对轴承座进行有限元受力分析35页PPT
轴承座有限元法分析报告与建模
有限元法分析与建模课程设计报告学院:机械与电子工程学院专业:机械设计制造与其自动化指导教师:X建树、王洪新、林华、周小超、X昌春学生:葛睿学号:2012011309摘要本文用ANSYS建立轴承座的三维模型,并运用ANSYS强大的有限元分析和优化功能来实现轴承座的分析。
ANSYS 是一款极其强大的有限元分析软件。
通过数据接口,ANSYS 可以方便的实现从CAD 软件中导入实体模型。
因此,将Pro/E 强大的建模功能与ANSYS 优越的有限元分析功能结合在一起可以极大地满足设计者在设计过程中对建模与分析的需求。
关键词:轴承座,有限元,ANSYS目录第一章引言 (2)有限元法与其根本思想 (2)1.2 问题描述 (3)第二章轴承座有限元分析的准备工作 (3)建模过程与思路 (3)设置单元类型 (4)定义材料属性 (4)轴承座三维实体建模 (5)创建基座模型 (5)创建轴瓦支架的下部 (15)创建轴瓦支架的上部 (17)创建 (24)构建轴承座整体 (32)创建网格 (33)第三章有限元模型的前处理和求解 (35)定义分析类型 (35)约束4个安装孔 (35)约束基座底部Y向位移 (36)在轴承孔圆周上施加推力载荷 (38)在轴承孔的下半局部施加径向压力载荷 (39)求解 (41)第四章有限元模型的后处理和结果分析 (42)绘制轴承座的变形形状 (42)绘制轴承座位移分布等值线图 (44)查看轴承座各节点位移 (45)绘制轴承座应力分布等值线图 (46)查看轴承座节点最大应力 (47)总结 (49)参考文献 (49)第一章引言有限元方法就是把一个原来是连续的物体剖分成有限的单元,且它们相互连接在有限的节点上,承受等效的节点载荷,并根据平衡条件在进展分析,然后根据变形协调条件把这些单元重新组合起来,成为一个组合体,在综合求解。
由于单元的个数有限,节点的个数也有限,所以这种方法称为有限元法。
有限元法解决问题是物理模型的近似,而数学上不做近似处理。
转子/轴承/轴承座系统动力学特性的三维有限元分析
明: 在模 态分析 中, 轴承座 实体模型 系 统 包含 了 反 映轴承座 的变形的 固有频率和振 型; 在碰摩力动 力响应 方面, 该模 型 都更能体现 出实际的碰摩特征 , 对机械 故障诊断具有指导意义。
关键词 : 有 限元 ; 故障诊断 ; 碰摩 ; 模态分析 ; 轴心轨迹 中图分类号 : T H1 6 ; T H1 3 3 . 3 文献标识码 : A 文章 编号 : 1 0 0 1 — 3 9 9 7 ( 2 0 1 3 ) 0 9 — 0 1 4 7 — 0 4
( d ) 部分轴心轨迹图 图1 0碰摩力 F  ̄ = 2 0 0 N, F T1 0 0 0 N,两 种 考 虑轴 承 座弹性的模型部分时间转子响应 图
F i g . 1 0 T h e L o c a l Re s p o n s e o f Ro t o r o f Two Be a in r g S u p p o r t Mo d e l a t Ru b — I mp a c t F o r c e F . =2 0 0N, F TI O O ON
( 1 . 沈阳化工大学 机械工程学 院, 辽宁 沈阳 1 1 0 1 4 2 ; 2 . 沈阳化工大学 数理系 , 辽宁 沈阳 1 1 0 1 4 2 )
摘
要: 将轴承座纳入整个 系统进行分析 , 建立 了一种 转子一轴 承一轴承座 系统有限元模型。为准确考虑弹性轴承座
【最新】有限元分析基础ppt课件
b. 结构中两个结点间的每一个等截面直杆可以设置 为一个单元。 变换为作用在结点上的等效结点载荷。
2021/2/2
27
