第三章基坑支护结构设计计算
基坑支护结构设计
基坑土层力学参数层号土层名称层厚(m)重度(kN/m3)浮重度(kN/m3)粘聚力(kPa)内摩擦角(°)m值1杂填土——2粉质黏土——3粉质黏土——4粉质黏土——5粉质黏土——6粉质黏土7粉质黏土8中砂——9粗砂——10砾砂——11粗砂——基坑存在的超载表超载位置类型超载值(kPa)作用深度(m)作用宽度(m)距坑边距(m)形式长度(m)A-A’局部荷载条形——此深基坑工程需要基坑支护结构来保证基坑的安全稳定,各种支护结构设计均遵循《建筑基坑支护技术规程》(JGJ 120-2012),《混凝土结构设计规范》(GB 50010-2010),《钢结构设计规范》(GB 50017-2017)。
因此,本文将设计3种支护结构,分别为锚杆支护体系+护坡桩、地下连续墙、地下连续墙+锚杆支护体系。
由规程知,设计支护形式需考虑作用在结构上的水平荷载,影响基坑支护的水平荷载有土体、基坑周围的建筑、车辆、施工材料及设备、温度及水等因素。
确定荷载需要确定基坑内外土压力,土体在重力作用下会对支护结构产生侧压力,基坑外侧土体作用在支护结构上的力为主动土压力,主动土压力使支护结构变形挤压基坑内侧土体,此时基坑内侧土体土体对支护结构作用的力为被动土压力。
土压力计算方法为朗金土压力计算方法,即分别按下式计算:2,tan 452ia i K ϕ⎛⎫=︒- ⎪⎝⎭(3-1),2ak ak a i p K c σ=- (3-2)2,tan 452ip i K ϕ⎛⎫=︒+ ⎪⎝⎭(3-3),2pk pk p i p K c σ=+(3-4)式中:,a i K 、,p i K ——分别表示第i 层土的主动土压力系数与被动土压力系数;i ϕ、i c ——分别表示第i 层土的内摩擦角(°)与黏聚力(kPa );ak σ、pk σ——分别表示支护结构外侧、内侧计算点的土中竖向应力标准值;akp——表示在第i层土中计算点位于支护结构外侧的主动土压力强度标准值(kPa),若该值小于0,应取0;pkp——表示在第i层土中计算点位于支护结构内侧的被动土压力强度标准值(kPa)。
(完整版)基坑支护结构的计算
第二部分基坑支护结构的计算支护结构的设计和施工,影响因素众多,不少高层建筑的支护结构费用已超过工程桩基的费用。
为此,对待支护结构的设计和施工均应采取极慎重的态度,在保证施工安全的前提下,尽量做到经济合理和便于施工。
一、支护结构承受的荷载支护结构承受的荷载一般包括–土压力–水压力–墙后地面荷载引起的附加荷载。
1 土压力⑴主动土压力:若挡墙在墙后土压力作用下向前位移时随位移增大,墙后土压力渐减小。
当位移达某一数值时,土体内出现滑裂面,墙后土达极限平衡状态,此时土压力称为主动土压力,以Ea表示。
⑵静止土压力:若挡墙在土压力作用下墙本身不发生变形和任何位移(移动或滑动),墙后填土处于弹性平衡状态,则此时作用在挡墙上的土压力成为静止土压力。
以E0表示。
(3)被动土压力:若挡墙在外力作用下墙向墙背向移动,随位移增大,墙所受土的反作用力渐增大,当位移达一定数值时,土体内出现滑裂面,墙后土处被动极限平衡状态,此时土压力称为被动土压力,以Ep表示。
主动土压力计算•主动土压力强度•无粘性土粘性土土压力分布对于粘性土按计算公式计算时,主动土压力在土层顶部(H=0处)为负值,即表明出现拉力区,这在实际上是不可能发生的。
只计算临界高度以下的主动土压力。
土压力分布可计算此种情况下的临界高度Zc,进而计算临界高度以下的主动土压力。
被动土压力计算被动土压力强度•无粘性土粘性土计算土压力时应注意•不同深度处土的内聚力C不是一个常数,它与土的上覆荷重有关,一般随深度的加大而增大,对于暴露时间长的基坑,土的内聚力可由于土体含水量的变化和氧化等因素的影响而减小甚至消失。
•、C 值是计算侧向土压力的主要参数,但在工程桩打设前后的、C值是不同的。
在粘性土中打设工程桩时,产生挤土现象,孔隙水压力急剧升高,对、C值产生影响。
另外,降低地下水位也会使、C值产生变化。
水压力作用于支护结构上的水压力一般按静水压力考虑。
有稳态渗流时按三角形分布计算。
深基坑支护结构的设计计算
深基坑支护结构的设计计算深基坑支护结构设计计算是指在进行深基坑施工时,为了保证基坑的稳定和安全,需要设计合理的支护结构来抵抗土压力和地下水力,并进行相应的计算与分析。
下面将从设计原则、支护结构类型、计算方法和实例分析等方面进行详细介绍。
设计原则:1.充分了解地质环境:通过钻孔、地质勘探等手段对周边地质环境进行充分了解,确定基坑边坡的稳定性和地下水情况等。
2.综合考虑安全和经济性:在满足基坑稳定要求的前提下,尽量优化支护结构的形式和尺寸,使其既能保证施工安全,又能降低成本。
3.遵循现场施工管理规范:根据施工组织方案和现场管理要求,进行支护结构设计,确保施工操作的可行性和安全性。
支护结构类型:常见的深基坑支护结构主要有以下几种类型:1.土方支撑法:包括开挖后土侧临时支护、钢支撑、混凝土支撑、钻孔锚杆支护等。
2.桩承台围护法:采用桩承台、连续墙等结构形式围护基坑。
3.地下连续墙法:采用成排的连续墙围护基坑,形成闭合空间。
4.排浆松土法:通过水平和垂直排浆井人工排除地下水,减小土体侧压力。
5.钢结构支护法:采用钢桩和钢板桩等结构形式围护基坑。
计算方法:1.土体侧压力计算:根据基坑周边土体的物理力学参数和基坑的几何形状,采用经验公式或数值模拟方法计算土体的侧压力。
2.支护结构稳定性计算:根据支护结构的形式和受力状况,进行结构的静力分析和稳定性校核,计算结构内力和变形等。
3.变形计算:根据支护结构的刚度和土体的变形特性,利用有限元分析方法或基于弹性平衡原理的计算方法,对基坑的变形进行计算。
实例分析:以一些深基坑工程为例,具体讲解支护结构设计计算的流程和方法。
1.地质环境调查:通过钻孔和地质勘探,了解地质层位、土壤性质、地下水位等信息。
2.施工组织方案:根据地质环境和工程要求,制定合理的施工组织方案,确定基坑开挖的顺序和方法。
3.土体侧压力计算:根据开挖的深度和基坑周围土体的物理力学参数,计算土体的侧压力,并确定开挖时的土压力分布。
基坑工程支护设计PPT128页
+7.6
3.0
-
+15.2 -4.6
2.3
- +140.1
+11.1 - +1.0
最后杆端弯矩 (近似)
171.8
-171.8 232.6
-232.6 ++14.835
-485
-33.4
通过以上计算,得到各支点的弯矩为:
固端D 与固端C类似,可求得:
3. 分配弯矩
µ
C D
=
0.58,
µ
F D
=
0.42
由于D点的不平衡力矩MDg = MDC + MDF = 303.4 – 637 = -333.6 kN⋅m,C点的不平衡力矩MCg = MCB + MCD = 269.4 - 280.4 = -11 kN⋅m 。显然应当:
