13能被25整除的数1PPT课件
合集下载
《能被25整除数》课件
基础练习
判断题
一个数如果末尾有0,那么这个数一定能被25整除。
选择题
下列哪个数能被25整除?
填空题
已知一个数能被25整除,那么这个数的末尾三位数一定是____。
进阶练习
计算题
求出下列各数的因数,并判断哪 些能被25整除。
应用题
一个班级有30名学生,如果每5 名学生一组,可以分成多少组? 如果每组分发25个苹果,总共需 要多少个苹果?
。
近似计算
在近似计算中,如果一个数的近 似值能被25整除,那么该数的真 实值也很有可能能被25整除。
应用性质
日常生活
计算机编程
在日常生活中,能被25整除数的应用 非常广泛,例如购物时找零钱、计算 时间、距离等。
在计算机编程中,能被25整除数的应 用也很常见,例如在处理数据、计算 内存地址等场合中,能被25整除数的 特性经常被利用。
运算性质
能被25整除数的加、减、乘、除等运算结果也能被25整除。
计算性质
判断方法
通过计算一个数除以25的余数, 如果余数为0,则该数能被25整
除。
简化计算
在计算过程中,可以通过将一个 数乘以4或除以4的方法来简化计 算,因为一个数乘以4后再除以 25相当于直接除以100,而除以 4后再除以25相当于直接除以10
科学计算
在科学计算中,能被25整除数的应用 也非常重要,例如在物理学、化学、 生物学等领域中,能被25整除数的单 位经常被使用。
03
能被25整除数的应用
数学领域
中有着广泛的应用,特别是在数论和代数领域 。例如,可以通过能被25整除数的性质来证明一些数学定理或推导某些数学公 式。
未来展望
新的数学工具和方法的应用
四年级数学下册 能被2、3、5整除的数课件 青岛版五年制
练一练
1.迅速、准确的说出下列哪些数能被2整除?哪些数能 被3整除?哪些数能被5整除?哪些数能同时被2和5整 除?
27、345、90、88、243、111、89760、 156232、 、2331、873、895、256、 342、47895、476、6574、
0
练一练
小秋的妈妈告诉他一个手机 号码,并且这个号码能同时被2、 3、5、整除。请你帮小秋把这个 手机号码补充完整。
能被2、3、5整除数的特征
1.个位上是0、2、4、6、8的数能被2整除;
2.个位上是0或5的数能被5整除;
3.一个数的各位上的数的和能被3整除, 这个数就能被3整除。 4.能被2整除的是偶数;不能被2整除的数是 奇数。 5.个位上是0的数能同时被2和5整除。
个位上是0的数能 同时被2和5整除;
0、10、20 2、12、22 4、14、24 6、16、26 8、18、28 ……
看一看
10、20、30、40、50、
15、25、35、45、55、
……
看一看Βιβλιοθήκη 3、6、9、12、15、18、 21、24、27、30、 33…… 12 1+2=3 27 2+7=9
说一说
1.个位上是0、2、4、6、8的数能被2整除; 2.个位上是0或5的数能被5整除; 3.一个数的各位上的数的和能被3整除, 这个数就能被3整除。
本节课我们主要来学习能被2、 3、5整除的的数,同学们结合 实例要理解并掌握被2、3、5整 除的数的特征,能够解决相关 的实际问题。
写一写
(每组最少写5个,并且同桌不能相同。)
1. 哪些数是 的倍数?
2. 哪些数有约数 ?
3. 哪些数能被 整除?
六年级数学上册 1.3 能被2-5整除的数(第1课时)课件 沪教版
1. 翻开你的数学课本,所有左边的页码都能被2整除 吗?所有右边的页码都能被2整除吗?左边和右边页 码个位上的数各有什么特征? 2. 偶数:能被2整除的整数叫做偶数,
பைடு நூலகம்
奇数:不能被2整除的整数叫做奇数. 3.
