二元一次方程(组)专题学习-含参方程(组)问题-xs
八年级数学专题 二元一次方程组重难点(参数问题、实际应用问题)(北师大版)
ì3x - 2 y = -1
ìx =1 ìm + 5 =1
ìm = -4
íî3x + 2 y = 7
,解得
í î
y
=
2
,即
íîn
+
3
=
2
,解得
íîn
=
-1
.
(1)学以致用,模仿乐乐同学的“整体换元”的方法,解方程组
ì ïï í ï ïî
x x
+ 3 + 3
y y
+ -
x x
5 5
y y
= =
4 .
-2
试卷第 2 页,共 9 页
义,否则,若把 y=ax+b 代入变形的原方程,必然得到一个恒等式; ③用代入法求出一个未知数的值后,再求另一个未知数时,一般代入变形后得到的方
程比较简单.
2.加减消元法
把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,从而把
解二元一次方程组转化为解一元一次方程.这种解方程组的方法叫做加减消元法,简
联立成方程组,求出未知数的值,然后代入含有参数的方程即可求出参数的值.
四、列方程组解应用题步骤
1.列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未 知量联系起来,找出题目中的相等关系.一般来说,有几个未知量就必须列出几个方
程,所列方程必须满足:
①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数值要相等.
y
=
与 41
íî2
x
+
3
y
=
-7
有相同的解,求
a,b
的值.
二元一次方程组知识点及典型例题
二元一次方程组知识点及典型例题一、 什么是二元一次方程组含有两个未知数的两个一次方程所组成的一组方程,叫二元一次方程组。
例如:272366x y x y +=⎧⎨+=⎩ 二、 什么是二元一次方程组的解二元一次方程组中各方程的公共解,叫做这个二元一次方程组的解。
例如:4321y x y x =-⎧⎨=-⎩ 得1,1.x y =⎧⎨=⎩。
三、 求解二元一次方程组的方法基本思路是“消元”把“二元”变“一元”。
1. 代入消元法。
2. 加减消元法。
四、三元一次方程组的解法1.代入消元法。
2.加减消元法。
五、二元一次方程组与一次函数的关系 两条直线()0:1111≠+=k b x k y l ,()0:2222≠+=k b x k y l 的交点坐标就是关于x,y 的方程组⎩⎨⎧+=+=2211b x k y b x k y 的解。
提示:通常我们可以用解方程组的方法求两直线的交点坐标,也可以通过话图像,利用两直线的交点坐标得出方程组的解。
六、应用二元一次方程组列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;(2)找:找出能够表示题意两个相等关系;(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案.1.鸡兔同笼问题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?2、数字问题例1.一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.例2.一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?例3.今年,小李的年龄是他爷爷的五分之一.小李发现,12年之后,他的年龄变成爷爷的三分之一.试求出今年小李的年龄.例4.小明和小亮做加法游戏,小明在一个加数后面多写了一个0,得到的和为242;而小亮在另一个加数后面多写了一个0,得到的和为341,原来两个加数分别是多少?3、金融、利润问题例1.一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?例2.某人用24000元买进甲、乙两种股票,在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元,试问某人买的甲、乙两股票各是多少元?例3.某单位甲、乙两人,去年共分得现金9000元,今年共分得现金12700元 . 已知今年分得的现金,甲增加50%,乙增加30% . 两人今年分得的现金各是多少元?4、配套问题例1.某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?例2. 某厂买进甲、乙两种材料共56吨,用去9860元。
二元一次方程组含参题型大全--题目