3.6 多道支撑(锚杆)挡土桩墙计算
多道(层)支撑(锚杆)挡土桩的计算方法很多,有 等值梁法;二分之一分担法;逐层开挖支撑支承力不 变法;弹性地基梁法(m法);有限元计算法等。
3.6.1 等值梁法
一、计算步骤
多道支撑等值梁法计算原理与单道相同,但须计算固 端弯矩,求出弯矩后尚须进行分配,最后计算各支点 反力。
二、工程实例计算
北京京城大厦为超高层建筑,地上52层,地下4层,建筑面 积110270m2,地面以上高183.53m,基础深23.76m (设计 按23.5m计算),采用进口488mm×30mmH型钢桩挡土, 桩中间距1.1m,三层锚杆拉结。地质资料如下图所示。
对各土层进行加权平均后得:重度 = 19kN/m3,内摩擦角 = 300,
C kI
C
I
k
M
基坑工程课程设计计算书
基坑工程课程设计计算书
基坑工程课程设计计算书
1.设计要求:
根据给定的基坑工程设计任务,完成基坑工程的计算书。
计算书应包含以下内容:
- 基坑的开挖计算
- 基坑支护结构的设计计算
- 地下水的渗流计算
- 基坑工程的监测计算
2.基坑开挖计算:
- 根据基坑设计要求,计算基坑的开挖深度、开挖体积、开挖面积等参数。
- 根据土壤力学和岩土力学原理,计算和分析不同土壤类型的开挖深度限制和开挖工况。
3.基坑支护结构的设计计算:
- 根据基坑深度和周围土层力学参数,设计合理的基坑支护结构。
- 计算支撑结构的荷载和变形情况,确定支撑结构的类型和尺寸。
4.地下水渗流计算:
- 根据基坑周围的地下水情况,进行水位计算和渗流计算。
- 分析渗流路径、水压力等参数,确定地下水对基坑支护结构的影响。
5.基坑工程监测计算:
- 根据监测点的位置和要求,计算监测点的变形和应力等参数。
- 分析监测数据,评估基坑工程的安全状况。
以上是基坑工程课程设计计算书的基本要求和内容。
具体的计算方法和公式需要根据具体的设计任务和土层情况确定。
设计计算书应简明扼要、准确合理,结合实际情况进行相应的分析和评估。
基坑支护设计计算书
基坑支护设计计算书设计方法原理及分析软件介绍基坑开挖深度为6m,采用板桩作围护结构,桩长为12m,桩顶标高为-1m。
采用《同济启明星2006版》进行结构计算。
5.1 明开挖,6m坑深支护结构计算(1)工程概况基坑开挖深度为6m,采用板桩作围护结构,桩长为12m,桩顶标高为-1m。
q=0(1b 素填土)1.3hw=1(4 粘土)D=7H=6(6b 淤泥质粘土)(6c 粉质粘土)板桩共设1道支撑,见下表。
2中心标高(m) 刚度(MN/m) 预加轴力(kN/m)-1.3 30基坑附近有附加荷载如下表和下图所示。
h 1x 1s 45(2)地质条件场地地质条件和计算参数见表1。
地下水位标高为-1m。
渗透压缩层厚重度43) k(kN/m) c(kPa) m(kN/m土层 ,(:) 系数模量 max3(m) (kN/m) (m/d) (MPa)1.3 19 9.28 14.88 1500 1b 素填土2.7 18.4 12 17 3500 4 粘土7.5 17.8 5 10 1000 6b 淤泥质粘土3.5 18.9 15.5 13 3000 6c 粉质粘土2 19.7 18.5 14.5 5000 7 粉质粘土8 粉质粘土 13 20.4 19 18 7000(3)工况支撑刚度预加轴力工况编号工况类型深度(m) 支撑编号 2(MN/m) (kN/m)1 1.5 开挖2 1.3 30 1 加撑3 6 开挖4 2.5 1000 换撑5 1 拆撑工况简图如下:1.31.52.56工况 1工况 2工况 3工况 4工况 5(4)计算Y整体稳定验算O(1b 素填土)X(4 粘土)76(6b 淤泥质粘土)(6c 粉质粘土)(7 粉质粘土)(8 粉质粘土)安全系数 K=1.56 ,圆心 O( 1.19 , 1.45 ) 墙底抗隆起验算(1b 素填土)1(4 粘土)76(6b 淤泥质粘土)(6c 粉质粘土)(7 粉质粘土)(8 粉质粘土)Prandtl: K=2.83Terzaghi: K=3.23(1b 素填土)1.3m1(4 粘土)76(6b 淤泥质粘土)(6c 粉质粘土)(7 粉质粘土)(8 粉质粘土)坑底抗隆起验算 K=1.81抗倾覆验算(水土合算)(1b 素填土)1.3O1(4 粘土)76(6b 淤泥质粘土) 9924.610.8 914.3(6c 粉质粘土)(7 粉质粘土)Kc=1.22抗管涌验算: 159#按砂土,安全系数K=2.25按粘土,安全系数K=3.054包络图 (水土合算, 矩形荷载)500-502001000-100-200100500-50-100000 110.2kN/m222444666888101010121212141414深度(m)深度(m)深度(m)水平位移(mm)弯矩(kN*m)剪力(kN) Max: 42.8-8.3 ~ 183.2-46.6 ~ 66.2(5)工字钢强度验算: 159#基本信息计算目标:截面验算截面受力状态:绕X轴单向受弯材料名称:Q2352 材料抗拉强度(N/mm):215.02 材料抗剪强度(N/mm):125.0弯矩Mx(kN-m):229.000 截面信息截面类型:工字钢(GB706-88):xh=I40b(型号)截面抵抗矩33 Wx(cm): 1140.000 Wx(cm): 1140.000 1233 Wy(cm): 96.200 Wy(cm): 96.200 12截面塑性发展系数γx: 1.05 γx: 1.05 12γy: 1.20 γy: 1.20 12截面半面积矩33 S(cm): 678.600 S(cm): 92.704 xy13S(cm):84.891 y2 截面剪切面积22 A(cm): 94.110 A(cm): 94.110 xy截面惯性矩44 I(cm): 22800.000 I(cm): 692.000 xy截面附加参数参数名参数值x: I40b(型号) h分析结果2 最大正应力σ:191.312(N/mm)2 |σ= 191.3|?f = 215.0(N/mm) |f / σ|=1.124满足水平支撑系统验算:水平支撑系统位移图(单位:mm)水平支撑系统弯矩图(单位:kN.M)水平支撑系统剪力图(单位:kN)水平支撑系统轴力图(单位:kN) (6)钢腰梁强度验算:基本信息计算目标:截面验算截面受力状态:绕X轴单向受弯材料名称:Q2352 材料抗拉强度(N/mm):215.02 材料抗剪强度(N/mm):125.0弯矩Mx(kN-m):115.700 截面信息截面类型:工字钢组合Π形截面(GB706-88):xh=I40b(型号) 截面抵抗矩33 W(cm): 2280.000 W(cm): 2280.000 x1x233 W(cm): 2389.732 W(cm): 