 的半径为13,弦AB 的长度是24,ON ⊥AB ,垂足为N ,则ON =(A)A .5B .7C .9D .112.(2017·阿坝)如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,若⊙O 的半径为5,AB =8,则CD 的长是(A)A .2B .3C .4D .54.如图,已知⊙O 的直径AB ⊥CD 于点E ,则下列结论一定错误的是(B)A .CE =DEB .AE =OEC.BC ︵=BD ︵ D .△OCE ≌△ODE5.(2017·大连)如图,在⊙O 中,弦AB =8 cm ,OC ⊥AB ,垂足为C ,OC =3 cm ,则⊙O 的半径为5cm.6.(2017·长沙)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB =1,则⊙O 的半径为5.知识点2 垂径定理的推论7.如图,⊙O 的半径为10,M 是AB 的中点,且OM =6,则⊙O 的弦AB 等于(D)A .8B .10C .12D .16知识点3 垂径定理的应用8.(2017·金华)如图,在半径为13 cm 的圆形铁片上切下一块高为8 cm 的弓形铁片,则弓形弦AB 的长为(C)A .10 cmB .16 cmC .24 cmD .26 cm9.如图,水平放置的圆柱形排水管道的截面直径是1 m ,其中水面的宽AB为0.8 m ,则排水管内水的深度为0.8m.10.(教材P76练习T1变式)如图所示,某窗户由矩形和弓形组成,已知弓形的跨度AB =3 m ,弓形的高EF =1 m ,现计划安装玻璃,请帮工程师求出AB ︵所在⊙O 的半径r.解:∵弓形的跨度AB =3 m ,EF 为弓形的高,∴OE ⊥AB.∴AF =12AB =32m.∵AB ︵所在⊙O 的半径为r ,弓形的高EF =1 m ,∴AO =r ,OF =r -1.在Rt △AOF 中,AO 2=AF 2+OF 2,即r 2=(32)2+(r -1)2.解得r =138.故r =138 m.易错点 忽略垂径定理的推论中的条件“不是直径”11.下列说法正确的是(D)A .过弦的中点的直径平分弦所对的两条弧B .弦的垂直平分线平分它所对的两条弧,但不一定过圆心C .过弦的中点的直径垂直于弦D .平分弦所对的两条弧的直径平分弦中档题12.已知⊙O 的半径OA =10 cm ,弦AB =16 cm ,P 为弦AB 上的一个动点,则OP 的最短距离为(B)A .5 cmB .6 cmC .8 cmD .10 cm13.(2017·呼和浩特)如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为M.若AB =12,OM ∶MD =5∶8,则⊙O 的周长为(B)A .26πB .13π C.96π5 D.3910π514.(2017·阿坝)如图,将半径为2 cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为(D)A .2 cm B. 3 cm C .2 5 cm D .2 3 cm15.如图1,小敏利用课余时间制作了一个脸盆架,图2是它的截面图,垂直放置的脸盆与架子的交点为A ,B ,AB =40 cm ,脸盆的最低点C 到AB 的距离为10 cm ,则该脸盆的半径为25cm.16.(2018·孝感)已知⊙O 的半径为10 cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB =16 cm ,CD =12 cm ,则弦AB 和CD 之间的距离是2或14cm17.(教材P77习题T3变式)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆心O到直线AB的距离为6,求AC的长.解:(1)证明:过点O作OE⊥AB,垂足为E,则AE=BE,CE=DE,∴AE-CE=BE-DE,即AC=BD.(2)由(1)可知,OE⊥AB,OE⊥CD,连接OC,OA.∵OE=6,∴CE=OC2-OE2=82-62=27,AE=OA2-OE2=102-62=8.∴AC=AE-CE=8-27.3.3 垂径定理 答案基础题知识点1 垂径定理1.如图所示,⊙O 的半径为13,弦AB 的长度是24,ON ⊥AB ,垂足为N ,则ON =(A)A .5B .7C .9D .112.(2017·阿坝)如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,若⊙O 的半径为5,AB =8,则CD 的长是(A)A .2B .3C .4D .54.如图,已知⊙O 的直径AB ⊥CD 于点E ,则下列结论一定错误的是(B)A .CE =DEB .AE =OEC.BC ︵=BD ︵ D .△OCE ≌△ODE5.(2017·大连)如图,在⊙O 中,弦AB =8 cm ,OC ⊥AB ,垂足为C ,OC =3 cm ,则⊙O 的半径为5cm.6.(2017·长沙)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB =1,则⊙O 的半径为5.知识点2 垂径定理的推论7.如图,⊙O 的半径为10,M 是AB 的中点,且OM =6,则⊙O 的弦AB 等于(D)A .8B .10C .12D .16知识点3 垂径定理的应用8.(2017·金华)如图,在半径为13 cm 的圆形铁片上切下一块高为8 cm 的弓形铁片,则弓形弦AB 的长为(C)A .10 cmB .16 cmC .24 cmD .26 cm9.如图,水平放置的圆柱形排水管道的截面直径是1 m ,其中水面的宽AB为0.8 m ,则排水管内水的深度为0.8m.10.(教材P76练习T1变式)如图所示,某窗户由矩形和弓形组成,已知弓形的跨度AB =3 m ,弓形的高EF =1 m ,现计划安装玻璃,请帮工程师求出AB ︵所在⊙O 的半径r.解:∵弓形的跨度AB =3 m ,EF 为弓形的高,∴OE ⊥AB.∴AF =12AB =32m. ∵AB ︵所在⊙O 的半径为r ,弓形的高EF =1 m ,∴AO =r ,OF =r -1.在Rt △AOF 中,AO 2=AF 2+OF 2,即r 2=(32)2+(r -1)2.解得r =138.故r =138 m.易错点 忽略垂径定理的推论中的条件“不是直径”11.下列说法正确的是(D)A .过弦的中点的直径平分弦所对的两条弧B .弦的垂直平分线平分它所对的两条弧,但不一定过圆心C .过弦的中点的直径垂直于弦D .平分弦所对的两条弧的直径平分弦中档题12.已知⊙O 的半径OA =10 cm ,弦AB =16 cm ,P 为弦AB 上的一个动点,则OP 的最短距离为(B)A .5 cmB .6 cmC .8 cmD .10 cm13.(2017·呼和浩特)如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为M.若AB =12,OM ∶MD =5∶8,则⊙O 的周长为(B)A .26πB .13π C.96π5 D.3910π514.(2017·阿坝)如图,将半径为2 cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为(D)A .2 cm B. 3 cm C .2 5 cm D .2 3 cm15.如图1,小敏利用课余时间制作了一个脸盆架,图2是它的截面图,垂直放置的脸盆与架子的交点为A ,B ,AB =40 cm ,脸盆的最低点C 到AB 的距离为10 cm ,则该脸盆的半径为25cm.16.(2018·孝感)已知⊙O 的半径为10 cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB =16 cm ,CD =12 cm ,则弦AB 和CD 之间的距离是2或14cm17.(教材P77习题T3变式)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆心O到直线AB的距离为6,求AC的长.解:(1)证明:过点O作OE⊥AB,垂足为E,则AE=BE,CE=DE,∴AE-CE=BE-DE,即AC=BD.(2)由(1)可知,OE⊥AB,OE⊥CD,连接OC,OA.∵OE=6,∴CE=OC2-OE2=82-62=27,AE=OA2-OE2=102-62=8.∴AC=AE-CE=8-27.。

垂径定理-练习题 含答案

垂径定理-练习题 含答案

垂径定理副标题题号一二总分得分一、选择题(本大题共4小题,共12.0分)1.如图所示,的半径为13,弦AB的长度是24,,垂足为N,则A. 5B. 7C. 9D.11【答案】A【解析】解:由题意可得,,,,,,故选A.根据的半径为13,弦AB的长度是24,,可以求得AN的长,从而可以求得ON的长.本题考查垂径定理,解题的关键是明确垂径定理的内容,利用垂径定理解答问题.2.如图,AB是的直径,弦于点E,,的半径为5cm,则圆心O到弦CD的距离为A.B. 3cmC.D. 6cm【答案】A【解析】解:连接CB.是的直径,弦于点E,圆心O到弦CD的距离为OE;同弧所对的圆周角是所对的圆心角的一半,,;在中,,,.故选A.根据垂径定理知圆心O到弦CD的距离为OE;由圆周角定理知,已知半径OC的长,即可在中求OE的长度.本题考查了垂径定理、圆周角定理及解直角三角形的综合应用解答这类题一些学生不会综合运用所学知识解答问题,不知从何处入手造成错解.3.如图,已知半径OD与弦AB互相垂直,垂足为点C,若,,则的半径为A. 5B.C.D. 4【答案】C【解析】解:连结OA,如图,设的半径为r,,,在中,,,,,解得.故选C.连结OA,如图,设的半径为r,根据垂径定理得到,再在中利用勾股定理得到,然后解方程求出r即可.本题考查了的是垂径定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.4.如图,线段AB是的直径,弦CD丄AB,,则等于A.B.C.D.【答案】C【解析】解:线段AB是的直径,弦CD丄AB,,,,.故选:C.利用垂径定理得出,进而求出,再利用邻补角的性质得出答案.此题主要考查了圆周角定理以及垂径定理等知识,得出的度数是解题关键.二、解答题(本大题共2小题,共16.0分)5.如图,在四边形ABCD中,,,AD不平行于BC,过点C作交的外接圆O于点E,连接AE.求证:四边形AECD为平行四边形;连接CO,求证:CO平分.【答案】证明:由圆周角定理得,,又,,,,,,四边形AECD为平行四边形;作于M,于N,四边形AECD为平行四边形,,又,,,又,,平分.【解析】本题考查的是三角形的外接圆与外心,掌握平行四边形的判定定理、垂径定理、圆周角定理是解题的关键.根据圆周角定理得到,得到,根据平行线的判定和性质定理得到,证明结论;作于M,于N,根据垂径定理、角平分线的判定定理证明.6.如图,AB为直径,C为上一点,点D是的中点,于E,于F.判断DE与的位置关系,并证明你的结论;若,求AC的长度.【答案】解:与相切.证明:连接OD、AD,点D是的中点,,,,,,,,,与相切.连接BC交OD于H,延长DF交于G,由垂径定理可得:,,,,弦心距,是直径,,,是的中位线,.【解析】先连接OD、AD,根据点D是的中点,得出,进而根据内错角相等,判定,最后根据,得出DE与相切;先连接BC交OD于H,延长DF交于G,根据垂径定理推导可得,再根据AB是直径,推出OH是的中位线,进而得到AC的长是OH长的2倍.本题主要考查了直线与圆的位置关系,在判定一条直线为圆的切线时,当已知条件中明确指出直线与圆有公共点时,通常连接过该公共点的半径,证明该半径垂直于这条直线本题也可以根据与相似,求得AC的长.。

垂径定理练习题及答案

垂径定理练习题及答案

O DA B CB APOyxP B A O D OBC A垂径定理一.选择题1.如图1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,那么弦AB 的长是( ) A .4 B .6 C .7 D .82.如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 长的最小值为( ) A .2 B .3 C .4 D .53.过⊙O 内一点M 的最长弦为10 cm ,最短弦长为8cm ,则OM 的长为( ) A .9cm B .6cm C .3cm D .cm 414.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( ) A .12个单位 B .10个单位 C .1个单位 D .15个单位5.如图,O ⊙的直径AB 垂直弦CD 于P ,且P 是半径OB 的中点,6cm CD ,则直径AB 的长是( ) A .23cm B .32cm C .42cm D .43cm 6.下列命题中,正确的是( ) A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必经过这条弦所在圆的圆心D .在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( ) A .5米 B .8米 C .7米 D .53米8.⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为( ) A . 1 cm B . 7cm C . 3 cm 或4 cm D . 1cm 或7cm9.已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,那么BC 边上的高为( ) A .2 B .8 C .2或8 D .3 二.填空题1.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm 2.在直径为10cm 的圆中,弦AB 的长为8cm ,则它的弦心距为 cm 3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于 4.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm5.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD=120°,OE =3厘米,则CD = 厘米6.半径为6cm 的圆中,垂直平分半径OA 的弦长为 cm.7.过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm ,则OM 的长等于 cm8.已知AB 是⊙O 的直径,弦CD ⊥AB ,E 为垂足,CD=8,OE=1,则AB=____________9.如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C , 且CD =l ,则弦AB 的长是10.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB =16m ,半径OA =10m ,则中间柱CD 的高度为 m 11.如图,在直角坐标系中,以点P 为圆心的圆弧与轴交于A 、B 两点,已知P(4,2) 和A(2,0),则点B 的坐标是 12.如图,AB 是⊙O 的直径,OD ⊥AC 于点D ,BC=6cm ,则OD= cm13.如图,矩形ABCD 与圆心在AB 上的圆O 交于点G 、B 、F 、E ,GB=10,EF=8,那么AD= 14.如图,⊙O 的半径是5cm ,P 是⊙O 外一点,PO=8cm ,∠P=30º,则AB= cm15.⊙O 的半径为13 cm ,弦AB ∥CD ,AB =24cm ,CD =10cm ,那么AB 和CD 的距离是 Cm 16.已知AB 是圆O 的弦,半径OC 垂直AB ,交AB 于D ,若AB=8,CD=2,则圆的半径为 17.一个圆弧形门拱的拱高为1米,跨度为4米,那么这个门拱的半径为 米18.在直径为10厘米的圆中,两条分别为6厘米和8厘米的平行弦之间的距离是 厘米19.如图,是一个隧道的截面,如果路面AB 宽为8米,净高CD 为8米,那么这个隧道所在圆的半径OA 是____米 20.如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点D 。

垂径定理练习题及答案

垂径定理练习题及答案

垂径定理练习题及答案垂径定理练习题及答案垂径定理是几何学中的一个重要定理,它解决了关于圆的切线和半径之间的关系问题。

在学习和应用垂径定理时,我们需要通过大量的练习题来巩固理论知识,并提高解题能力。

下面将给出一些垂径定理的练习题,并附上详细的解答,希望能对大家的学习有所帮助。

练习题一:在一个圆中,直径为10厘米,且过圆心的直径AC与切线BD相交于点E。

若AC=8厘米,求BE的长度。

解答:根据垂径定理,切线BD与半径AC垂直,所以∠BAC=90°。

由此可知,三角形BAC是一个直角三角形。

根据勾股定理可得:BA²+AC²=BC²代入已知条件,得:BA²+8²=10²化简得:BA²+64=100移项得:BA²=36开方得:BA=6由于∠BAC=90°,所以BE也是直径,即BE=10厘米。

练习题二:在一个圆中,直径为16厘米,切线AB与半径CD相交于点E。

若AE=3厘米,求BE的长度。

解答:同样地,根据垂径定理,切线AB与半径CD垂直,所以∠CAD=90°。

由此可知,三角形CAD是一个直角三角形。

根据勾股定理可得:CA²+AD²=CD²代入已知条件,得:CA²+16²=CD²化简得:CA²+256=CD²移项得:CA²=CD²-256开方得:CA=√(CD²-256)根据垂径定理,AE是半径CD的垂直平分线,所以AE=DE。

又已知AE=3厘米,所以DE=3厘米。

由于∠CAD=90°,所以BE也是直径,即BE=16厘米。

练习题三:在一个圆中,直径为12厘米,切线AB与半径CD相交于点E。

若AE=5厘米,求BE的长度。

解答:同样地,根据垂径定理,切线AB与半径CD垂直,所以∠CAD=90°。

中考数学专题练习圆的垂径定理的应用(含解析)

中考数学专题练习圆的垂径定理的应用(含解析)