一、二元一次方程及二元一次方程的解 1.二元一次方程的概念 含有两个未知数,并且含未知数项的最高次数是1的方程叫二元一次方程. 判定一个方程是二元一次方程必须同时满足三个条件: ①方程两边的代数式都是整式——整式方程; ②含有两个未知数——“二元”;③含有未知数的项的次数为1——“一次”.2.二元一次方程的一般形式二元一次方程的一般形式为:0ax by c ++=(0a ≠,0b ≠)3.二元一次方程的解使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解. 一般情况下,一个二元一次方程有无数个解.二、二元一次方程组及二元一次方程组的解 1.二元一次方程组的概念 注意:知识点睛中考要求含字母系数的一次方程组(1只有一元(不过一元方程在这里也可看作另一未知数系数为0的二元方程).如2631x x y =⎧⎨-=⎩也是二元一次方程组.(2)定义中“两个”的含义:二元一次方程组的解必须满足方程组中的每一个方程,同时它也必须是一个数对,而不能是一个数. 2.二元一次方程组解的情况(1)在x 、y 的方程组111222a xb yc a x b y c +=⎧⎨+=⎩ ①②中,1a 、2a 、1b 、2b 、1c 、2c 均为已知数,(1a 与1b 、2a 与2b 都至少有一个不等于0),则有:由21b b ⨯-⨯①②得:12212112a b a b x b c b c -=-()由21a a ⨯-⨯①②得:12211221a b a b y a c a c -=-() 当12210a b a b -≠时,方程组有唯一一组解;当12210a b a b -=,且21120b c b c -≠,12210a c a c -≠时,方程组无解; 当12210a b a b -=,且21120b c b c -=,12210a c a c -=时,方程组有无穷多组解; (2)二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解的情况有以下三种:①当111222a b c a b c ==时,方程组有无数多解.(∵两个方程等效) ②当111222a b c a b c =≠时,方程组无解.(∵两个方程是矛盾的) ③当1122a b a b ≠(即a 1b 2-a 2b 1≠0)时,方程组有唯一的解:1221122121121221c b c b x a b a b c a c a y a b a b -⎧=⎪-⎪⎨-⎪=⎪-⎩(这个解可用加减消元法求得)注意:(1)方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按二元一次方程整数解的求法进行.(2)求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解含待定系数的不等式或加以讨论.一、一次方程(组)解的讨论【题01】下列说法正确的是()A.二元一次方程只有一个解.B.二元一次方程组有无数个解.C.二元一次方程组的解必是它所含的二元一次方程的解.D.二元一次方程组一定有解.【题02】不解方程组,判定下列方程组解的情况:①23369x yx y-=⎧⎨-=⎩;②23423x yx y-=⎧⎨-=⎩;③351351x yx y+=⎧⎨-=⎩二、一次方程(组)中字母系数的确定1.根据方程解的具体数值来确定【题03】已知12xy=⎧⎨=⎩与3xy m=⎧⎨=⎩都是方程x y n+=的解,求m与n的值.【题04】方程6ax by+=有两组解是22xy=⎧⎨=-⎩与18xy=-⎧⎨=-⎩,求2a b+的值.【题05】如果二元一次方程20mx ny++=有两个解是22xy=⎧⎨=⎩与11xy=⎧⎨=-⎩,那么下列各组中,仍是这个方程的解的是()A.35xy=⎧⎨=⎩B.62xy=⎧⎨=⎩C.53xy=⎧⎨=⎩D.26xy=⎧⎨=⎩【题06】写出一个以12xy=-⎧⎨=⎩为解的二元一次方程组.例题精讲【题07】写出一个以23xy=⎧⎨=⎩为解的二元一次方程组.【题08】已知43xy=-⎧⎨=⎩是方程组12ax yx by+=-⎧⎨-=⎩的解,则6()a b+=.【题09】已知12xy=-⎧⎨=⎩是方程组12x aybx y+=-⎧⎨-=⎩的解,则a b+=.【题10】已知21xy=⎧⎨=⎩是方程组2(1)21x m ynx y+-=⎧⎨+=⎩的解,求()m n+的值.【题11】已知方程组2421mx y nx ny m+=⎧⎨-=-⎩的解是11xy=⎧⎨=-⎩,求m、n的值.【题12】关于x,y的方程组3205319mx nymx ny+=⎧⎨-=⎩的解为11xy=⎧⎨=-⎩,求m,n的值.【题13】若方程组26ax yx by+=⎧⎨+=⎩的解是12xy=⎧⎨=-⎩,则a b+=.【题14】若方程组2x y bx by a+=⎧⎨-=⎩的解是1xy=⎧⎨=⎩,那么a b-=.【题15】若关于x y,的方程组2x y mx my n-=⎧⎨+=⎩的解是21xy=⎧⎨=⎩,则m n-为()A.1 B.3 C.5 D.2【题16】明明和亮亮二人解关于x 、y 的方程组278mx by cx y +=⎧⎨-=⎩,明明正确地解得32x y =⎧⎨=-⎩,而亮亮因把c 看错了,解得22x y =-⎧⎨=⎩.请问:亮亮把c 看成了多少?【题17】已知方程组278ax by mx y +=⎧⎨-=⎩的解应为32x y =⎧⎨=-⎩,由于粗心,把m 看错后,解方程组得22x y =-⎧⎨=⎩,则abm⋅⋅的值是 .【题18】孔明同学在解方程组2y kx by x =+⎧⎨=-⎩的过程中,错把b 看成了6,他其余的解题过程没有出错,解得此方程组的解为12x y =-⎧⎨=⎩,又已知13k b =+,则b 的正确值应该是 .【题19】已知甲、乙两人共同解方程组51542ax y x by +=⎧⎨-=-⎩,如果甲看错了方程①中的a ,得方程组的解为31x y =-⎧⎨=⎩,而乙看错方程②中的b ,得到方程组的解是54x y =⎧⎨=⎩,请求120082009()10a b +-的值.