第三章 杆系结构静力分析的有限单元法
c. 变截面杆件可分段处理成多个单元,取各段中点 处的截面近似作为该单元的截面,各单元仍按等截面杆 进行计算。
(a) 变形状态分析
(b) 对称性利用
图2-24对称性利用示意图
2021/2/2
21
第二章 结构几何构造分析
② 反对称载荷作用
(a) 变形状态分析
(b) 反对称性状态分析
(c) 反对称性受力分析
(d) 反对称性利用
图2-25对称性利用示意图
2021/2/2
22
第二章 结构几何构造分析
2.3 结构几何构造分析的自由度与约束
(a) 刚架结构示意图
(b) 结点位移和结点力分向量
(b)
图3-4 平面刚架分析示意图
2021/2/2
30
第三章 杆系结构静力分析的有限单元法
结点位移列向量为
iu i vi
T
i
j u j vj
T j
单元e结点位移列向量为
e ij u i
i i
uj
j
T j
结点力向量为
F ieU i V i M ie T F jeU j V j M je T
2021/2/2
18
第二章 结构几何构造分析
2.2.3 结构对称性的利用
对称结构在正对称载荷下,对称轴截面上只能产生 正对称的位移,反对称的位移为零;对称结构在反对称 载荷下,对称轴截面上只有反对称的位移,正对称的位 移为零。 (1) 具有奇数跨的刚架
带式输送机轴承座的有限元分析
一
图 1 优 化 前 的
一
图 2 优 化 后 的
轴 承座模 型
轴承 座模 型
结构 优化 后轴 承 座 质 量 为 3 4 . 7 ,与优 化 前 的轴 承 座相 比减 小 了 近 3 1 % 。该 轴 承 座底 座 借 助 连 接螺 栓孔 周 围 的撑 筋 和 附加 材 料 ,提 高 了 强度 ,
h o l e ,a nd t h e s t r e s s c o n c e n t r a t i o n i n he t c o n t a c t a r e a o f r i b p l a t e a n d b e a i t n g h o u s i n g . T h e b e a r i n g h o u s i n g i s o p t i mi z e d i n
p e fo r m e r d f o r i t s mo d e l b e f o r e a n d a f t e r t h e s t r u c t u r a l o p t i mi z a t i o n b y An s y s s o f t wa r e,wh i c h s h o w s t h a t t h e d e f o ma r t i o n a r i — s i n g f r o m he t b e a r i n g h o u s i n g i s ma i n l y o n u p p e r p a r t ,wi t h t h e m ̄ i mu m e q u i v le a n t s t r e s s o n he t l o we r p a r t o f t h e b e a i r n g
对轴承座进行有限元受力分析
四. 加载和求解 1. 定义分析类型 Main Menu >Solution > Analysis Type > New Analysis, 选择Static
2. 定义位移约束 提示:首先切换成前视图(front view) Main Menu >Solution> Define Loads >Apply >Structural>Displacement > On Areas, 在弹出对话框中选Circle
以小孔中心为圆心 画圆, 将圆周边刚好划入, 点击 OK.