2389.732 y1y2截面塑性发展系数γ: 1.05 γ: 1.05 x1x2γ: 1.00 γ: 1.00 y1y2截面半面积矩33 S(cm): 1357.200 S(cm): 1646.925 xy截面剪切面积22 A(cm): 188.220 A(cm): 188.220 xy截面惯性矩44 I(cm): 45600.001 I(cm): 59026.381 xy截面附加参数参数名参数值x: I40b(型号) hw: 350(mm)分析结果2最大正应力σ:48.329(N/mm)2 |σ= 48.3|?f = 215.0(N/mm) |f / σ|=4.449满足(7)钢对撑强度及稳定性验算:基本输入数据构件材料特性材料名称:Q235构件截面的最大厚度:8.00(mm)2 设计强度:215.00(N/mm)2 屈服强度:235.00(N/mm)截面特性截面名称:无缝钢管:d=133(mm)无缝钢管外直径[2t?d]:133 (mm)无缝钢管壁厚[0,t?d/2]:8 (mm)缀件类型:构件高度:4.000(m)容许强度安全系数:1.00容许稳定性安全系数:1.00荷载信息轴向恒载设计值: 447.800(kN)连接信息连接方式:普通连接截面是否被削弱:否端部约束信息X-Z平面内顶部约束类型:简支X-Z平面内底部约束类型:简支X-Z平面内计算长度系数:1.00Y-Z平面内顶部约束类型:简支Y-Z平面内底部约束类型:简支Y-Z平面内计算长度系数:1.00 中间结果截面几何特性2 面积:31.42(cm)4 惯性矩I:616.11(cm) x3 抵抗矩W:92.65(cm) x回转半径i:4.43(cm) x4 惯性矩I:616.11(cm) y3 抵抗矩W:92.65(cm) y回转半径i:4.43(cm) y塑性发展系数γ1:1.15x塑性发展系数γ1:1.15y塑性发展系数γ2:1.15x塑性发展系数γ2:1.15y材料特性2 抗拉强度:215.00(N/mm)2 抗压强度:215.00(N/mm)2 抗弯强度:215.00(N/mm)2 抗剪强度:125.00(N/mm)2 屈服强度:235.00(N/mm)3 密度:785.00(kg/m)稳定信息绕X轴弯曲:长细比:λ=90.32 x轴心受压构件截面分类(按受压特性): a类轴心受压整体稳定系数: φ=0.711 x最小稳定性安全系数: 1.07最大稳定性安全系数: 1.07最小稳定性安全系数对应的截面到构件顶端的距离:0.000(m)最大稳定性安全系数对应的截面到构件顶端的距离:0.000(m)绕X轴最不利位置稳定应力按《钢结构规范》公式(5.1.2-1) N4478002,,200.3857N/mmA0.711,3142 x绕Y轴弯曲:长细比:λ=90.32 y轴心受压构件截面分类(按受压特性): a类轴心受压整体稳定系数: φ=0.711 y最小稳定性安全系数: 1.07最大稳定性安全系数: 1.07最小稳定性安全系数对应的截面到构件顶端的距离:0.000(m)最大稳定性安全系数对应的截面到构件顶端的距离:0.000(m)绕X轴最不利位置稳定应力按《钢结构规范》公式(5.1.2-1) N4478002,,200.3857N/mmA0.711,3142 y强度信息最大强度安全系数: 1.51最小强度安全系数: 1.51最大强度安全系数对应的截面到构件顶端的距离: 0.000(m)最小强度安全系数对应的截面到构件顶端的距离: 0.000(m)计算荷载: 447.80kN受力状态:轴压最不利位置强度应力按《钢结构规范》公式(5.1.1-1)分析结果构件安全状态: 稳定满足要求,强度满足要求。
第三章基坑支护结构设计计算
第三章基坑支护结构设计计算3.1土压力计算为计算简便,土压力计算采用简化的兰肯主动土压力计算公式,即采用加权平均之后的内摩擦角、粘聚力值进行计算。
3.1.1加权平均值计算各层土的物理指标如下表所示:基坑开挖的深度为16.3m ,即到粉土夹粉砂层为止。
(1)土层加权平均重度为:)/(68.1797.052.111.95.115.105.21997.09.1752.11711.98.175.15.1815.14.1905.230m KN hh iii =+++++⨯+⨯+⨯+⨯+⨯+⨯==∑∑γγ土层物理参数表土层序号及名称 土层厚度L (m ) 天然含水量W(%)液限指数IL 塑性指数Ip 天然重度粘聚力C(kpa) 内摩擦角φ(°) ①1填土 2.05 0.75 11.8 19.4 16.5 19.6 ①2黏土 1.15 36 0.68 19.5 18.5 20.5 13.1 ②1黏土 1.5 39.9 0.98 18.7 17.8 15.3 11 ②2淤泥质黏土 9.11 52.3 1.55 19.4 17 11.5 8.4 ②3淤泥质粉质黏土1.52 41.6 0.45 14.6 17.913.5 10.2 ③1粉土夹粉砂 3.28 28.9 1.16 9.3 19 11.6 20 ③2粉质黏土夹粉砂10.04 31.8 1.16 11.4 18.812.2 15.2 ④1淤泥质粉质黏土 5.3 38.2 1.28 13.4 18.213.2 12.1 ④2黏土 7.18 36.8 0.99 17.6 18.2 17.2 12.7 ⑥2粉质黏土 6.25 34.2 0.84 14.4 18.6 20.7 14.5 ⑥4粉土 2.04 25.4 0.98 9.6 19.4 12.3 26.6 ⑦1粉质黏土 2.93 27 0.56 13.6 19.6 31.218.3注:表中仅列出本车站有分布布的底层。
基坑支护专项方案计算
一、工程概况本工程位于XX市XX区,项目总投资XX亿元。
基坑开挖深度约6.5米,周边环境复杂,地下管线密集。
为保障基坑施工安全和周边环境稳定,特制定本专项方案。
二、支护结构设计1. 支护形式:采用钢筋混凝土排桩支护,桩径800mm,桩间距1.5m,桩长根据地质情况确定。
2. 钢筋混凝土排桩设计:(1)桩身混凝土强度等级C30;(2)桩身配筋:主筋直径φ25,箍筋直径φ12,间距150mm;(3)桩顶设置钢筋混凝土冠梁,尺寸为1200mm×1200mm,配筋同桩身。
3. 防水措施:在桩身混凝土中掺入防水剂,确保桩身防水性能。
三、施工方案1. 施工顺序:先进行桩基施工,再进行冠梁施工,最后进行土方开挖。
2. 桩基施工:(1)桩基施工采用旋挖钻机进行钻孔,钻孔深度根据地质情况确定;(2)成孔后,清孔,清孔标准为孔底沉渣厚度≤50mm;(3)下钢筋笼,钢筋笼制作应符合设计要求;(4)浇筑混凝土,混凝土强度达到设计要求后方可进行下一道工序。
3. 冠梁施工:(1)冠梁混凝土强度等级C30;(2)冠梁配筋:主筋直径φ25,箍筋直径φ12,间距150mm;(3)冠梁施工完成后,进行养护。
