14-15半导体气体传感器 传感器课件

合集下载

《气体传感器简介》课件

《气体传感器简介》课件

3
应用扩展
气体传感器的应用领域将继续扩展,包括环境监测、工业控制等。
气体传感器的原理
1 热导法传感器
通过测量气体导热性的变化来检测气体的存在和浓度。
2 电化学传感器
使用电化学反应来测量气体浓度,常用于汽车尾气传感器等应用。
3 红外线吸收传感器
利用气体对特定波长的红外线的吸收程度来检测气体的存在和浓度。
气体传感器的应用
汽车尾气传感器
用于监测和控制汽车尾气中的有害气体排放,以保护环境和人类健康。
《气体传感器简介》PPT 课件
欢迎来到《气体传感器简介》的课件!在这个课程中,我们将介绍气体传感 器的定义、原理、应用、性能参数、优劣势以及发展前景。
什么是气体传感器
定义
气体传感器是一种能够检测和测量环境中气体浓度的设备,用于监测和控制气体的存在和浓 度。
种类
气体传感器有许多不同的种类,包括热导法传感器、电化学传感器和红外线吸收传感器。
3 响应时间
指传感器从检测到气体存 在到产生反应的时间,响 应时间越短越好。
气体传感器的优劣势
优势
高灵敏度、实时监测、易于集成、可靠性高。
劣势
受环境影响、有一定的误差、成本较高。
气体传感器的术,实现气体传感器的智能监测和远程控制。
2
新型气体传感器的研究
不断研发新的气体传感器,提高传感器的性能和应用范围。
家庭燃气泄露传感器
用于检测家庭燃气泄露,及时发现并避免发生火灾和爆炸事故。
空气质量监测传感器
用于测量和监测空气中的有害气体浓度,帮助改善城市空气质量。
气体传感器的性能参数
1 灵敏度
2 工作温度范围
指传感器对气体浓度变化 的敏感程度,越高表示越 容易检测到低浓度的气体。

半导体气敏传感器分类 ppt课件

半导体气敏传感器分类  ppt课件
化石油气、煤气和天然气。α-Fe2O3对水蒸气和乙醇 不灵敏,特别适合做家庭可燃气报警器。
2)氧气传感器 Nb2O5对氧气敏感。用其制成氧传感器检测汽车发
动机和锅炉等所排废气中的氧气分压强,以控制其最佳 燃烧状态,以达节能目的。
ppt课件
9
气敏元件外形
其他可燃性 气体传感器
酒精传感器
ppt课件
10
K2线圈失电,其常闭触点K2-2闭合,发光二极管VD1通,发绿光,能点火 起动发动机。
若司机酗酒,气敏器件的阻值急剧下降,使Ua为低电平,U1为高电 平,U3为为低电平,继电器K2线圈通电,K2-2常开触头闭合,发光二极管
VD2通,发红光,以示警告,同时常闭触点K2-1断开,无法起动发动机。 若司机拔出气敏器件,继电器K1线圈失电,其常开触电K1-1断开,仍
ppt课件
7
2)温湿度特性
SnO2传感器的阻值随温度、湿度上升而有规律地减小。 因此除尽量保持恒温、恒湿外,其有效措施是选用温湿
度特性好的气敏元件及在电路中进行温湿度补偿。
3)初期恢复特性及初期稳定特性
经短期存放再通电时,传感器电阻值有短暂的急剧变化
(减小),这一特性称为初期恢复特性,它与元件种类、存
ppt课件
4
A、烧结型气体传感器的结构与符号
烧结型气体传感器的加热方式分为直热式和间热式两种, 其结构与符号如图4-2-1、4-2-2所示。
直热式的加热 丝兼作电极。其结 构简单、成本低、 功耗小;但热容量 小,易受环境气流 影响;因加热丝热 胀冷缩,易使之与 材料接触不良;在 测量电路中,信号 电路和加热电路相 互干扰。
ppt课件
2
2、半导体气敏传感器分类:
半导体气敏传感器的类型可分电阻型和非电阻型 两大类。电阻型有表面电阻型如氧化锡(SnO2)、氧 化锌(ZnO)等和体电阻型(Fe2O3)系列;非电阻型 有MOS场效应管型、二极管型(表面电流型——氢敏传 感器)和固体电解质型。