在弹出的对话框中选全约束, 输入值为:0 用同样的方法,对四个孔圆柱面加全约束
3. 加载荷 便于保证载荷加到指定的面上,可先显示面的编号 Utility Menu >PlotCtrls> Numbering
Utility Menu >Plot> Areas
减去1个小圆 Main Menu>Proprocessor> Modeling>Operate>Booleans >Subtract> Volumes 弹出对话框中后,用光标先点基体(即总体,此时总体颜 色变红),点击OK,再点1个要减去的圆,再点击OK
5.建立右边部分 Main Menu> Preprocessor>Modeling>Create>Volumes >Block>By 2 corners & z, 在弹出的对话框中输入数据, 然后点击OK
Menu>Proprocessor> Modeling>Operate>Booleans >Subtract> VoMain lumes ,弹出对话框后,用光标先点基体(即总体,此时总 体颜色变红),然后点击OK,再点2个要减去的圆孔,再点击 OK (鼠标右键,点Replot刷新)
机械设计-滑动轴承PPT课件精选全文
4.调心式径向滑动轴承(自位轴承)
特点:轴瓦能自动调整位置,以适应轴的偏斜。
注:调心式轴承必须成对使用。
当轴倾斜时,可保证轴颈与轴承配合表面接触良好,从而避免产生偏载。
主要用于轴的刚度较小,轴承宽度较大的场合。
滑动轴承的结构
观看动画
第7页/共54页
二、止推滑动轴承的结构
止推滑动轴承由轴承座和止推轴颈组成。常用的轴颈结构形式有:
◆设计准则 :维持边界膜不破裂。
◆条件性计算内容:限制压强 p 、pv 值、滑动速度v不超过许用值
失效形式:
磨损胶合
第18页/共54页
§12-6 滑动轴承的条件性计算
一、径向滑动轴承的计算
已知条件:径向载荷F (N)、 轴颈转速n (r/mm)轴颈直径d (mm)
1.限制轴承的平均压强 p
2.工作平稳,噪音低;
3.结构简单,径向尺寸小。
第3页/共54页
§12-2 滑动轴承的主要结构形式
一、径向滑动轴承的结构
1.整体式径向滑动轴承
特点:结构简单,成本低廉。
应用:低速、轻载或间歇性工作的机器中
磨损后间隙无法调整;只能沿轴向装拆。
常用的滑动轴承已经标准化,可根据使用要求从有关手册中合理选用。
-考虑油槽使承载面积减小的系数,其值=0.85~0.95。
Z-止推环数。
滑动轴承的条件性计算
第21页/共54页
注意:设计时液体动压润滑轴承,常按上述条件性计算进行初步计算。(动压润滑轴承在起动和停车阶段,往往也处于混合润滑状态)
2.限制 值
vm-止推环平均直径dm=(d2+d1)/2 处的圆周速度。
1)油槽沿轴向不能开通,以防止润滑油从端部大量流失。
汽车轮毂轴承有限元仿真分析
预设多种凸度匹配关系,分析其在不同载荷作用下,最大主应力,接触长度的变 化情况,综合总体分析结果,确定最佳凸度及匹配关系。通过理论计算,给出凸 度控制方程。 这种方法的优点是考虑整体应力、 变形情况, 确定的凸度更为合理; 缺点是模型复杂,计算量大,收敛性差。 (3)凸度混合有限元分析 凸度混合有限元分析采用凸度局部有限元分析确定若干组凸度, 用凸度整体 有限元分析对所确定的凸度进行分析,综合优化分析结果,确定最终凸度方程。 这种方法模型相对简化, 减小了计算量、 提高了收敛性, 凸度计算结果更趋合理。 2. 第二代圆锥滚子轮毂轴承凸度局部有限元分析 分析对象为轿车前轮毂双列圆锥滚子轴承,结构型式为;内圈分离,外圈整 体结构,带法兰盘,属第二代产品。 2.1 滚子与滚道凸型和凸度量的确定 根据国内外轴承样品的对比分析结果及在滚子与滚道多种设计方案进行分 析的基础上, 仅对滚子与内圈有凸度的情况进行仿真分析,并提出如下滚子与滚 道凸度设计原则,在轻载时,滚子的有效接触长度为滚子长度的 60%-70%,重载 时,不出现应力集中。在此选择的凸型为修正对数曲线,采用滚子、内圈滚道带 凸度的“2 凸”设计,并对四种情况的凸度匹配关系进行对比分析。 四种情况所给出的凸度量分别为: 滚子和滚道无凸度; 滚子凸度: 2.4μm, 内 圈滚道凸度:5μm;滚子凸度:8μm, 内圈滚道凸度:10μm;滚子凸度:15μ m, 内圈滚道凸度:15μm。 2.2 滚子和滚道凸度有限元模型及仿真分析 在轴承中, 由于滚子和滚道的接触特征完全一致,因此用一个滚子和滚道接 触的局部模型就能够进行整体的凸度仿真分析。采用 ANSYS 有限元分析软件进 行分析,图 2.1 给出了有限元分析网格划分模型。 2.3 分析结果
