人教版九年级数学下册《位似》基础练习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《位似》基础练习
一、选择题(本大题共5小题,共25.0分)
1.(5分)在平面直角坐标系中,△OAB各顶点的坐标分别为:O(0,0),A(1,2),B(0,3),以O为位似中心,△OA′B′与△OAB位似,若B点的对应点B′的坐标为(0,﹣6),则A点的对应点A′坐标为()
A.(﹣2,﹣4)B.(﹣4,﹣2)C.(﹣1,﹣4)D.(1,﹣4)2.(5分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)以点B为位似中心,在网格内画出△A1B1C1,使△A1B1C1与△ABC位似,且位似比为2:1,点C1的坐标是()
A.(1,0)B.(1,1)C.(﹣3,2)D.(0,0)3.(5分)如图,在△ABC外任取一点O,连接AO,BO,CO,并取它们的中点D,E,F,连接DE,EF,DF,得△DEF,则下列说法错误的是()
A.△ABC与△DEF是位似图形
B.△ABC与△DEF是相似图形
C.△ABC与△DEF的周长比为1:2
D.△ABC与△DEF的面积比为4:1
4.(5分)在直角坐标平面上有A(4,2)、B(2,4)两点,以原点为位似中心
把线段AB缩小到原来的一半,得到线段A1B1,那么A1的坐标是()A.只有(2,1)B.只有(﹣1,﹣2)
C.(2,1)或(﹣1,﹣2)D.(2,1)或(﹣2,﹣1)
5.(5分)下列图形中△ABC∽△DEF,则这两个三角形不是位似图形的是()A.B.
C.D.
二、填空题(本大题共5小题,共25.0分)
6.(5分)已知△ABC在坐标平面内三顶点的坐标分别为A(0,2)、B(3,3)、C(2,1).以B为位似中心,画出△A1B1C1与△ABC相似,两三角形位于点B同侧且相似比是3,则点C的对应顶点C1的坐标是.
7.(5分)如图,在平面直角坐标系中,已知A(1.5,0),D(4.5,0),△ABC 与△DEF位似,原点O是位似中心.若DE=7.5,则AB=.
8.(5分)如图,四边形ABCD和A'B'C'D'是以点O为位似中心的位似图形,若OA:OA'=2:3,则四边形ABCD与四边形A'B'C'D'的面积比为
9.(5分)如图,△ABC三个顶点的坐标分别为A(2,2),B(4,0),C(6,4)以原点为位似中心,将△ABC缩小,位似比为1:2,则线段AC中点P变换后对应点的坐标为.
10.(5分)已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度,以点C 为位似中心,在网格中画出△A1B1C1,使△A1B1C1与△ABC位似,且△A1B1C1与△ABC的位似比为2:1,此时点A1的坐标为.
三、解答题(本大题共5小题,共50.0分)
11.(10分)如图,△OAB的顶点坐标分别为O(0,0)、A(3,2)、B(2,0),将这三个顶点的坐标同时扩大到原来的2倍,得到对应点D、E、F.
(1)在图中画出△DEF;
(2)点E是否在直线OA上?为什么?
(3)△OAB与△DEF位似图形(填“是”或“不是”)
12.(10分)图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在
正方形的顶点上.
(1)以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;
(2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′C′在旋转过程中扫过的图形面积.
13.(10分)如图,以O为位似中心,将△ABC放大为原来的2倍(不写作法,保留作图痕迹).
14.(10分)如图,△EFD和△CFB是以点F为位似中心的位似图形,EF:FC
=1,求四边形EBCD的面积.
=1:2,若S
△EFD
15.(10分)如图.在平面直角坐标系内,△ABC三个顶点的坐标分别为A(1,﹣2),B(4,﹣1),C(3,﹣3)(正方形网格中,每个小正方形的边长都是1个单位长度).
(1)作出△ABC向左平移5个单位长度,再向下平移3个单位长度得到的△A1B1C1;
(2)以坐标原点O为位似中心,相似比为2,在第二象限内将△ABC放大,放大后得到△A2B2C2作出△A2B2C2;
(3)以坐标原点O为旋转中心,将△ABC逆时针旋转90°,得到△A3B3C3,作出△A3B3C3,并求线段AC扫过的面积.
《位似》基础练习
参考答案与试题解析
一、选择题(本大题共5小题,共25.0分)
1.(5分)在平面直角坐标系中,△OAB各顶点的坐标分别为:O(0,0),A(1,2),B(0,3),以O为位似中心,△OA′B′与△OAB位似,若B点的对应点B′的坐标为(0,﹣6),则A点的对应点A′坐标为()
A.(﹣2,﹣4)B.(﹣4,﹣2)C.(﹣1,﹣4)D.(1,﹣4)
【分析】利用已知对应点的坐标变化规律得出位似比为1:2,则可求A'坐标.【解答】解:∵△OA′B′与△OAB关于O(0,0)成位似图形,且若B(0,3)的对应点B′的坐标为(0,﹣6),
∴OB:OB'=1:2=OA:OA'
∵A(1,2),
∴A'(﹣2,﹣4)
故选:A.
【点评】此题主要考查了位似变换与坐标与图形的性质,得出位似比是解题关键2.(5分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)以点B为位似中心,在网格内画出△A1B1C1,使△A1B1C1与△ABC位似,且位似比为2:1,点C1的坐标是()
A.(1,0)B.(1,1)C.(﹣3,2)D.(0,0)
【分析】直接利用位似图形的性质进而结合位似比得出答案.
【解答】解:如图所示:点C1的坐标是:(1,0).