2019中考数学专题练习-圆的垂径定理的应用(含解析)一、单选题1.如图,把一个宽度为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么光盘的直径是()A. 5cmB. 8cmC. 10cmD. 12cm2.下列命题:①三点确定一个圆,②弦的平分线过圆心,③弦所对的两条弧的中点的连线是圆的直径,④平分弦的直线平分弦所对的弧,其中正确的命题有()A. 3个B. 2个C. 1个D. 0个3.如图,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为点E,若CE=2,则AB 的长是( )A. 4B. 6C. 8D. 104.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是()A. 0.5B. 1C. 2D. 45.如图,⊙O的弦AB=8,C是AB的中点,且OC=3,则⊙O的半径等于( )A. 8B. 5C. 10D. 46.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5cm,水面宽AB为8cm,则水的最大深度CD为()A. 4cmB. 3cmC. 2cmD. 1cm7.如图,以O为圆心的两个同心圆中,半径分别为3和5,若大圆的弦AB与小圆相交,则弦AB的长的取值范围是()A. 8≤AB≤10B. 8<AB<10C. 8<AB≤10D. 6≤AB≤10 8.如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列五个结论①AB⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C,⑤弧AE=弧AEB,正确结论的个数是()A. 2B. 3C. 4D. 59.如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则AD长为()A. 8B. 5C.D.二、填空题10.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为________厘米.11.如图,已知⊙O的半径为5,点P是弦AB上的一动点,且弦AB的长为8.则OP的取值范围为________.12.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为________.三、解答题13.如图①是某校存放学生自行车的车棚的示意图(尺寸如图所示,单位:m),车棚顶部是圆柱侧面的一部分,其展开图是矩形;如图②是车棚顶部截面的示意图, 所在圆的圆心为点O,车棚顶部是用一种帆布覆盖的,求覆盖棚顶的帆布的面积.(不考虑接缝等因素,计算结果保留π)14.如图,在破残的圆形残片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D,已知AB=8 cm,CD=2 cm.求破残的圆形残片的半径.15.如图,某公司的一座石拱桥是圆弧形(劣弧),其跨度AB为24m,拱高CD为8m,求石拱桥拱的半径.四、综合题16.如图,C、D两点在以AB为直径的半圆O上,AD平分∠BAC,AB=20,AD=4 ,DE⊥AB于E.(1)求DE的长.(2)求证:AC=2OE.17.如图,在平面直角坐标系中,四边形OABC四个顶点的坐标分别为O(0,0),A(﹣3,0),B(﹣4,2),C(﹣1,2).将四边形OABC绕点O顺时针旋转90°后,点A,B,C分别落在点A′,B′,C′处.(1)请你在所给的直角坐标系中画出旋转后的四边形OA′B′C′;(2)点C旋转到点C′所经过的弧的半径是________,点C经过的路线长是________.答案解析部分一、单选题1.【答案】C【考点】垂径定理的应用【解析】【解答】解:设光盘的圆心为O,如图所示:过点O作OA垂直直尺于点A,连接OB,设OB=r,∵一边与光盘边缘两个交点处的读数恰好是“2”和“10”,∴AB=×(10﹣2)=4,∵刻度尺宽2cm,∴OA=r﹣2,在Rt△OAB中,OA2+AB2=OB2 ,即(r﹣2)2+42=r2 ,解得:r=5.∴该光盘的直径是10cm.故选:C.【分析】设光盘的圆心为O,过点O作OA垂直直尺于点A,连接OB,再设OB=r,利用勾股定理求出r的值即可.2.【答案】C【考点】垂径定理的应用,三角形的外接圆与外心,命题与定理【解析】【解答】解:①不在同一直线上的3个点确定一个圆,故错误;②弦的垂直平分线经过圆心,故错误;③根据圆的轴对称性可得,正确;④平分弦(非直径)的直径平分弦所对的弧,故错误;正确的有1个,故选C.【分析】根据垂径定理的知识及过3点圆的知识可得正确选项.3.【答案】C【考点】垂径定理的应用【解析】【分析】由于半径OC⊥AB,利用垂径定理可知AB=2AE,又CE=2,OC=5,易求OE,在Rt△AOE中利用勾股定理易求AE,进而可求AB.【解答】如右图,连接OA,∵半径OC⊥AB,∴AE=BE=AB,∵OC=5,CE=2,∴OE=3,在Rt△AOE中,∴AB=2AE=8,故选C.【点评】本题考查了垂径定理、勾股定理,解题的关键是利用勾股定理先求出AE4.【答案】B【考点】垂径定理的应用【解析】【解答】解:设半径为r,过O作OE⊥AB交AB于点D,连接OA、OB,则AD=AB=×0.8=0.4米,设OA=r,则OD=r﹣DE=r﹣0.2,在Rt△OAD中,OA2=AD2+OD2 ,即r2=0.42+(r﹣0.2)2 ,解得r=0.5米,故此输水管道的直径=2r=2×0.5=1米.故选B.【分析】根据题意知,已知弦长和弓形高,求半径(直径).根据垂径定理和勾股定理求解.5.【答案】B【考点】垂径定理的应用【解析】【分析】连接OA,即可证得△OAM是直角三角形,根据垂径定理即可求得AM,根据勾股定理即可求得OA的长.【解答】连接OA,∵M是AB的中点,∴OM⊥AB,且AM=4在直角△OAM中,OA==5故选B.【点评】本题主要考查了垂径定理,以及勾股定理,根据垂径定理求得AM的长,证明△OAM是直角三角形是解题的关键.6.【答案】C【考点】勾股定理,垂径定理的应用【解析】【解答】解:如图所示:∵输水管的半径为5cm,水面宽AB为8cm,水的最大深度为CD,∴DO⊥AB,∴AO=5cm,AC=4cm,∴CO= =3(cm),∴水的最大深度CD为:2cm.故选:C.【分析】根据题意可得出AO=5cm,AC=4cm,进而得出CO的长,即可得出答案.7.【答案】C【考点】勾股定理,垂径定理的应用【解析】【分析】此题可以首先计算出当AB与小圆相切的时候的弦长.连接过切点的半径和大圆的一条半径,根据勾股定理和垂径定理,得AB=8.若大圆的弦AB与小圆有两个公共点,即相交,此时AB>8;又因为大圆最长的弦是直径10,则8<AB≤10.【解答】当AB与小圆相切,∵大圆半径为5,小圆的半径为3,∵大圆的弦AB与小圆有两个公共点,即相交,∴8<AB≤10.故选C.【点评】本题综合运用了切线的性质、勾股定理和垂径定理.此题可以首先计算出和小圆相切时的弦长,再进一步分析相交时的弦长.8.【答案】B【解析】【分析】已知OE是⊙O的半径,D是弦AB的中点,可根据垂径定理的推论来判断所给出的结论是否正确.【解答】∵OE是⊙O的半径,且D是AB的中点,∴OE⊥AB,弧AE=弧BE=弧AEB;(故①⑤正确)∴AE=BE;(故②正确)由于没有条件能够证明③④一定成立,所以一定正确的结论是①②⑤;故选B.9.【答案】D【考点】垂径定理的应用,圆周角定理【解析】【分析】首先连接BD,易得△ABD是等腰直角三角形,然后由特殊角的三角函数值,求得AD的长.【解答】连接BD,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵CD是∠ACB的平分线,∴∠ACD=∠ACB=45°,∴∠ABD=∠ACD=45°,∴AD=BD,∵AB=10,∴AD=AB•sin45°=.故选D.【点评】此题考查了圆周角定理、等腰直角三角形的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用二、填空题10.【答案】10【解析】【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=16﹣x,MF=8,在直角三角形OMF中,OM2+MF2=OF2即:(16﹣x)2+82=x2解得:x=10故答案为:10.【分析】首先找到EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM是16﹣x,MF=8,然后在直角三角形MOF中利用勾股定理求得OF 的长即可.11.【答案】3≤OP≤5【考点】垂径定理的应用【解析】【解答】解:过点O作OE⊥AB,垂足为E,连结OA.则可得当点P与点E重合时,线段OP为最短距离.∵点O为圆心,OE⊥AB,AB为圆的一条弦,∴AE=BE.∵AB=8,∴AE=BE=4.∵OE⊥AB,AE=4,OA=5,∴OE=3.当点P落在点A或点B处时,OP的长度最长,等于圆的半径,即为5.故OP的取值范围是3≤OP≤5.12.【答案】26【考点】垂径定理的应用【解析】【解答】解:连接OA,AB⊥CD,由垂径定理知,点E是AB的中点,AE= AB=5,OE=OC﹣CE=OA﹣CE,设半径为r,由勾股定理得,OA2=AE2+OE2=AE2+(OA﹣CE)2 ,即r2=52+(r ﹣1)2 ,解得:r=13,所以CD=2r=26,即圆的直径为26.【分析】根据垂径定理和勾股定理求解.三、解答题13.【答案】解:如图,连结OB,过点O作OE⊥AB,垂足为E,交于F,由垂径定理知,E是AB的中点,F是的中点,从而EF是弓形的高.∵AB=4,∴AE= AB=2 m,EF=2 m.设半径为Rm,则OE=(R-2)m.在Rt△AOE中,∴R2=(R-2)2+(2 )2.∴R=4.在Rt△AEO中,∵AO=2OE,∴∠OAE=30°,∠AOE=60°,∴∠AOB=120°.∴的长为=(m).∴覆盖棚顶的帆布的面积为×60=160π(m2).【考点】含30度角的直角三角形,勾股定理,垂径定理的应用,弧长的计算【解析】【分析】如图,连结OB,过点O作OE⊥AB,垂足为E,交于F,由垂径定理知:E是AB的中点,F是 AB⌢的中点,从而EF是弓形的高;设半径为Rm,则OE=(R-2)m.在Rt△AOE中,根据勾股定理计算出半径R,再由在直角三角形中,30度所对的直角边等于斜边的一半,从而得出∠AOB的度数,根据弧长公式即可求出弧AB的长度,最后得出覆盖棚顶的帆布的面积.14.【答案】解:在直线CD上取圆心O ,连接OA ,设半径为r cm.∵弦AB的垂直平分线交弧AB于点C ,交弦AB于点D .在Rt△ADO中,OA2=AD2+OD2 ,∴r2=42+(r-2)2 ,∴r=5答:破残的圆形残片的半径为5 cm.【考点】勾股定理,垂径定理的应用【解析】【分析】设圆的半径为r cm,根据AB CD和已知条件求出AD=AB,在Rt△ADO中,利用勾股定理为等量关系列方程,求出半径即可.15.【答案】解:延长CD到O,使得OC=OA,则O为圆心,∵拱桥的跨度AB=24cm,拱高CD=8cm,∴AD=12cm,∴AD2=OA2﹣(OC﹣CD)2 ,即122=AO2﹣(AO﹣8)2 ,解得AO=13cm.即圆弧半径为13米.答:石拱桥拱的半径为13m.【考点】勾股定理,垂径定理的应用【解析】【分析】将拱形图进行补充,构造直角三角形,利用勾股定理和垂径定理解答四、综合题16.【答案】(1)解:连接BD.∵AB为直径,∴∠ADB=90°,在Rt△ADB中,BD= ==4 ,∵S△ADB= AD•BD= AB•DE∴AD•BD=AB•DE,∴DE= = =4 ,即DE=4 ;(2)解:证明:连接OD,作OF⊥AC于点F.∵OF⊥AC,∴AC=2AF,∵AD平分∠BAC,∴∠BAC=2∠BAD.又∵∠BOD=2∠BAD,∴∠BAC=∠BOD,Rt△OED和Rt△AFO中,∵∴△AFO≌△OED(AAS),∴AF=OE,∵AC=2AF,∴AC=2OE.【考点】全等三角形的判定与性质,垂径定理的应用【解析】【分析】(1)出现直径时,连接直径的端点和圆周上的一点,构成90度圆周角,利用勾股定理和面积法可以解决;(2)过圆心向弦引垂线,由垂径定理,得平分,构造出AC的一半,再证△AFO≌△OED,可证出结论.17.【答案】(1)解:如图所示,四边形OA′B′C′即为所求作的图形(2);π【考点】垂径定理的应用,弧长的计算,旋转的性质,作图-旋转变换【解析】【解答】解:(2)根据勾股定理,OC= = ,C经过的路线长= = π.【分析】(1)根据网格结构找出点A、B、C的对应点A′、B′、C′的位置,然后顺次连接即可;(2)先利用勾股定理求出OC的长度,再根据弧长的计算公式列式进行计算即可得解.。