4. 土方开挖:(1)采用挖掘机进行土方开挖,分层开挖,每层厚度不超过2.0m;(2)开挖过程中,应确保支护结构稳定,避免因开挖不当导致支护结构破坏;(3)开挖过程中,应及时进行排水,防止基坑积水。
四、计算书1. 桩基承载力计算:(1)桩基轴向承载力计算公式:Qa = qSap + qaAp(2)桩基侧阻力计算公式:Qs = 0.6qL + 0.4qLγH(3)桩基抗拔力计算公式:Qb = qaApγH2. 冠梁弯矩计算:(1)冠梁弯矩计算公式:M = (F1L1 + F2L2)/2(2)F1为桩顶水平力,F2为桩侧水平力,L1为桩顶至冠梁长度,L2为冠梁长度。
3. 冠梁剪力计算:(1)冠梁剪力计算公式:V = (F1 + F2)γH/2五、安全措施1. 施工过程中,加强监测,确保支护结构稳定;2. 加强施工人员安全培训,提高安全意识;3. 严格执行施工方案,确保施工质量;4. 加强现场文明施工,减少对周边环境的影响。
基坑支护结构的设计原理与计算方法
基坑支护结构的设计原理与计算方法支护结构是指用来稳定和支护地表结构的工程结构。
基坑支护结构是地面施工周围环境和基坑结构构造的工程结构,它具有贯穿基坑深度的结构材料,承受自重、结构荷载和地面施工所产生的力,以确保基坑支护结构的牢固性和稳定性,以保护基坑周围的地表结构。
一、基坑支护结构的设计原理
1、安全稳定性:基坑支护结构的设计首先应考虑安全稳定性,确保基坑结构的牢固性和稳定性,以保护基坑周围的地表结构。
2、结构安全性:基坑支护结构受到重力荷载、地震荷载和其他外力的双重影响,应当考虑结构的稳定性和完整性,确保基坑支护结构的安全性。
3、经济性:基坑支护结构的设计应尽可能考虑成本效益,建议采用适当的结构材料,以尽量减少支护结构的建造成本。
二、基坑支护结构的计算方法
1、支护结构强度计算:应根据基坑支护结构的荷载和结构特性,计算支护结构的强度,确定支护结构的设计原则,以确保支护结构的安全性和可靠性。
2、支护结构位移计算:在设计支护结构时。
基坑支护的结构的计算
基坑支护的结构的计算基坑支护是指在建筑工地或者其他开挖工程中,为了防止土方塌方和保证施工安全而采取的一系列措施。
基坑支护结构的计算是基坑工程设计中重要的一部分,本文将对基坑支护结构的计算进行详细介绍。
一、基坑支护结构的分类基坑支护结构通常可以分为两类:一是按照支护方式的不同分为主动支护和被动支护;二是按照结构形式的不同分为钢支撑结构和混凝土支护结构。
主动支护是指通过设置支撑结构对基坑进行支护,常见的主动支护结构有钢支撑和桩墙支护。
被动支护是指利用土体自身力学性质对基坑进行支撑,常见的被动支护结构有土钉墙和锚杆墙。
钢支撑结构是以钢材为主要材料的支护结构,常见的有钢板桩和钢管桩。
混凝土支护结构则是以混凝土为主要材料的支护结构,常见的有混凝土梁和混凝土墙。
二、基坑支护结构的计算方法基坑支护结构的计算方法主要包括以下几个方面:1.基坑支护结构受力分析:支护结构需要承受土压力、地下水压力和附加荷载等多种作用力,计算时需要对支护结构的受力情况进行全面的分析。
2.支撑杆件的稳定性计算:钢支撑结构中的支撑杆件需要满足一定的稳定性要求,包括弯曲强度、屈曲稳定性和抗扭稳定性等方面的计算。
3.连墙件的选择与计算:在钢支撑结构中,如果需要两个或多个支撑壁之间进行连接,则需要使用连墙件。
连墙件的选择和计算需要考虑其承受的弯曲强度和抗剪强度等。
4.土壁和桩身的稳定性计算:在钢板桩和钢管桩的设计中,需要对土壁和桩身的稳定性进行计算,包括土壁的滑移和失稳以及桩身的稳定性等。
5.锚杆的计算:在锚杆墙的设计中,需要对锚杆的承载力和稳定性进行计算。
三、基坑支护结构计算的基本步骤基坑支护结构的计算一般包括以下几个基本步骤:1.确定基坑的尺寸和形状,确定基坑周围的土质和地下水情况。
2.根据基坑的具体情况,选择适当的支护方案和支撑结构类型。
3.进行基坑支护结构的初步设计,包括确定支护结构的布置形式、支距和锚固长度等参数。
4.对支撑结构进行受力分析,计算支护结构受到的土压力、地下水压力和附加荷载等。
基坑支护设计(毕业论文)
摘要近年来随着经济的发展,社会的进步,城市化进程的加快,高层建筑和市政工程大量涌现。
高层建筑的建造、大型市政设施的施工及大量地下空间的开发,必然会有大量的深基坑工程产生。
建筑物高度越高,其埋置深度也越深,相应的对基坑工程的要求也就越高。
深基坑支护结构的设计、施工、监测等是近年来经常遇到的技术难题。
深基坑支护不仅要求确保边坡的稳定,而且要满足变形控制要求,保证基坑内正常作业安全,而且要防止基坑及坑外土体移动,保证基坑附近建筑物、道路、管线的正常运行。
为了满足如今建筑物的支护,基坑工程也在朝更大、更深的要求迈进。
本设计主要是对某科技楼工程基坑支护结构进行设计,首先要确保周围建筑物、道路、管线等的正常安全使用,同时要求围护结构的稳定性好,沉降位移小。
设计主要采用的支护方式是钻孔灌注桩和土钉墙两种,同时,钻孔灌注桩采用的内支撑形成支护体系。
基坑降水主要在基坑周围设置降水井,采用集水明排法降水方案。
设计最后针对支护和降水方案,对基坑施工工艺及基坑监测进行了大致说明。
关键词:深基坑;钻孔灌注桩;土钉墙;降水;施工;监测AbstractIn recent years, with economic development , social progress , urbanization , and high-rise buildings and public works in large numbers . Construction , construction of large municipal facilities to develop high-rise buildings and a large underground space , there must be a lot of deep excavation produced . The higher the building height , the depth of its buried deeper , corresponding to the requirements of the higher excavation . Deep excavation structural design, construction , monitoring and other technical problems are often encountered in recent years . Deep excavation requires not only ensure the stability of the slope, but also to meet the requirements