七年级数学下册第五章相交线与平行线5.1.2垂线新版新人教版PPT课件

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)设∠AOC=x°,∠AOD=5x°,则x°+5x°=
180°,
得x°=30°,∴∠AOC=30°.
∴∠EOD=∠BOD=∠AOC=30°.
∴∠AOE=180°-∠AOC-∠EOD=120°,
∴∠EOF= ½ ∠AOE=60°.
2021
18
感谢聆听
2021
19
25°,∴∠BOE=∠DOE-20∠21 BOD=65°.
16
培优学案
15.如图所示,直线AB,CD相交于点O,作 ∠DOE= ∠BOD,OF平分∠AOE. (1)判断OF与OD的位置关系; (2)若∠AOC ∶∠AOD=1∶5,求∠EOF的度数.
2021
17
培优学案
(1)∵OF平分∠AOE,∴∠EOF=½ ∠AOE. ∵∠EOD=∠BOD,∴∠EOD= ½ ∠EOB. ∴∠FOD=∠FOE+∠EOD= ½ ∠AOE+ ½ ∠EOB = ½ (∠AOE+∠EOB)= ½ ∠AOB=90°, ∴OF⊥OD;
∠1=52°可得∠BOE的度数,再利用对顶 角相等可得∠2的度数. 【答案】C 【点拔】此题主要考查了垂直的概念,得出∠BOE 的度数是解题的关键.
2021
4
课堂导学
对点训练一 1.如图,直线CD上有一点O,过点O作OA⊥CD,OB
平分∠AOD,则∠BOC的度数是____1_3_5____. °
2021
2.过一点有且只有___一__条_____直线与已知直线垂直. 3.如图,如果AB⊥CD,那么有∠AOC=___9_0___;如
果∠AOD=90°, 那么有_A_B_⊥__C_D__. °
2021
2
课前预习
4.连接直线外一点与直线上各点的所有线段中, ___垂__线__段_____最短,简单说成__垂__线__段__最__短__.
5.直线外一点到这条直线的__垂__线__段____的长度, 叫做点到直线的距离.
2021
3
课堂导学
知识点1:垂线的概念和性质 【例1】 如图,三条直线相交于点O.若CO⊥AB,
∠1=52°,则∠2等于( ) A.37° B.28° C.38° D.47° 【解析】首先根据垂直定义可得∠BOC=90°,再由
2021
15
课后巩固
14.如图,直线AB与CD相交于点O,OE⊥CD, OF⊥AB,∠DOF=65°.求: (1)∠AOC的度数; (2)∠BOE的度数.
第14题图 (1)∵OF⊥AB,∴∠BOF=90°,又∠DOF=65°,
∴∠BOD=∠BOF-∠DOF=25°,∴∠AOC=∠BOD=
25°.
(2)∵OE⊥CD,∴∠DOE=90°,又由(1)得∠BOD=
2021
9
课堂导学
对点训练二
6.如图,点B到直线AC的距离是线段( B )的长度.
A.AB
B.CB
C.BD
D.AC
2021
10
课后巩固
7.如图,直线AB、CD、EF相交于O,CD⊥EF,∠AOC= 30°,则∠AOF=_____6_0_°___,∠BOC=_____1_5_0___.
°
第7题图
8.如图,直线AB、CD交于点O,EO⊥AB,垂足为O, ∠EOC=35°,则∠AOD=__1_2_5___度.
12.如图,AC⊥a,AB⊥b,垂足分别为A、B,则A 点到直线b的距离是线段___A_B____的长.
第12题图
2021
14
课后巩固
13.已知,如图,OA⊥OB,直线CD过O点,且 ∠AOC=30°,求∠BOD的度数.
第13题图
∵OA⊥OB, ∴∠AOB=90°,又∠AOC=30°, ∴∠BOC=∠AOB-∠AOC=60°, ∴∠BOD=180°-∠BOC=120°.
5
课堂导学
对点训练一 2.如图,直线AB,CD交于点O,OE⊥AB,OD平分 ∠BOE,则∠AOC=______4_5___度.
3.在下列各图中,分别过点C画AB的垂线.
2021
6
课堂导学
Байду номын сангаас
知识点2:垂线段的性质和点到直线的距离 【例2】 如图,要把河中的水引到水池A中,应在河岸
B处(AB⊥CD)开始挖渠才能使水渠的长度最短
对点训练二
4.如图,在铁路旁有一李庄,现要建一火车站,为了
使李庄人乘车最方便,请你在铁路线上选一点来建
火车站,应建在
(A)
A.A点
B.B点
C.C点
D.D点
2021
8
课堂导学
对点训练二
5.如图是小亮跳远时沙坑的示意图,测量成绩时先使 皮尺从后脚跟的点A处开始并与起跳线l于点B处成 直角,然后记AB的长度,这样做的理由是 ( A ) A.垂线段最短 B.过两点有且只有一条直线 C.两点之间线段最短 D.过一点可以做无数条直线
°
第8题图
2021
11
课后巩固
9.如图,AB,CD相交于点O,OE⊥AB,垂足为O, ∠COE=44°,则∠AOD=___1_3_4_____. ° 第9题图
10.如图,AB⊥l,垂足为B,C为l上异于B的点, 则AB<AC的理由是____垂__线__段__最__短________.
第10题图
2021
核心目标
理解垂线、垂线段的概念,会用三角尺或量角器过 一点画已知直线的垂线;掌握垂线的性质及点到直 线的距离的概念.
2021
1
课前预习
1.直线AB、CD相交于点O,∠AOD=90°,直线AB与 CD的关系是_互__相__垂__直____,记作_A_B__⊥__C_D_, 其中 的一条直线叫做另一条直线的__垂__线____,交 点O 叫做__垂__足____.
12
课后巩固
11.完成两个推理: (1)∵AB⊥CD(已知),
∴∠ACD=____9_0_°__,(_____垂__直__的__定__义___) (2)∵∠ACD=90°(已知), ∴_____A_B__⊥__C_D______(____垂__直__的__定__义____)
第11题图
2021
13
课后巩固
,这样做依据的几何学原理是
()
A.两点之间线段最短 B.点到直线的距离
C.两点确定一条直线 D.垂线段最短
【解析】 连接直线外一点与直线上所有点的连线,垂
线段最短,所以,沿AB开渠,能使所开的渠
道最短.
【答案】 D
【点拔】 本题是垂线段最短在实际生活中的应用,体
现了数学的实际运202用1 价值.
7
课堂导学
相关文档
最新文档