传感器原理半导体式课件

传感器原理半导体式课件

光电传感器利用光敏元件将光信号转换为电信号,广泛应用于光照强度、光亮度、颜色等参数的检测 。
详细描述
光电传感器通常由光敏元件和辅助元件组成,当光敏元件受到光照时,其电阻值会发生变化,从而产 生电信号。在实践中,光电传感器常用于自动控制、机器人视觉、安全监控等领域。
热电偶传感器的应用实例
光电传感器在环境监测、图像识别、 光通信等领域有广泛应用,例如在自 动控制系统中用于检测物体位置和运 动速度等。
热电偶传感器
热电偶传感器利用热电效应,将温度差转换为电信号。热电偶传感器具有测量精 度高、稳定性好、响应速度快等优点。
热电偶传感器广泛应用于温度测量和控制系统,如工业炉温控制、发动机温度监 测等。
、噪声等环境参数。
在医疗健康领域,传感器 用于监测生理参数,如血
压、血糖、心电等。
02
半导体式传感器原理
半导体材料特性
半导体材料具有导电 性,介于金属和非金 属之间。
半导体材料中载流子 的种类和浓度对传感 器的性能有重要影响。
半导体材料的电阻率 随温度、光照、磁场 等外部条件的变化而 变化。
半导体式传感器工作原理
传感器分类
根据不同的分类标准,传感器可以分 为多种类型,如按工作原理可分为机 械式、光学式、半导体式等;按输出 信号可分为模拟式和数字式等。
传感器的工作原理
转换原理
传感器的工作原理是将输入的非电信号转换为电信号。不同的传感器采用不同 的转换原理,如电阻式传感器利用电阻随压力变化的原理,电容式传感器利用 电容量随位移变化的原理等。
未来发展方向
未来半导体式传感器的发展方向包 括高精度、高稳定性、微型化、集 成化、智能化和网络化等,同时将 不断拓展新的应用领域。

气体传感器ppt课件

气体传感器ppt课件

Va Vg
Va:气敏元件在洁净空气中工作时,负载电阻上的电压输出;
Vg:气敏元件在规定浓度被测气体中工作时,负载电阻的电压输出
15
(3)气敏元件的分辨率 表示气敏元件对被测气体的识别(选择)以及对干扰气体的抑制 能力。气敏元件分辨率S表示为
S Vg Vg Va Vgi Vgi Va
Va—气敏元件在洁净空气中工作时,负载电阻上的输出电压; Vg—气敏元件在规定浓度被测气体中工作时,负载电阻上的电压 Vgi—气敏元件在i种气体浓度为规定值中工作时,负载电阻的电压
(1) MOS二极管气敏器件
MOS二极管气敏元件制作过程是在P型半导体硅片上,利 用热氧化工艺生成一层厚度为50~100nm的二氧化硅(SiO2)层, 然后在其上面蒸发一层钯(Pd)的金属薄膜,作为栅电极,如图 14-5(a)所示。
M(Pd)
SiO2 P—Si
C
Ca
氢气中
空气中
Cs
O
V
(a)
(b)
14.1 概述
14 气 体 传 感 器
气体传感器是将被测气体浓度转换为与其一定关系的电量 输出的装置或器件。
气体传感器是用来检测气体类别、浓度和成分的传感器。
由于气体种类繁多, 性质各不相同,不可能用一种传感器检 测所有类别的气体,按构成气体传感器材料可分为半导体和非 半导体两大类。目前实际使用最多的是半导体气体传感器。
的电阻值)称为加热电阻,用RH表示。直热式的加热电阻值一
般小于5Ω;旁热式的加热电阻大于20Ω。 气敏元件正常工作所需的加热电路功率,称为加热功率,
用PH表示。一般在(0.5~2.0)W范围。
(6)气敏元件的恢复时间 表示在工作温度下,被测气体由该元件上解吸的速度,一般从气