垂径定理精选题35道

垂径定理精选题35道

垂径定理精选题35道一.选择题(共15小题)1.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2B.4C.4D.82.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4B.C.D.3.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD 的长为()A.B.2C.2D.84.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.45.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC 的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4 cm6.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC 的长为()A.cm B.cm C.cm或cm D.cm或cm7.如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3B.2.5C.2D.18.如图,⊙O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM的长的取值范围是()A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<5 9.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC 互补,则弦BC的长为()A.3B.4C.5D.610.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB =8,OC=3,则EC的长为()A.B.8C.D.11.已知如图,AB是⊙O的直径,弦CD⊥AB于E,CD=6,AE=1,则⊙O的直径为()A.6B.8C.10D.1212.点P是⊙O内一点,过点P的最长弦的长为10cm,最短弦的长为6cm,则OP的长为()A.3cm B.4cm C.5cm D.6cm13.⊙O的半径为5,M是圆外一点,MO=6,∠OMA=30°,则弦AB的长为()A.4B.6C.6D.814.如图,CD为⊙O直径,CD⊥AB于点F,AE⊥BC于E,AE过圆心O,且AO=1.则四边形BEOF的面积为()A.B.C.D.15.△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点E、D,则AE的长为()A.B.C.D.二.填空题(共14小题)16.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为.17.如图,在⊙O中,弦AB=1,点C在AB上移动,连接OC,过点C作CD⊥OC交⊙O 于点D,则CD的最大值为.18.如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为.19.如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C,D 两点,点E为⊙G上一动点,CF⊥AE于F,则弦AB的长度为;当点E在⊙G 的运动过程中,线段FG的长度的最小值为.20.如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为.21.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为.22.已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是cm.23.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为cm.24.如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD=cm.25.如图,在平面直角坐标系xOy中,直线y=x+与⊙O相交于A,B两点,且点A在x轴上,则弦AB的长为.26.已知⊙O的直径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=8cm,CD=6cm,则AB与CD之间的距离为cm.27.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为.28.如图,AB为⊙O的直径,弦CD⊥AB于点H,若AB=10,CD=8,则OH的长度为.29.如图所示,在⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为.三.解答题(共6小题)30.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.31.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.(1)求证:AD=AN;(2)若AB=8,ON=1,求⊙O的半径.32.如图,在圆O中,弦AB=8,点C在圆O上(C与A,B不重合),连接CA、CB,过点O分别作OD⊥AC,OE⊥BC,垂足分别是点D、E.(1)求线段DE的长;(2)点O到AB的距离为3,求圆O的半径.33.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,BC=3.(1)求AB的长;(2)求⊙O的半径.34.如图,四边形ABCD内接于⊙O,OC=4,AC=4.(1)求点O到AC的距离;(2)求∠ADC的度数.35.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1,点P表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O为圆心,5m为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB长为8m,求筒车工作时,盛水桶在水面以下的最大深度.垂径定理精选题35道参考答案与试题解析一.选择题(共15小题)1.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2B.4C.4D.8【分析】根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.2.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4B.C.D.【分析】PC⊥x轴于C,交AB于D,作PE⊥AB于E,连接PB,由于OC=3,PC=a,易得D点坐标为(3,3),则△OCD为等腰直角三角形,△PED也为等腰直角三角形.由PE⊥AB,根据垂径定理得AE=BE=AB=2,在Rt△PBE中,利用勾股定理可计算出PE=1,则PD=PE=,所以a=3+.【解答】解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连接PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选:B.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.3.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD 的长为()A.B.2C.2D.8【分析】作OH⊥CD于H,连接OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.【解答】解:作OH⊥CD于H,连接OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=∠APC=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选:C.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.4.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.4【分析】连接OD,交AC于F,根据垂径定理得出OD⊥AC,AF=CF,进而证得DF=BC,根据三角形中位线定理求得OF=BC=DF,从而求得BC=DF=2,利用勾股定理即可求得AC.【解答】解:连接OD,交AC于F,∵D是的中点,∴OD⊥AC,AF=CF,∴∠DFE=90°,∵OA=OB,AF=CF,∴OF=BC,∵AB是直径,∴∠ACB=90°,在△EFD和△ECB中∴△EFD≌△ECB(AAS),∴DF=BC,∴OF=DF,∵OD=3,∴OF=1,∴BC=2,在Rt△ABC中,AC2=AB2﹣BC2,∴AC===4,故选:D.【点评】本题考查了垂径定理,三角形全等的判定和性质,三角形中位线定理,熟练掌握性质定理是解题的关键.5.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC 的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4 cm【分析】先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.【解答】解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4(cm),OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3(cm),∴CM=OC+OM=5+3=8(cm),∴AC===4(cm);当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2(cm),在Rt△AMC中,AC===2(cm).故选:C.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.6.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC 的长为()A.cm B.cm C.cm或cm D.cm或cm【分析】先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.【解答】解:如图,连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4cm,OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3cm,∴CM=OC+OM=5+3=8cm,∴AC===4cm;当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2cm,在Rt△AMC中,AC===2cm.故选:C.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.7.如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3B.2.5C.2D.1【分析】根据垂径定理以及勾股定理即可求答案.【解答】解:连接OA,设CD=x,∵OA=OC=5,∴OD=5﹣x,∵OC⊥AB,∴由垂径定理可知:AD=4,由勾股定理可知:52=42+(5﹣x)2∴x=2,∴CD=2,故选:C.【点评】本题考查垂径定理,解题的关键是熟练运用垂径定理以及勾股定理,本题属于基础题型.8.如图,⊙O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM的长的取值范围是()A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<5【分析】由垂线段最短可知当OM⊥AB时最短,当OM是半径时最长.根据垂径定理求最短长度.【解答】解:如图,连接OA,作OM⊥AB于M,∵⊙O的直径为10,∴半径为5,∴OM的最大值为5,∵OM⊥AB于M,∴AM=BM,∵AB=6,∴AM=3,在Rt△AOM中,OM====4;此时OM最短,所以OM长的取值范围是4≤OM≤5.故选:B.【点评】本题考查了垂径定理、勾股定理,解决本题的关键是确定OM的最小值,所以求OM的范围问题又被转化为求弦的弦心距问题,而解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式r2=d2+()2成立,知道这三个量中的任意两个,就可以求出另外一个.9.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC 互补,则弦BC的长为()A.3B.4C.5D.6【分析】首先过点O作OD⊥BC于D,由垂径定理可得BC=2BD,又由圆周角定理,可求得∠BOC的度数,然后根据等腰三角形的性质,求得∠OBC的度数,利用余弦函数,即可求得答案.【解答】解:过点O作OD⊥BC于D,则BC=2BD,∵△ABC内接于⊙O,∠BAC与∠BOC互补,∴∠BOC=2∠A,∠BOC+∠A=180°,∴∠BOC=120°,∵OB=OC,∴∠OBC=∠OCB=(180°﹣∠BOC)=30°,∵⊙O的半径为4,∴BD=OB•cos∠OBC=4×=2,∴BC=4.故选:B.【点评】此题考查了圆周角定理、垂径定理、等腰三角形的性质以及三角函数等知识.注意掌握辅助线的作法,注意数形结合思想的应用.10.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB =8,OC=3,则EC的长为()A.B.8C.D.【分析】根据垂径定理求出AC=BC,根据三角形的中位线求出BE,再根据勾股定理求出EC即可.【解答】解:连接BE,∵AE为⊙O直径,∴∠ABE=90°,∵OD⊥AB,OD过O,∴AC=BC=AB==4,∵AO=OE,∴BE=2OC,∵OC=3,∴BE=6,在Rt△CBE中,EC===2,故选:D.【点评】本题考查了垂径定理,勾股定理,三角形的中位线等知识点,能根据垂径定理求出AC=BC是解此题的关键.11.已知如图,AB是⊙O的直径,弦CD⊥AB于E,CD=6,AE=1,则⊙O的直径为()A.6B.8C.10D.12【分析】连接OC,根据题意OE=OC﹣1,CE=3,结合勾股定理,可求出OC的长度,即可求出直径的长度.【解答】解:连接OC,∵弦CD⊥AB于E,CD=6,AE=1,∴OE=OC﹣1,CE=3,∴OC2=(OC﹣1)2+32,∴OC=5,∴AB=10.故选:C.【点评】本题主要考查了垂径定理、勾股定理,解题的关键在于连接OC,构建直角三角形,根据勾股定理求半径OC的长度.12.点P是⊙O内一点,过点P的最长弦的长为10cm,最短弦的长为6cm,则OP的长为()A.3cm B.4cm C.5cm D.6cm【分析】根据直径是圆中最长的弦,知该圆的直径;最短弦即是过点P且垂直于过点P 的直径的弦;根据垂径定理即可求得CP的长,再进一步根据勾股定理,可以求得OP的长.【解答】解:如图所示,CD⊥AB于点P.根据题意,得:AB=10cm,CD=6cm.∵AB是直径,且CD⊥AB,∴CP=CD=3cm.根据勾股定理,得OP===4(cm).故选:B.【点评】此题综合运用了垂径定理和勾股定理.正确理解圆中,过一点的最长的弦和最短的弦是解题的关键.13.⊙O的半径为5,M是圆外一点,MO=6,∠OMA=30°,则弦AB的长为()A.4B.6C.6D.8【分析】过O作OC⊥AB于C,连接OA,根据含30°角的直角三角形的性质得出OC=MO=3,根据勾股定理求出AC,再根据垂径定理得出AB=2AC,最后求出答案即可.【解答】解:过O作OC⊥AB于C,连接OA,则∠OCA=90°,∵MO=6,∠OMA=30°,∴OC=MO=3,在Rt△OCA中,由勾股定理得:AC===4,∵OC⊥AB,OC过O,∴BC=AC,即AB=2AC=2×4=8,故选:D.【点评】本题考查了含30°角的直角三角形的性质,勾股定理,垂径定理等知识点,能熟记垂直于弦的直径平分弦是解此题的关键.14.如图,CD为⊙O直径,CD⊥AB于点F,AE⊥BC于E,AE过圆心O,且AO=1.则四边形BEOF的面积为()A.B.C.D.【分析】根据垂径定理求出AF=BF,CE=BE,=,求出∠AOD=2∠C,求出∠AOD=2∠A,求出∠A=30°,解直角三角形求出OF和BF,求出OE、BE、BF,根据三角形的面积公式求出即可.【解答】解:∵CD为直径,CD⊥AB,∴=,∴∠AOD=2∠C,∵CD⊥AB,AE⊥BC,∴∠AFO=∠CEO=90°,在△AFO和△CEO中∴△AFO≌△CEO(AAS),∴∠C=∠A,∴∠AOD=2∠A,∵∠AFO=90°,∴∠A=30°,∵AO=1,∴OF=AO=,AF=OF=,同理CE=,OE=,连接OB,∵CD⊥AB,AE⊥BC,CD、AE过O,∴由垂径定理得:BF=AF=,BE=CE=,∴四边形BEOF的面积S=S△BFO+S△BEO=××+=,故选:C.【点评】本题考查了垂径定理,圆周角定理,解直角三角形等知识点,能够综合运用定理进行推理是解此题的关键.15.△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点E、D,则AE的长为()A.B.C.D.【分析】在Rt△ABC中,由勾股定理可直接求得AB的长;过C作CM⊥AB,交AB于点M,由垂径定理可得M为AE的中点,在Rt△ACM中,根据勾股定理得AM的长,从而得到AE的长.【解答】解:在Rt△ABC中,∵AC=3,BC=4,∴AB==5.过C作CM⊥AB,交AB于点M,如图所示,由垂径定理可得M为AE的中点,∵S△ABC=AC•BC=AB•CM,且AC=3,BC=4,AB=5,∴CM=,在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即9=AM2+()2,解得:AM=,∴AE=2AM=.故选:C.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二.填空题(共14小题)16.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为4.【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【解答】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴OD==4.故答案为4.【点评】题考查了垂径定理、勾股定理,本题非常重要,学生要熟练掌握.17.如图,在⊙O中,弦AB=1,点C在AB上移动,连接OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为.【分析】连接OD,如图,利用勾股定理得到CD,利用垂线段最短得到当OC⊥AB时,OC最小,再求出即可.【解答】解:连接OD,如图,∵CD⊥OC,∴∠DCO=90°,∴CD==,当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时D、B两点重合,∴CD=CB=AB=×1=,即CD的最大值为,故答案为:.【点评】本题考查了垂线段最短,勾股定理和垂径定理等知识点,能求出点C的位置是解此题的关键.18.如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为.【分析】连接OC,由垂径定理得出CE=CD=2,设OC=OA=x,则OE=x﹣1,由勾股定理得出CE2+OE2=OC2,得出方程,解方程即可.【解答】解:连接OC,如图所示:∵AB是⊙O的直径,CD⊥AB,∴CE=CD=2,∠OEC=90°,设OC=OA=x,则OE=x﹣1,根据勾股定理得:CE2+OE2=OC2,即22+(x﹣1)2=x2,解得:x=;故答案为:.【点评】本题考查了垂径定理、勾股定理、解方程;熟练掌握垂径定理,并能进行推理计算是解决问题的关键.19.如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C,D 两点,点E为⊙G上一动点,CF⊥AE于F,则弦AB的长度为2;当点E在⊙G的运动过程中,线段FG的长度的最小值为﹣1.【分析】作GM⊥AC于M,连接AG.因为∠AFC=90°,推出点F在以AC为直径的⊙M上推出当点F在MG的延长线上时,FG的长最小,最小值=FM﹣GM,想办法求出FM、GM即可解决问题;【解答】解:作GM⊥AC于M,连接AG.∵GO⊥AB,∴OA=OB,在Rt△AGO中,∵AG=2,OG=1,∴AG=2OG,OA==,∴∠GAO=30°,AB=2AO=2,∴∠AGO=60°,∵GC=GA,∴∠GCA=∠GAC,∵∠AGO=∠GCA+∠GAC,∴∠GCA=∠GAC=30°,∴AC=2OA=2,MG=CG=1,∵∠AFC=90°,∴点F在以AC为直径的⊙M上,当点F在MG的延长线上时,FG的长最小,最小值=FM﹣GM=﹣1.故答案为2,﹣1.【点评】本题考查垂径定理、直角三角形30度角的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.20.如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为(﹣1,﹣2).【分析】连接CB,作CB的垂直平分线,根据勾股定理和半径相等得出点D的坐标即可.【解答】解:连接CB,作CB的垂直平分线,如图所示:在CB的垂直平分线上找到一点D,CD=DB=DA==,所以D是过A,B,C三点的圆的圆心,即D的坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2),【点评】此题考查垂径定理,关键是根据垂径定理得出圆心位置.21.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为.【分析】由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径AD最短,此时线段EF=2EH=20E•sin∠EOH=20E•sin60°,因此当半径OE最短时,EF最短,连接OE,OF,过O点作OH⊥EF,垂足为H,在Rt△ADB中,解直角三角形求直径AD,由圆周角定理可知∠EOH=∠EOF=∠BAC=60°,在Rt△EOH中,解直角三角形求EH,由垂径定理可知EF=2EH.【解答】解:由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径AD最短,如图,连接OE,OF,过O点作OH⊥EF,垂足为H,∵在Rt△ADB中,∠ABC=45°,AB=2,∴AD=BD=2,即此时圆的直径为2,由圆周角定理可知∠EOH=∠EOF=∠BAC=60°,∴在Rt△EOH中,EH=OE•sin∠EOH=1×=,由垂径定理可知EF=2EH=.故答案为:.【点评】本题考查了垂径定理,圆周角定理,解直角三角形的综合运用.关键是根据运动变化,找出满足条件的最小圆,再解直角三角形.22.已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是2或14cm.【分析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可,小心别漏解.【解答】解:①当弦AB和CD在圆心同侧时,连接OA,OC,过点O作OE⊥AB于点E并延长交CD于点F.如图,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF﹣OE=2cm;②当弦AB和CD在圆心异侧时,如图,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB与CD之间的距离为14cm或2cm.故答案为:2或14.【点评】本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.23.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为4cm.【分析】连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径.【解答】解:连接OC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE=CD=4cm,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE为△AOC的外角,∴∠COE=45°,∴△COE为等腰直角三角形,∴OC=CE=4cm,故答案为:4【点评】此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.24.如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD=8cm.【分析】根据垂径定理,可得AC的长,根据勾股定理,可得OC的长,根据线段的和差,可得答案.【解答】解:由垂径定理,AC=AB=12cm.由半径相等,得OA=OD=13cm.由勾股定理,得OC===5.由线段的和差,得CD=OD﹣OC=13﹣5=8cm,故答案为:8.【点评】本题考查了垂径定理,利用垂径定理得出直角三角形OAC是解题关键,又利用了勾股定理.25.如图,在平面直角坐标系xOy中,直线y=x+与⊙O相交于A,B两点,且点A在x轴上,则弦AB的长为2.【分析】设直线AB交y轴于C,过O作OD⊥AB于D,先求出A、C坐标,得到OA、OC长度,可得∠CAO=30°,Rt△AOD中求出AD长度,从而根据垂径定理可得答案.【解答】解:设直线AB交y轴于C,过O作OD⊥AB于D,如图:在y=x+中,令x=0得y=,∴C(0,),OC=,在y=x+中令y=0得x+=0,解得x=﹣2,∴A(﹣2,0),OA=2,Rt△AOC中,tan∠CAO===,∴∠CAO=30°,Rt△AOD中,AD=OA•cos30°=2×=,∵OD⊥AB,∴AD=BD=,∴AB=2,故答案为:2.【点评】本题考查一次函数、锐角三角函数及垂径定理等综合知识,解题的关键是利用tan∠CAO=得到∠CAO=30°.26.已知⊙O的直径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=8cm,CD=6cm,则AB与CD之间的距离为1或7cm.【分析】作OE⊥AB于E,延长EO交CD于F,连接OA、OC,如图,利用平行线的性质OF⊥CD,根据垂径定理得到AE=BE=4,CF=DF=3,则利用勾股定理可计算出OE=3,OF=4,讨论:当点O在AB与CD之间时,EF=OF+OE;当点O不在AB与CD 之间时,EF=OF﹣OE.【解答】解:作OE⊥AB于E,延长EO交CD于F,连接OA、OC,如图,∵AB∥CD,OE⊥AB,∴OF⊥CD,∴AE=BE=AB=4cm,CF=DF=CD=3cm,在Rt△OAE中,OE===3cm,在Rt△OCF中,OF===4cm,当点O在AB与CD之间时,如图1,EF=OF+OE=4+3=7cm;当点O不在AB与CD之间时,如图2,EF=OF﹣OE=4﹣3=1cm;综上所述,AB与CD之间的距离为1cm或7cm.故答案为1或7.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.注意分类讨论.27.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为4.【分析】根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故答案为4.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.28.如图,AB为⊙O的直径,弦CD⊥AB于点H,若AB=10,CD=8,则OH的长度为3.【分析】根据垂径定理由CD⊥AB得到CH=CD=4,再根据勾股定理计算出OH=3.【解答】解:连接OC,∵CD⊥AB,∴CH=DH=CD=×8=4,∵直径AB=10,∴OC=5,在Rt△OCH中,OH==3,故答案为:3.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.29.如图所示,在⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为20.【分析】延长AO交BC于D,根据∠A、∠B的度数易证得△ABD是等边三角形,由此可求出OD、BD的长;过O作BC的垂线,设垂足为E;在Rt△ODE中,根据OD的长及∠ODE的度数易求得DE的长,进而可求出BE的长;由垂径定理知BC=2BE,由此得解.【解答】解:延长AO交BC于D,作OE⊥BC于E;∵∠A=∠B=60°,∴∠ADB=60°;∴△ADB为等边三角形;∴BD=AD=AB=12;∴OD=4,又∵∠ADB=60°,∴DE=OD=2;∴BE=10;∴BC=2BE=20;故答案为20.【点评】此题主要考查了等边三角形的判定和性质以及垂径定理的应用.三.解答题(共6小题)30.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.【分析】(1)先根据CD=16,BE=4,得出OE的长,进而得出OB的长,进而得出结论;(2)由∠M=∠D,∠DOB=2∠D,结合直角三角形可以求得结果;【解答】解:(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x﹣4)2+82,解得:x=10,∴⊙O的直径是20.(2)∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,∵AB⊥CD,∴∠D=30°.【点评】本题考查了圆的综合题:在同圆或等圆中,相等的弧所对的圆周角相等,直径所对的圆周角为直角;垂直于弦的直径平分弦,并且平分弦所对的弧.31.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.(1)求证:AD=AN;(2)若AB=8,ON=1,求⊙O的半径.【分析】(1)先根据同角的余角相等得到∠CNM=∠B,利用等量代换得到∠AND=∠B,利用同弧所对的圆周角相等得到∠D=∠B,则得∠AND=∠D,利用等角对等边可得出结论;(2)先根据垂径定理求出AE的长,连接AO,设OE的长为x,则DE=NE=x+1,OA =OD=2x+1,在Rt△AOE中根据勾股定理可得出x的值,进而得出结论.【解答】(1)证明:∵CD⊥AB∴∠CEB=90°∴∠C+∠B=90°,同理∠C+∠CNM=90°∴∠CNM=∠B∵∠CNM=∠AND∴∠AND=∠B,∵,∴∠D=∠B,∴∠AND=∠D,∴AN=AD;(2)解:设OE的长为x,连接OA∵AN=AD,CD⊥AB∴DE=NE=x+1,∴OD=OE+ED=x+x+1=2x+1,∴OA=OD=2x+1,∴在Rt△OAE中OE2+AE2=OA2,∴x2+42=(2x+1)2.解得x=或x=﹣3(不合题意,舍去),∴OA=2x+1=2×+1=,即⊙O的半径为.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.32.如图,在圆O中,弦AB=8,点C在圆O上(C与A,B不重合),连接CA、CB,过点O分别作OD⊥AC,OE⊥BC,垂足分别是点D、E.(1)求线段DE的长;(2)点O到AB的距离为3,求圆O的半径.【分析】(1)由OD⊥AC知AD=DC,同理得出CE=EB,从而知DE=AB,据此可得答案;(2)作OH⊥AB于点H,连接OA,根据题意得出OH=3,AH=4,利用勾股定理可得答案.【解答】解:(1)∵OD经过圆心O,OD⊥AC,∴AD=DC,同理:CE=EB,∴DE是△ABC的中位线,∴DE=AB,∵AB=8,∴DE=4.(2)过点O作OH⊥AB,垂足为点H,OH=3,连接OA,∵OH经过圆心O,∴AH=BH=AB,∵AB=8,∴AH=4,在Rt△AHO中,AH2+OH2=AO2,∴AO=5,即圆O的半径为5.【点评】本题主要考查垂径定理,解题的关键是掌握垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了中位线定理与勾股定理.33.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,BC=3.(1)求AB的长;(2)求⊙O的半径.【分析】(1)连接AC,如图,利用垂径定理可判断CD垂直平分AB,则CA=CB=3,同理可得AE垂直平分BC,所以AB=AC=3;(2)先证明△ABC为等边三角形,则AE平分∠BAC,所以∠OAF=30°,然后利用含30度的直角三角形三边的关系求出OA即可.【解答】解:(1)连接AC,如图,∵CD⊥AB,∴AF=BF,即CD垂直平分AB,∴CA=CB=3,∵AO⊥BC,∴CE=BE,即AE垂直平分BC,∴AB=AC=3;(2)∵AB=AC=BC,∴△ABC为等边三角形,∴∠BAC=60°,∴AE⊥BC,∴AE平分∠BAC,即∠OAF=30°,在Rt△OAF中,∵OF=AF=×=,∴OA=2OF=,即⊙O的半径为.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.34.如图,四边形ABCD内接于⊙O,OC=4,AC=4.(1)求点O到AC的距离;(2)求∠ADC的度数.【分析】(1)作OM⊥AC于M,根据等腰直角三角形的性质得到AM=CM=2,根据勾股定理即可得到结论;(2)连接OA,根据等腰直角三角形的性质得到∠MOC=∠MCO=45°,求得∠AOC=90°,根据圆内接四边形的性质即可得到结论.【解答】解:(1)作OM⊥AC于M,∵AC=4,∴AM=CM=2,∵OC=4,∴OM==2;(2)连接OA,∵OM=MC,∠OMC=90°,∴∠MOC=∠MCO=45°,∵OA=OC,∴∠OAM=45°,∴∠AOC=90°,∴∠B=45°,∵∠D+∠B=180°,∴∠D=135°.【点评】本题考查了垂径定理,勾股定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.35.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1,点P表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O为圆心,5m为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB长为8m,求筒车工作时,盛水桶在水面以下的最大深度.【分析】过O点作半径OD⊥AB于E,如图,利用垂径定理得到AE=BE=4,再利用勾股定理计算出OE,然后计算出DE的长即可.【解答】解:过O点作半径OD⊥AB于E,如图,∴AE=BE=AB=×8=4(m),在Rt△AEO中,OE===3(m),∴ED=OD﹣OE=5﹣3=2(m),答:筒车工作时,盛水桶在水面以下的最大深度为2m.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.。