of distortion control , to ensure the normal operation of the pit safety , but also to prevent the soil pit and pit outside move to ensure pit near buildings, roads, pipelines normal operation. In order to meet today shoring, excavation of the building is also moving in a larger , deeper demands forward. This design is a science and technology building project excavation structure design, first make sure that the surrounding buildings , roads, pipelines and other normally safe to use , while retaining structure requires good stability , a small settlement displacement . Supporting manner designed primarily uses two bored and soil nail wall , while using the support form Bored supporting system . The main setting precipitation pit dewatering wells around the pit , using the method of precipitation scheme catchment next row . Finally, supporting the design and precipitation scheme of excavation pit monitor the construction process and were generally described.Keywords: deep excavation ; bored ; soil nail wall ; precipitation ; construction ; monitoring第1章前言 (3)1.1 基本技术要求 (4)1.1.1设计的基本技术要求 (4)1.1.2 施工的基本技术要求 (5)1.2基坑工程设计 (5)1.2.1设计依据 (5)1.2.2设计内容 (5)1.2.3计算理论 (6)1.3 本设计内容 (6)第2章设计方案的综合说明 (7)2.1概述 (7)2.1.1工程概况 (7)2.1.2环境条件概况 (7)2.1.3工程地质条件 (7)2.1.4地下水情况 (8)2.1.5基坑侧壁支护结构安全等级及重要性系数 (8)2.2 基坑支护方案 (8)2.2.1基坑支护方案选择的依据 (8)2.2.2基坑支护方案选择 (9)2.2.3 基坑支护方案说明 (10)2.3 地下水控制方案 (12)第3章基坑支护结构设计计算书 (13)3.1地质设计参数 (13)3.1.2 计算区段划分 (13)3.1.3计算方法 (14)3.1.4土压力系数计算 (14)3.2 ABCD段支护结构设计 (14)3.2.1土层分布 (14)3.2.2 土层侧向土压力计算主动土压力 (15)3.2.3土压力合力及作用点 (16)3.2.4嵌固深度的确定 (17) (18)3.2.5最大弯矩计算3.2.6稳定性验算 (20)3.2.7配筋计算 (21)3.2.8支撑结构设计计算 (23)3.3 BCFE段支护结构设计 (26)3.3.1土钉设计 (26)3.3.2稳定性验算 (32)3.3.3面层设计 (34)第4章地下水控制方案 (34)4.1 基坑降排水作用及方法 (34)4.2降水方法的依据 (34)4.3降水设计 (35)4.4基坑突涌稳定性验算 (37)第5章施工 (39)5.1基坑土方施工工艺及要求 (39)5.2钻孔灌注桩的施工工艺 (40)5.3冠梁施工工艺 (42)5.4内支撑施工工艺 (43)5.5土钉墙施工工艺 (45)第6章基坑施工监测 (48)6.1监测目的 (48)6.2监测要求 (49)6.3监测原则 (49)6.4基坑监测项目选择依据及监测内容 (49)6.5监测实施 (50)6.5.1周围环境的监测 (50)6.5.2支护桩位移与沉降监测 (50)6.5.3测量精度 (52)6.5.4仪器设备 (53)6.5.5测量周期 (53)6.5.6预警报告 (53)6.5.7信息反馈 (54)第7章电算 (55)7.1 AB段内支撑电算 (55)7.1.1 支护方案 (55)7.1.2 支护信息 (55)7.1.3设计结果 (58)7.1.4稳定性验算 (62)7.1.5 隆起量的计算 (65)7.1.6嵌固深度计算 (66)7.2土钉墙电算 (67)7.2.1设计项目: (67)7.2.2 设计结果 (69)7.2.3 喷射混凝土面层计算 (71)第8章翻译 (73)Reinforced Concrete (73)2.2 Earthwork (75)2.3 Safety of Structures (77)8.1钢筋混凝土 (80)8.2土方工程 (81)8.3结构的安全度 (82)致谢 (85)参考文献 (86)第1章前言随着经济的发展,人们生活水平的提高,人类对生活环境的要求越来越高,尤其在中国这样人口大国,人口基数比较大,增长的比较快。
基坑支护结构的计算
基坑支护结构的计算
隧道基坑支护结构计算
一、基坑实际形状
基坑的实际形状是基于场地条件的,以便容纳预算和施工量。
通常基坑形状分为方形、矩形、平行四边形和弧形。
二、计算支护方法
1、拱腰支护
拱腰支护技术是一种新型基坑支护技术,它掩饰着基坑的墙壁,采用环式支护方法,使基坑两侧的墙壁夹紧在一起,以抵抗外来水的侵蚀力。
2、支护支撑技术
支护支撑技术是一种通过弹性支撑体将基坑墙壁支护起来,从而增强基坑承受外部水的作用,增强墙壁质量和稳定性的新型技术。
3、支护模块技术
支护模块技术是一种通过支护结构模块的复合式支护方法,以改善基坑支护效果,减少水的侵蚀力的方法。
4、重力墙技术
重力墙技术是一种支护方法,它主要是利用重力墙的重力,将基坑的墙壁支护起来,以改善基坑支护结构的刚度。
三、计算支护面
1、活荷载计算
支护面受到活荷载时,应进行荷载计算并确定坑壁运动情况,确定支护面的水位和支护结构位置,并设置施工顺序和施工方式。
2、支撑力计算
支撑力计算是基坑支护结构的关键。