半导体传感器教学PPT课件

半导体传感器教学PPT课件

半导体传感器
三、气敏传感器
半导体气敏传感器的工作原理是:当气敏元件吸附了被测气体时,其导电率 发生了变化。当半导体气敏元件表面吸附气体分子时,由于二者相互接收电 子的能力不同,产生了正离子或负离子吸附,引起表面能带弯曲,导致导电 率变化。
8
半导体传感器
四、湿敏传感器
金属氧化物湿敏传感器的基本结构如图3-68所示。
半导体传感器
一、磁敏传感器
1.霍尔元件 霍尔元件是一种半导体材料的磁电转换元件。它们利用霍尔效应进行工作。
图3-62 霍尔元件及霍尔效应原理 1
半导体传感器
一、磁敏传感器
1.霍元件
图3-63 霍尔元件用于测量的各种实例。 2
半导体传感器
一、磁敏传感器
1.霍尔元件 图3-64表示一种利用霍尔元件调测MTC钢丝绳的工作原理。
11
图3-70表示用于热轧铝板宽度检测的实例。
半导体传感器
六、集成传感器
集成传感器一般具有以下几方面的能力。 (1) 条件调节和温度补偿能力 (2) 通信能力 (3) 自诊断能力 (4) 逻辑判断能力
12
图3-64 3
半导体传感器
一、磁敏传感器
2.磁阻元件 磁电元件是利用半导体材料的磁阻效应来工作的。
图3-65 一种测量位移的磁阻效应传感器。 4
半导体传感器
一、磁敏传感器
3.磁敏管 磁敏二极管和磁敏三极管是20世纪70年代发展出来的新型磁敏传感器。这 种元件检测磁场变化的灵敏度很高。
5
半导体传感器
图3-68 9
半导体传感器
五、固态图像传感器
固体图像传感器从功能上说,他是一个能把接收到的光像分成许多小单元, 并将它们转换成电信号。它的核心部分是电荷耦合器件,简称CCD。

《半导体传感器》课件

《半导体传感器》课件
应用领域
开拓新的应用领域,如医疗健康、环境监测、智能交 通和智能家居等,以满足不断增长的市场需求。
市场
加强国际合作与交流,推动传感器技术的国际市场拓展 ,提高国际竞争力。
THANKS
感谢观看
气体传感器
总结词
检测空气中的有害气体
详细描述
气体传感器利用半导体的气敏效应,能够检 测空气中的有害气体,如一氧化碳、二氧化 硫等。这些传感器在环境保护、工业安全等 领域有广泛应用。
紫外线传感器
总结词
监测紫外线的强度和照射时间
详细描述
紫外线传感器能够监测环境中紫外线的强度 和照射时间,对于预防紫外线辐射损伤和保 护皮肤健康具有重要意义。这些传感器广泛
敏感材料
敏感材料是半导体传感器的重要组成 部分,负责将待测物理量转换为电信 号。
选择敏感材料时需要考虑其稳定性、 灵敏度、响应速度和耐腐蚀性等性能 指标。
常见的敏感材料包括金属氧化物、硅 、陶瓷等,它们具有不同的特性,适 用于不同的应用场景。
敏感材料的制备方法包括化学气相沉 积、物理气相沉积、溶胶-凝胶法等, 这些方法能够控制材料的成分和结构 ,从而影响传感器的性能。
测试的目的是检测传感器的性能指标是 否达到设计要求,以及在不同条件下的 稳定性和可靠性。
03
半导体传感器的性能参数
线性范围与灵敏度
线性范围
衡量传感器输出与输入之间线性关系 的参数,即输入量在一定范围内变化 时,输出量与输入量成正比。
灵敏度
表示传感器输出变化量与输入变化量 之比,即单位输入变化引起的输出变 化量。
半导体传感器的主要应用领域
医疗领域
用于生理参数的监测,如体温、血压、血氧 饱和度等。
环保领域

14-15半导体气体传感器 传感器课件

14-15半导体气体传感器 传感器课件
下面介绍一些至今发展比较成熟的几类湿敏传感器。
一、 氯化锂湿敏Байду номын сангаас阻
氯化锂湿敏电阻是利用吸湿性盐类潮解, 离子导电率发生 变化而制成的测湿元件。该元件的结构如下图所示, 由引线、 基片、 感湿层与电极组成。
氯化锂通常与聚乙烯醇组成混合体, 在氯化锂(LiCl) 溶液中, Li和Cl均以正负离子的形式存在, 而Li+对水分子的 吸引力强, 离子水合程度高, 其溶液中的离子导电能力与浓 度成正比。当溶液置于一定温湿场中, 若环境相对湿度高, 溶液将吸收水分,使浓度降低, 因此, 其溶液电阻率增高。 反之, 环境相对湿度变低时, 则溶液浓度升高, 其电阻率下降, 从而实现对湿度的测量。
二、 气敏传感器的种类
气敏电阻元件种类很多, 按制造工艺上分烧结型、薄膜 型、厚膜型。
(1) 烧结型气敏元件将元件的电极和加热器均埋在金属 氧化物气敏材料中, 经加热成型后低温烧结而成。 目前最常 用的是氧化锡(SnO2)烧结型气敏元件, 它的加热温度较低, 一般在200~300℃, SnO2气敏半导体对许多可燃性气体, 如氢、 一氧化碳、 甲烷、丙烷、乙醇等都有较高的灵敏度。
2. 分类
气体传感器利用半导体与气体接触时电阻或功函数发生变化这
一特性检测气体。气体传感器分为电阻式与非电阻式两种。
电阻式采用SnO2、ZnO等金属氧化物材料制备,有多孔烧结件、 厚膜、 薄膜等形式。根据半导体与气体的相互作用是发生在
表面还是体内,又分为表面控制型与体控制型。
• 非电阻式气体传感器利用气体吸附和反应时引 起的功函数变化来检测气体。它可分为:
1. 半导体气体传感器是利用半导体气敏元件同气体接触, 造成半导体性质发生变化,借此检测特定气体的成分及其浓度。 用半导体气敏元件组成的气敏传感器主要用于工业上天然气、 煤气、石油化工等部门的易燃、易爆、有毒、有害气体的监测、 预报和自动控制, 气敏元件是以化学物质的成分为检测参数的 化学敏感元件。