(轴承承受的径向载荷为 0.3Cr,滚
轴承座有限元分析
轴承座有限元分析轴承座的实体建模、网格划分、加载、求解及后处理练习目的:创建实体的方法,工作平面的平移及旋转,布尔运算(相减、粘接、搭接,模型体素的合并,基本网格划分。
基本加载、求解及后处理。
问题描述:轴瓦轴承座向下作用力(5000 psi.)四个安装孔径向约束 (对称)轴沉孔上的推力(1000 psi.) 轴承座底部约束 (UY=0)首先进入前处理(/PREP7)1.生成长方体Main Menu:Preprocessor>Create>Block>By Dimensions输入x1=0,x2=3,y1=0,y2=1,z1=0,z2=3平移并旋转工作平面Utility Menu>WorkPlane>Offset WP by IncrementsX,Y,Z Offsets 输入2.25,1.25,.75 点击ApplyXY,YZ,ZX Angles输入0,-90点击OK。
创建圆柱体Main Menu:Preprocessor>Create>Cylinder> Solid CylinderRadius输入0.75/2, Depth输入-1.5,点击OK。
拷贝生成另一个圆柱体Main Menu:Preprocessor>Copy>Volume拾取圆柱体,点击Apply, DZ输入1.5然后点击OK 从长方体中减去两个圆柱体Main Menu:Preprocessor>Operate>Subtract Volumes首先拾取被减的长方体,点击Apply,然后拾取减去的两个圆柱体,点击OK。
使工作平面与总体笛卡尔坐标系一致Utility Menu>WorkPlane>Align WP with> Global Cartesian2. 创建支撑部分Utility Menu: WorkPlane -> Display Working Plane (toggle on) Main Menu: Preprocessor -> -Modeling-Create -> -Volumes-Block -> By 2 corners& Z1)在创建实体块的参数表中输入下列数值:WP X = 0 WP Y = 1 Width = 1.5 Height = 1.75 Depth = 0.752) OKToolbar: SAVE_DB3. Utility Menu: WorkPlane -> Offset WP to -> Keypoints +1) 在刚刚创建的实体块的左上角拾取关键点2) OKToolbar:SAVE_DB4Main Menu: Preprocessor -> Modeling-Create -> Volumes-Cylinder -> Partial Cylinder +1). 在创建圆柱的参数表中输入下列参数:WP X = 0 WP Y = 0 Rad-1 = 0 Theta-1 = 0 Rad-2 = 1.5 Theta-2 = 90 Depth = -0.752). OKToolbar: SAVE_DB5.Main Menu: Preprocessor -> Modeling-Create -> Volume-Cylinder -> Solid Cylinder +1.) 输入下列参数:WP X = 0 WP Y = 0 Radius = 1 Depth = -0.18752.) 拾取 Apply3.) 输入下列参数:WP X = 0 WP Y = 0 Radius = 0.85 Depth = -24.) 拾取 OK6.Main Menu: Preprocessor -> Modeling-Operate -> Subtract -> Volumes +1). 拾取构成轴瓦支架的两个体,作为布尔“减”操作的母体。
滚动轴承接触问题的有限元分析
滚动轴承接触问题的有限元分析马士垚张进国(哈尔滨工业大学(威海)机械工程系,威海264209)Contact analysis on rolling bearing by finite element methodMA Shi-yao ,ZHANG Jin-guo(Department of Mechanical Engineering ,Harbin Institute of Technology ,Weihai 264209,China )文章编号:1001-3997(2010)09-0008-02【摘要】基于ANSYS 有限元分析软件,建立了滚动轴承接触分析的三维有限元模型,分析得到了轴承滚动体的径向位移、滚动体与内外圈的接触应力云图,并将接触应力结果与Hertz 理论计算的结果对比,计算两者的接近度,进而说明该法分析的可行性,也为轴承的进一步研究提供了理论基础。