奇数 正整数按照能否被2整除分类: 正整数 偶数
4.问题: (1)奇数的个位上的数有什么特点呢? 奇数的个位上的数是奇数. (2)在连续的正整数中(除了1外),与奇数相邻的 两个数是奇数还是偶数?与偶数相邻的两个数呢? 与奇数相邻的两个数是偶数, 与偶数相邻的两个数是奇数. ※ 与偶数2k相邻的两个数是奇数 2k 1和 2k 1 .
(2)如果要使它是5的倍数,那么这个三位数又是多少呢?
分析 要使这个三位数是5的倍数,它的个位上是5, 6和8分别可以是十位上或百位上的数,所以有两种情况. 685或865.
运用新知
6.选择题 三个连续偶数不可以表示为( B ) A.2n-2,2n,2n+2 B.a-1,a,a+1 C.m,m+2,m+4 D.2(k+1),2k,2(k-1)
奇数 正整数 偶数
3.能被2、5整除的数的特征.
回家作业
A组 1.下列哪些数有因数2?哪些数有因数5? 12,27,25,30,51,60, 75,96,186,225. 12,30,60,96,186 . ; 有因数2的数_____________________
25,30,60,75,225 有因数5的数_____________________.
探究新知
(一)思考:能被2整除的数有什么特征呢?
×2
1 2 3 4 5 6 7 8 9 10 … k 2 4 6 8 10 12 14 16 18 20 … 2k
§2初等数论--整除
2019/11/16
阜阳师范学院 数科院
3
5. 100个正整数之和为101101,则它们的最大公约 数的最大可能值是多少?证明你的结论。
6. 证明T 1 1 1 1 (n 1)不是整数.
23
n
7. 求自然数n,使得28 211 2n是一个整数的平方。
2019/11/16
阜阳师范学院 数科院
19
定理2 在上面的表达式( * )中,有 (a,b) rn , (rn1 0).
证明:令 (a,b) d , 则 d a ,d b.
a bq1 r1 b r1q2 r2
由r1 a bq1 d r1 ; 由r2 b r1q2 d r2 ;
4
§1.1 整除的概念 带余数除法 一、整除的概念
定义1:设a,b是整数,b 0,如果存在整数q,使得 a bq成立,则称b整除a,或a能被b整除.记作:b a .
相关概念:因数、约数、倍数、奇数、偶数。 注:显然每个非零整数a都有约数 1,a,称这四个 数为a的平凡约数,a的另外的约数称为非平凡约数。
rn2 rn1 qn (余rn )
b r1q2 r2 , 0 r2 r1 (*)
rn2 rn1qn rn , 0 rn rn1
rn1 rn qn1 ,(rn1 0) rn1 rnqn1 rn1 , rn1 0.
2019/11/16
阜阳师范学院 数科院
18
二、辗转相除法
定义:设有整数 a,b(b 0),在a b 的带余数除法中, 每次用余数去除除数,直到余数为0停止,这种运算 方法称为辗转相除法。即有
a b q1 (余r1 )
五年级数学能被2、5、3整除的数(教学课件2019)
人教新课标五年级数学下册
能被2、5、3整除的数
教学目标
• 通过练习,使学生熟练掌握2 、5 、3 的倍 数的特征。
• 能熟练应用2 、5 、3 的倍数的特征进行判 断。
• 培养学生的归纳整理能力。
…
…
×
1 2
2
3
4
5
6
7
8
9
10
Hale Waihona Puke 2 4 6 8 10 12 14 16 个位上是0、2、4、