垂径定理应用练习1

垂径定理应用练习1

垂径定理应用练习1一.选择题(共40小题)1.如图,有一圆弧形门拱,拱高AB=1m,跨度CD=4m,那么这个门拱的半径为()A.2m B.2.5m C.3m D.5m2.如图,OA,OB,OC都是⊙O的半径,若∠AOB是锐角,且∠AOB=2∠BOC.则下列结论正确的是()A.AB=2BC B.AB<2BC C.∠AOB=2∠CAB D.∠ACB=4∠CAB3.如图,AB是⊙O的直径,弦CD⊥AB于点E,则下列结论正确的是()A.OE=BE B.=C.△BOC是等边三角形D.四边形ODBC是菱形4.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD5.如图,圆柱形水管内原有积水的水平面宽CD=20cm,水深GF=2cm,若水面上升2cm(即EG=2cm),则此时水面宽AB为()A.8cm B.16cm C.8cm D.16cm6.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. B.2 C.2D.87.一条排水管的截面如图所示,已知排水管的截面圆半径OB=5,截面圆圆心O 到水面的距离OC是3,则水面宽AB是()A.8 B.5 C.4 D.38.如图,圆弧形石拱桥的桥顶到水面的距离CD为6m,桥拱半径OC为4m,则水面宽AB为()A .mB .2mC .4mD .6m9.如图,⊙O 的半径为5,AB 为弦,半径OC ⊥AB ,垂足为点E ,若OE=3,则AB 的长是( )A .4B .6C .8D .1010.如图,点P 是半径为5的⊙O 内一点,且OP=3.过点P 任作一条弦AB ,则弦AB 的长不可能为( )A .7.9B .8.5C .9D .1011.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E .若AB=8,AE=1,则弦CD 的长是( )A .B .2C .6D .812.如图,⊙O 中,OA ⊥BC ,AD ∥OC ,∠AOC=40°,则∠B 的度数为( )A.100°B.110°C.115° D.120°13.如图,CD为⊙O的直径,弦AB⊥CD,垂足为M,若AB=12,OM:MD=5:8,则⊙O的周长为()A.26πB.13πC.D.14.下列判断中正确的是()A.平分弦的直线垂直于弦B.平分弦的直线也必平分弦所对的两条弧C.弦的垂直平分线必平分弦所对的两条弧D.平分一条弧的直线必平分这条弧所对的弦15.如图,在三个等圆上各自有一条劣弧、、,如果+=,那么AB+CD 与EF的大小关系是()A.AB+CD=EF B.AB+CD>EF C.AB+CD<EF D.不能确定16.如图,⊙O的直径CD⊥弦AB于点P,且点P为OD的中点,已知AB=2,则CD的值为()A.2 B.4 C.D.17.上体育课时,老师在运动场上教同学们学习掷铅球,训练时,李力同学掷出的铅球在场地上砸出了一个坑口直径约为10cm、深约为2cm的小坑,则该铅球的直径约为()cm.A.20 B.19.5 C.14.5 D.1018.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为()A.4 B.8 C.2 D.419.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,则中间柱CD的高度为()米?A.6 B.4 C.8 D.520.如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=AD B.BC=CD C.D.∠BCA=∠DCA21.如图.⊙O的直径AB垂直弦CD于E点,∠A=22.5°,OC=4,CD的长为()A.4 B.8 C.2 D.422.一条排水管的截面如图所示,已知该排水管的半径OA=10,水面宽AB=16,则排水管内水的最大深度CD的长为()A.8 B.6 C.5 D.423.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,若AC=12,则OF的长为()A.8 B.7 C.6 D.424.在半径为1的圆中,长度等于的弦所对的弧的度数为()A.90°B.145°C.270° D.90°或270°25.如图,AB是圆O的直径,BC、CD、DA是圆O的弦,且BC=CD=DA,则∠BCD 等于()A.100°B.110°C.120° D.135°26.如图,已知⊙O的半径为5,点A到圆心O的距离为3,则过点A的所有弦中,最短弦的长为()A.4 B.6 C.8 D.1027.如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10cm B.16cm C.24cm D.26cm28.如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB于点D.E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A.92°B.108°C.112° D.124°29.在半径为10的⊙O内有一点P,OP=6,在过点P的弦中,长度为整数的弦的条数为()A.5条 B.6条 C.7条 D.8条30.在⊙O中,弦CD与直径AB相交于点P,夹角为30°,且分直径为1:5两部分,AB=6厘米,则弦CD的长为多少厘米()A.B.C.D.31.已知半径为5的⊙O中,弦AB=5,弦AC=5,则∠BAC的度数是()A.15°B.210°C.105°或15°D.210°或30°32.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB 的长为()A.2cm B.cm C.D.33.如图所示,小范从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小范第五次走到场地边缘时处于弧AB上,此时∠AOE=48°,则α的度数是()A.60°B.51°C.48°D.76°34.如图,在等边△ABC中,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=1,那么BC的值为()A.1 B.2 C.3 D.435.如图,AD为圆O的直径.甲、乙两人想在圆上找B,C两点,作一个正三角形ABC,其作法如下:甲:1.作OD中垂线,交圆于B,C两点,2.连AB,AC,△ABC即为所求.乙:1.以D为圆心,OD长为半径画弧,交圆于B,C两点,2.连AB,BC,CA,△ABC即为所求.对于甲、乙两人的作法,下列判断何者正确()A.甲、乙皆正确B.甲、乙皆错误C.甲正确、乙错误 D.甲错误、乙正确36.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.2C.2D.837.如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,则弦BC的长等于()A.8 B.10 C.11 D.1238.如图,AB为⊙O的直径,弦DC垂直AB于点E,∠DCB=30°,EB=3,则弦AC的长度为()A.3 B.C.D.39.如图,弧BE是半径为6的圆D的圆周,C点是上的任意一点,△ABD是等边三角形,则四边形ABCD的周长P的取值范围是()A.12<P≤18 B.18<P≤24 C.18<P≤18+6D.12<P≤12+640.如图,点C是⊙O上一点,⊙O的半径为,D、E分别是弦AC、BC上一动点,且OD=OE=,则AB的最大值为()A.B.C.D.垂径定理应用练习1参考答案与试题解析一.选择题(共40小题)1.如图,有一圆弧形门拱,拱高AB=1m,跨度CD=4m,那么这个门拱的半径为()A.2m B.2.5m C.3m D.5m【分析】设这个门拱的半径为r,则OB=r﹣1,根据垂径定理求出BC的长,再根据勾股定理求出r的值即可.【解答】解:设这个门拱的半径为r,则OB=r﹣1,∵CD=4m,AB⊥CD,∴BC=CD=2m,在Rt△BOC中,∵BC2+OB2=OC2,即22+(r﹣1)2=r2,解得r=2.5m.故选B.【点评】本题考查的是垂径定理的应用,此类问题应用垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.2.如图,OA,OB,OC都是⊙O的半径,若∠AOB是锐角,且∠AOB=2∠BOC.则下列结论正确的是()A.AB=2BC B.AB<2BC C.∠AOB=2∠CAB D.∠ACB=4∠CAB【分析】首先取的中点D,连接AD,BD,由∠AOB=2∠BOC,易得AD=BD=BC,继而证得AB<2BC,又由圆周角定理,可得∠AOB=4∠CAB,∠ACB=∠BOC=2∠CAB.【解答】解:取的中点D,连接AD,BD,∵∠AOB=2∠BOC,∴=2,∴==,∴AD=BD=BC,∵AB<AD+BD,∴AB<2BC.故A错误,B正确;∵∠AOB=2∠BOC,∠BOC=2∠CAB,∴∠AOB=4∠CAB;故C错误;∵∠AOB=2∠ACB,∴∠ACB=∠BOC=2∠CAB,故D错误.故选B.【点评】此题考查了弧、弦与圆心角的关系以及圆周角定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.3.如图,AB是⊙O的直径,弦CD⊥AB于点E,则下列结论正确的是()A.OE=BE B.=C.△BOC是等边三角形D.四边形ODBC是菱形【分析】根据垂径定理判断即可.【解答】解:∵AB⊥CD,AB过O,∴DE=CE,=,根据已知不能推出OE=BE,△BOC是等边三角形,四边形ODBC是菱形.故选:B.【点评】本题考查了垂径定理的应用,主要考查学生的推理能力和辨析能力.4.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD【分析】先根据垂径定理得到=,CE=DE,再利用圆周角定理得到∠BOC=40°,则根据互余可计算出∠OCE的度数,于是可对各选项进行判断.【解答】解:∵AB⊥CD,∴=,CE=DE,∴∠BOC=2∠BAD=40°,∴∠OCE=90°﹣40°=50°.故选D.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.5.如图,圆柱形水管内原有积水的水平面宽CD=20cm,水深GF=2cm,若水面上升2cm(即EG=2cm),则此时水面宽AB为()A.8cm B.16cm C.8cm D.16cm【分析】连接OA、OC.设⊙O的半径是R,则OG=R﹣2,OE=R﹣4.根据垂径定理,得CG=10.在直角三角形OCG中,根据勾股定理求得R的值,再进一步在直角三角形OAE中,根据勾股定理求得AE的长,从而再根据垂径定理即可求得AB的长.【解答】解:如图所示,连接OA、OC.设⊙O的半径是R,则OG=R﹣2,OE=R﹣4.∵OF⊥CD,∴CG=CD=10cm.在直角三角形COG中,根据勾股定理,得R2=102+(R﹣2)2,解,得R=26.在直角三角形AOE中,根据勾股定理,得AE==8cm.根据垂径定理,得AB=16(cm),故选B.【点评】本题考查了勾股定理,垂径定理的应用,能构造直角三角形是解此题的关键,注意:垂直于弦的直径平分弦.6.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. B.2 C.2D.8【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.【解答】解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=30°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选C.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.7.一条排水管的截面如图所示,已知排水管的截面圆半径OB=5,截面圆圆心O 到水面的距离OC是3,则水面宽AB是()A.8 B.5 C.4 D.3【分析】先根据勾股定理求出BC的长,再由垂径定理得出AB=2BC,进而可得出结论.【解答】解:∵OB=5,OC=3,∴BC===4,∵OC⊥AB,∴AB=2BC=2×4=8.故选A.【点评】本题考查的是垂径定理在实际生活中的应用,有利于培养学生理论联系实际的能力.8.如图,圆弧形石拱桥的桥顶到水面的距离CD为6m,桥拱半径OC为4m,则水面宽AB为()A.m B.2m C.4m D.6m【分析】连接OA,根据桥拱半径OC为4m,求出OA=4m,根据CD=6m,求出OD=2m,根据AD=求出AD,最后根据AB=2AD即可得出答案.【解答】解:连接OA,∵桥拱半径OC为4m,∴OA=4m,∵CD=6m,∴OD=6﹣4=2m,∴AD===2m,∴AB=2AD=2×2=4(m);故选C.【点评】此题考查了垂径定理的应用,关键是根据题意做出辅助线,用到的知识点是垂径定理、勾股定理.9.如图,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为点E,若OE=3,则AB的长是()A.4 B.6 C.8 D.10【分析】连接OA,根据勾股定理求出AE的长,进而可得出结论.【解答】解:连接OA,∵OC⊥AB,OA=5,OE=3,∴AE===4,∴AB=2AE=8.故选C.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.10.如图,点P是半径为5的⊙O内一点,且OP=3.过点P任作一条弦AB,则弦AB的长不可能为()A.7.9 B.8.5 C.9 D.10【分析】先作辅助线,再根据垂径定理和勾股定理即可求出.【解答】解:过点P的最短的弦是作AB⊥OP,连接OA,根据垂径定理和勾股定理,得AB=8过点P最长的弦长是10,显然下列答案中,只有A不符合.故选A.【点评】注意能够正确分析出过圆内一点P的最长的弦即是直径,最短的弦即是垂直于OP的弦.综合运用勾股定理以及垂径定理.11.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A.B.2 C.6 D.8【分析】根据垂径定理,可得答案.【解答】解:连接OC,由题意,得OE=OB﹣AE=4﹣1=3,CE=ED==,CD=2CE=2,故选:B.【点评】本题考查了垂径定理,利用勾股定理,垂径定理是解题关键.12.如图,⊙O中,OA⊥BC,AD∥OC,∠AOC=40°,则∠B的度数为()A.100°B.110°C.115° D.120°【分析】由平行线的性质得出∠A=∠AOC=40°,由对顶角相等得出∠2=∠1=50°,由垂径定理得出,得出∠AOB=∠AOC=40°,由圆周角定理求出∠D,再由三角形内角和定理即可得出结果.【解答】解:连接OB,如图所示:∵AD∥OC,∴∠A=∠AOC=40°,∵OA⊥BC,∴∠1=∠2=90°﹣∠A=90°﹣40°=50°,,∴∠AOB=∠AOC=40°,∴∠D=∠AOB=20°,∴∠B=180°﹣50°﹣20°=110°;故选:B.【点评】本题考查了垂径定理、圆周角定理、平行线的性质等知识;熟练掌握垂径定理是解决问题的关键.13.如图,CD为⊙O的直径,弦AB⊥CD,垂足为M,若AB=12,OM:MD=5:8,则⊙O的周长为()A.26πB.13πC.D.【分析】连接OA,根据垂径定理得到AM=AB=6,设OM=5x,DM=8x,得到OA=OD=13x,根据勾股定理得到OA=×13,于是得到结论.【解答】解:连接OA,∵CD为⊙O的直径,弦AB⊥CD,∴AM=AB=6,∵OM:MD=5:8,∴设OM=5x,DM=8x,∴OA=OD=13x,∴AM=12x=6,∴x=,∴OA=×13,∴⊙O的周长=2OA•π=13π,故选B.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.14.下列判断中正确的是()A.平分弦的直线垂直于弦B.平分弦的直线也必平分弦所对的两条弧C.弦的垂直平分线必平分弦所对的两条弧D.平分一条弧的直线必平分这条弧所对的弦【分析】根据垂径定理对各选项进行逐一判断即可.【解答】解:A、平分弦(非直径)的直径垂直于弦,故本选项错误;B、平分弦的直径也必平分弦所对的两条弧,故本选项错误;C、弦的垂直平分线必平分弦所对的两条弧,符合垂径定理,故本选项正确;D、平分一条弧的直径必平分这条弧所对的弦,故本选项错误.故选:C.【点评】本题考查的是垂径定理,熟知弦的垂直平分线平分弦、垂直于弦,平分弦所对的两条弧是解答此题的关键.15.如图,在三个等圆上各自有一条劣弧、、,如果+=,那么AB+CD 与EF的大小关系是()A.AB+CD=EF B.AB+CD>EF C.AB+CD<EF D.不能确定【分析】在弧EF上取一点M使弧EM=弧CD,推出弧FM=弧AB,根据圆心角、弧、弦的关系得到AB=FM,CD=EM,根据三角形的三边关系定理求出FM+EM>FE即可.【解答】解:如图,在弧EF上取一点M使弧EM=弧CD,则弧FM=弧AB,∴AB=FM,CD=EM,在△MEF中,FM+EM>EF,∴AB+CD>EF.故选B.【点评】本题主要考查对三角形的三边关系定理,圆心角、弧、弦的关系等知识点的理解和掌握,能正确作辅助线是解此题的关键.16.如图,⊙O的直径CD⊥弦AB于点P,且点P为OD的中点,已知AB=2,则CD的值为()A.2 B.4 C.D.【分析】连接OA,由CD垂直于AB,利用垂径定理得到P为AB的中点,求出AP的长,设OA=OD=x,由P为OD中点,得到OP为x,在直角三角形AOP中,利用勾股定理列出关于x的方程,求出方程的解即可得到x的值,即为圆的半径,进而求出CD的长.【解答】解:连接OA,∵CD⊥AB,∴P为AB的中点,∴AP=AB=,∵P为AB的中点,∴OP=PD=OD,在Rt△AOP中,OA=x,OP=x,根据勾股定理得:OA2=OP2+AP2,即x2=x2+3,即x2=4,解得:x=2,则CD=4.故选B【点评】此题考查了垂径定理,勾股定理,利用了方程的思想,熟练掌握垂径定理是解本题的关键.17.上体育课时,老师在运动场上教同学们学习掷铅球,训练时,李力同学掷出的铅球在场地上砸出了一个坑口直径约为10cm、深约为2cm的小坑,则该铅球的直径约为()cm.A.20 B.19.5 C.14.5 D.10【分析】根据垂径定理,构造直角三角形,小坑的直径就是圆中的弦长,小坑的深就是拱高,利用勾股定理,设出未知数,列出方程,即可求出铅球的直径.【解答】解:根据题意,画出图形如图所示,由题意知,AB=10,CD=2,OD是半径,且OC⊥AB,∴AC=CB=5,设铅球的半径为r,则OC=r﹣2,在Rt△AOC中,根据勾股定理,OC2+AC2=OA2,即(r﹣2)2+52=r2,解得:r=7.25,所以铅球的直径为:2×7.25=14.5 cm故选:C.【点评】本题考查的是垂径定理和勾股定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则r2=d2+()2成立,知道这三个量中的任意两个,就可以求出另外一个.18.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为()A.4 B.8 C.2 D.4【分析】先根据⊙O的直径AB=12求出OB的长,再由BP:AP=1:5求出BP的长,故可得出OP的长,连接OC,在Rt△OPC中利用勾股定理可求出PC的长,再根据垂径定理即可得出结论.【解答】解:∵⊙O的直径AB=12,∴OB=AB=6,∵BP:AP=1:5,∴BP=AB=×12=2,∴OP=OB﹣BP=6﹣2=4,∵CD⊥AB,∴CD=2PC.如图,连接OC,在Rt△OPC中,∵OC=6,OP=4,∴PC===2,∴CD=2PC=2×2=4.故选D.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.19.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,则中间柱CD的高度为()米?A.6 B.4 C.8 D.5【分析】由垂径定理,可得AD=AB,然后由勾股定理求得OD的长,继而求得中间柱CD的高度.【解答】解:∵CD是中间柱,即=,∴OC⊥AB,∴AD=BD=AB=×16=8(m),∵半径OA=10m,在Rt△AOD中,OD==6(m),∴CD=OC﹣OD=10﹣6=4(m).故选B.【点评】此题考查了垂径定理的应用与勾股定理.此题比较简单,注意数形结合思想的应用.20.如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=AD B.BC=CD C.D.∠BCA=∠DCA【分析】根据圆心角、弧、弦的关系对各选项进行逐一判断即可.【解答】解:A、∵∠ACB与∠ACD的大小关系不确定,∴AB与AD不一定相等,故本选项错误;B、∵AC平分∠BAD,∴∠BAC=∠DAC,∴BC=CD,故本选项正确;C、∵∠ACB与∠ACD的大小关系不确定,∴与不一定相等,故本选项错误;D、∠BCA与∠DCA的大小关系不确定,故本选项错误.故选B.【点评】本题考查的是圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.21.如图.⊙O的直径AB垂直弦CD于E点,∠A=22.5°,OC=4,CD的长为()A.4 B.8 C.2 D.4【分析】根据等边对等角可得∠OAC=∠OCA=22.5°,再根据三角形外角的性质可得∠COE=45°,然后利用三角函数可得CE的长,再根据垂径定理可得答案.【解答】解:∵CO=AO,∴∠OAC=∠OCA=22.5°,∴∠COE=45°,∵CD⊥AB,∴∠CEO=90°,CD=2CE,∴CE=EO,∴CE=CO•sin45°=4×=2,∴CD=4,故选:D.【点评】此题主要考查了垂径定理,关键是掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧.22.一条排水管的截面如图所示,已知该排水管的半径OA=10,水面宽AB=16,则排水管内水的最大深度CD的长为()A.8 B.6 C.5 D.4【分析】先根据垂径定理求出AC的长,再根据勾股定理求出OC的长,由CD=OD ﹣OC即可得出结论.【解答】解:∵AB=16,OD⊥AB,OA=10,∴AC=AB=8,∴OC==6,∴CD=OD﹣OC=10﹣6=4.故选D.【点评】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.23.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,若AC=12,则OF的长为()A.8 B.7 C.6 D.4【分析】先根据平行线的性质得∠A=∠FOE,再利用垂径定理得到AD=CD=AC=6,然后证明△ODA≌△EFO,则利用全等三角形的性质易得OF=AD=6.【解答】解:∵OE∥AC,∴∠A=∠FOE,∵OD⊥AC,∴AD=CD=AC=6,∠ADO=90°,∵EF⊥OB,∴∠OFE=90°,在△ODA和△EFO中,∴△ODA≌△EFO,∴AD=OF=6.故选C.【点评】本题考查了垂径定理:垂直弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了全等三角形的判定与性质.24.在半径为1的圆中,长度等于的弦所对的弧的度数为()A.90°B.145°C.270° D.90°或270°【分析】利用AB=,OA=OB=1,则AB2=OA2+OB2,根据勾股定理的逆定理得到△AOB为直角三角形,且∠AOB=90°进而得出长度等于的弦所对的弧长有两段,分别求出即可.【解答】解:如图,连接OA、OB;∵在⊙O中,AB=,OA=OB=1,∴AB2=OA2+OB2,∴△AOB为直角三角形,且∠AOB=90°,即长度等于的弦所对的弧长有两段:一段所对圆心角为90°,另一段所对圆心角为270°,∴长度等于的弦所对的弧的度数为90°或270°.故选:D.【点评】本题考查了勾股定理的逆定理以及圆心角、弧、弦的关系,利用已知得出长度等于的弦所对的弧长有两段,注意不要漏解.25.如图,AB是圆O的直径,BC、CD、DA是圆O的弦,且BC=CD=DA,则∠BCD 等于()A.100°B.110°C.120° D.135°【分析】由已知可得,弦BC、CD、DA三等分半圆,从而不难求得∠BCD的度数.【解答】解:连接OC、OD,∵BC=CD=DA,∴∠COB=∠COD=∠DOA,∵∠COB+∠COD+∠DOA=180°,∴∠COB=∠COD=∠DOA=60°,∴∠BCD=×2(180°﹣60°)=120°.故选C.【点评】本题考查了弧、弦与圆心角的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.注意半圆对的圆心角为180°.26.如图,已知⊙O的半径为5,点A到圆心O的距离为3,则过点A的所有弦中,最短弦的长为()A.4 B.6 C.8 D.10【分析】最短弦是过A点垂直于OA的弦.根据垂径定理和勾股定理求解.【解答】解:由垂径定理得,该弦应该是以OA为中垂线的弦BC.连接OB.已知OB=5,OA=3,由勾股定理得AB=4.所以弦BC=8.故选C.【点评】此题主要考查了学生对垂径定理及勾股定理的理解运用.27.如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10cm B.16cm C.24cm D.26cm【分析】首先构造直角三角形,再利用勾股定理得出BC的长,进而根据垂径定理得出答案.【解答】解:如图,过O作OD⊥AB于C,交⊙O于D,∵CD=8,OD=13,∴OC=5,又∵OB=13,∴Rt△BCO中,BC==12,∴AB=2BC=24.故选:C.【点评】此题主要考查了垂径定理以及勾股定理,得出AC的长是解题关键.28.如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB于点D.E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A.92°B.108°C.112° D.124°【分析】直接利用互余的性质再结合圆周角定理得出∠COE的度数,再利用四边形内角和定理得出答案.【解答】解:∵∠ACB=90°,∠A=56°,∴∠ABC=34°,∵=,∴2∠ABC=∠COE=68°,又∵∠OCF=∠OEF=90°,∴∠F=360°﹣90°﹣90°﹣68°=112°.故选:C.【点评】此题主要考查了圆周角定理以及四边形内角和定理,正确得出∠OCE的度数是解题关键.29.在半径为10的⊙O内有一点P,OP=6,在过点P的弦中,长度为整数的弦的条数为()A.5条 B.6条 C.7条 D.8条【分析】过点P的弦有无数条,求出最长的和最短的弦,再判断长度为整数的条数.【解答】解:最长的弦是直径为20,最短的弦为16,∴长度为整数的弦还有19,18,17各2条,∴经过P点的所有弦中长度为整数的有8条,故选D.【点评】本题考查了勾股定理和垂径定理,解此类题目要注意将圆的问题转化成三角形的问题再进行计算.注:最长的弦是直径,最短的弦是与直径垂直的弦.30.在⊙O中,弦CD与直径AB相交于点P,夹角为30°,且分直径为1:5两部分,AB=6厘米,则弦CD的长为多少厘米()A.B.C.D.【分析】先作图,然后连接OC.再求OE(在直角三角形中,30°角所对的直角边等于斜边的一半),再求CE,从而求出CD.【解答】解:如图,过点O作OE⊥CD于E,连接OC在Rt△OPE中,OP=3﹣1=2又∠EPO=30°∴OE=1在Rt△COE中,OC=3,OE=1∴CE=∴CD=2CE=故选B.【点评】此题主要考查垂径定理及在圆中的计算问题,还有勾股定理的使用.31.已知半径为5的⊙O中,弦AB=5,弦AC=5,则∠BAC的度数是()A.15°B.210°C.105°或15°D.210°或30°【分析】连接OC,OA,OB,根据已知可得到△OAC是等边三角形,△OAB是等腰直角三角形,从而分两种情况进行分析,不难求得∠BAC的度数.【解答】解:连接OC,OA,OB∵OC=OA=AC=5∴△OAC是等边三角形∴∠CAO=60°∵OA=OB=5,AB=5∴OA2+OB2=50=AB2∴△OAB是等腰直角三角形.∴∠OAB=45°点C的位置有两种情况:如图,C不在弧AB上时:∠BAC=∠CAO+∠OAB=60°+45°=105°如图,C在弧AB上时:∠BAC=∠CAO﹣∠OAB=60°﹣45°=15°.故选C.【点评】本题利用了等边三角形的判定和性质,勾股定理的逆定理求解.32.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB 的长为()A.2cm B.cm C.D.【分析】在图中构建直角三角形,先根据勾股定理得AD的长,再根据垂径定理得AB的长.【解答】解:作OD⊥AB于D,连接OA.根据题意得:OD=OA=1cm,再根据勾股定理得:AD=cm,根据垂径定理得:AB=2cm.故选:C.【点评】注意由题目中的折叠即可发现OD=OA=1.考查了勾股定理以及垂径定理.33.如图所示,小范从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小范第五次走到场地边缘时处于弧AB上,此时∠AOE=48°,则α的度数是()A.60°B.51°C.48°D.76°【分析】连接OD,要求α的度数,只需求出∠AOB的度数,根据已知条件,易证∠AOB=∠BOC=∠COD=∠DOE,所以可以求出α的度数.【解答】解:连接OD,∵∠BAO=∠CBO=α,∴∠AOB=∠BOC=∠COD=∠DOE,∵∠AOE=48°,∴∠AOB==78°,∴α==51°.故选B.【点评】本题考查的是圆心角、弧、弦的关系,熟知,在圆中,半径处处相等,由半径和弦组成的三角形是等腰三角形等知识是解答此题的关键.34.如图,在等边△ABC中,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=1,那么BC的值为()A.1 B.2 C.3 D.4【分析】先根据垂径定理得出M、N分别是AB与AC的中点,故MN是△ABC 的中位线,由三角形的中位线定理即可得出结论.【解答】解:∵OM⊥AB,ON⊥AC垂足分别为M、N,∴M、N分别是AB与AC的中点,∴MN是△ABC的中位线,∴BC=2MN=2,故选:B.【点评】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.35.如图,AD为圆O的直径.甲、乙两人想在圆上找B,C两点,作一个正三角形ABC,其作法如下:甲:1.作OD中垂线,交圆于B,C两点,2.连AB,AC,△ABC即为所求.乙:1.以D为圆心,OD长为半径画弧,交圆于B,C两点,2.连AB,BC,CA,△ABC即为所求.对于甲、乙两人的作法,下列判断何者正确()A.甲、乙皆正确B.甲、乙皆错误C.甲正确、乙错误 D.甲错误、乙正确【分析】根据垂径定理和等边三角形的判定求解.【解答】解:甲的作图:BC是OD的中垂线,则在直角△OBE中,OE=OB,则∠OBE=30°,∠BOE=60°,∠BOC=120°,∴∠BAC=60°.根据条件易证AB=AC,则△ABC是等边三角形.乙的作图:连接BD,则△OBD是等边三角形.因而∠BAD=30°,∠BAC=60°.根据条件易证AB=AC,则△ABC是等边三角形.所以甲乙皆正确,【点评】AD经过圆心,则AD所在的直线是本题图形的对称轴.36.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.2C.2D.8【分析】设⊙O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长.【解答】解:连接BE,设⊙O半径为r,则OA=OD=r,OC=r﹣2,∵OD⊥AB,∴∠ACO=90°,AC=BC=AB=4,在Rt△ACO中,由勾股定理得:r2=42+(r﹣2)2,r=5,∴AE=2r=10,∵AE为⊙O的直径,∴∠ABE=90°,由勾股定理得:BE=6,在Rt△ECB中,EC===2.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.37.如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,则弦BC的长等于()A.8 B.10 C.11 D.12【分析】作AH⊥BC于H,作直径CF,连结BF,先利用等角的补角相等得到∠DAE=∠BAF,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,易得AH为△CBF的中位线,然后根据三角形中位线性质得到AH=BF=3,再利用勾股定理,可求得BH的长,继而求得答案.【解答】解:作AH⊥BC于H,作直径CF,连结BF,如图,∵∠BAC+∠EAD=180°,而∠BAC+∠BAF=180°,∴∠DAE=∠BAF,∴=,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH为△CBF的中位线,∴AH=BF=3.∴BH===4,∴BC=2BH=8.【点评】此题考查了圆周角定理、垂径定理、三角形中位线的性质以及勾股定理.注意掌握辅助线的作法.38.如图,AB为⊙O的直径,弦DC垂直AB于点E,∠DCB=30°,EB=3,则弦AC的长度为()A.3 B.C.D.【分析】连结OC,AC,先根据直角的性质得到∠ABC的度数,再圆周角定理得到∠AOC的度数,根据等边三角形的性质和垂径定理得到⊙O的半径和直径,再解直角三角形即可求解.【解答】解:连结OC,AC,∵弦DC垂直AB于点E,∠DCB=30°,∴∠ABC=60°,∴△BOC是等边三角形,∵EB=3,∴OB=6,∴AB=12,AB为⊙O的直径,∴∠ACB=90°,在Rt△ACB,AC=12×=6.。