【题20】甲、乙两人同时解方程组85mx ny mx ny +=-⎧⎨-=⎩①②由于甲看错了方程①中的m ,得到的解是42x y =⎧⎨=⎩,乙看错了方程中②的n ,得到的解是25x y =⎧⎨=⎩,试求正确m n ,的值.【题21】小刚在解方程组278ax by cx y +=⎧⎨-=⎩时,本应解出32x y =⎧⎨=-⎩由于看错了系数c ,而得到的解为22x y =-⎧⎨=⎩求a b c ++的值.【题22】关于x,y的二元一次方程组42132x ymx y-=⎧⎪⎨+=⎪⎩的解中x与y的值相等,试求m的值.【题23】若方程组435(1)8x ykx k y+=⎧⎨--=⎩的解中x比y的相反数大1,求k的值.【题24】若关于x y,的二元一次方程组2351x y mx y m+=⎧⎨+=-⎩的解x与y的差是7,求m的值.【题25】当1x=时,关于x,y的二元一次方程组331ax yx by-=⎧⎨-=-⎩解中的两个数互为相反数,求a,b.【题26】二元一次方程组31242x yx ay+=⎧⎨+=⎩的解中x与y互为相反数,求a的值.【题27】k为何值时,关于x y,的方程组35223x y kx y k-=+⎧⎨-=⎩的解的和为20.【题28】已知方程组325(1)7x ykx k y-=⎧⎨+-=⎩的解x y,,其和1x y+=,求k的值.【题29】已知方程组3542x y mx y m+=-⎧⎨+=⎩中未知数和等于1-,则m=.【题30】m ,n 取何值时,方程组2354x y x my n +=⎧⎨+=⎩(1)有唯一解?(2)没有解?(3)有无穷多组解?【题31】已知关于x 、y 的方程组2122(1)3ax y ax a y +=+⎧⎨+-=⎩,分别求出当a 为何值时,方程组的解为:(1)惟一一组解;(2)无解;(3)有无穷多组解.【题32】选择一组a ,c 值使方程组572x y ax y c +=⎧⎨+=⎩,①有无数多解;②无解;③有唯一的解.【题33】当m n ,为何值时,方程组(21)4mx y nm x y -=-⎧⎨--=-⎩(1)无解;(2)惟一解;(3)有无穷多解.【题34】当m n ,为何值时,关于x y ,的方程组2235mx y nx y n -=⎧⎨+=+⎩(1)有唯一解;(2)有无数解;(3)无解.【题35】k 为何值时,方程组22342kx y x y +=⎧⎨-=⎩无解?【题36】若关于xy 的方程组322(1)mx y x m y m+=⎧⎨+-=⎩有无穷多组解,求m 的值.【题37】已知方程组354x my x ny +=⎧⎨+=⎩无解,m 和n 是绝对值小于10的整数,求m 和n 的值.【题38】如果关于x 、y 的方程组3921ax y x y +=⎧⎨-=⎩无解,那么a = .【题39】m ,n 取何值时,方程2354x y x my n +=⎧⎨+=⎩有无穷多组解?没有解?有唯一解?4.根据方程同解的情况来确定【题40】已知方程组2564x y ax by +=-⎧⎨-=-⎩和方程组35168x y bx ay -=⎧⎨+=-⎩的解相同,求3(2)a b +的值.【题41】关于x y ,的方程组354522x y ax by -=⎧⎨+=-⎩与2348x y ax by +=-⎧⎨-=⎩有相同的解,则()b a -= .【题42】已知方程组5354x y ax y +=⎧⎨+=⎩与2551x y x by -=⎧⎨+=⎩有相同的解,求a b ,的值.【题43】已知x ,y 的方程组241ax by x y +=⎧⎨+=⎩与3(1)3x y bx a y -=⎧⎨+-=⎩的解相同,求a ,b 值.【题44】如果二元一次方程组4x y ax y a +=⎧⎨-=⎩的解是二元一次方程3528x y a --=的一个解,那么a 的值是?【题45】已知关于x y ,的方程组239x y mx y m +=⎧⎨-=⎩的解也是方程3217x y +=的解,求m .【题46】若关于x y ,的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值为?【题47】已知关于x ,y 的二元一次方程(1)(2)520a x a y a -+++-=,当a 每取一个值时,就有一个方程,而这些方程有一个公共解,试求出这个公共解.5.根据方程整数解的情况来确定【题48】a 取什么值时,方程组5331x y ax y +=⎧⎨+=⎩的解是正数?【题49】m 取何整数值时,方程组2441x my x y +=⎧⎨+=⎩的解x y ,都是整数?【题50】已知方程组51x my x y +=⎧⎨+=⎩有正整数解,那么正整数m 的值为 .【题51】要使方程组21620x ay x y +=⎧⎨-=⎩有正整数解,求整数a 的值.【题52】已知m 为正整数,二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解,即x y ,均为整数,则2m = .【题53】已知关于x y ,的方程组: 1 1 1 x by y ax bx ay -=⎧⎪-=⎨⎪+=⎩有解,试证明:221a b ab a b ++++=.。
(完整版)二元一次方程组知识点及典型例题
二元一次方程组小结与复习一、知识梳理(一)二元一次方程组的有关概念1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫作二元一次方程。