常用半导体传感器PPT课件

常用半导体传感器PPT课件

KI = KH B → UH = KI I (线性)
KH↑ → KI ↑
KI ↑ 、 I ↑ → UH ↑
.
7
RHIB L UH= d fH(l )
S/L<0.1
.
8
六、材料及结构特点
一般采用以下半导体单晶材料制成:
N型锗、砷化铟、锑化铟
线形度好 受温度影响比锑化铟小
输出没有锑化铟大
输出大 受温度影响大
n为单位体积内自由电子数
霍尔常数, 由半导体材料决定
则: UH= RH I B/ d
取 KH= RH / d 则: UH= KH I B
.
2
UH = KH I B
霍尔电势的大小正比于控制电流I 和磁感应强度B的乘积。KH称为霍尔元 件的灵敏度,它是表征在单位磁感应强 度和单位控制电流时输出霍尔电压大小 的重要参数
建立霍尔效应的时间很短:10-2~ 10-14s 控制电流用交流时,频率可以很高(几千兆赫)
.
4
接触要求:欧姆接触(无PN结) 老式:焊接 新方法:离子注入工艺
溅射工艺 霍尔元件外形及结构: 尺寸:4mm × 2mm × 0.1mm
2 14 3
.
5
三、基本电路 控制电流由E供给 RP为调节电阻 Rf为负载电阻
静电场产生反力: FE=- e EU = - e UH /b 平衡时: FL= FE , - ev B= - e UH /b
b为霍尔元件 的宽度
I
UH= bvB 为控制电流: I=
dQ/
dt
=
b
d
v
n(
-
d为霍尔元件的厚度
e)
b v = I / [d n( - e)]