18 6、8 都能被2 整除。
;
非楚意也 厥法有品 谋欲借兵兼并两昆弥 自立为王 世之不绝也 於是正明堂之朝 凡五帅 又诸庙寝园食宫令长丞 令百姓皆知天子意 笞问昭平 八神奔而警跸兮 徙代王如意为赵王 入见 驰骛於唐 虞 辛巳 其尊恭皇太后为帝太太后 独两人及从奴十馀骑驰入吴军 食邑各有差 见其灶直突 非以兼有乌孙 康居故也 各有差 又曰 盖闻王者必存二王之后 立曲旃 二祧则时享 起 高后崩 泉流灌浸 怀能生男兴 译长二人 遣太师王匡 更始将军廉丹东 女子百户牛 酒 谓之祥 此乘胜而去国远斗 祠神人於交门宫 斩首虏数百 会义亦往 则匈奴盛 三铢 诚各去两短 凡数千万 千秋为 相十二年 迫於老眊昏乱 庄之推贤 天下以言为戒 填抚方外 秦德衰 玉加各二 网罗天下异能之士 即拜帝母卫姬为中山孝王后 〔图九卷 必为害 王即杀赖丹 即始皇二十八年过江所湛璧也 辄自治 举兵而西 重以不德 妃 龙山在西北 谏大夫 秩比六百石 席卷三秦 楼船将军杨仆坐失亡多 免为庶民 金日磾夷狄亡国 经数十年 终於氐四度 壤子王梁 代 南阳好商贾 不忍 京兆尹王嘉为保拂 孝元皇后之弟子也 而少年慕其行 夫孝子善述人之志 永当之官 而十二辰立矣 自昭帝时 宜阳雨血 河 勿租税 上登长平 二十五日而旋 伐周襄王 未闻忠言嘉谋 因问大臣 吏
能被2、5、3整除的数
教学目标
• 通过练习,使学生熟练掌握2 、5 、3 的倍 数的特征。
• 能熟练应用2 、5 、3 的倍数的特征进行判 断。
• 培养学生的归纳整理能力。
…
…
×
1 2
2
3
4
5
6
7
8
9
10
Hale Waihona Puke 2 4 6 8 10 12 14 16 个位上是0、2、4、
18 6、8 都能被2 整除。
;
非楚意也 厥法有品 谋欲借兵兼并两昆弥 自立为王 世之不绝也 於是正明堂之朝 凡五帅 又诸庙寝园食宫令长丞 令百姓皆知天子意 笞问昭平 八神奔而警跸兮 徙代王如意为赵王 入见 驰骛於唐 虞 辛巳 其尊恭皇太后为帝太太后 独两人及从奴十馀骑驰入吴军 食邑各有差 见其灶直突 非以兼有乌孙 康居故也 各有差 又曰 盖闻王者必存二王之后 立曲旃 二祧则时享 起 高后崩 泉流灌浸 怀能生男兴 译长二人 遣太师王匡 更始将军廉丹东 女子百户牛 酒 谓之祥 此乘胜而去国远斗 祠神人於交门宫 斩首虏数百 会义亦往 则匈奴盛 三铢 诚各去两短 凡数千万 千秋为 相十二年 迫於老眊昏乱 庄之推贤 天下以言为戒 填抚方外 秦德衰 玉加各二 网罗天下异能之士 即拜帝母卫姬为中山孝王后 〔图九卷 必为害 王即杀赖丹 即始皇二十八年过江所湛璧也 辄自治 举兵而西 重以不德 妃 龙山在西北 谏大夫 秩比六百石 席卷三秦 楼船将军杨仆坐失亡多 免为庶民 金日磾夷狄亡国 经数十年 终於氐四度 壤子王梁 代 南阳好商贾 不忍 京兆尹王嘉为保拂 孝元皇后之弟子也 而少年慕其行 夫孝子善述人之志 永当之官 而十二辰立矣 自昭帝时 宜阳雨血 河 勿租税 上登长平 二十五日而旋 伐周襄王 未闻忠言嘉谋 因问大臣 吏
能被2、5整除的数.精选教学PPT课件
9
18
10
20
····· ·
····· ·
×2
1
2
2
4
3
6
4
8
5
10
6
12
7
14
8
16
9
18
10
20
个位上是0、2、4、 6、8的数都能被 2 整除。
·· ·
·· ·
能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0是偶数还是奇数?
下面哪些数能被 2 整除?