2.二元一次方程的一个解:适合一个二元一次方程的一对未知数的值,叫这个二元一次方程的一个解。
任何一个二元一次方程都有无数个解。
3.方程组和方程组的解(1)方程组:由几个方程组成的一组方程叫作方程组。
(2)方程组的解:方程组中各个方程的公共解,叫作这个方程组的解。
4.二元一次方程组和二元一次方程组的解(1)二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫作二元一次方程组。
(2)二元一次方程组的解:二元一次方程组中各个方程的公共解,叫作这个二元一次方程组的解。
(二)二元一次方程组的解法: 1.代入消元法 2.加减消元法二、典例剖析题型一1.二元一次方程及方程组的概念。
二元一次方程的一般形式:任何一个二元一次方程经过整理、化简后,都可以化成0=++c by ax (a,b,c 为已知数,且a ≠0,b ≠0)的形式,这种形式叫二元一次方程的一般形式。
练习1、下列方程,哪些是二元一次方程,哪些不是?12).().(711)(6526)(=++-=++=-y x xy D y x C yx B x z x A练习2、若方程的值。
的二元一次方程,求、是关于)(n n mm y x y xm 43195=+--练习3、(1)若方程(2m -6)x |n |-1+(n +2)y 82-m =1是二元一次方程,则m =_______,n =__________.专题二:二元一次方程组的解法:解二元一次方程组的基本思想是消元转化。
(一)、代入消元法:1、直接代入 例1 解方程组②①y x x y ⎩⎨⎧=--=.134,32跟踪训练:解方程组:(1)90152x y x y+=⎧⎨=-⎩ (2)⎩⎨⎧-==+73825x y y x2、变形代入 例2 解方程组②①y x y x ⎩⎨⎧=+=-.1043,95跟踪训练:(1)⎩⎨⎧-=--=-.2354,42y x y x (2)⎩⎨⎧=+=+②①77322y x y x(3) ⎩⎨⎧=-=+.123,205y x y x (4) ⎩⎨⎧=-=+②①5231284y x y x(二)、加减消元法例题、解方程组(1)⎩⎨⎧=+=-524y x y x (2)⎩⎨⎧=-=-322543y x y x (3).⎩⎨⎧=+=+.1034,1353y x y x跟踪训练:(1) (2) (3)⎩⎨⎧=+=-1023724y x y x(4) (5)⎪⎩⎪⎨⎧=++-=--9275320232y y x y x (6)11,233210;x y x y +⎧-=⎪⎨⎪+=⎩(三)、选择适当的方法解下列方程组 (1)⎩⎨⎧=+---=+.5)3()1(2),1(32x y x y (2)⎩⎨⎧-=+---=+--23)3(5)4(44)3()4(2y x y x(3)⎪⎩⎪⎨⎧-=+-++=+3)43(4)1(3)2(311y x y x (4)x 2y+2=02y+22x536⎧⎪⎨⎪⎩---=题型三:代数式的变形 1、在方程=5中,用含的代数式表示为:= ,当=3时,= 。
二元一次方程组知识点整理、典型例题总结
二元一次方程组知识点整理、典型例题总结二元一次方程组一、知识点总结1、二元一次方程:含有两个未知数(x和y),并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程,它的一般形式是ax+by=c(a≠0,b≠0)。
2、二元一次方程的解:一般地,能够使二元一次方程的左右两边相等的两个未知数的值,叫做二元一次方程的解。
3、二元一次方程组:含有两个未知数(x和y),并且含有未知数的项的次数都是1,将这样的两个或几个一次方程合起来组成的方程组叫做二元一次方程组。
4、二元一次方程组的解:二元一次方程组中的几个方程的公共解,叫做二元一次方程组的解。
二元一次方程组解的情况:①无解,例如:{x+y=1,2x+2y=3};②有且只有一组解,例如:{x+y=1,2x+y=2};③有无数组解,例如:{x+y=1,2x+2y=2}。
5、二元一次方程组的解法:代入消元法和加减消元法。
6、列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步:(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数;(2)设:找出能够表示题意两个相等关系,并用字母表示其中的两个未知数;(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案。
二、典型例题分析例1:二元一次方程组{x=2.2x-3m=1}的解,求m、n的值。
例2:若{nx-my=-5.y=3},求m、n的值。
例3:方程x+3y=10在正整数范围内有哪几组解?例4:将方程10-2(3-y)=3(2-x)变形,用含有x的代数式表示y。
例5:已知{(m+1)x+(n-1)y}/nm=1是关于x、y的二元一次方程,求nm的值。
例6:若方程2m-13n-2x+5y=7是关于x、y的二元一次方程,求m、n的值。
例7:(1)用代入消元法解方程组{7x+5y=3.2x-y=-4}。
二元一次方程组中含参数问题
明看错了方程②中的 c,得到的解为 xy==1-. 3,试求 a,b,c 的值.