第3章 基坑工程设计计算
d a / tan za d (3a b) / tan
k
p0b b 2a
za d a / tan或za d (3a b) / tan
k 0
p0 基础底面附加压力标准值(KPa) d、b 基础埋置深度、基础宽度(m)
a 支护结构外边缘至基础水平距离(m) 附加荷载扩散角(°),宜取45° za 支护结构顶面至附加竖向应力计算点
4)计算O点处桩墙前侧主动土压力强度ea1及后侧被动 土压力强度ep1;
5)根据作用在支护结构上的全部水平作用力平衡条件∑x=0和绕墙底端力矩平衡条件∑M=0求得z与t0; 6)根据最大弯矩点处剪力为零,求出最大弯矩点及最大弯矩值Mmax。
2. 布鲁姆(Blum)法
布鲁姆简化计算法的计算简图如下图所示,桩墙底部后侧出现的被动土压力
1)基床系数C随深度成正比例增加。即:
m:比例系数。
C mz
按此图式来计算桩在外荷作用下各截面内力的方法通常简称为“m”法。
2)基床系数C在第一个零变位点以下(Z≥t时): C=K=常量
当0≤Z≤t时,C沿深度成曲线变化(可近似地假定为按直线增加)。 K值可按实测确定。 按此图式计算桩在外荷作用下的各面截内力的方法,通常简称为“K”法。
Kp
cos2
cos(
cos2 ( ) )[1 sin( )sin(
)
]2
cos( ) cos( )
库伦土压力理论只适用于无粘性土,并且假设滑动面 为平面,而实际的滑动面可能为曲面,导致主动土压力偏小, 被动土压力偏大。
3.2.2 水压力
水
水
土
土
合
分
算
算
“土、水压力的分、合算”原则 “分算”原则适用于土孔隙中存在自由的重力水或土的渗透性较好
(完整版)基坑支护方案设计(土钉墙,详细计算)
适用文档第一章基坑边坡计算一、工程概略(一)土质散布状况①1杂填土( Q4ml):由粉质黏土混许多的碎砖、碎石子等建筑垃圾及生活垃圾构成。
层厚 0.50 ~ 4.80 米。
①2素填土( Q4ml):主要由软~可塑状粉质黏土夹少许小碎石子、碎砖构成。
层厚 0.40 ~ 2.90 米。
①3淤泥质填土( Q4ml):。
主要为原场所塘沟底部的淤泥,后经翻填。
散布无规律,局部散布。
层厚 0.80 ~2.30 米。
②1粉质黏土( Q4al):可塑,局部偏软塑,中压缩性,切面稍有光彩,干强度中等,韧性中等,土质不平均,该层散布不均,局部缺失。
层顶标高 5.00 ~ 13.85 米,层厚 0.50 ~ 8.20 米。
②2粉土夹粉砂( Q4al):中压缩性,干强度及韧性低。
夹薄层粉砂,具水平状堆积层理,单层厚 1.0 ~,局部富集。
该层散布不平均,局部缺失。
层顶标高 1.30 ~10.93 米,层厚 0.80 ~4.50 米。
②3含淤泥质粉质黏土( Q4al):软~流塑,高压缩性,干强度、韧性中等偏低。
局部夹少许薄层状粉土及粉砂,层顶标高 1.87 ~ 10.03 米,层厚 1.00 ~13.50 米。
②4粉质黏土(Q4al):饱和,可塑,局部软塑,中压缩性,层顶标高 -8.30 ~米,层厚 1.10 ~14.60 米。
③1粉质黏土 (Q3al) :可~硬塑,中压缩性。
干强度高,韧性高。
含少许铁质浸染斑点及许多的铁锰质结核。
该层顶标高-11.83 ~13.23 米,层厚 1.40 ~14.00 米。
③2粉质黏土 (Q3al) 可塑,局部软塑,中压缩性。
该层顶标高 -18.83 ~ 6.83 米,层厚 2.20 ~ 23.70 米。
④粉质黏土混砂砾石(Q3al):可塑,局部软塑,中偏低压缩性,干强度中等,韧性中等。
该层顶标高 -26.73 ~-10.64 米,层厚 0.50 ~6.50 米。
(二)支护方案的选择依据本工程现场实质状况,基坑各部位确立采纳以下支护举措1、 3#楼与 4#楼地下室相邻处,地下室间距,基坑底高差,土质散布○○○为 2 1、22、31土层,采纳土钉墙支护的方式。
基坑支护设计计算——土压力
基坑支护设计计算1基坑支护设计的主要容 2设计计算根据地质条件的土层参数如图所示,根据设计要求,基坑开挖深度暂定为9m,按规设定桩长为16.8m ,桩直径设定为0.8m ,嵌固深度站定为7.8m,插入全风化岩3.0m 。
2.1水平荷载的计算按照超载作用下水土压力计算的方法,根据朗肯土压力计算理论计算土的侧向压力,计算时不考虑支护桩与土体的摩擦作用。
地下水以上的土体不考虑水的作用,地下水以下的土层根据土层的性质差异需考虑地下水的作用。
土层水平荷载计算依据《建筑基坑支护技术规程》JGJ 120-99 1.计算依据和计算公式主动土压力系数:)245(tan 2iai K ϕ-= 被动土压力系数:)245(tan 2ipi K ϕ+︒=(1)支护结构水平荷载标准值e ajk 按下列规定计算:1)对于碎石土及沙土:a)当计算点深度位于地下水位以上时: ai ik ai ajk ajk K C K e 2-=σ b)当计算点深度位于地下水位以下时:w ai wa wa j wa j ai ik ai ajk ajk K h m h z K C K e γησ])()[(2---+-= 式中ai K —第i 层土的主动土压力系数;ajk σ—作用于深度z j 处的竖向应力标准值;C ik —三轴实验确定的第i 层土固结不排水(快)剪粘聚 力标准值;z j —计算点深度;m j —计算参数,当h z j 时,取z j ,当h z j ≥时,取h ; h wa —基坑外侧水位深度;wa η—计算系数,当h h wa ≤时,取1,当h h wa 时,取零; w γ—水的重度。
2)对于粉土及粘性土: ai ik ai ajk ajk K C K e 2-=σ(2)基坑外侧竖向应力标准值ajk σ按下列规定计算: ok rk ajk σσσ+=(3)计算点深度z j 处自重应力竖向应力rk σ 1)计算点位于基坑开挖面以上时: j mj rk z γσ=式中mj γ—深度z j 以上土的加权平均天然重度。
支护结构计算
支护结构计算一、排桩与地下连续墙计算对于较深的基坑,排桩、地下连续墙围护墙应用最多,其承受的荷载比较复杂,一般应考虑下述荷载: 土压力、水压力、地面超载、影响范围内的地面上建筑物和构筑物荷载、施工荷载、邻近基础工程施工的影响(如打桩、基坑土方开挖、降水等)。
作为主体结构一部分时,应考虑上部结构传来的荷载及地震作用,需要时,应结合工程经验考虑温度变化影响和混凝土收缩、徐变引起的作用以及时空效应。
排桩和地下连续墙支护结构的破坏,包括强度破坏、变形过大和稳定性破坏。
其强度破坏或变形过大包括(图3-16):图3-16 排桩和地下连续墙支护结构的破坏形式(1)拉锚破坏或支撑压曲: 过多地增加了地面荷载引起的附加荷载,或土压力过大、计算有误,引起拉杆断裂,或锚固部分失效、腰梁破坏,或内部支撑断面过小受压失稳,为此,需计算拉锚承受的拉力或支撑荷载,正确选择其截面或锚固体。