气体传感器 讲解概要42页PPT

气体传感器 讲解概要42页PPT
气体传感器 讲解概要
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行Biblioteka 权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比
1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以上三种气敏器件都附有加热器, 在实际应用时, 加热器能 使附着在测控部分上的油雾、尘埃等烧掉, 同时加速气体氧化 还原反应, 从而提高器件的灵敏度和响应速度。
附:气敏电阻传感器
气体与人类日常生活密切相关,对气体的检 测已经是保护和改善生态居住环境不可缺少手段Leabharlann 气敏传感器发挥着极其重要的作用。
如生活环境中一氧化碳浓度达0.8~1.15 ml/L 时,就会出现呼吸急促,脉搏加快,甚至晕厥。还 有易燃、易爆气体、酒精等的探测。
第十四章 气体传感器
14.1 14.2 半导体气体传感器 14.3 半导体式传感器的应用
14.1 概述
气体传感器是指能将被测气体浓度转换与其成 一定关系的电量输出的装置或器件。气体传感 器必须满足下列条件:
(1)能够检测爆炸气体的允许浓度有害气体 的浓度,并能及时给出报警、显示和控制信号。 (2)性能长期稳定性好; (3)响应迅速,重复性好; (4)维护方便,价格便宜等。
于是, 表面电阻将由于电子浓度下降而加大, 这类半导瓷 材料的表面电阻将随湿度的增加而加大。如果对某一种半导 瓷, 它的晶粒间的电阻并不比晶粒内电阻大很多, 那么表面层 电阻的加大对总电阻并不起多大作用。
不过, 通常湿敏半导瓷材料都是多孔的, 表面电导占的比例 很大, 故表面层电阻的升高, 必将引起总电阻值的明显升高; 但 是, 由于晶体内部低阻支路仍然存在, 正特性半导瓷的总电阻值 的升高没有负特性材料的阻值下降得那么明显。
通常器件工作在空气中, 空气中的氧和NO2这样的电子兼 容性大的气体, 接受来自半导体材料的电子而吸附负电荷, 结 果使N型半导体材料的表面空间电荷层区域的传导电子减少, 使表面电导减小, 从而使器件处于高阻状态。
一旦元件与被测还原性气体接触, 就会与吸附的氧起反 应, 将被氧束缚的电子释放出来, 敏感膜表面电导增加, 使元 件电阻减小。
二、 气敏传感器的种类
气敏电阻元件种类很多, 按制造工艺上分烧结型、薄膜 型、厚膜型。
(1) 烧结型气敏元件将元件的电极和加热器均埋在金属 氧化物气敏材料中, 经加热成型后低温烧结而成。 目前最常 用的是氧化锡(SnO2)烧结型气敏元件, 它的加热温度较低, 一般在200~300℃, SnO2气敏半导体对许多可燃性气体, 如氢、 一氧化碳、 甲烷、丙烷、乙醇等都有较高的灵敏度。
下面介绍一些至今发展比较成熟的几类湿敏传感器。
一、 氯化锂湿敏电阻
氯化锂湿敏电阻是利用吸湿性盐类潮解, 离子导电率发生 变化而制成的测湿元件。该元件的结构如下图所示, 由引线、 基片、 感湿层与电极组成。
氯化锂通常与聚乙烯醇组成混合体, 在氯化锂(LiCl) 溶液中, Li和Cl均以正负离子的形式存在, 而Li+对水分子的 吸引力强, 离子水合程度高, 其溶液中的离子导电能力与浓 度成正比。当溶液置于一定温湿场中, 若环境相对湿度高, 溶液将吸收水分,使浓度降低, 因此, 其溶液电阻率增高。 反之, 环境相对湿度变低时, 则溶液浓度升高, 其电阻率下降, 从而实现对湿度的测量。
(3)厚膜型气敏元件将气敏材料(如SnO2、ZnO)与一 定比例的硅凝胶混制成能印刷的厚膜胶。把厚膜胶用丝网印 刷 到 事 先 安 装 有 铂 电 极 的 氧 化 铝 ( Al2O3 ) 基 片 上 , 在 400~800℃的温度下烧结1~2小时便制成厚膜型气敏元件。用 厚膜工艺制成的器件一致性较好, 机械强度高, 适于批量生产。
氯化锂湿敏元件的优点是滞后小, 不受测试环境风速影 响, 检测精度高达±5%, 但其耐热性差, 不能用于露点以下 测量, 器件性能的重复性不理想, 使用寿命短。
二、 半导体陶瓷湿敏电阻
半导体陶瓷湿敏电阻通常是用两种以上的金属氧化物半 导体材料混合烧结而成的多孔陶瓷。这些材料有ZnO-LiO
2-V2O5系、 Si-Na2O-V2O5系、 TiO2-MgO-Cr2O3系、Fe3O4 等, 前三种材料的电阻率随湿度增加而下降, 故称为负特性湿 敏半导体陶瓷,最后一种的电阻率随湿度增大而增大,故称 为正特性湿敏半导体陶瓷(为叙述方便,有时将半导体陶瓷简 称为半导瓷)。
烟雾报警器
酒精传感器
二氧化碳传感器
气敏电阻传感器