垂径定理-中考数学专项训练(含解析)

垂径定理-中考数学专项训练(含解析)

垂径定理一、单选题A.82.如图,圆弧形桥拱的跨度A.2米B.43.如图,一个圆柱形的玻璃水杯,将其水平放置,截面是个圆,是弧AB的中点,2CD=cm,杯内水面宽A.6cm4.如图,CD是圆O长为()A.33A .45︒6.如图,O 的半径是A .27.如图是一段圆弧 AB 点.若63,AB CD =A .6πB .4π8.如图,在O 中,半径23r =,AB 过点C 作CD OC ⊥交O 于点D ,则A .4B的直径,11.如图,AB是O==,则CD5,3AB BC的弦,半径12.如图,AB是O中,直径13.如图,在O一点,连AE,过点C作14.如图,在圆O中,弦的直径15.如图.O为.的外接圆,16.如图,⊙O是ABC∠的度数为于点D,连接BD,则D三、解答题17.如图,AB为半圆O点D,若4,==AB AC(1)DE的长.(2)阴影部分的面积.18.如图,AB 为O 的直径,CD 为弦,CD AB ⊥于点E ,连接DO 并延长交O 于点F ,连接AF 交CD 于点G ,CG AG =,连接AC .(1)求证:AC DF ∥;(2)若12AB =,求AC 和GD 的长.19.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C D 、两点,若16cm 6cm AB CD ==,.(1)求AC 的长;(2)若大圆半径为10cm ,求小圆的半径.∠;(1)连接AD,求OAD(2)点F在 BC上,CDF∠=参考答案:∵OA OB =,C 为弦AB 中点,∴OC AB ⊥,4AC =,∴OE 平分 AB ,∵D 为 AB 的中点,∴点,D E 重合,∴,,O C D 三点共线,设圆的半径为r ,则:2OC OD CD r =-=-,由勾股定理,得:222OA AC OC =+,∴()22242r r =+-,解得:=5r ;故选B .4.C【分析】本题考查了勾股定理的应用,垂径定理,熟练掌握和运用垂径定理是解决本题的关键.连接OC ,首先根据题意可求得63OC OE ==,,根据勾股定理即可求得CE 的长,再根据垂径定理即可求得CD 的长.【详解】解:如图,连接OC ,∵123AB BE ==,,∴63OB OC OE ===,,∵AB CD ⊥,∵50BOC ∠=︒,OC ∴OCB OBC ∠=∠=∵OC AB ⊥,∴AD BD =,故选:B.7.B【分析】本题考查的是垂径定理,勾股定理及弧长的计算公式,先根据垂径定理求出=长,由题意得OD OAOE AB ⊥ ,132AE BE AB ∴===,22OE OA AE ∴=-=在Rt COE △中,∵AB 是O 的直径,∴152OD OB AB ===∵,6CD AB CD ⊥=,∴13,2DE CD DEO ==∠∴22OE OD DE =-=∵5AB =,∴25OE =,∵DE 切O 于点E ,∴OE DE ⊥,∴90OED ∠=︒,∵1OA =,120AOB ∠=︒,∴30A B ==︒∠∠,AC BC =∴1122OC OA ==,AC =∵直径CD 长为4,∴1422OD =⨯=,∵1OG =,∴1DG OD OG =-=,∴AB 垂直平分OD ,OH 经过圆心O ,12AH BH AB ∴===∴2AO AH OH =+故答案为:5.在Rt AOD 中,12OD OA ==,,1cos 2AOD \Ð=,60AOD ∴=︒∠,OE AC ⊥ ,由垂径定理知,点E是CD的中点,也是AB是 的直径,CD⊥AB∴垂直平分CD,M是OA的中点,∴1122OM OA OD==,OA CD于点M,⊥∴点M是CD的中点,∴垂直平分CD,ABNC ND∴=,Q,∠=︒45CDFNCD NDC∴∠=∠=︒,45∴∠=︒,90CND。