360
253
55
都能被2
304
整除
⒊一个自然数,不是偶数就是奇数。√
⒋与奇数相连邻的两个自然数都是奇数。× ⒌能被2除尽的数都是偶数。 ×
⒍1-30中能同时被2和5整除的数有3个。√
⒎三个偶数相加的和一定是偶数。 √
在 中填上适当的数。
⒈ 354
是2的倍数。
⒉ 4985 有约数5。
⒊ 50 既是2的倍数,又有
约数5。
4239711306589283520955698190
到!” 猎狗听了很不服气地辩解道:“我已经尽力而为了呀!” 再说兔子带着枪伤成功地逃生回家了,兄弟们都围过来惊讶地问它:“那只猎狗很凶呀,你又带了伤,是怎么甩掉它的呢?” 兔子说:“它是尽力而为,我是竭尽全力呀!它没追上我,最多挨一顿骂,而我若不竭尽全力地跑,可就没命了呀!” 泰勒牧师讲完故事之后,又向全班郑重其事地承诺:谁要是能背出《圣经·马太福音》中第五章到第七章的全部内容,他就邀请谁去西雅图的“太空针”高塔餐厅参加免费聚餐会。 《圣经·马太福音》中第五章到第七章的全部内容有几万字,而且不押韵,要背诵其全文无疑有相当大的难度。尽管参加免费聚餐会是许多学生梦寐以求的事情,但是几乎所有的人都浅尝则止,望而却步了。 几天后,班中一个11岁的男孩,胸有成竹地站在泰勒牧师的面前,从头到尾地按要求背诵下来,竟然一字不漏,没出一点差错,而且到了最后,简直成了声情并茂的朗诵。 泰勒牧师比别人更清楚,就是在成年的信徒中,能背诵这些篇幅的人也是罕见的,何况是一个孩子。泰勒牧师在赞叹男孩那惊人记忆力的同时,不禁好奇地问:“你为什么能背下这么长的文字呢?”
《能被2、5、3整除的数》课件-王玲
45 46 55 56 65 66 75 76 85 86 95 96 ……
49 50 59 60 69 70 79 80 89 90 99 100
返回
100以内的奇数
1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 6 16 26 36 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 9 19 29 39 10 20 30 40
返回
知识拓展
1、约数
2、排数 3、写数
返回
很快说出下面哪些数有约数2,哪些 数有约数3,哪些数有约数5。
18 57 91 120 186 732 4336 55633 636779 有约数2: 有约数是2的倍 数;再排成一个三位数,使它是5的倍数,各 有几种排法?这些数中哪些数能被3整除?
《能被2、5、3整除的数》课件流程图 教学过程
思维再现
100以内的数
乘法口诀 数的整除
1-9的乘法口诀 2的乘法口诀 5的乘法口诀 3的乘法口诀
探究新知
能被2整除的数 偶数 奇数 能被5整除的数 能被3整除的
练习反馈
练习反馈(一) 练习反馈(二)
拓展提高
约数 排数 写数
课外练习
青州市聋哑学校 王玲
返回
数的整除
整数a除以整数b(b≠0),除得的商正好是
整数而没有余数,我们就说a 能被b整除(也 可以说b 能整除a )。 如果a 能被b (b≠0)整除, a 就叫做b的倍 数, b就叫做 a的约数。 倍数和约数是相互依存的。
能被2、5整除数的特征
数 学
能被2 能被2、5整除数的特征
二00年六七月三日 年六七月三日
中央电教馆资源中心
例题
1 2 3 4 5 6 7 8 … × 2 2 4 你发现了什么? 你发现了什么?
数 学
1)右边的数是左边的数的倍数, )右边的数是左边的数的倍数, 的数是左边的数的倍数 都能被5整除 整除. 都能被 整除.
106 75
130 130
60 130
中央电教馆资源中心
判断
1、一个自然数不是奇数就是偶数.( √ ) 、一个自然数不是奇数就是偶数.( 2、能被2除尽的数都是偶数. 、能被 除尽的数都是偶数. 除尽的数都是偶数 ( ×)
数 学
3、能同时被2、5整除的数的个位上的数字一定是 . 、能同时被 、 整除的数的个位上的数字一定是 整除的数的个位上的数字一定是0. (√ )
数 学
中央电教馆资源中心
数 学
中央电教馆资源中心
数 学
中央电教馆资源中心
个位上是0或 的数都能被 的数都能被5整 个位上是 或5的数都能被 整 除.