题型3.错解问题
练习
1.已知方程组 4axx
5y by
15 2
①
② ,由于甲看错了方程①中的 a
得到方程的解为
x
y
13 1
,乙看错了方程②中的
b
得到方程组的
解为
x
y
5 4
,求
a+b
的值是多少?
题型3.错解问题
题型4 设参数法求比值
例 4.已知 x,y 的值满足等式x+1=y+3=x+y, 245
求式子3x+2y+1的值. x+2y+3
题型4 设参数法求比值
练习 1.已知 x∶y=2∶3,且2x-y-5=x-y, 2 63
求 x,y 的值.
题型4 设参数法求比值小结
一般地,含有连等形式或者比例关系的方程,通常可 以设比例系数为一个参数k,再讲其他未知数都用k表示 求解。
二元一次方程组中含参数问题
题型1 方程组的解满足某一条件问题
例 1:关于 x 与 y 的二元一次方程组
x x
y y
5k 9k
的解也是二元
一次方程 2x 3y 6 的解,则 k =______
题型1 方程组的解满足某一条件问题
x 2y 3m
练习 1.关于 x、y 的方程组 x y 9m 的解是方程 3x+2y=34 的一组解,求 m 的值.
的哪些值,方程组
y
(2k
1) x
4
至少有
一组解?
题型6 方程组解的个数问题
关于
x,y
的方程组
aa12xx
b1 y b2 y
《二元一次方程组》知识讲解及例题解析
《二元一次方程组》知识讲解及例题解析◆知识讲解1.二元一次方程组的有关概念二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1•的整式方程叫做二元一次方程.二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集.二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.2.二元一次方程组的解法代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相差,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.3.二元一次方程组的应用对于含有多个未知数的问题,利用列方程组来解,一般比列一元一次方程解题容易得多.列方程组解应用问题有以下几个步骤:(1)选定几个未知数;(2)依据已知条件列出与未知数的个数相等的独立方程,组成方程组;(3)解方程组,得到方程组的解;(4)检验求得未知数的值是否符合题意,符合题意即为应用题的解.◆例题解析例1 已知21xy=⎧⎨=⎩是方程组2(1)21x m ynx y+-=⎧⎨+=⎩的解,求(m+n)的值.【分析】由方程组的解的定义可知21xy=⎧⎨=⎩,同时满足方程组中的两个方程,将21xy=⎧⎨=⎩代入两个方程,分别解二元一次方程,即得m 和n 的值,从而求出代数式的值.【解答】把x=2,y=1代入方程组2(1)21x m y nx y +-=⎧⎨+=⎩中,得22(1)12211m n ⨯+-⨯=⎧⎨+=⎩ 由①得m=-1,由②得n=0.所以当m=-1,n=0时,(m+n )=(-1+0)=-1.【点评】如果是方程组的解,那么它们就能满足这个方程组中的每一个方程. 例2 “5.12”汶川大地震后,灾区急需大量帐篷.•某服装厂原有4条成衣生产线和5条童装生产,工厂决定转产,计划用3天时间赶制1000•顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷105顶;•若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶.(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?【解答】(1)设每条成衣生产线和童装生产线平均每天生产帐篷各x ,y 顶,则210523178x y x y +=⎧⎨+=⎩ 解得:x=41;y=32答:每条成衣生产线平均每天生产帐篷41顶,每条童装生产线平均每天生产帐篷32顶.(2)由3×(4×41+5×32)=972<1000知,即使工厂满负荷全面转产,也不能如期完成任务.可以从加班生产,改进技术等方面进一步挖掘生产潜力,或者动员其他厂家支援等,想法尽早完成生产任务,为灾区人民多做贡献.例3 某商场正在热销2008年北京奥运会吉祥物“福娃”和徽章两种奥运商品,根据下图提供的信息,•求一盒“福娃”玩具和一枚徽章的价格各是多少元?【分析】本题以图文形式提供了部分信息,主要考查学生运用二元一次方程组解决实际问题的能力.【解答】设一盒“福娃”玩具和一枚徽章的价格分别为x 元和y 元.依题意,得214523280x y x y +=⎧⎨+=⎩解这个方程组,得12510x y =⎧⎨=⎩ 故一盒“福娃”玩具的价格为125元,一枚徽章的价格为10元.例4 为满足用水量不断增长的需求,昆明市最近新建甲,乙,•丙三个水厂,这三个水厂的日供水量共计11.8万m 3,•其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万m 3.(1)求这三个水厂的日供水量各是多少万立方米?(2)在修建甲水厂的输水管道的工程中要运走600t 土石,运输公司派出A 型,B •型两种载重汽车,A 型汽车6辆,B 型汽车4辆,分别运5次,可把土石运完;或者A 型汽车3辆,B 型汽车6辆,分别运5次,也可把土石运完,那么每辆A 型汽车,每辆B 型汽车每次运土石各多少吨?