2019年中考数学知识点过关培优训练:垂径定理的应用(圆)(解析版)

2019年中考数学知识点过关培优训练:垂径定理的应用(圆)(解析版)

知识点过关培优训练:垂径定理的应用(圆)一.选择题1.一条排水管的截面如图所示,已知排水管的截面圆的半径OB=10dm,水面宽AB是16dm,则截面水深CD是()A.3 dm B.4 dm C.5 dm D.6 dm2.如图,半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10 cm B.16 cm C.24 cm D.26 cm3.乌镇是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为8m,水面宽AB为8m,则桥拱半径OC为()A.4m B.5m C.6m D.8m4.如图是一个隧道的截面图,为⊙O的一部分,路面AB=10米,净高CD=7米,则此圆半径长为()A.5米B.7米C.米D.米5.如图为球形灯笼的截面图,过圆心的CD垂直弦AB于D,AB=2dm,CD=4dm,则⊙O半径为()A.2dm B. dm C. dm D. dm6.如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的直径是()A. cm B.5cm C.6cm D.10cm7.《九章算术》是我国古代著名数学经典,其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺.如图,已知弦AB=1尺,弓形高CD=1寸,(注:1尺=10寸)问这块圆柱形木材的直径是()A.13寸B.6.5寸C.26寸D.20寸8.某品牌婴儿罐装奶粉圆形桶口如图所示,它的内直径(⊙O直径)为10cm,弧AB的度数约为90°,则弓形铁片ACB(阴影部分)的面积约为()A.(π﹣)cm2B.(π﹣25)cm2C.(π﹣)cm2D.(25π﹣)cm29.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆柱形木材的直径是多少?”如图所示,请根据所学知识计算:圆柱形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸10.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2cm B.2.5cm C.3cm D.4cm11.如图,把一个宽度为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么光盘的直径是()A.5 cm B.8 cm C.10 cm D.12 cm12.某校科技实践社团制作实践设备,小明的操作过程如下:①小明取出老师提供的圆形细铁环,先通过在圆一章中学到的知识找到圆心O,再任意找出圆O的一条直径标记为AB(如图1),测量出AB=4分米;②将圆环进行翻折使点B落在圆心O的位置,翻折部分的圆环和未翻折的圆环产生交点分别标记为C、D(如图2);③用一细橡胶棒连接C、D两点(如图3);④计算出橡胶棒CD的长度.小明计算橡胶棒CD的长度为()A.2分米B.2分米C.3分米D.3分米二.填空题13.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积=(弦×矢+矢2).弧田(如图阴影部分面积)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为120°,半径等于4的弧田,按照上述公式计算出弧田的面积为.14.位于黄岩西城的五洞桥桥上老街目前正在修复,其中一处中式圆形门,它的平面示意图,已知AB过圆心O,且垂直CD于点B,测得门洞高度AB为1.8米,门洞下沿CD宽为1.2米,则该圆形门洞的半径为.15.在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”其大意为:如图,AB为⊙O的直径,弦CD⊥AB于点E,若AE=1寸,CD=10寸,则⊙O的直径等于寸.16.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,然后过点A作AB与残片的内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=15cm,AB =60cm,则这个摆件的外圆半径是cm.17.如图,某种鱼缸的主视图可视为弓形,该鱼缸装满水时的最大深度CD为18cm,半径OC 为13cm,则鱼缸口的直径AB=cm.18.如图是一块圆环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C与的中点D的距离CD=2cm.则此圆环形玉片的外圆半径为cm.19.如图,有一块矩形木板ABCD,AB=13dm,BC=8dm,工人师傅在该木板上锯下一块宽为xdm 的矩形木板MBCN ,并将其拼接在剩下的矩形木板AMND 的正下方,其中M ′、B ′、C ′、N ′分别与M 、B 、C 、N 对应.现在这个新的组合木板上画圆,要使这个圆最大,则x 的取值范围是 ,且最大圆的面积是 dm 2.20.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm 的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm ),请你帮小华算出圆盘的半径是 cm .三.解答题21.如图1是小明制作的一副弓箭,点A ,D 分别是弓臂BAC 与弓弦BC 的中点,弓弦BC =80cm .沿AD 方向拉动弓弦的过程中,假设弓臂BAC 始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D 1时,有AD 1=40cm ,∠B 1D 1C 1=120°.(1)图2中,弓臂两端B 1,C 1的距离为 cm .(2)如图3,将弓箭继续拉到点D 2,使弓臂B 2AC 2为半圆,求出D 1D 2的长度..22.一些不便于直接测量的圆形孔道的直径可以用如下方法测量.如图,把一个直径为10mm 的小钢球紧贴在孔道边缘,测得钢球顶端离孔道外端的距离为8mm,求这个孔道的直径AB.23.在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代语言表述为:如图,AB 为⊙O的直径,弦CD⊥AB于点E,AE=1寸,CD=10寸,求直径AB的长.请你解答这个问题.24.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE =4米时,是否要采取紧急措施?25.图1是某奢侈品牌的香水瓶.从正面看上去(如图2),它可以近似看作⊙O割去两个弓形后余下的部分与矩形ABCD组合而成的图形(点B、C在⊙O上),其中BC∥EF;从侧面看,它是扁平的,厚度为1.3cm.(1)已知⊙O的半径为2.6cm,BC=2cm,AB=3.02cm,EF=3.12cm,求香水瓶的高度h.(2)用一张长22cm、宽19cm的矩形硬纸板按照如图3进行裁剪,将实线部分折叠制作成一个底面积为S MNPQ=9cm2的有盖盒子(接缝处忽略不计).请你计算这个盒子的高度,并且判断上述香水瓶能否装入这个盒子里.26.赵州桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.如图,若桥跨度AB约为40米,主拱高CD约10米,(1)如图1,尺规作图,找到桥弧所在圆的圆心O(保留作图痕迹);(2)如图2,求桥弧AB所在圆的半径R.参考答案1.解:由题意知OD⊥AB,交AB于点E,∵AB=16,∴BC=AB=×16=8,在Rt△OBC中,∵OB=10,BC=8,∴OC==6,∴CD=OD﹣OC=10﹣6=4.故选:B.2.解:如图,过O作OD⊥AB于C,交⊙O于D,∵CD=8,OD=13,∴OC=5,又∵OB=13,∴Rt△BCO中,BC==12,∴AB=2BC=24.故选:C.3.解:连接BO,由题意可得:AD=BD=4m,设B半径OC=xm,则DO=(8﹣x)m,由勾股定理可得:x2=(8﹣x)2+42,解得:x=5.故选:B.4.解:∵CD⊥AB,AB=10米,由垂径定理得AD=5米,设圆的半径为r,由勾股定理得OD2+AD2=OA2,即(7﹣r)2+52=r2,解得r=米.故选:D.5.解:∵过圆心的CD垂直弦AB于D,AB=2dm,CD=4dm,∴BD=AD=1dm,在Rt△ODB中,OD2+DB2=OB2,即(4﹣r)2+12=r2,解得:r=dm,故选:C.6.解:∵把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,∴线段MN的就是该圆的直径,∵OM=8cm,ON=6cm,∠MON=90°,∴MN=10cm,故选:D.7.解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r =13,∴⊙O 的直径为26寸,故选:C .8.解:连接OA 、OB ,∵品牌婴儿罐装奶粉圆形桶口如图所示,它的内直径(⊙O 直径)为10cm ,弧AB 的度数约为90°,∴OA =OB =5cm ,∠BOA =90°,∴阴影部分的面积S =S 扇形BOA ﹣S △BOA =﹣=(π﹣)cm 2,故选:A .9.解:设⊙O 的半径为r .在Rt △ADO 中,AD =5,OD =r ﹣1,OA =r ,则有r 2=52+(r ﹣1)2,解得r =13,∴⊙O 的直径为26寸,故选:C .10.解:EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,∵四边形ABCD 是矩形,∴∠C =∠D =90°,∴四边形CDMN 是矩形,∴MN =CD =4,设OF =x ,则ON =OF ,∴OM =MN ﹣ON =4﹣x ,MF =2,在直角三角形OMF 中,OM 2+MF 2=OF 2即:(4﹣x )2+22=x 2解得:x =2.5故选:B .11.解:设光盘的圆心为O,如图所示:过点O作OA垂直直尺于点A,连接OB,设OB=x,∵一边与光盘边缘两个交点处的读数恰好是“2”和“10”,∴AB=×(10﹣2)=4,∵刻度尺宽2cm,∴OA=x﹣2,在Rt△OAB中,OA2+AB2=OB2,即(x﹣2)2+42=x2,解得:x=5.∴该光盘的直径是10cm.故选:C.12.解:连接OC,作OE⊥CD,如图3,∵AB=4分米,∴OC=2分米,∵将圆环进行翻折使点B落在圆心O的位置,∴OE=分米,在Rt△OCE中,CE=分米,∴CD=2分米;故选:B.二.填空题(共8小题)13.解:如图所示:由题意可得:OA=4,∵∠AOB=120°,∴∠AOD=60°,∴OD=2,AD=2,∴弧田的面积=,故答案为.14.解:设该圆形门洞的半径为r,∵AB过圆心O,且垂直CD于点B,连接OC,在Rt△OCB中,可得:r2=(1.8﹣r)2+0.62,解得:r=1,故答案为:1米15.解:如图所示,连接OC.∵弦CD⊥AB,AB为圆O的直径,∴E为CD的中点,又∵CD=10寸,∴CE=DE=CD=5寸,设OC=OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得:OE2+CE2=OC2,即(x﹣1)2+52=x2,解得:x=13,∴AB=26寸,即直径AB的长为26寸.故答案为:26.16.解:如图,设点O为外圆的圆心,连接OA和OC,∵CD=15cm,AB=60cm,∵CD⊥AB,∴OC⊥AB,∴AD=AB=30cm,∴设半径为rcm,则OD=(r﹣15)cm,根据题意得:r2=(r﹣15)2+302,解得:r=37.5.∴这个摆件的外圆半径长为37.5cm;故答案为:37.5.17.解:连接OB,∵CD=18cm,OC=13cm,∴OD=5cm,OB=OC=13cm,在Rt△BDO中,BD=cm,∴AB=2BD=24cm,故答案为:24.18.解:如图,连接OA,∵CD=2cm,AB=8cm,∵CD⊥AB,∴OD⊥AB,∴AC=AB=4cm,∴设半径为r,则OD=r﹣2,根据题意得:r2=(r﹣2)2+42,解得:r=5.∴这个玉片的外圆半径长为5cm.故答案为:5.19.解:如图,设⊙O与AB相切于点H,交CD与E,连接OH,延长HO交CD于F,设⊙O的半径为r .在Rt △OEF 中,当点E 与N ′重合时,⊙O 的面积最大,此时EF =4, ,则有:r 2=(8﹣r )2+42,∴r =5.∴⊙O 的最大面积为25π,由题意:,∴2≤x ≤3,故答案为2≤x ≤3,25π.20.解:如图,记圆的圆心为O ,连接OB ,OC 交AB 于D ,∴OC ⊥AB ,BD =AB ,由图知,AB =16﹣4=12cm ,CD =2cm ,∴BD =6,设圆的半径为r ,则OD =r ﹣2,OB =r ,在Rt △BOD 中,根据勾股定理得,OB 2=AD 2+OD 2,∴r 2=36+(r ﹣2)2,∴r =10cm ,故答案为10.三.解答题(共6小题)21.解:(1)如图1中,连接B 1C 1交AD 1于H .∵AD 1=D 1B 1=40cm ,∴D 1是所在圆的圆心,在Rt △B 1HD 1中,HB 1=40•sin60°=20,∴B 1C 1=2HB 1=40(cm ),故答案为40. (2)如图2中,连接B 1C 1交AD 1于H ,连接B 2C 2交AD 2于T .由题意:=π•B 2T ,∴AT =B 2T =(cm ),在Rt △B 2TD 2中,D 2T ==, ∵AH =HD 1=20,∴HT =﹣20=,∴D 1D 2=HD 2﹣HD 1=+﹣20=﹣.22.解:连接OA ,过点O 作OD ⊥AB 于点D ,则AB =2AD ,∵钢珠的直径是10mm ,∴钢珠的半径是5mm ,∵钢珠顶端离零件表面的距离为8mm ,∴OD =3mm ,在Rt△AOD中,∵AD===4mm,∴AB=2AD=2×4=8mm.23.解:如图所示,连接OC.∵弦CD⊥AB,AB为圆O的直径,∴E为CD的中点,又∵CD=10寸,∴CE=DE=CD=5寸,设OC=OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得:OE2+CE2=OC2,即(x﹣1)2+52=x2,解得:x=13,∴AB=26寸,即直径AB的长为26寸.24.解:(1)连结OA,由题意得:AD=AB=30,OD=(r﹣18)在Rt△ADO中,由勾股定理得:r2=302+(r﹣18)2,解得,r=34;(2)连结OA′,∵OE=OP﹣PE=30,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2﹣OE2,即:A′E2=342﹣302,解得:A′E=16.∴A′B′=32.∵A′B′=32>30,∴不需要采取紧急措施.25.解:(1)作OG⊥BC于G,延长GO交EF于H,连接BO、EO.∵EF∥BC,∴OH⊥EF,∴BG=BC,EH=EF∴GO==2.4;OH==2.08,∴h=2.4+2.08+3.02=7.5cm.(2)设盒子的高为xcm.由题意:(22﹣2x)•=9解得x=8或12.5(舍弃),∴MQ=6,MN=1.5∵2.6×2=5.2<6;1.3<1.5;7.5<8,∴能装入盒子.26.解:(1)如图1所示;(2)连接OA.如图2.由(1)中的作图可知:△AOD为直角三角形,D是AB的中点,CD=10,∴AD=AB=20.∵CD=10,∴OD=R﹣10.在Rt△AOD中,由勾股定理得,OA2=AD2+OD2,∴R2=202+(R﹣10)2.解得:R=25.即桥弧AB所在圆的半径R为25米.。