气敏传感器是利用气敏半导体材料,如氧化锡、 氧化锰。当它们吸收了气体烟雾,如一氧化碳、醇 等时,电阻发生变化。从而使气敏元件电阻值随被 测气体的浓度改变而变化。
实验室中的传感器
燃气报警器
烟雾报警器
酒精传感器
第十五章 湿度传感器
第十五章 湿 度 传 感 器
14.2 半导体气体传感器
1. 半导体气体传感器是利用半导体气敏元件同气体接触,造 成半导体性质发生变化,借此检测特定气体的成分及其浓度。 用半导体气敏元件组成的气敏传感器主要用于工业上天然气、 煤气、石油化工等部门的易燃、易爆、有毒、有害气体的监测、 预报和自动控制, 气敏元件是以化学物质的成分为检测参数的 化学敏感元件。
MgCr2O4-TiO2陶瓷湿度传感器的相对湿度与电阻值之间 的关系, 见图9-8所示。传感器的电阻值既随所处环境的相对 湿度的增加而减少, 又随周围环境温度的变化而有所变化。
(2) ZnO-Cr2O3陶瓷湿敏元件ZnO-Cr2O3湿敏元件的结构 是将多孔材料的电极烧结在多孔陶瓷圆片的两表面上, 并焊上 铂引线, 然后将敏感元件装入有网眼过滤的方形塑料盒中用树 脂固定而做成的, 其结构如图9 - 9所示。
湿度是指大气中的水蒸气含量, 通常采用绝对湿度和相对 湿度两种表示方法。 绝对湿度是指单位空间中所含水蒸气的 绝对含量或者浓度或者密度, 一般用符号AH表示。相对湿度 是指被测气体中蒸气压和该气体在相同温度下饱和水蒸气压 的百分比, 一般用符号RH表示。相对湿度给出大气的潮湿程 度, 它是一个无量纲的量, 在实际使用中多使用相对湿度这一 概念。
由此可见, 不论是N型还是P型半导瓷, 其电阻率都随湿 度的增加而下降。
2.
正特性湿敏半导瓷的导电机理认为这类材料的结构、 电子能量状态与负特性材料有所不同。当水分子附着半导瓷 的表面使电势变负时, 导致其表面层电子浓度下降, 但还不足 以使表面层的空穴浓度增加到出现反型程度, 此时仍以电子 导电为主。
ZnO-Cr2O3传感器能连续稳定地测量湿度, 而无需加热除 污装置, 因此功耗低于0.5 W, 体积小, 成本低, 是一种常用测湿 传感器。
(2)薄膜型气敏元件采用真空镀膜或溅射方法, 在石英 或陶瓷基片上制成金属氧化物薄膜(厚度0.1μm以下), 构成 薄膜型气敏元件。
氧化锌(ZnO)薄膜型气敏元件以石英玻璃或陶瓷作为 绝缘基片, 通过真空镀膜在基片上蒸镀锌金属, 用铂或钯膜作 引出电极, 最后将基片上的锌氧化。氧化锌敏感材料是N型半 导体, 当添加铂作催化剂时, 对丁烷、丙烷、乙烷等烷烃气体 有较高的灵敏度, 而对H2、CO2等气体灵敏度很低。若用钯作 催化剂时, 对H2 、CO有较高的灵敏度, 而对烷烃类气体灵敏 度低。因此,这种元件有良好的选择性, 工作温度在400~500℃ 的较高温度。
3.
(1) MgCr2O4-TiO2湿敏元件氧化镁复合氧化物-二氧化钛 湿敏材料通常制成多孔陶瓷型“湿-电”转换器件, 它是负特性 半导瓷, MgCr2O4为P型半导体, 它的电阻率低, 阻值温度特性 好, 结构如图9 - 7所示, 在MgCr2O4-TiO2陶瓷片的两面涂覆有多 孔金电极。
金电极与引出线烧结在一起, 为了减少测量误差, 在陶瓷 片外设置由镍铬丝制成的加热线圈, 以便对器件加热清洗, 排 除恶劣气氛对器件的污染。 整个器件安装在陶瓷基片上, 电 极引线一般采用铂-铱合金。
该类气敏元件通常工作在高温状态(200~450℃), 目的 是为了加速上述的氧化还原反应。
由上述分析可以看出, 气敏元件工作时需要本身的温度比环 境温度高很多。因此, 气敏元件结构上, 有电阻丝加热, 结构 如图(a)所示, 1和2是加热电极, 3和4是气敏电阻的一对电 极。氧化锡、 氧化锌材料气敏元件输出电压与温度的关系 如下图(b)所示。
1. 负特性湿敏半导瓷的导电机理
由于水分子中的氢原子具有很强的正电场, 当水在半导 瓷表面吸附时, 就有可能从半导瓷表面俘获电子, 使半导瓷表 面带负电。若该半导瓷为N型, 则由于水分子的附着使表面 电势下降。如果表面电势下降较多, 不仅使表面层的电子耗 尽, 同时吸引更多的空穴达到表面层, 有可能使到达表面层的 空穴浓度大于电子浓度, 出现所谓表面反型层, 这些空穴称为 反型载流子。它们同样可以在表面迁移而对电导做出贡献,
2. 分类
气体传感器利用半导体与气体接触时电阻或功函数发生变化这
一特性检测气体。气体传感器分为电阻式与非电阻式两种。
电阻式采用SnO2、ZnO等金属氧化物材料制备,有多孔烧结件、 厚膜、 薄膜等形式。根据半导体与气体的相互作用是发生在
表面还是体内,又分为表面控制型与体控制型。
金属氧化物在常温下是绝缘的, 制成半导体后却显示气 敏特性。
相关文档
最新文档