关键词:ANSYS ;滚动轴承;有限元;接触分析【Abstract 】A three-dimensional model is first established for rolling bearing based on an FEA soft -ware as ANSYS .The bearing ’s radial displacement 、the contact stress between rolling elements and inner and outer ring is pared the contact stress results of ANSYS with the Hertz results ,see the difference between each other ,so that the feasibility of this method is proved ,also provides theoretical principle for further research.Key words :ANSYS ;Rolling bearing ;Finite element ;Contact analysis中图分类号:TH133.33文献标识码:A*来稿日期:2009-11-131前言轴承是机械传动部分中的重要组成部分,在对轴承的设计与分析中,经常要计算轴承的承载能力、寿命、变形等问题,由于传统的赫兹接触理论在实际应用中存在局限性,只能得到轴承接触应力的近似解,而且求解方法繁琐,利用有限元分析软件ANSYS 对轴承进行接触问题的分析,可以解决所有的赫兹接触问题,方法简洁,易于程式化,结果可视性强,对轴承的分析有一定的指导作用。
轴受力分析【优质PPT】
d3
9.55106
0.2[T]
3
PA3 n
P n
2021/10/10
20
1.轴上装配标准件(滚动轴承、联轴器、密封圈等)的轴段 ( ① ② ③ ⑦ ),其直径必须符合标准件的直径系列值
2 与一般零件(齿轮和带轮)相配合的轴段直径和零件毂孔直径 相同,采用标准尺寸。不予零件配合的轴段(5,6),其值不 用去标准值。
3 起定位作用的轴肩高度 应按11-3原则确定,如 12,45,67;非定位轴 肩(23,34,56),高 度一般1-3mm。
2021/10/10
21
2 .各轴段长度的确定
结构设计 轴的承载能力验算
验算合格? N
Y
结束 工作能力计算:
轴的承载能力验算指的是轴的强度、刚度和振动 稳定性等方面的验算。
2021/10/10
10
第二节 轴的结构分析
轴的结构分析:包括定出轴的合理的
外形和全部结构尺寸
1.轴应便于制造,轴上零件要易于装拆; (制造安装) 2.轴和轴上零件要有准确的工作位置; (定位) 3.各零件要牢固而可靠地相对固定; (固定) 4.改善应力状况,减小应力集中。
4) 绘制垂直面的弯矩图
30˚
2021/10/10
d/4 d
B位置 d/4
过渡肩环
r 凹切圆2角9
第三节、轴的工作能力分析
一、对于只传递扭转的圆截面轴,强度条件为:
T
T WT
9.55106 0.2d 3n
P
ANSYS大作业_轴承座有限元分析
轴承座轴瓦 轴四个安装孔径向约束 (对称) 轴承座底部约束 (UY=0)沉孔上的推力 (3000 psi.) 向下作用力 (15000 psi.) 基于ANSYS 的轴承座有限元分析一、 问题描述在我们机械设计课程中曾经学习过轴系,主要是学习了轴的设计、受力分析以及轴承的设计等等。
但没有对轴承座的承受能力进行分析,所以我在这里主要是对一种简单的轴承座进行了有限元分析。
在查阅了相关资料之后,可将分析的轴承座示意如下图。
在实际当中,考虑到工艺的要求,图中相应的边缘处须设置有圆角、倒边等等。
但在有限元模型中忽略了这些要素。
二、 力学模型的分析与建立如下图所示在查阅了相关资料后可将上面描述的问题简化成上述模型,其中的载荷参考了网上的相关资料,在沉孔面上垂直于沉孔面上作用有3000psi.的推力载荷,在轴承孔的下半部分施加15000psi.的径向压力载荷,这个载荷是由于受重载的轴承受到支撑作用而产生的。