垂径定理的应用-初中数学习题集含答案

垂径定理的应用-初中数学习题集含答案

垂径定理的应用(北京习题集)(教师版)一.选择题(共4小题)1.(2019秋•石景山区期末)为了测量一个铁球的直径,将该铁球放入工件槽内,测得的有关数据如图所示(单位:cm,则该铁球的直径为())A.12cm B.10cm C.8cm D.6cm2.(2019秋•海淀区期中)已知水平放置的圆柱形排水管道,管道截面半径是1m,若水面高0.2m.则排水管道截面的水面宽度为()A.0.6m B.0.8m C.1.2m D.1.6m3.(2019秋•丰台区期末)我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆形滚木的截面图.有如下四个结论:①勒洛三角形是中心对称图形;②图1中,点A到BC上任意一点的距离都相等;③图2中,勒洛三角形的周长与圆的周长相等;④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动.上述结论中,所有正确结论的序号是()A.①②B.②③C.②④D.③④4.(2015•朝阳区二模)一个隧道的横截面如图所示,它的形状是以点O为圆心,5为半径的圆的一部分,M是O 中弦CD的中点,EM经过圆心O交O于点E.若6CD=,则隧道的高(ME的长)为()A.4B.6C.8D.9二.填空题(共4小题)5.(2019秋•昌平区期末)如图,一条公路的转弯处是一段圆弧AB,点O是这段弧所在圆的圆心,40=,点CAB m是AB的中点,且10=,则这段弯路所在圆的半径为m.CD m6.(2019秋•石景山区期末)《九章算术》是中国传统数学重要的著作之一,奠定了中国传统数学的基本框架.其中卷九中记载了一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“如右图,今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆(内切圆)的直径是多少步?”根据题意,该内切圆的直径为步.7.(2019秋•西城区校级期中)排水管的截面为如图所示的O,半径为5m,已知现在水面位于圆心O下方,且水面宽6=,如果水面上涨后,水面宽为8m,那么水面上涨了m.AB m8.(2015秋•丰台区期末)排水管的截面为如图所示的O,半径为5m,如果圆心O到水面的距离是3m,那么水面宽AB=m.三.解答题(共6小题)9.(2019秋•西城区期中)如图,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:)cm,求该光盘的直径是多少?10.(2019秋•东城区校级期中)如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分,如图EM经过圆心交O于点E,EM CD=,求O的半径.EM cm⊥,并且4CD cm=,611.(2017秋•顺义区校级期中)在1300多年前,我国隋朝建造了赵州石拱桥,它的桥拱是圆弧形,跨度AB(即弧所对的弦长)为24m,拱高CD(即弧的中点到弦的距离)为8m,求桥拱所在圆的半径.(即)R12.(2017秋•海淀区校级月考)在直径为650mm的圆柱形油桶内装进不足半桶油后其横截面如图,若油面宽 ,求油的最大深度.AB mm60013.(2015秋•北京校级期中)如图,已知这是一座圆弧形涵洞的入口的示意图,涵洞的最高点C到地面AB的距离为6米,涵洞入口地面的宽度AB为4米,请你求这座涵洞圆弧所在圆的半径长.14.(2015秋•海淀区期中)一圆柱形排水管的截面如图所示,已知排水管的半径为1m,水面宽AB为1.6m.由于天气干燥,水管水面下降,此时排水管水面宽变为1.2m,求水面下降的高度.垂径定理的应用(北京习题集)(教师版)参考答案与试题解析一.选择题(共4小题)1.(2019秋•石景山区期末)为了测量一个铁球的直径,将该铁球放入工件槽内,测得的有关数据如图所示(单位:)cm ,则该铁球的直径为( )A .12cmB .10cmC .8cmD .6cm【分析】连接AB 、CD 交于点D ,根据垂径定理求出AD ,根据勾股定理计算即可. 【解答】解:连接AB 、CD 交于点D , 由题意得,OC AB ⊥, 则142AD DB AB ===, 设圆的半径为Rcm ,则(2)OD R cm =-,在Rt AOD ∆中,222OA AD OD =+,即2224(2)R R =+-, 解得,5R =,则该铁球的直径为10cm , 故选:B .【点评】本题考查的市场价定理的应用、勾股定理,掌握垂直于弦的直径,平分弦并且平分弦所对的两条弧是解题的关键.2.(2019秋•海淀区期中)已知水平放置的圆柱形排水管道,管道截面半径是1m ,若水面高0.2m .则排水管道截面的水面宽度为( )A.0.6m B.0.8m C.1.2m D.1.6m【分析】作OC ABOB OD m==,0.2=,∠=︒,1CD mAB BCOCB⊥于C,交O于D,由垂径定理得出2=,90求出0.8=-=,由勾股定理求出BC,即可得出AB.OC OD CD m【解答】解:作OC AB⊥于C,交O于D,连接OB,如图所示:则2OB OD mCD m=,==,0.2AB BC∠=︒,1=,90OCB∴=-=,OC OD CD m0.82222∴=-=-=,1080.6()BC OB OC m∴==,AB AC m2 1.2∴排水管道截面的水面宽度为1.2m,故选:C.【点评】本题考查了垂径定理、勾股定理;熟练掌握垂径定理,由勾股定理求出BC是解决问题的关键.3.(2019秋•丰台区期末)我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆形滚木的截面图.有如下四个结论:①勒洛三角形是中心对称图形;②图1中,点A到BC上任意一点的距离都相等;③图2中,勒洛三角形的周长与圆的周长相等;④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动. 上述结论中,所有正确结论的序号是( ) A .①②B .②③C .②④D .③④【分析】根据轴对称的性质,圆的性质,等边三角形的性质判断即可. 【解答】解:①勒洛三角形是轴对称图形,不是中心对称图形,故①错误; ②图1中,点A 到BC 上任意一点的距离都相等,正确; ③、设等边三角形DEF 的边长为a ,∴勒洛三角形的周长603180aa ππ=⨯=,圆的周长a π=, ∴勒洛三角形的周长与圆的周长相等,故③正确.④夹在平行线之间的莱洛三角形无论怎么滚动,平行线间的距离始终不变,使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故④错误, 故选:B .【点评】本题考查了平行线的距离,等边三角形的性质,轴对称的性质,正确的理解题意是解题的关键. 4.(2015•朝阳区二模)一个隧道的横截面如图所示,它的形状是以点O 为圆心,5为半径的圆的一部分,M 是O 中弦CD 的中点,EM 经过圆心O 交O 于点E .若6CD =,则隧道的高(ME 的长)为( )A .4B .6C .8D .9【分析】因为M 是O 弦CD 的中点,根据垂径定理,EM CD ⊥,则3CM DM ==,在Rt COM ∆中,有222OC CM OM =+,可求得OM ,进而就可求得EM .【解答】解:M 是O 弦CD 的中点, 根据垂径定理:EM CD ⊥, 又6CD =则有:132CM CD ==,设OM 是x 米,在Rt COM ∆中,有222OC CM OM =+, 即:22253x =+, 解得:4x =, 所以549EM =+=.故选:D .【点评】此题主要考查了垂径定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r ,弦长为a ,这条弦的弦心距为d ,则有等式222()2ar d =+成立,知道这三个量中的任意两个,就可以求出另外一个. 二.填空题(共4小题)5.(2019秋•昌平区期末)如图,一条公路的转弯处是一段圆弧AB ,点O 是这段弧所在圆的圆心,40AB m =,点C 是AB 的中点,且10CD m =,则这段弯路所在圆的半径为 25 m .【分析】根据题意,可以推出20AD BD ==,若设半径为r ,则10OD r =-,OB r =,结合勾股定理可推出半径r 的值.【解答】解:OC AB ⊥, 20AD DB m ∴==,在Rt AOD ∆中,222OA OD AD =+, 设半径为r 得:222(10)20r r =-+, 解得:25r m =,∴这段弯路的半径为25m .故答案为:25.【点评】本题主要考查垂径定理的应用、勾股定理的应用,关键在于设出半径为r 后,用r 表示出OD 、OB 的长度. 6.(2019秋•石景山区期末)《九章算术》是中国传统数学重要的著作之一,奠定了中国传统数学的基本框架.其中卷九中记载了一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“如右图,今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆(内切圆)的直径是多少步?” 根据题意,该内切圆的直径为 6 步.【分析】根据勾股定理求出直角三角形的斜边,根据直角三角形的内切圆的半径的求法确定出内切圆半径,得到直径.【解答】解:根据勾股定理得:斜边2281517AB =+=,∴内切圆直径815176=+-=(步),故答案为:6.【点评】此题考查了三角形的内切圆与内心,掌握Rt ABC ∆中,两直角边分别为为a 、b ,斜边为c ,其内切圆半径2a b cr +-=是解题的关键. 7.(2019秋•西城区校级期中)排水管的截面为如图所示的O ,半径为5m ,已知现在水面位于圆心O 下方,且水面宽6AB m =,如果水面上涨后,水面宽为8m ,那么水面上涨了 1或7 m .【分析】根据垂径定理和勾股定理即可得到结论. 【解答】解:过O 点作OC AB ⊥,连接OB ,如图所示: 2AB BC ∴=,在Rt OBC ∆中,222BC OC OB +=, 5OB m =,3BC m =,2222534OC OB BC m ∴=--, //MN AB , OC MN ∴⊥于D ,连接ON ,同理2222543OD ON DN =-=-=, 1CD ∴=,当MN 与AB 在圆心的两侧时, 347CD =+=,故水面上涨了1m 或7m , 故答案为:1或7.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键. 8.(2015秋•丰台区期末)排水管的截面为如图所示的O ,半径为5m ,如果圆心O 到水面的距离是3m ,那么水面宽AB = 8 m .【分析】过O 点作OC AB ⊥,连接OB ,由垂径定理可得出2AB BC =,在Rt OBC ∆中利用勾股定理即可得出BC 的长,进而可得出AB 的长.【解答】解:过O 点作OC AB ⊥,连接OB ,如图所示: 2AB BC ∴=,在Rt OBC ∆中,222BC OC OB +=, 5OB m =,3OC m =,224BC OB OC m ∴=-=, 28AB BC m ∴==.即水面宽AB 为8m ; 故答案为:8.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.三.解答题(共6小题)9.(2019秋•西城区期中)如图,一个宽为2cm 的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:)cm ,求该光盘的直径是多少?【分析】先过点O 作OA 垂直直尺与点A ,连接OB ,再设OB r =,利用勾股定理求出r 的值即可得出答案.【解答】解:过点O 作OA 垂直直尺与点A ,连接OB ,设OB r =,一边与光盘边缘两个交点处的读数恰好是“2”和“10”,4AB ∴=,刻度尺宽2cm ,2OA r ∴=-,在Rt OAB ∆中,222OA AB OB +=,即222(2)4r r -+=,解得5r =,则该光盘的直径是10cm .【点评】本题考查的是垂径定理的应用,勾股定理及切线的性质,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.(2019秋•东城区校级期中)如图是一个隧道的横截面,它的形状是以点O 为圆心的圆的一部分,如图EM 经过圆心交O 于点E ,EM CD ⊥,并且4CD cm =,6EM cm =,求O 的半径.【分析】因为M 是O 弦CD 的中点,根据垂径定理,EM CD ⊥,则2CM DM ==,在Rt COM ∆中,有222OC CM OM =+,进而可求得半径OC .【解答】解:连接OC ,M 是O 弦CD 的中点,根据垂径定理:EM CD ⊥,又4CD =则有:122CM CD ==, 设圆的半径是x 米,在Rt COM ∆中,有222OC CM OM =+,即:2222(6)x x =+-,解得:103x =, 所以圆的半径长是103cm . 【点评】此题主要考查了垂径定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形.11.(2017秋•顺义区校级期中)在1300多年前,我国隋朝建造了赵州石拱桥,它的桥拱是圆弧形,跨度AB (即弧所对的弦长)为24m ,拱高CD (即弧的中点到弦的距离)为8m ,求桥拱所在圆的半径.(即)R【分析】设圆O 的半径为r ,在Rt ADO ∆中由勾股定理列出方程求出r 即可.【解答】解:由题意可得,ADO ∆是直角三角形,在直角三角形AOD 中,24AB m =,8DE m =,112()2AD AB cm ∴==, 设AO rcm =,8()OD r cm ∴=-,22212(8)r r ∴=+-解得:13r cm =.答:桥拱所在圆的半径为13cm【点评】本题考查了垂径定理和勾股定理;这两大定理是在圆有关运算中经常用到的.12.(2017秋•海淀区校级月考)在直径为650mm 的圆柱形油桶内装进不足半桶油后其横截面如图,若油面宽600AB mm =,求油的最大深度.【分析】首先过点O 作OD AB ⊥于点C ,交O 于点D ,连接OA ,由垂径定理即可求得AC 的长,然后由勾股定理,求得OC 的长,继而求得油的最大深度.【解答】解:过点O 作OD AB ⊥于点C ,交O 于点D ,连接OA ,由垂径定理得:11600300()22AC AB mm ==⨯=, 在Rt ACO ∆中,222AC OC AO +=,222300325OC ∴+=,解得:125OC mm =,325125200()CD OD OC mm ∴=-=-=.答:油的最大深度是200mm .【点评】此题考查了垂径定理与勾股定理的应用.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.13.(2015秋•北京校级期中)如图,已知这是一座圆弧形涵洞的入口的示意图,涵洞的最高点C 到地面AB 的距离为6米,涵洞入口地面的宽度AB 为4米,请你求这座涵洞圆弧所在圆的半径长.【分析】连接OA ,构造直角三角形.根据垂径定理和勾股定理进行计算得出答案即可.【解答】解:依题意,CD 过点O 且垂直于AB ,连接OA ,设半径为x 米,所以2AD DB ==,在Rt ADO ∆中,由勾投定理,有222OA OD AD =+,即222(6)2x x =-+, 得103x =. 答:这座涵洞圆弧所在圆的半径为103米.【点评】本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.14.(2015秋•海淀区期中)一圆柱形排水管的截面如图所示,已知排水管的半径为1m ,水面宽AB 为1.6m .由于天气干燥,水管水面下降,此时排水管水面宽变为1.2m ,求水面下降的高度.【分析】先根据垂径定理求得AM 、CN ,然后根据勾股定理求出OM 、ON 的长,即可得出结论.【解答】解:如图,下降后的水面宽CD 为1.2m ,连接OA ,OC ,过点O 作ON CD ⊥于N ,交AB 于M . 90ONC ∴∠=︒.//AB CD ,90OMA ONC ∴∠=∠=︒.1.6AB =, 1.2CD =,10.82AM AB ∴==,10.62CN CD ==, 在Rt OAM ∆中,1OA =,220.6OM OA AM ∴=-=.同理可得0.8ON =,0.2MN ON OM ∴=-=(米).答:水面下降了0.2米.【点评】本题考查的是垂径定理的应用以及勾股定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.。