中央电教馆资源中心
数 学
34 20 890 335
中央电教馆资源中心
பைடு நூலகம்
强化练习
判断:下面哪些数能被2整除?哪些数能被 整除 整除? 判断:下面哪些数能被2整除?哪些数能被5整除? 60 75 106 130 521
数 学
整除: 能被2整除 能被 整除: 60 能被5整除: 能被 整除: 60 整除 整除的数: 能同时被2,5整除的数 能同时被 整除的数
中央电教馆资源中心
选择
1、一个奇数相邻的两个数( B ). 、一个奇数相邻的两个数( A.都是奇数 . B.都是偶数 . C.一个是奇数,一个是偶数 .一个是奇数, 2、三个偶数的和( A ). 、三个偶数的和( A. A.一定是偶数 B.可能是偶数 . C.可能是奇数 . 3、任何一个自然数都能被5( B ). 、任何一个自然数都能被5 A.整除 . B.除尽 . C.除不尽 .
能被2 能被2、5整除数的特征
二00年六七月三日 年六七月三日
中央电教馆资源中心
例题
1 2 3 4 5 6 7 8 … × 2 2 4 你发现了什么? 你发现了什么?
数 学
1)右边的数是左边的数的倍数, )右边的数是左边的数的倍数, 的数是左边的数的倍数 都能被5整除 整除. 都能被 整除.
106 75
130 130
60 130
中央电教馆资源中心
判断
1、一个自然数不是奇数就是偶数.( √ ) 、一个自然数不是奇数就是偶数.( 2、能被2除尽的数都是偶数. 、能被 除尽的数都是偶数. 除尽的数都是偶数 ( ×)
数 学
3、能同时被2、5整除的数的个位上的数字一定是 . 、能同时被 、 整除的数的个位上的数字一定是 整除的数的个位上的数字一定是0. (√ )
数 学
中央电教馆资源中心
数 学
中央电教馆资源中心
数 学
中央电教馆资源中心
个位上是0或 的数都能被 的数都能被5整 个位上是 或5的数都能被 整 除.
中央电教馆资源中心
数 学
34 20 890 335
中央电教馆资源中心
பைடு நூலகம்
强化练习
判断:下面哪些数能被2整除?哪些数能被 整除 整除? 判断:下面哪些数能被2整除?哪些数能被5整除? 60 75 106 130 521
数 学
整除: 能被2整除 能被 整除: 60 能被5整除: 能被 整除: 60 整除 整除的数: 能同时被2,5整除的数 能同时被 整除的数
中央电教馆资源中心
选择
1、一个奇数相邻的两个数( B ). 、一个奇数相邻的两个数( A.都是奇数 . B.都是偶数 . C.一个是奇数,一个是偶数 .一个是奇数, 2、三个偶数的和( A ). 、三个偶数的和( A. A.一定是偶数 B.可能是偶数 . C.可能是奇数 . 3、任何一个自然数都能被5( B ). 、任何一个自然数都能被5 A.整除 . B.除尽 . C.除不尽 .
第二讲 整除问题进阶
练习一:
四位数 □23□,能同时被9和11整除,这个四位数是多少?
例题二:
已知九位数,1234□□789,能被99整除,这个九位数是多少? 分析:这个九位数是99的倍数,说明两位截断以后,各段之和是99的倍数。这个99 的倍数可能是多少呢?
练习二:
已知八位数,123□□678,能被99整除,这个八位数是多少?
能被7、11、13整餘的特征:从个位开始,每三位一截, 奇数段之和与偶数段之和 的差能被7、11或13整除.
例题三:
阿呆写了一个两位数59,阿瓜写了一个两位数89,他们让小高写一个一位数放在59 与89之间,拼成一个五位数59□89,使得这个五位数能被7整除,请问小高写的是 多少? 分析:根据能被7整除的数的特征,末三位组成的数与末三位之前的数组成的数之 差能被7整除,我们可以由此将问题简化。
现特征:从个位开始每两位一截,得到的所有 两位数(最前面的可以是一位数)之和被99整除.
例题一:
六位数□ 2008□ ,能同时被9和11整除,这个六位数是多少? 分析:能同时被9和11整除,说明这个6位数能被99整除。想一想,99的整除特性是 什么?