由于轴承座一般固定于机身上,所以可以在其底部施加法向位移约束,并且四个安装孔要受到螺栓的约束,所以可以在四个螺栓孔中施加径向对称约束(在ansys中体现为Symmetry B.C.)三、力学模型的有限元分析1.建立模型1)创建基座模型生成长方体Main Menu:Preprocessor->Modeling->Create->Volumes->Block->By Dimensions输入x1=0,x2=3,y1=0,y2=1,z1=0,z2=3平移并旋转工作平面Utility Menu>WorkPlane->Offset WP by IncrementsX,Y,Z Offsets 输入2.25,1.25,.75 点击ApplyXY,YZ,ZX Angles输入0,-90点击OK。
创建圆柱体Main Menu:Preprocessor->Modeling->Create->Volumes->Cylinder> Solid CylinderRadius输入0.75/2, Depth输入-1.5,点击OK。
滚动轴承的受力分析、载荷计算、失效和计算准则
滚动轴承的受力分析、载荷计算、失效和计算准则1.滚动轴承的受力分析滚动轴承在工作中,在通过轴心线的轴向载荷(中心轴向载荷)Fa作用下,可认为各滚动体平均分担载荷,即各滚动体受力相等。
当轴承在纯径向载荷Fr作用下(图6),内圈沿Fr方向移动一距离δ0,上半圈滚动体不承载,下半圈各滚动体由于个接触点上的弹性变形量不同承受不同的载荷,处于Fr作用线最下位置的滚动体承载最大,其值近似为5Fr/Z(点接触轴承)或4.6Fr/Z(线接触轴承),Z为轴承滚动体总数,远离作用线的各滚动体承载逐渐减小。
对于内外圈相对转动的滚动轴承,滚动体的位置是不断变化的,因此,每个滚动体所受的径向载荷是变载荷。
2.滚动轴承的载荷计算(1)滚动轴承的径向载荷计算一般轴承径向载荷Fr作用中心O的位置为轴承宽度中点。
角接触轴承径向载荷作用中心O的位置应为各滚动体的载荷矢量与轴中心线的交点,如图7所示。
角接触球轴承、圆锥滚子轴承载荷中心与轴承外侧端面的距离a可由直接从手册查得。
接触角α及直径D,越大,载荷作用中心距轴承宽度中点越远。
为了简化计算,常假设载荷中心就在轴承宽度中点,但这对于跨距较小的轴,误差较大,不宜随便简化。
图8角接触轴承受径向载荷产生附加轴向力1)滚动轴承的轴向载荷计算当作用于轴系上的轴向工作合力为FA,则轴系中受FA作用的轴承的轴向载荷Fa=FA,不受FA作用的轴承的轴向载荷Fa=0。
但角接触轴承的轴向载荷不能这样计算。
角接触轴承受径向载荷Fr时,会产生附加轴向力FS。
图8所示轴承下半圈第i个球受径向力Fri。
由于轴承外圈接触点法线与轴承中心平面有接触角α,通过接触点法线对轴承内圈和轴的法向反力Fi将产生径向分力Fri;和轴向分力FSi。
各球的轴向分力之和即为轴承的附加轴向力FS。
按一半滚动体受力进行分析,有FS ≈ 1.25 Frtan α(1)计算各种角接触轴承附加轴向力的公式可查表5。
表中Fr为轴承的径向载荷;e为判断系数,查表6;Y为圆锥滚子轴承的轴向动载荷系数,查表7。
轴承座的有限元分析
教程10:轴承座的有限元分析轴承座的几何尺寸如图所示:轴承座的受力如图所示:交互式的求解过程1进入ANSYS程序→Ansys10.0→Configure ANSYS Products →file Management→input jobname:zhouchengzuo→Runb5E2RGbCAP2建立几何结构2.1 创建长方体1.Main Menu:Preprocessor→Modeling→Create→Volumes→Block→By Dimensions。
p1EanqFDPw2.分别输入X1=0,X2=76,Y1=0,Y2=25,Z1=38,Z2=-38。
3.按下OK按钮。
4.Utility menu:PlotCtrs→Pan,Zoom,Rotate…。
5. 按下Pan-Zoom-Rotate 窗口内的ISO按钮。
6. 关闭Pan-Zoom-Rotate 窗口。
2.2 创建长方体的两个圆孔。
调整工作平面的位置及角度1.Utility menu:WorkPlane→DisplayWorking Plane。
2.WorkPlane→Offset WP to→XYZ Locations+→在文本框中输入:57,0,19→OK。
3.WorkPlane→Offset WP by Increments…→将角度滚动条滑到90 度作为旋转的角度。