(每辆汽车运土石都以准载重量满载)【分析】(1)可设甲水厂的日供水量是x 万m 3,则乙水厂的日供水量是3x 万m 3,丙水厂的日供水量是(12x+1)万m 3,由三个水厂的日供水量总和为11.8万m 3,可列方程x+3x+12x+1=11.8; (2)设每辆A 型汽车每次运土石xt ,B 型车每辆每次运土石yt ,•依题意可列方程组30206001530600x y x y +=⎧⎨+=⎩解方程后可求解.【解答】(1)设甲水厂的供水量是x 万m 3,则乙水厂的日供水量是3x 万m 3,丙水厂的日供水量是(12x+1)万m 3. 由题意得:x+3x+12x+1=11.8,解得x=2.4. 则3x=7.2,x+1=2.2.答:甲水厂日供水量是2.4万m 3,乙水厂日供水量是7.2万m 3,•丙水厂日供水量是2.2万m 3.(2)设每辆A 型汽车每次运土石xt ,每辆B 型汽车每次运土石yt ,由题意得: 30206001530600x y x y +=⎧⎨+=⎩ ∴1015x y =⎧⎨=⎩答:每辆A型汽车每次运土石10t,每辆B型汽车每次运土石15t.【点评】本例系统地考查了一元一次方程和二元一次方程组这两个重要内容,在同一背景下提供不同的动作方案是近年中考应用题的发展方法.。
二元一次方程组--辅导讲义(学)
二元一次方程组一、知识梳理知识点1. 二元一次方程组的有关概念二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1•的整式方程叫做二元一次方程.二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集.二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解. 例1.方程41ax yx -=-是二元一次方程,则a 的取值为( )A 、0a ≠B 、1a ≠-C 1a ≠D 、2a ≠ 例2.若二元一次方程321x y-=有正整数解,则x 的取值应为( )A 正奇数B 、正偶数C 、正奇数或正偶数D 、0例3.已知二元一次方程组45ax by bx ay +=⎧⎨+=⎩ 的解是21x y =⎧⎨=⎩,则_____.a b +=练习1.已知,x y 满足方程组⎩⎨⎧=+=+4252y x y x ,则x y -的值为 。
2.请写出一个以,x y 为未知数的二元一次方程组,且同时满足下列两个条件:①由两个二元一次方程组成;②方程的解为⎩⎨⎧==32y x ,这样的方程组可以是___________.知识点2.二元一次方程组的解法代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相差,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.例1:解方程组:(1)32528x yx y+=⎧⎨-=⎩(2)2931x yy x+=⎧⎨-=⎩例2解方程组:4143314312 x yx y+=⎧⎪⎨---=⎪⎩练习:已知关于、的二元一次方程组的解满足二元一次方程,求的值。
专题07二元一次方程(组)(含解析).docx
专题07二元一次方程(组)一、解读考点知识点复习冃标二元一次方程的有关概念1.二元一次方程的概念会识别二元一次方程。
2.二元一次方程的解会识别一组数是不是二元一次方程的解。
3.二元一次方程组理解二元一次方程纟R的概念并会判断。
二元一次方程的解法带入消元加减消元会选择适当的方法解二元一次方程组。
二元一次方程的应用由实际问题抽彖出一元一次方程要列方程,首先耍根据题意找出存在的等量关系.最后要检验结果是不是合理.二、考点归纳归纳1:二元一次方程的有关概念基础知识归纳:1、二元一次方程:含冇两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程.2、二元一次方程的解:使二元一次方程左右两边的值相等的一对耒知数的值,叫做二元一次方程的一个解.3、二元一次方程纟山两个(或两个以上)二元一次方程合在一起,就纽成了一个二元一次方程组.4、二元一次方程组的解使二元一次方程纟R的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程纟R的解.基本方法归纳:判断一个方程是不是二元一次方程关键看未知数的个数和未知项的最高次数;判断方程组的解只需带入方程组组看是不是成立即可.注意问题归纳:判断一个方程是不是二元一次方程特别注意是:未知项的最髙次数而不是未知数的次数. 【例1】方程组卩+yi的解是()I 2x - y = 5【答案】D. 【解析】试题分析:根据方程组的解的意义,将各选项分别代入方程组验算作出选择:丘:不满足2x-y = 5,故它不是方程组的解;3. {X = ;2不满^2x-y = 5,故它不是方程组的解;iy = 3c. 'X = ;不满足X-y = 1,故它不是方程组的解;.V =1|\ = ?D. <、满足x-y=l 和2x-y = 5>故它是方程组的解•i v = —1故选D ・ 考点:方程组的解.归纳2:二元一次方程的解法基础知识归纳:解一元二次方程组的方法(1)代入法(2)加减法基本方法归纳:解一元二次方程组的方法关键是消元。
七年级数学解含参的二元一次方程组(人教版)(专题)(含答案)
由题可知两个单项式为同类项,所以 ,
变形得
②-①,得
把 代入①,得
因此a,b的值分别为2,-1.
