点焊基本原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点焊基本原理
1.1 点焊接头的形成
电阻点焊原理和接头形成如图1所示。可简述为:将焊件3压紧在两电极2之间,施加电极压力后,阻焊变压器1向焊接区通过强大的焊接电流,在焊件接触面上形成真实的物理接触点,并随着通电加热的进行而不断扩大。塑变能与热能使接触点的原子不断激活,消失了接触面,继续加热形成熔化核心4,简称熔核。熔核中的液态金属在电动力作用下发生强烈搅拌,熔核内的金属成分均匀化,结合界面迅速消失。加热停止后,核心液态金属以自由能最低的熔核边界半熔化晶粒表面为晶核开始结晶,然后沿与散热相反方向不断以枝晶形式向中间延伸。通常熔核以柱状晶形式生长,将合金浓度较高的成分排至晶叉及枝晶前端,直至生长的枝晶相互抵住,获得牢固的金属键合,接合面消失了,得到了柱状晶生长较充分的焊点,如图2所示。或因合金过冷条件不同,核心中心区同时形成等轴晶粒,得到柱状晶与等轴晶两种凝固组织并存的焊点,如图3所示。同时,液态熔核周围的高温固态金属,在电极压力作用下产生塑性变形和强烈再结晶而形成塑性环①〔注:塑性环(corona bond)熔核周围具有一定厚度的塑性金属区域称为塑性环,它也有助于点焊接头承受载荷〕,该环先于熔核形成且始终伴随着熔核一起长大,如图4所示。它的存在可防止周围气体侵入和保证熔核液态
金属不至于沿板缝向外喷溅。
熔核凝固组织为全部柱状晶者,以65Mn熔核为例,其形成过程模型如图5所示。图中:
图5a 凝固前,在熔合线上(固-液相界面)有许多晶粒处于半熔化状态,显然熔核的液态金属能很好的润湿取向不同的半熔化晶粒表面,为异质成核进行结晶提供了有利条件。
图5b 液态熔核的温度降低时,由于成分过冷较大,以半熔化晶粒作底面沿<100>向长出枝晶束。
在电极与母材的急冷作用下,凝固界面前形成较大的温度梯度,因而使枝晶主干伸入液体中较远,枝晶生长很快,枝晶臂间距H与冷却速度V间存在以下关系。
一次枝晶臂间距H1∝V-?
二次枝晶臂间距H2∝V-(?~?)
由于薄件脉冲点焊熔核尺寸小,电极与母材的急冷作用强,液体金属的冷却速度极快,因此枝晶臂的间距甚小。
图5c 枝晶继续生产、凝固层向前推进,液体向枝晶间充填。
枝晶间的液体逐渐向枝晶上凝固,使枝晶变长变粗,靠近母材处由于温度低,液体向枝晶上凝固快,以至形成连续的凝固层。由于65Mn合金具有较宽的凝固温度范围,故凝固层呈锯齿形起状,由于晶界在凝固层内形成,这就造成柱状
晶A段表面呈平坦的形貌。
越向熔核内部,温度梯度越小,液体向枝晶上凝固越少,使向前推进的凝固层界面起伏更大。
倾斜生长的枝晶束被与最大温度梯度一致的枝晶束(这类枝晶束生产较快)所阻碍而半途停止。
当一次枝晶晶臂间距过大时,则从二次枝晶晶臂上可以长出三次臂来,这个三次臂可赶上一次臂而成为其中的一个。
液体金属凝固时产生的体积收缩和毛吸现象,均引起熔核内液态金属向正在凝固的枝晶间充填。
图5d 凝固即将结束,剩余液体金属不足以完全充填枝晶间隙,未被液体充满的枝晶将暴露在前沿,而枝晶间将留下空隙,这些空隙即将成为缩松。
图5e 具有缩松缺陷的熔核柱状组织断口形貌示意图。
图5f 优质接头的熔核柱状组织断口形貌示意图。
图2显示的65Mn钢点焊熔核断口形貌表明,熔核由粗大柱状晶组织组成。粗大柱状晶的内部微观结构为一枝晶束,在缩松处清晰可见。
熔核凝固组织为“柱状+等轴”晶者,以2A12-T4熔核为例,其形成过程模型如图6所示。图中:
图1-6a 凝固前,熔合线上许多晶粒处于半熔化状态,液态金属能很好的润湿取向不同的半熔化晶粒表面,为异质成核结晶提供了有利条件。
图6b 液态熔核的温度开始降低,熔合线处液态金属首先处于过冷状态,结果以半熔化晶粒作底面沿<100>向(2A12-T4铝合金金属立方晶系)长出枝晶束(枝晶束形貌见图7)。某些枝晶发生二次晶轴的熔断、游离和向熔核中心运送。
图6c 枝晶继续生长,锯齿形的连续凝固层向前推进,液体向枝晶间充填,使枝晶粗化;与热流方向倾斜的枝晶束生长受阻,枝晶间距自动调整。
更多的枝晶二次晶轴发生熔断、游离并被排挤到熔核心部;由于枝晶前沿液体金属的温度梯度逐渐变缓和溶擀浓度的不断提高,均使等轴晶核在熔核心部增殖,个别晶核以树枝晶形态生长。
图6d 液态金属成分过冷越来越大,大量的等轴晶核以树枝晶形态迅速长大,彼此相遇(等轴树枝状晶群形貌见图8),以及与柱状晶的枝晶束相遇后呈现互相阻碍。
凝固即将结束,当剩余液体金属不足以完全充填枝晶间隙时,即将形成缩松缺陷。
图6e 具有缩松缺陷的熔核“柱状+等轴”组织断口形貌示意图。
图6f 优质接头的熔核“柱状+等轴”组织断口形貌示意图。
图3显示的铝合金点焊熔核断口形貌表明,熔核由粗大柱状晶组织和粗大等轴晶组织共同组成。粗大柱状晶的内部微观结构为一枝晶束,粗大等轴晶的内部微观结构为若干个等轴树枝状晶紧密结成一团。
1.2 点焊的热源及加热特点
1. 点焊的热源
电阻点焊的热源是电流通过焊接区(图9)产生的电阻热。根据焦耳定律,总析热量Q为
(1)
式中i——焊接电流的瞬时值,是时间的函数;
rc——焊件间接触电阻的动态电阻值,是时间的函数;
2rcw——电极与焊件间接触电阻的动态电阻值,是时间的函数;
2rw——焊件内部电阻的动态电阻值,是时间的函数;
t——通过焊接电流的时间。
2. 电流对点焊加热的影响
焊接电流是产生内部热源——电阻热的外部条件。从式(1)可知,电流对析热的影响比电阻和时间两者都大,它通过如下二个途径对点焊的加热过程施加影响。