例题六:
有一个五位数,它的末三位为999。如果这个数能被23整除,那么这个五位数最小 是多少? 分析:我们没有学过能被23整除的数的特征,而且23也不能拆分成两个特殊数的乘 积,因此不可能根据整除特征来考虑,我们尝试从整除的定义来入手,这个五位数 能被23整除,就是说,它能写成23与另一个数的乘积,接下来大家想到该怎么办了 吗?
练习三:
四位数57□2,能被7整除,那么这个四位数可能是多少?
{ {
例题四:
已知51位数 55...5□ 99...9能被13整除,中间方框内的数字是多少?
第六讲 能被30以下质数整除的数的特征
1、你能很快地判断3456789能不能被9整除吗? 2、既然不能整除,那么它除以9所得的余数是 多少? 3、3456781能被17整除吗?
新课教学 课前准备1
多位数的表示方法
(1)字母上方横线法
N= FEDCBA
如六位数N= y=
34567xy
能被75整除,则x=
(2)数位表示法
能被23、29整除的数的特征
利用关键性式子23×435=10005 29×345=10005尝试推导公式 N≡ DCBA -5× GFE (mod 23);(mod 29) 将末四位与前面隔开,看末四位与前面隔出数的5 倍的差(大减小)能不能被23、29整除。
本课小结
再看乘积的十位数字是1, 可以想到323的个位3乘以 乘数的十位所得的末尾数 字是5, 因此,乘数的十位是5 最后看乘数的百位数字, 只能是3。 相加后可知,在□□中应 填写5、3。 3 2 3 × 3 5 7 2 2 6 1 1 6 1 5 9 6 9 1 1 5 3 1 1
.9、将2008加上一个数,使和能被23和19整除, 加的数要尽可能小,那么所加的数是多少? 分析与解:与第7题类似, 2008与这个数的和是23×19=437的倍数, 437×5=2185 2185-2008=177 答:所加的整数是177。
公式的推导思路与方法
关键1、是把所给的多位数拆成两部分: 除数的倍数 其余的部分 关键2、怎样拆 要寻求与10、100、1000、10000接近的数
能被17整除的数的特征的推导
关键性式子 17×6=102 17×59=1003 N= FEDCBA = FED×1000+ CBA = FED× (1003-3)+ CBA = FED ×1003 - FED×3+ CBA = FED×17×59+ CBA - FED ×3 因为 FED×17×59是17和59 的公倍数,所以, 能否整除只要看 - ×3能否被17或 CBA FED 59整除就行了
数的整除课件PPT版
8与4 14与2 9与4 17与3 110与2 250与1 125与6 87与87
你能把12分成两个数, 使其中一个数能整除另一个 数吗?(动手试着操作一下)
为了便于学习和使用,本文 档下载后内容可随意修改调 整及打印,欢迎下载。
一、口算下面各题 (请点击鼠标左键开始练习)
6÷2= 3
35 ÷5= 7
9 ÷4= 2……1 25 ÷7= 3……4
848 ÷8= 106
276 ÷9= 30……6
仔细观察上面这些算式你发现有什么不同了吗?
没有余数
6÷2= 3 35 ÷5=7 848 ÷8=106
有余数ቤተ መጻሕፍቲ ባይዱ
9 ÷4= 2……1 25 ÷7=3……4 276 ÷9=30……6
6÷2= 3 35 ÷5= 7 这类算式就叫整除 848 ÷8= 106
6÷2=3 我们就说:6能被2整除
35 ÷5=7 我们就说:35能被5整除
848 ÷8=106 我们就说:848能被8整除
继续
9能被4整除吗? 25能被7整除吗? 27能被9整除吗?
想一想:哪一组的第一个数能被第二个数整除?
你能把12分成两个数, 使其中一个数能整除另一个 数吗?(动手试着操作一下)
为了便于学习和使用,本文 档下载后内容可随意修改调 整及打印,欢迎下载。
一、口算下面各题 (请点击鼠标左键开始练习)
6÷2= 3
35 ÷5= 7
9 ÷4= 2……1 25 ÷7= 3……4
848 ÷8= 106
276 ÷9= 30……6
仔细观察上面这些算式你发现有什么不同了吗?
