人教版高中数学必修五数列复习提纲及例题
高中数学必修五数列知识点+练习含答案解析(非常详细)
第一部分必修五数列知识点整理第二章 数列1、数列的定义及数列的通项公式:①. ()n a f n =,数列是定义域为N 的函数()f n ,当n 依次取1,2,⋅⋅⋅时的一列函数值②i.归纳法若00S =,则n a 不分段;若00S ≠,则n a 分段iii. 若1n n a pa q +=+,则可设1()n n a m p a m ++=+解得m,得等比数列{}n a m +iv. 若()nn S f a =,先求1a 11()()n n n n S f a S f a ++=⎧⎨=⎩得到关于1n a +和n a 的递推关系式例如:21n n S a =+先求1a ,再构造方程组:112121n n n n S a S a ++=+⎧⎨=+⎩⇒(下减上)1122n n n a a a ++=-2.等差数列:① 定义:1n n a a +-=d (常数),证明数列是等差数列的重要工具。
② 通项0d ≠时,n a 为关于n 的一次函数;d >0时,na 为单调递增数列;d <0时,n a 为单调递减数列。
③ 前n 1(1)2n n na d -=+,0d ≠时,n S 是关于n 的不含常数项的一元二次函数,反之也成立。
④ 性质:ii. 若{}n a 为等差数列,则m a ,m k a +,2m k a +,…仍为等差数列。
iii. 若{}n a 为等差数列,则n S ,2n n S S -,32n n S S -,…仍为等差数列。
iv 若A 为a,b 的等差中项,则有2a bA +=。
3.等比数列: ① 定义:1n na q a +=(常数),是证明数列是等比数列的重要工具。
② 通项时为常数列)。
③.前n 项和需特别注意,公比为字母时要讨论.④.性质:ii.{}仍为等比数列则为等比数列 ,,,,2k m k m m n a a a a ++,公比为k q 。
iii. {}232,,,,n n n n n n a S S S S --K 为等比数列则S 仍为等比数列,公比为n q 。
人教版高中数学【必修五】[知识点整理及重点题型梳理]_数列的全章复习与巩固_提高
人教版高中数学必修五知识点梳理重点题型(常考知识点)巩固练习【巩固练习】数列的全章复习与巩固【学习目标】1.系统掌握数列的有关概念和公式;2.掌握等差数列与等比数列的概念、性质、通项公式与前n 项和公式,并运用这些知识解决问题; 3.了解数列的通项公式n a 与前n 项和公式n S 的关系,能通过前n 项和公式n S 求出数列的通项公式n a ;4.掌握常见的几种数列求和方法.【知识网络】【要点梳理】要点一:数列的通项公式 数列的通项公式一个数列{}n a 的第n 项n a 与项数n 之间的函数关系,如果可以用一个公式()n a f n =来表示,我们就把这个公式叫做这个数列的通项公式.要点诠释:①不是每个数列都能写出它的通项公式.如数列1,2,3,―1,4,―2,就写不出通项公式; ②有的数列虽然有通项公式,但在形式上又不一定是唯一的.如:数列―1,1,―1,1,…的通项公式可以写成(1)nn a =-,也可以写成cos n a n π=;③仅仅知道一个数列的前面的有限项,无其他说明,数列是不能确定的. 通项n a 与前n 项和n S 的关系: 任意数列{}n a 的前n 项和12n n S a a a =+++;11(1)(2)n n n S n a S S n -=⎧⎪=⎨-≥⎪⎩要点诠释:由前n 项和n S 求数列通项时,要分三步进行: (1)求11a S =,(2)求出当n≥2时的n a ,(3)如果令n≥2时得出的n a 中的n=1时有11a S =成立,则最后的通项公式可以统一写成一个形式,否则就只能写成分段的形式.数列的递推式:如果已知数列的第一项或前若干项,且任一项n a 与它的前一项1n a -或前若干项间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式,简称递推式.要点诠释:利用递推关系表示数列时,需要有相应个数的初始值,可用凑配法、换元法等. 要点二:等差数列判定一个数列为等差数列的常用方法①定义法:1n n a a d +-=(常数)⇔{}n a 是等差数列; ②中项公式法:122(*){}n n n n a a a n N a ++=+∈⇔是等差数列; ③通项公式法:n a pn q =+(p ,q 为常数)⇔{}n a 是等差数列;④前n 项和公式法:2n S An Bn =+(A ,B 为常数)⇔{}n a 是等差数列.要点诠释:对于探索性较强的问题,则应注意从特例入手,归纳猜想一般特性.等差数列的有关性质:(1)通项公式的推广:+(n m n m a a =-)d(2)若*()m n p q m n p q N +=+∈、、、,则m n p q a a a a +=+;特别,若2m n p +=,则2m n p a a a +=(3)等差数列{}n a 中,若*m n p m n p N ∈、、(、、)成等差数列,则m n p a a a 、、成等差数列. (4)公差为d 的等差数列中,连续k 项和232,,k k k k k S S S S S --,… 组成新的等差数列. (5)等差数列{}n a ,前n 项和为n S①当n 为奇数时,12n n S n a +=⋅;12n S S a +-=奇偶;11S n S n +=-奇偶; ②当n 为偶数时,122()2n nn a a S n ++=⋅;12S S dn -=偶奇;212nn a S S a +=奇偶.