(2)支护墙底部走动: 支护墙底部嵌固深度不够,或挖土超深、水冲刷等,都可能产生这种破坏,为此,需正确计算支护结构的入土深度。
(3)支护墙的平面变形过大或弯曲破坏: 支护墙的截面过小、对土压力估算不准确、墙后增加大量地面荷载或挖土超深等,都可能引起这种破坏。
平面变形过大会引起墙后地面过大的沉降,也会给周围附近的建(构)筑物、道路、管线等造成损害。
排桩和地下连续墙支护结构的稳定性破坏包括:(1)墙后土体整体滑动失稳: 如拉锚的长度不够、软黏土发生圆弧滑动,会引起支护结构的整体失稳。
(2)坑底隆起: 在软黏土地区,如挖土深度大、嵌固深度不够,可能由于挖土处卸载过多,在墙后土重及地面荷载作用下引起坑底隆起。
对挖土深度大的深坑需进行这方面的验算,必要时,需对坑底土进行加固处理或增大挡墙的入土深度。
(3)管涌: 在砂性土地区,当地下水位较高、坑深很大和挡墙嵌固深度不够时,挖土后在水头差产生的动水压力作用下,地下水会绕过支护墙连同砂土一同涌入基坑。
二、水泥土墙计算水泥土墙设计应包括: 方案选择,结构布置,结构计算,水泥掺量与外加剂配合比确定,构造处理,土方开挖,施工监测。
基坑支护结构计算方法-王松
3、基坑支护结构计算方法
图形界面 土层信息输入界面
理正深基坑软件界面
3、基坑支护结构计算方法
MIDAS/CIVIL软件界面
3、基坑支护结构计算方法
计算原则: (1)支护荷载:详细研究土质类型及相关参数,与地勘单 位加强沟通,确定合理的土质参数。(m值取用) (2)认真分析基坑开挖过程,全面考虑每个施工阶段结构 荷载及边界条件。 (3)应选用两款不同软件进行计算结果对比,尤其校核支 护位移、内力值,确保计算结果可靠。
土弹簧释放力
静止土压力增量
3、基坑支护结构计算方法
3.7、支护计算的软件运用
理正-深基坑软件 同济-启明星基坑软件 岩土专用有限元分析软件:PLAXIS、MIDAS/GTS 结构有限元分析软件:MIDAS/CIVIL、SAP2000
理正、启明星软件为针对基坑开挖计算的专用软件,用户 只需按照软件界面要求输入相关参数进行计算即可,软件 按照相关规范要求进行验算并输出验算结果,包括结构内 力、位移、及基坑稳定性等验算结果。
支锚信息
4、计算实例 4.1、理正软件计算
土压力计算结果
依据建筑基坑技术规程
4、计算实例
与理正计算一致
4、计算实例 4.1、理正软件计算
内力及位移计算结果
5、有限元分析
有必要运用MIDAS等 有限元软件实现对基坑 的模拟分析。
SAP2000模拟分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章基坑支护结构设计计算3.1土压力计算为计算简便,土压力计算采用简化的兰肯主动土压力计算公式,即采用加权平均之后的内摩擦角、粘聚力值进行计算。
3.1.1加权平均值计算各层土的物理指标如下表所示:基坑开挖的深度为16.3m ,即到粉土夹粉砂层为止。
(1)土层加权平均重度为:)/(68.1797.052.111.95.115.105.21997.09.1752.11711.98.175.15.1815.14.1905.230m KN hh iii =+++++⨯+⨯+⨯+⨯+⨯+⨯==∑∑γγ土层物理参数表土层序号及名称 土层厚度L (m ) 天然含水量W(%)液限指数IL 塑性指数Ip 天然重度粘聚力C(kpa) 内摩擦角φ(°) ①1填土 2.05 0.75 11.8 19.4 16.5 19.6 ①2黏土 1.15 36 0.68 19.5 18.5 20.5 13.1 ②1黏土 1.5 39.9 0.98 18.7 17.8 15.3 11 ②2淤泥质黏土 9.11 52.3 1.55 19.4 17 11.5 8.4 ②3淤泥质粉质黏土1.52 41.6 0.45 14.6 17.913.5 10.2 ③1粉土夹粉砂 3.28 28.9 1.16 9.3 19 11.6 20 ③2粉质黏土夹粉砂10.04 31.8 1.16 11.4 18.812.2 15.2 ④1淤泥质粉质黏土 5.3 38.2 1.28 13.4 18.213.2 12.1 ④2黏土 7.18 36.8 0.99 17.6 18.2 17.2 12.7 ⑥2粉质黏土 6.25 34.2 0.84 14.4 18.6 20.7 14.5 ⑥4粉土 2.04 25.4 0.98 9.6 19.4 12.3 26.6 ⑦1粉质黏土 2.93 27 0.56 13.6 19.6 31.218.3注:表中仅列出本车站有分布布的底层。
(2)土层加权平均内摩擦角为:)(24.1197.052.111.95.115.105.22097.02.1052.14.811.9115.11.1315.16.1905.20︒=+++++⨯+⨯+⨯+⨯+⨯+⨯==∑∑iii hϕγϕ(3)土层加权平均内粘聚力为:)(31.1397.052.111.95.115.105.26.1197.05.1352.15.1111.93.155.15.2015.15.1605.20kpa hC C iii =+++++⨯+⨯+⨯+⨯+⨯+⨯==∑∑γ1.1.1 土压力系数计算基坑底以上采用兰肯主动土压力计算土压力,而在计算被动土压力的 时候考虑到桩已经在基坑一下的砂土层中,所以采用库伦被动土压力计算理论。
主动土压力系数为:67.082.0245(tan 202==-︒=)ϕa K基坑底以下的粉砂层的内摩擦角为:︒=20ϕ取: 03.1332==︒==βεϕδ,被动土压力系数为:2p 2222cos ()sin()sin()cos cos()1cos()cos()cos 30sin 50sin 30cos 201cos 206.11K ϕεδϕϕβεεδεδεβ+=⎡⎤++--⎢⎥--⎣⎦︒=⎡⎤︒︒︒-⎢⎥︒⎣⎦=1.1.2 土压力计算朗肯土压力理论认为在垂直墙背上的土压力,是相当于达到极限平衡的半无限体中任一垂直截面上的应力。
当地面水平时,土体内任一竖直面都是对称面,因此竖直和水平截面上的剪应力等于零。
(1)主动土压力当墙后填土达到主动极限平衡状态时,作用于任一z 深度处土单元的竖直应力z z ⋅=γσ应是大主应力1σ,而作用于墙背的水平向土压力a p 应是小主应力3σ。
由土的强度理论可知,当土体中某点处于极限平衡状态时,大主应力1σ和小主应力3σ间应满足以下关系式:粘性土:)245tan(2)245(tan 231ϕϕσσ+++= c或者:)245tan(2)245(tan 213ϕϕσσ---= c 以a p =3σ,z ⋅=γσ1代入上式中,即得朗肯主动土压力计算公式为:2tan (45)2tan(45)22a p h c ϕϕγ=--- 或者:a a a K c zK p 2-=γ上面各式中:a K —主动土压力系数,)245(tan 2ϕ-= a K ;γ—墙后填土的重度(3/m kN ),地下水位以下取有效重度;c —填土的黏聚力(kPa );ϕ—填土的内摩擦角;h —计算点距填土面的深度(m )。