故选A.
试题难度:三颗星知识点:解二元一次方程组
二、填空题(共1道,每道10分)
10.若方程组 的解是 ,某学生看错c,求出解为 ,则正确的c的值为____,b=____.
答案:1, -2
解题思路:
解含参的二元一次方程组(人教版)(专题)
一、单选题(共9道,每道10分)
1.若关于 的方程组 的解是 ,则m+n的平方根为( )
A.4 B.-2
C.2 D.±2
答案:D
解题思路:
把方程组的解 代入 ,得
解得
因此m+n=4,4的平方根为±2.
故选D.
试题难度:三颗星知识点:二元一次方程组的解
2.已知方程组 的解是 ,则 的关系式( )
7.若方程组 与 有相同的解,则a,b的值分别是( )
A.2,3 B.3,2
C.2,-1 D.-1,2
答案:B
解题思路:
∵方程组 与 有相同的解,
∴方程组 与 也有相同的解.
,
②×4+①,得11x=22,解得x=2,
把x=2代入②,解得y=-1,
∴该方程组的解为 .
将其代入方程组 ,
得:
解得 .
故选B.
∴该方程Hale Waihona Puke 的解为 .将其代入方程组 ,
得:
解得, .
故选A.
试题难度:三颗星知识点:解二元一次方程组
6.已知方程组 和 有相同的解,则a和b的值为( )
A. B.
C. D.
答案:D
二元一次方程常见含参题型解法
二元一次方程常见含参题型解法一、常见的含参二元一次方程题型有哪些?在解题时,我们常常会遇到含参的二元一次方程题型,这些题型可能涉及到不同的参数取值范围,需要采用不同的方法进行求解。
常见的含参二元一次方程题型包括但不限于以下几种:1. 一元二次方程的参数问题:如给定参数a,求方程x^2 + 2ax + a^2 - 3 = 0的解;2. 参数范围问题:如对于方程(x+2)(x-a) = 0,a取什么值时方程有两个相异的实根;3. 参数性质问题:如对于方程ax^2 + (a-1)x + 1 = 0,若a>0,求x 的取值范围;4. 参数关系问题:如对于方程(2a-1)x^2 + (a+1)x + 1 = 0,若方程有两个相反数根,求a的取值范围。
以上仅为一些常见的含参二元一次方程题型,实际上在解题过程中还会遇到更多类型的题目,需要根据具体情况进行灵活求解。
二、常见的含参二元一次方程解法有哪些?对于含参的二元一次方程题型,我们通常可以采用以下几种解法:1. 代数法:对于一些直接的参数问题,可以采用代数的方法进行求解。
通过将参数代入方程中,列出相关方程式,进而求得方程的解。
例如对于方程x^2 + 2ax + a^2 - 3 = 0,我们可以直接代入参数a,然后利用求根公式求得方程的解。
2. 几何法:对于一些参数范围或参数性质问题,可以采用几何的方法进行求解。
通过在坐标平面上绘制函数图像、直线或抛物线等,来分析参数的取值范围或者特定性质。
例如对于方程(x+2)(x-a) = 0,我们可以通过绘制函数图像得出a的取值范围。
3. 参数化求解法:对于一些参数关系问题,可以采用参数化的方法进行求解。
通过设定参数的具体取值,然后根据参数的性质进行讨论,并最终得出方程的解。
例如对于方程(2a-1)x^2 + (a+1)x + 1 = 0,我们可以对a进行参数化,然后讨论参数的取值范围。
以上是常见的含参二元一次方程解法,实际应用中还可能会有其他求解方法,需要根据具体题目进行灵活选择。
人教版七年级下册第八章含参二元一次方程组解法、同解、错解问题专题
含参二元一次方程组解法、同解、错解问题含参问题类型类型题1:含参问题构建二元一次方程组解方程例题1.若0)532(54=-++-+n m n m ,求()2n m -的值。
2.已知方程3)5()2()24(12=+----b a y b x a 是关于x、y的二元一次方程,求a与b的值。
3.已知与互为相反数,则=______,=________.4.已知2a y+5b 3x 与b 2-4y a 2x 是同类项,那么x,y的值是().学生/课程年级学科授课教师日期时段核心内容含参二元一次方程组解法、同解、错解问题教学目标1.掌握含参的二元一次方程组的同解、错解的解题方法2.掌握复杂的二元一次方程组的解法2.了解二元一次方程组的解有无数组解、唯一解与无解,会进行简单的求解二元一次方程组的灵活应用针对练习1.若|x-2|+(3y+2x)2=0,则的值是.2.若x a+1y-2b与-x2-b y2的和是单项式,则a、b的值分别的()A.a=2,b=-1B.a=2,b=1C.a=-2,b=1D.a=-2,b=-13.若单项式与是同类项,则,的值分别是多少4..若|x-y-1|+(2x-3y+4)2=0,则x=,y=.5.若是关于,的二元一次方程,则()A.,B.,C.,D.,类型题2:恒成立问题构建二元一次方程组解方程例题1.在方程(x+2y-8)+m(4x+3y-7)=0中,找出一对x,y值,使得m无论取何值,方程恒成立.2.在方程(a+6)x-6+(2a-3)y=0中,找出一对x,y值,使得a无论取何值,方程恒成立.类型题3:(新题型)含有三个未知数的方程组求比例例题1.已知满足方程组,求【学有所获】1)口述:2个未知数需要几个方程,3个未知数需要几个方程,n个未知数需要几个方程2)整体思想一般运用在哪些方面,试着自己归类总结。