4. 按下上面一组按钮中的X-按钮。
5. 按下OK按钮。
6. MainMenu:Preprocessor→Modeling→Create→Volumes→Cylinder→Solid Cylinder。
7. 输入 WP X :0,WP Y :0,Radius:9.5,Depth:38。
8. 按下OK按钮。
9. Utility menu:WorkPlane→Offset WPto→XYZ Locations + →在文本框中输入:57,0,-19→OK。
10. MainMenu:Preprocessor→Modeling→Create →Volumes→Cylinder→Solid Cylinder。
轴受力分析》ppt课件模板
相同,采用标准尺寸。不予零件配合的轴段(5,6),其值不
用去标准值。
3 起定位作用的轴肩高度 应按11-3原则确定,如 12,45,67;非定位轴 肩(23,34,56),高 度一般1-3mm。
On the evening of July 24, 2021
2
0
Courseware template
7
/
2
6
(3) 为了便于轴上零件的装配和去除毛 刺, 轴及轴肩端部一般均应制出45° 的倒角。过盈配合轴段的装入端常加 工出半锥角为30°的导向锥面(如图107)。
On the evening of July 24, 2021
2
0
Courseware template
2
1
/
7 /
(4) 为便于加工,应使轴上直径相近处的圆角、倒角、键
轴受力分析
It is applicable to work report, lecture and teaching
2021/7/26
1
Courseware template
On the evening of July 24, 2021
2
0
Courseware template
2
1
/ 7 /
第11章 轴和轴毂联接
转轴---传递扭矩又承受弯矩
传动轴---只传递扭矩
心轴---只承受弯矩
直轴
光轴 阶梯轴
曲轴
On the evening of July 24, 2021
2 0 2 1 / 7 / 2
6 分类: 按承受载荷分有:
类 型
按轴的形状分有:
Courseware template
4.弹性轴承有限元分析
机械设计中的有限元法第4题:分析图4弹性轴承在载荷作用下的应力和应变(载荷个数、大小自己选择)。
图4 弹性轴承受力分析摘要本课题主要以CATIA为基础,建立了弹性轴承的结构模型及静态下弹性轴承的有限元分析模型,并通过对静载荷下弹性轴承的应力及应变进行计算,得出弹性轴承应力及应变的分布情况。
1 弹性轴承简介随着直升机技术的发展与新工艺、新材料的应用,多年来国外各直升机公司花费大量人力、物力,使直升机技术不断发展到新的技术高峰。
伴随着直升机技术的飞速发展,直升机旋翼系统也从第一代发展到全复合材料的第三代旋翼。
期间,旋翼系统使用的常规金属轴承逐渐发展到金属、橡胶夹层结构的弹性轴,七十年代初代表着直升机第三代旋翼三大先进技术之一的弹性轴承,开始投入工程应用阶段,目前已广泛用于直升机旋翼系统中。
弹性轴承是通过硫化黏结将橡胶和金属隔片组成交替排列形成的一类构件,通过橡胶的剪切变形满足特定的摆动运动要求。
它不仅能满足复杂工况下减振性能的要求,而且还具有结构简单、无需润滑、装拆维修方便、使用寿命长、性能可靠等优点。
近年来,随着有限元法在工程上的广泛应用,利用有限元对弹性轴承的力学行为进行模拟成为弹性轴承结构设计的一种重要方法。
本课题即通过有限元分析方法考察弹性轴承在载荷作用下的应力及应变。
2弹性轴承有限元建模弹性轴承由一般由14层不同厚度的同心的环面橡胶弹性层和13层环面不锈钢隔片交替牢固粘接构成,为简化弹性轴承的分析计算,采用其简化结构即:由2层不同厚度的同心橡胶层和1层同心的环面粘接而成。
2.1 弹性轴承的尺寸参数、材料性能弹性轴承的尺寸参数及材料性能见下图一。
说明:因查阅了关于弹性轴承的相关资料,发现弹性轴承是由弹性体和金属件交替粘接而成,而题目所给的是一个单独零件,为了保持题目与所查资料的一致性,本课题对题目所给的二维草图做了部分的修改,但有限元法分析原理基本相似。
又题目要求采用ANSYS软件分析,但由于本人的笔记本电脑配置较低,安装此软件后电脑无法运行,故采用了CATIA中的有限元分析模块分析,但在后期的学习中,定会加紧学习ANSYS软件,熟练掌握。