由此知:无黏性土的主动土压力强度与深度z 成正比,沿墙高压力分布为三角形,作用在墙背上的主动土压力的合力a E 即为a p 分布图型的面积,其作用点位置在分布图型的形心处,土压力方向为水平,即:)245(tan 2122ϕγ-= H E a 或:a a K H E 221γ=(1)被动土压力当墙在外力作用下挤压土体时,填土中任一点的竖向应力z z ⋅=γσ仍不变,而水平向应力却由小到大逐渐增大,直至出现被动朗肯状态。
此时,作用在墙面上的水平向应力达到最大限值p p ,即大主应力1σ,而竖向应力为小主应力,即3σ。
有前述公式可以推导出被动土压力的计算公式为:粘性土:p p p K c zK p 2+=γ式中p K —被动土压力系数,)245(tan 2ϕ+= p K ,其余符号同前。
由上式可知,黏性土的被动土压力随墙高呈上小下大的梯形分布。
单位墙长被动土压力合力为:黏性土:p p p K cH K H E 2212+=γ以上介绍的朗肯土压力理论计算公式简单,使用方便。
但由于在推导过程中的条件假定和简化,使该理论使用范围受限。
此外,由于朗肯理论忽略了墙背和填土之间的摩擦作用,从而使计算的主动土压力偏大,被动土压力偏小。
根据上述计算理论计算各个土层的土压力 ①基坑顶层处的土压力为:1000e 228.519.80.49214.10.4919.8a aqK C K γγ=⨯-=⨯⨯-⨯⨯≈ ②基坑底处的土压力为:2000e ()228.519.8(13.2)0.49214.10.4919.8123.1(a)a aqh K C K KP γγ=⨯+-=⨯+⨯-⨯⨯= 1.2 支护桩等值梁计算由于支护桩的嵌固深度较大,且下端为弹性嵌固,因此在计算的时候可以将支护桩看做是一个超静定的梁,从而采用结构力学的方法来进行相关的计算。
计算简图如图所示:图4.1 支护桩计算简图1.2.1 土压力零点计算设土压力零点(主动土压力等于被动土压力的点)距离基坑底部的距离为y 则由:000()22a a p p qh y K C K K y C K γγγ++-=+得出:0022()19.813.20.4928.50.49214.10.49214.1 6.1119.8(6.110.49)1.15()a a a pp a hK qK C K C K y K K m γγ+--=-⨯⨯+⨯-⨯⨯-⨯⨯=⨯-=即在距离基坑底部1.15m 处土压力为0。
1.2.2 等价连续梁各个节点的不平衡弯矩计算在土压力为零的地方将计算的连续梁断开,上段按照有三个支点的连续梁计算。
计算的简图如下图所示:图4.2 等价连续梁计算简图(1)等值梁AB 段悬臂部分弯矩计算:图4.3 AB 段悬臂部分计算简图0115.046.65194.2()23AB BAM M KN m ==⨯⨯⨯⨯= (2)等值梁BC 段弯矩计算:图4.4 BC 段梁部分计算简图B 支点的荷载为:46.6B q KN =C 支点的荷载为:88.6C q KN =根据《建筑结构静力计算手册》(第二版)中的相关公式得到:()()22781202746.6888.6194.24.5120277.6()B C BA CBq q l M M KN m +=-⨯+⨯=⨯-=(3)等值梁CDE 段弯矩计算:图4.5CDE 段梁部分计算简图梁的长度为: 3.7 1.15 4.85()l a b m =+=+= C 支点的荷载为:88.6C q KN = E 支点的荷载为: 123.1E q KN =()222222222222123289182456588.6 3.7 3.734.5 3.7 3.712 3.7123.1 1.153 1.1528918 4.8524 4.855 4.8565 4.85E C C E CEq q a q a q b a a a b l l l l M ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦-=----+--⨯⨯⨯=----+--232.149.826.2308.1()KN m =---=-1.2.3 等值梁弯矩分配计算令:0.934.5 4.85EI EIi i ==则 30.52330.93=1-=0.48CB CE CB iC i i μμμ==+⨯那么点的分配系数为:对C 点进行弯矩分配计算如下表:表2.12 C 点弯矩分配计算表点号BC E分配系数 0.52 0.48194.2 -194.2 77.6 -308.1 0 119.86 110.64 0 最后弯矩194.2-194.2197.46-197.460 通过弯矩分配计算之后得到各个支点的弯矩为: 194.20197.460B C E KN mKN m M M M =-=-= 1.2.4 支点反力求解(1)对AB 段梁进行研究,先求出1B R图4.6 B 点反力计算图对A 点取弯矩计算得到:2112194.20546.6235116.5()B KN R +⨯⨯⨯== (2)对BC 段梁进行研究,先求出21B C R R 以及图4.7 B 点与C 点反力计算图对C 点取弯矩得到:()22211146.6 4.588.646.6 4.5194.20197.46223= 4.5=135.6)B KN R ⨯⨯+-⨯⨯⨯+-(对B 点取弯矩得到:()22111146.6 4.588.646.6 4.5194.20197.46223= 4.5=147.1)C KN R ⨯⨯+-⨯⨯⨯-+(B 点的支反力为:12135.6116.5252.1)B B B KN R R R =+=+=( (3.)对CE 段梁进行研究,先求出2E C R R 以及图4.8 E 点与C 点反力计算图对E 点取弯矩得到:2 3.7111288.6 3.7 1.15 3.734.5 3.7 1.15123.1 1.15197.4622323=4.85=271.0)C KN R ⎛⎫⨯⨯++⨯⨯⨯⨯+⨯⨯⨯⨯+ ⎪⎝⎭(C 点的支反力为:12147.1271.1418.1)C C C KN R R R =+=+=( 由CE 梁竖向力平衡可以得到:2111.15123.134.5 3.7191.4(2288.6 3.7E C E R R R KN ⨯⨯+⨯⨯=+⇒=⨯+)各个支点的反力为: 252.1418.1191.4B C E KNKN KNR R R === 1.3 支护桩嵌固深度计算支护桩嵌固深度计算计算简图如下图所示: 前面已经计算出y=1.15m现只需要计算出x 即可。