针对练习1.已知4x-3y-6z=0,x+2y-7z=0,且xyz≠0.(1)请用含z的代数式表示x、y,并求出x:y:z的值(2)你能求出的值。
含参数的二元一次方程组
专题:含参的二元一次方程组一、同解问题例1:已知关于 二元一次方程组 的解是二元一次方程 的解,求 的值。
分析:用两个不含参数的二元一次方程重组,求解得参数。
变式1:已知方程组23352x y mx y m +=⎧⎨+=+⎩的解适合8x y +=,求m 的值.例2:已知二元一次方程组 的解和 的解相同,求 的值。
变式2:已知二元一次方程组 的解和 的解相同,求 的值。
二、解的性质例3:已知关于 二元一次方程组 的解的值互为相反数,求 的值。
143x y x ay -=⎧⎨+=⎩3=+y x a y x ,⎩⎨⎧=-=+12354y x y x ⎩⎨⎧=-=+13ny mx ny mx n m ,⎩⎨⎧=+=+354ny mx y x ⎩⎨⎧=-=-1123ny mx y x n m ,y x ,⎩⎨⎧=-+=+3)1(734y k kx y x y x ,k变式3:已知方程组 的解 与 的和是负数,求k 的取值范围。
变式4:若方程组 的解 满足 ,求 的取值范围。
分析:观察方程组和所求式子的结构共性,把二元一次方程组中的参数作整体化处理三、错解问题例4:甲乙两人同时解关于 的方程组 ,甲看错了 ,求得的解为 ,乙看错了 ,求得的解为 ,你能求出原题中的 的值吗?分析:将解代入没看错的方程变式5:甲、乙两人共同解方程组51542ax y x by +=⎧⎨-=-⎩①②,由于甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程②中的b ,得到方程组的解为54x y =⎧⎨=⎩.试计算201720181()10a b +-的值.⎩⎨⎧-=+=-k y x ky x 5132x y ⎩⎨⎧=++=+3313y x k y x y x ,10<+<y x k y x ,⎩⎨⎧=-=+123by x y ax b ⎩⎨⎧-==11y x a ⎩⎨⎧=-=31y x b a ,例5:已知 ,求 的值。
二元一次方程(组)含参问题
二元一次方程(组)含参问题 二元一次方程(组)中经常会出现含有参数的题目,在解决这类问题之前,我们首先要搞清楚什么是未知数?什么是参数?二元一次方程(组)中的“元”就是未知数的意思,所谓的“二元”就是两个未知数,我们常用x 、y 、z 来表示。
一般来说,初中阶段提及的整式方程或分式方程中,除了未知数以外的字母我们一般把它看作常数(即参数),我们常用m 、k 等表示。
在二元一次方程(组)中含参问题主要包括以下几种:1.根据定义求参数什么是一元二次方程?含两个未知数且未知项的最高次数是1的方程。
即同时满足以下几个条件的方程就是二元一次方程:①含两个未知数;②未知项的最高次数是1;③等号的左边和右边都是整式。
例题1、若方程21221=++-m n m y x是二元一次方程,则mn=______.例题2、已知关于x 、y 的二元一次方程()() ,6342232=++---n m y n m 则m=_______. 备注:除了要满足次数为1,还要满足系数不能为0.2. 同解类问题什么是同解?两个方程组一共含有四个一元二次方程,这四个方程的解相同。
例:已知x 、y 的方程组⎩⎨⎧-=+=-1332by ax y x 和方程组⎩⎨⎧=+=+3321123by ax y x 的解相同,求a 、b 值。
3.用参数表示方程组的解类问题已知方程组⎩⎨⎧=+=-k y x k y x 232的解满足x+y=2,则k=________.4.错解类问题遇到错解类问题怎么处理?不要讲解代入看错的方程里,代入另外一个方程中去。
例:小明和小红同解一个二元一次方程组⎩⎨⎧=+=+)2(1)1(16ay bx by ax ,小明把方程(1)抄错,求得解为⎩⎨⎧=-=31y x ,小红把方程(2)抄错,求得解为⎩⎨⎧==23y x ,求a 、b 的值。
5. 整体思想类 在做一元二次方程组的题目前,先要观察方程组的特点,不要急于直接用参数表示未知数,看一下将两个方程相加或者相减能不能得到我们需要的结论。