2019年中考数学复习【垂径定理的应用】专项精练卷及答案解析

2019年中考数学复习【垂径定理的应用】专项精练卷及答案解析

2019 年中考数学复习【垂径定理的应用】专项精练卷一.填空题1.《九章算术》是我国古代数学成就的优秀代表作,此中《方田》章计算弧田面积所用的经验公式是:弧田面积=(弦×矢 +矢2).弧田(如图暗影部分面积)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为120°,半径等于 4 的弧田,依据上述公式计算出弧田的面积为.2.位于黄岩西城的五洞桥桥上老街当前正在修复,此中一处中式圆形门,它的平面表示图,已知AB 过圆心 O,且垂直 CD于点 B,测得门洞高度AB为米,门洞下沿 CD宽为米,则该圆形门洞的半径为.3.在我国古代数学著作《九章算术》中记录了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”其粗心为:如图,AB 为⊙O 的直径,弦⊥ 于点,若CD AB E AE=1寸, CD=10寸,则⊙ O的直径等于寸.4.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,而后过点 A 作AB与残片的内圆相切于点D,作 CD⊥AB交外圆于点 C,测得 CD=15cm,AB=60cm,则这个摆件的外圆半径是cm.5.如图,某种鱼缸的主视图可视为弓形,该鱼缸装满水时的最大深度CD为18cm,半径 OC为13cm,则6.如图是一块圆环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得 AB=8cm、点 C与的中点D 的距离 CD=2cm.则此圆环形玉片的外圆半径为cm.7.如图,有一块矩形木板ABCD, AB=13dm,BC=8dm,工人师傅在该木板上锯下一块宽为xdm的矩形木板 MBCN,并将其拼接在剩下的矩形木板AMND的正下方,此中M′、 B′、 C′、 N′分别与 M、B、C、N 对应.此刻这个新的组合木板上画圆,要使这个圆最大,则x 的取值范围是,且最大圆的面积2是dm.8.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边沿两个交点处的读数分别是“4”和“ 16”(单位:cm),请你帮小华算出圆盘的半径是cm.二.选择题9.一条排水管的截面以下图,已知排水管的截面圆的半径OB=10dm,水面宽 AB是16dm,则截面水深CD是()A. 3 dm B. 4 dm C.5 dm D. 6 dm10.如图,半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A. 10 cm B. 16 cm C.24 cm D. 26 cm11.乌镇是有名的水乡,如图,圆拱桥的拱顶到水面的距离CD为8m,水面宽 AB为8m,则桥拱半径OC 为()A. 4m B. 5m C.6m D. 8m12.如图是一个地道的截面图,为⊙ O的一部分,路面AB=10米,净高CD=7米,则此圆半径长为()A.5米B.7米C.米D.米13.如图为球形灯笼的截面图,过圆心的CD垂直弦 AB于 D, AB=2dm,CD=4dm,则⊙ O半径为()A. 2 B.dm C.dmD.dmdm14.如图,把直角三角板的直角极点O放在损坏玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得 OM=8cm, ON=6cm,则该圆玻璃镜的直径是()A.cm B. 5cm C.6cm D. 10cm15.《九章算术》是我国古代有名数学经典,此中对勾股定理的阐述比西方早一千多年,此中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该资料,锯口深 1 寸,锯道长 1 尺.如图,已知弦 AB=1尺,弓形高CD=1寸,(注:1尺=10寸)问这块圆柱形木材的直径是()A.13 寸B.6.5 寸C.26 寸D.20 寸16.某品牌婴儿罐装奶粉圆形桶口以下图,它的内直径(⊙O直径)为10cm,弧 AB的度数约为90°,则弓形铁片ACB(暗影部分)的面积约为()2 2A.(π﹣)cm B.(π﹣25)cm2 2C.(π﹣)cm D.( 25π﹣)cm17.《九章算术》是我国古代第一部自成系统的数学专著,代表了东方数学的最高成就.它的算法系统到现在仍在推进着计算机的发展和应用.书中记录:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深 1 寸(ED= 1 寸),锯道长 1 尺(AB= 1 尺= 10 寸)”,问这块圆柱形木材的直径是多少?”以下图,请依据所学知识计算:圆柱形木材的直径AC是()A.13 寸B.20 寸C.26 寸D.28 寸18.把球放在长方体纸盒内,球的一部分露出盒外,其截面以下图,已知EF= CD=4cm,则球的半径长是()A. 2cm B. 2.5 cm C.3cm D. 4cm19.如图,把一个宽度为2cm的刻度尺在圆形光盘上挪动,当刻度尺的一边与光盘相切时,另一边与光盘边沿两个交点处的读数恰巧是“2”和“ 10”(单位:cm),那么光盘的直径是()A. 5 cm B. 8 cm C.10 cm D. 12 cm20.某校科技实践社团制作实践设施,小明的操作过程以下:①小明拿出老师供给的圆形细铁环,先经过在圆一章中学到的知识找到圆心O,再随意找出圆O 的一条直径标志为AB(如图1),丈量出AB=4分米;②将圆环进行翻折使点B落在圆心 O的地点,翻折部分的圆环和未翻折的圆环产生交点分别标志为C、D (如图 2);③用一细橡胶棒连结C 、D 两点(如图 3);④计算出橡胶棒 CD 的长度.小明计算橡胶棒 CD 的长度为()A .2 分米B .2 分米C .3分米D .3分米三.解答题21.如图 1 是小明制作的一副弓箭,点, D 分别是弓臂 与弓弦 的中点,弓弦= 80 .沿A BAC BC BC cmAD方向拉动弓弦的过程中,假定弓臂 BAC 一直保持圆弧形,弓弦不伸长.如图 2,当弓箭从自然状态的点 D 拉到点 D 1 时,有 AD 1= 40cm ,∠ B 1D 1C 1= 120°.( 1)图 2 中,弓臂两头 B 1,C 1 的距离为cm .( 2)如图 3,将弓箭持续拉到点D 2,使弓臂 B 2AC 2为半圆,求出 D 1D 2 的长度..22.一些不便于直接丈量的圆形孔道的直径能够用以下方法丈量.如图,把一个直径为10mm的小钢球紧贴在孔道边沿,测得钢球顶端离孔道外端的距离为8mm,求这个孔道的直径AB.23.在我国古代数学著作《九章算术》中记录了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代语言表述为:如图, AB为⊙ O的直径,弦 CD⊥ AB 于点 E, AE=1寸, CD=10寸,求直径 AB的长.请你解答这个问题.24.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高 PD=18米.( 1)求圆弧所在的圆的半径r 的长;( 2)当洪水泛滥到跨度只有30 米时,要采纳紧迫举措,若拱顶离水面只有 4 米,即PE=4 米时,是否要采纳紧迫举措?25.图 1 是某豪侈品牌的香水瓶.从正面看上去(如图2),它能够近似看作⊙O割去两个弓形后余下的部分与矩形ABCD组合而成的图形(点B、C 在⊙ O上),此中BC∥ EF;从侧面看,它是扁平的,厚度为 1.3 cm.( 1)已知⊙O的半径为 2.6 cm,BC=2cm,AB=3.02 cm,EF=3.12 cm,求香水瓶的高度h.( 2)用一张长 22cm、宽 19cm的矩形硬纸板依据如图 3 进行裁剪,将实线部分折叠制作成一个底面积2为 S MNPQ=9cm 的有盖盒子(接缝处忽视不计).请你计算这个盒子的高度,而且判断上述香水瓶可否装入这个盒子里.26.赵州桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却平安无事.如图,若桥跨度 AB约为40米,主拱高 CD约10米,(1)如图 1,尺规作图,找到桥弧所在圆的圆心O(保存作图印迹);(2)如图 2,求桥弧AB所在圆的半径R.参照答案一.填空题(共8 小题)1..2.1 米3.26.4. 37.5 .5.24.6.5.7. 2 ≤x≤3, 25π.8. 10二.选择题9-20 :BCBDC DCACB CB三.解答题(共 6 小题)21.解:( 1)如图 1 中,连结B1C1交AD1于H.∵AD1= D1B1=40cm,∴ D1是所在圆的圆心,在 Rt △B1HD1中,HB1= 40?sin60 °= 20,∴B1C1=2HB1=40( cm),故答案为 40 .( 2)如图 2 中,连结B1C1交AD1于H,连结B2C2交AD2于T.由题意:=π ?B2T,∴AT= B2T=( cm),在 Rt △B2TD2中,D2T==,∵AH= HD1=20,∴HT=﹣20=,∴12=2﹣1=+ ﹣20=﹣.DD HD HD22.解:连结OA,过点 O作 OD⊥AB于点 D,则 AB=2AD,∵钢珠的直径是 10mm,∴钢珠的半径是5mm,∵钢珠顶端离部件表面的距离为8mm,∴ OD=3mm,在 Rt △AOD中,∵ AD===4mm,∴AB=2AD=2×4=8mm.23.解:以下图,连结OC.∵弦 CD⊥AB,AB为圆 O的直径,∴ E 为 CD 的中点,又∵ CD = 10寸,∴ CE = DE = CD =5 寸,设 OC = OA = x 寸,则 AB = 2x 寸, OE =( x ﹣ 1)寸,2 2 2由勾股定理得: OE +CE =OC ,22 2即( x ﹣ 1) +5 =x ,解得: x =13,∴ AB = 26 寸,即直径 AB 的长为 26 寸.24.解:( 1)连结 OA ,由题意得: AD = AB =30,OD =( r ﹣ 18)在 Rt △ ADO 中,由勾股定理得: r 2= 302+(r ﹣18)2,解得, r =34;( 2)连结 OA ′, ∵OE = OP ﹣ PE = 30,∴在 Rt △ ′ 中,由勾股定理得: ′ 2 = ′ 2﹣ 2,即:′ 2 =342﹣302, A EO A E A O OEA E 解得: A ′E =16.∴ A ′B ′= 32.∵ A ′B ′= 32> 30,∴不需要采纳紧迫举措.25.解:( 1)作 OG ⊥ BC 于 G ,延伸 GO 交 EF 于 H ,连结 BO 、EO .11∵EF∥BC,∴ OH⊥ EF,∴BG= BC,EH= EF∴ GO==;OH==,∴h== cm.(2)设盒子的高为xcm.由题意:( 22﹣ 2x) ?=9解得 x=8或(舍弃),∴MQ=6,MN=∵2.6 ×2=5.2 <6; 1.3 < 1.5 ;7.5 < 8,∴能装入盒子.26.解:( 1)如图 1 所示;( 2)连结OA.如图 2.由( 1)中的作图可知:△AOD为直角三角形, D是 AB的中点, CD=10,∴AD= AB=20.∵CD=10,∴OD=R﹣10.22 2在 Rt △AOD中,由勾股定理得,OA=AD+OD,∴ R2=202+(R﹣10)2.解得: R=25.即桥弧 AB所在圆的半径R 为25米.。

2019备战中考数学基础必练(北师大版)-垂径定理(含解析)

2019备战中考数学基础必练(北师大版)-垂径定理(含解析)

2019备战中考数学基础必练(北师大版)-垂径定理(含解析)一、单选题1.如图,AB为⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中错误的是( )A. ∠COE=∠DOE;B. CE=DE;C. AE=OE;D.2.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围( )A. 3≤OM≤5B. 4≤OM≤5C. 3<OM<5D. 4<OM<53.如图,AB是⊙O的弦,OC⊥AB于点C,若AB=4,OC=1,则⊙O的半径为()A. B. C. 2 D. 64.如图,⊙O的直径AB垂直于弦CD,垂足是E,∠A=30°,CD=6,则圆的半径长为()A. 2B. 2C. 4D.5.下列下列说法中,正确的是()A. 平分一条直径的弦必垂直于这条直径B. 平分一条弧的直线垂直于这条弧所对的弦C. 弦的垂线必经过这条弦所在圆的圆心D. 在一个圆内平分一条弧和平分它所对的弦的直线必经过这个圆的圆心6.如图.AB是⊙O的直径,E是弧BC的中点,OE交BC于点D,OD=3,DE=2,则AD的长为().A. B. 3 C. 8 D. 27.如图,在两个同心圆O中,大圆的弦AB交小圆于C、D两点,则AD与BC的数量关系是()A. AD>BCB. AD=BCC. AD<BCD. 无法确定8.如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )A. B. C. D.9.如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,则拱桥的半径为()A. 6.5米B. 9米C. 13米D. 15米10.已知=⊙O的直径CD=10cm,AB是⊙O的弦,,垂足为M,且AB=8cm,则AC的长为()A. B. C. 或 D. 或二、填空题11.如图,AD是⊙O的直径,弦BC⊥AD,连接AB、AC、OC,若∠COD=60°,则∠BAD=________ .12.为了测量某小球的直径,技术人员将小球放到透明烧杯上,如图是过球心O作为截面图,已知烧杯的高度是13cm,测得l=8cm,h=11cm,则小球的直径为________ cm.13.如图,在⊙O中,直径AB⊥弦CD,∠A=28°,则∠D=________.14.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为________.15.如图,⊙O中,弦AB⊥弦CD于E,OF⊥AB于F,OG⊥CD于G,若AE=8cm,EB=4cm,则OG= ________m.16.如图,AB是⊙O的直径,OD⊥AC于点D,BC=6cm,则OD=________cm.17.已知⊙O中一条长为24的弦的弦心距为5,则此圆的半径长为________18.如图,⊙O的直径CD垂直弦AB于点E,且CE=4,DE=16,则AB的长为 ________19.已知△ABC内接于半径为5厘米的⊙O,若∠A=60°,边BC的长为________厘米.20.如图,⊙O的直径为10,弦AB=8,P是弦AB上的一个动点,那么OP的长的范围是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年中考数学复习【垂径定理的应用】专项精练卷一.填空题1.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积=(弦×矢+矢2).弧田(如图阴影部分面积)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为120°,半径等于4的弧田,按照上述公式计算出弧田的面积为.2.位于黄岩西城的五洞桥桥上老街目前正在修复,其中一处中式圆形门,它的平面示意图,已知AB过圆心O,且垂直CD于点B,测得门洞高度AB为1.8米,门洞下沿CD宽为1.2米,则该圆形门洞的半径为.3.在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”其大意为:如图,AB为⊙O的直径,弦CD⊥AB于点E,若AE=1寸,CD=10寸,则⊙O的直径等于寸.4.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,然后过点A作AB与残片的内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=15cm,AB=60cm,则这个摆件的外圆半径是cm.5.如图,某种鱼缸的主视图可视为弓形,该鱼缸装满水时的最大深度CD为18cm,半径OC为13cm,则鱼缸口的直径AB=cm.6.如图是一块圆环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C与的中点D 的距离CD=2cm.则此圆环形玉片的外圆半径为cm.7.如图,有一块矩形木板ABCD,AB=13dm,BC=8dm,工人师傅在该木板上锯下一块宽为xdm的矩形木板MBCN,并将其拼接在剩下的矩形木板AMND的正下方,其中M′、B′、C′、N′分别与M、B、C、N 对应.现在这个新的组合木板上画圆,要使这个圆最大,则x的取值范围是,且最大圆的面积是dm2.8.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是cm.二.选择题9.一条排水管的截面如图所示,已知排水管的截面圆的半径OB=10dm,水面宽AB是16dm,则截面水深CD是()A.3 dm B.4 dm C.5 dm D.6 dm10.如图,半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10 cm B.16 cm C.24 cm D.26 cm11.乌镇是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为8m,水面宽AB为8m,则桥拱半径OC 为()A.4m B.5m C.6m D.8m12.如图是一个隧道的截面图,为⊙O的一部分,路面AB=10米,净高CD=7米,则此圆半径长为()A.5米B.7米C.米D.米13.如图为球形灯笼的截面图,过圆心的CD垂直弦AB于D,AB=2dm,CD=4dm,则⊙O半径为()A.2dm B. dm C. dm D. dm14.如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的直径是()A. cm B.5cm C.6cm D.10cm15.《九章算术》是我国古代著名数学经典,其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺.如图,已知弦AB=1尺,弓形高CD=1寸,(注:1尺=10寸)问这块圆柱形木材的直径是()A.13寸B.6.5寸C.26寸D.20寸16.某品牌婴儿罐装奶粉圆形桶口如图所示,它的内直径(⊙O直径)为10cm,弧AB的度数约为90°,则弓形铁片ACB(阴影部分)的面积约为()A.(π﹣)cm2B.(π﹣25)cm2C.(π﹣)cm2D.(25π﹣)cm217.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆柱形木材的直径是多少?”如图所示,请根据所学知识计算:圆柱形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸18.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2cm B.2.5cm C.3cm D.4cm19.如图,把一个宽度为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么光盘的直径是()A.5 cm B.8 cm C.10 cm D.12 cm20.某校科技实践社团制作实践设备,小明的操作过程如下:①小明取出老师提供的圆形细铁环,先通过在圆一章中学到的知识找到圆心O,再任意找出圆O的一条直径标记为AB(如图1),测量出AB=4分米;②将圆环进行翻折使点B落在圆心O的位置,翻折部分的圆环和未翻折的圆环产生交点分别标记为C、D(如图2);③用一细橡胶棒连接C、D两点(如图3);④计算出橡胶棒CD的长度.小明计算橡胶棒CD的长度为()A.2分米B.2分米C.3分米D.3分米三.解答题21.如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=80cm.沿AD 方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=40cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,求出D1D2的长度..22.一些不便于直接测量的圆形孔道的直径可以用如下方法测量.如图,把一个直径为10mm的小钢球紧贴在孔道边缘,测得钢球顶端离孔道外端的距离为8mm,求这个孔道的直径AB.23.在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代语言表述为:如图,AB为⊙O的直径,弦CD⊥AB 于点E,AE=1寸,CD=10寸,求直径AB的长.请你解答这个问题.24.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?25.图1是某奢侈品牌的香水瓶.从正面看上去(如图2),它可以近似看作⊙O割去两个弓形后余下的部分与矩形ABCD组合而成的图形(点B、C在⊙O上),其中BC∥EF;从侧面看,它是扁平的,厚度为1.3cm.(1)已知⊙O的半径为2.6cm,BC=2cm,AB=3.02cm,EF=3.12cm,求香水瓶的高度h.(2)用一张长22cm、宽19cm的矩形硬纸板按照如图3进行裁剪,将实线部分折叠制作成一个底面积为S MNPQ=9cm2的有盖盒子(接缝处忽略不计).请你计算这个盒子的高度,并且判断上述香水瓶能否装入这个盒子里.26.赵州桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.如图,若桥跨度AB约为40米,主拱高CD约10米,(1)如图1,尺规作图,找到桥弧所在圆的圆心O(保留作图痕迹);(2)如图2,求桥弧AB所在圆的半径R.参考答案一.填空题(共8小题)1..2. 1米3. 26.4. 37.5.5. 24.6. 5.7. 2≤x≤3,25π.8. 10二.选择题9-20:BCBDC DCACB CB三.解答题(共6小题)21.解:(1)如图1中,连接B1C1交AD1于H.∵AD1=D1B1=40cm,∴D1是所在圆的圆心,在Rt△B1HD1中,HB1=40•sin60°=20,∴B1C1=2HB1=40(cm),故答案为40.(2)如图2中,连接B1C1交AD1于H,连接B2C2交AD2于T.由题意:=π•B2T,∴AT=B2T=(cm),在Rt△B2TD2中,D2T==,∵AH=HD1=20,∴HT=﹣20=,∴D1D2=HD2﹣HD1=+﹣20=﹣.22.解:连接OA,过点O作OD⊥AB于点D,则AB=2AD,∵钢珠的直径是10mm,∴钢珠的半径是5mm,∵钢珠顶端离零件表面的距离为8mm,∴OD=3mm,在Rt△AOD中,∵AD===4mm,∴AB=2AD=2×4=8mm.23.解:如图所示,连接OC.∵弦CD⊥AB,AB为圆O的直径,∴E为CD的中点,又∵CD=10寸,∴CE=DE=CD=5寸,设OC=OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得:OE2+CE2=OC2,即(x﹣1)2+52=x2,解得:x=13,∴AB=26寸,即直径AB的长为26寸.24.解:(1)连结OA,由题意得:AD=AB=30,OD=(r﹣18)在Rt△ADO中,由勾股定理得:r2=302+(r﹣18)2,解得,r=34;(2)连结OA′,∵OE=OP﹣PE=30,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2﹣OE2,即:A′E2=342﹣302,解得:A′E=16.∴A′B′=32.∵A′B′=32>30,∴不需要采取紧急措施.25.解:(1)作OG⊥BC于G,延长GO交EF于H,连接BO、EO.∵EF∥BC,∴OH⊥EF,∴BG=BC,EH=EF∴GO==2.4;OH==2.08,∴h=2.4+2.08+3.02=7.5cm.(2)设盒子的高为xcm.由题意:(22﹣2x)•=9解得x=8或12.5(舍弃),∴MQ=6,MN=1.5∵2.6×2=5.2<6;1.3<1.5;7.5<8,∴能装入盒子.26.解:(1)如图1所示;(2)连接OA.如图2.由(1)中的作图可知:△AOD为直角三角形,D是AB的中点,CD=10,∴AD=AB=20.∵CD=10,∴OD=R﹣10.在Rt△AOD中,由勾股定理得,OA2=AD2+OD2,∴R2=202+(R﹣10)2.解得:R=25.即桥弧AB所在圆的半径R为25米.。

相关文档
最新文档