没有余数
6÷2= 3 35 ÷5=7 848 ÷8=106
有余数ቤተ መጻሕፍቲ ባይዱ
9 ÷4= 2……1 25 ÷7=3……4 276 ÷9=30……6
6÷2= 3 35 ÷5= 7 这类算式就叫整除 848 ÷8= 106
6÷2=3 我们就说:6能被2整除
35 ÷5=7 我们就说:35能被5整除
848 ÷8=106 我们就说:848能被8整除
继续
9能被4整除吗? 25能被7整除吗? 27能被9整除吗?
想一想:哪一组的第一个数能被第二个数整除?
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
看一看:P8
想一想: 能被2整除的数有什 么样的特征呢?
4
记一记
能被2整除的整数,个位上数字
为0、2、4、6、8。
5
想一想
数学课本所有左边的页码有 什么特征?右边的呢?
6
记一记
偶数与奇数的概念 定义:如果一个整数能被2整除,称 该整数为偶数。 如果一个整数不能被2整除,称该整 数为奇(ji)数。
整数的分类
奇数 偶数
7
练一练
P10—练习1.3--1
8
看一看:P9
想一想: 能被5整除的数有什 么样的特征呢?
9
记一记
能被5整除的整数,个位上数字
为0、5。
10
深入思考:
既能被2整除,又能被5 整除的整数有什么样的
特征呢?
11
练一练
P10—练习 1.3—2,3
12
知识小结
能被2,5整除的数 奇数,偶数的概念 整数的分类
1.3
能被2、5整除的数(1)
1
知识回顾
(1)整除的概念:整数a除以整数b,如果除得 的商正好是整数而没有余数,我们就说a能被 b整除,或者说b能整除a。
(2)因数与倍数的概念整数a能被整数b整除, a就叫做b的倍数,b就叫做a的因数(也称为 约数)。
2
看一看
1、问题情景: :我们平时接触的很多事物都是成对出现 的,如一双鞋子,一双筷子,------,如 果小明家中有三个人用餐,那么他要从快 笼内抽出6根筷子,如果小明家来了客人, 那么抽出的筷子的根数一定是2的倍数,也 就是说能被2整除的数。
13
提问与解答环节
Questions And Answers
14
谢谢聆听
·学习就是为了达到个过程会充满压力、痛苦和挫折
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
15
看一看:P8
想一想: 能被2整除的数有什 么样的特征呢?
4
记一记
能被2整除的整数,个位上数字
为0、2、4、6、8。
5
想一想
数学课本所有左边的页码有 什么特征?右边的呢?
6
记一记
偶数与奇数的概念 定义:如果一个整数能被2整除,称 该整数为偶数。 如果一个整数不能被2整除,称该整 数为奇(ji)数。
整数的分类
奇数 偶数
7
练一练
P10—练习1.3--1
8
看一看:P9
想一想: 能被5整除的数有什 么样的特征呢?
9
记一记
能被5整除的整数,个位上数字
为0、5。
10
深入思考:
既能被2整除,又能被5 整除的整数有什么样的
特征呢?
11
练一练
P10—练习 1.3—2,3
12
知识小结
能被2,5整除的数 奇数,偶数的概念 整数的分类
1.3
能被2、5整除的数(1)
1
知识回顾
(1)整除的概念:整数a除以整数b,如果除得 的商正好是整数而没有余数,我们就说a能被 b整除,或者说b能整除a。
(2)因数与倍数的概念整数a能被整数b整除, a就叫做b的倍数,b就叫做a的因数(也称为 约数)。
2
看一看
1、问题情景: :我们平时接触的很多事物都是成对出现 的,如一双鞋子,一双筷子,------,如 果小明家中有三个人用餐,那么他要从快 笼内抽出6根筷子,如果小明家来了客人, 那么抽出的筷子的根数一定是2的倍数,也 就是说能被2整除的数。
13
提问与解答环节
Questions And Answers
14
谢谢聆听
·学习就是为了达到个过程会充满压力、痛苦和挫折
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
15