(6)等差数列{}n a ,前n 项和为n S ,则m n m nS S S m n m n+-=-+(m 、n ∈N*,且m≠n ). (7)等差数列{}n a 中,若m+n=p+q (m 、n 、p 、q ∈N*,且m≠n ,p≠q ),则p qm n S S S S m n p q--=--.(8)等差数列{}n a 中,公差d ,依次每k 项和:k S ,2k k S S -,32k k S S -成等差数列,新公差2'd k d =.等差数列前n 项和n S 的最值问题: 等差数列{}n a 中①若a 1>0,d <0,n S 有最大值,可由不等式组10n n a a +≥⎧⎨≤⎩来确定n ;②若a 1<0,d >0,n S 有最小值,可由不等式组10n n a a +≤⎧⎨≥⎩来确定n ,也可由前n 项和公式21()22n d dS n a n =+-来确定n. 要点诠释:等差数列的求和中的函数思想是解决最值问题的基本方法. 要点三 :等比数列判定一个数列是等比数列的常用方法(1)定义法:1n na q a +=(q 是不为0的常数,n ∈N*){}n a ⇔是等比数列; (2)通项公式法:nn a cq =(c 、q 均是不为0的常数n ∈N*){}n a ⇔是等比数列; (3)中项公式法:212n n n a a a ++=⋅(120n n n a a a ++⋅⋅≠,*n N ∈){}n a ⇔是等比数列.等比数列的主要性质:(1)通项公式的推广:n mn m a a q -=(2)若*()m n p q m n p q N +=+∈、、、,则m n p q a a a a ⋅=⋅.特别,若2m n p +=,则2m n p a a a ⋅=(3)等比数列{}n a 中,若*m n p m n p N ∈、、(、、)成等差数列,则m n p a a a 、、成等比数列. (4)公比为q 的等比数列中,连续k 项和232,,k k k k k S S S S S --,… 组成新的等比数列. (5)等比数列{}n a ,前n 项和为n S ,当n 为偶数时,S S q =偶奇.(6)等比数列{}n a 中,公比为q ,依次每k 项和:k S ,2k k S S -,32k k S S -…成公比为q k 的等比数列.(7)若{}n a 为正项等比数列,则{log }a n a (a >0且a≠1)为等差数列;反之,若{}n a 为等差数列,则{}n aa (a >0且a≠1)为等比数列.(8)等比数列{}n a 前n 项积为n V ,则(1)21(*)n n nn V a q n N -=∈等比数列的通项公式与函数:11n n a a q -=①方程观点:知二求一; ②函数观点:111n nn a a a qq q-==⋅ 01q q >≠且时,是关于n 的指数型函数;1q = 时,是常数函数;要点诠释:当1q >时,若10a >,等比数列{}n a 是递增数列;若10a <,等比数列{}n a 是递减数列;当01q <<时,若10a >,等比数列{}n a 是递减数列;若10a <,等比数列{}n a 是递增数列; 当0q <时,等比数列{}n a 是摆动数列; 当1q =时,等比数列{}n a 是非零常数列. 要点四:常见的数列求和方法 公式法:如果一个数列是等差数列或者等比数列,直接用其前n 项和公式求和. 分组求和法:将通项拆开成等差数列和等比数列相加或相减的形式,然后分别对等差数列和等比数列求和.如:a n =2n+3n .裂项相消求和法:把数列的通项拆成两项之差,正负相消,剩下首尾若干项的方法.一般通项的分子为非零常数,分母为非常数列的等差数列的两项积的形式.若1()()n a An B An C =++,分子为非零常数,分母为非常数列的等差数列的两项积的形式,则)11(1))((1C An B An B C C An B An a n +-+-=++=,如a n = 1(1)n n +111n n =-+ 错位相减求和法:通项为非常数列的等差数列与等比数列的对应项的积的形式:n n n c b a ⋅=, 其中 {}n b 是公差d≠0等差数列,{}n c 是公比q≠1等比数列,如a n =(2n-1)2n .一般步骤:n n n n n c b c b c b c b S ++⋯++=--112211,则 1211n n n n n qS b c b c b c -+=+⋯⋯++所以有13211)()1(+-⋯⋯+++=-n n n n c b d c c c c b S q要点诠释:求和中观察数列的类型,选择合适的变形手段,注意错位相减中变形的要点. 要点五:数列应用问题数列应用问题是中学数学教学与研究的一个重要内容,解答数学应用问题的核心是建立数学模型,有关平均增长率、利率(复利)以及等值增减等实际问题,需利用数列知识建立数学模型.建立数学模型的一般方法步骤.①认真审题,准确理解题意,达到如下要求: ⑴明确问题属于哪类应用问题;⑵弄清题目中的主要已知事项; ⑶明确所求的结论是什么.②抓住数量关系,联想数学知识和数学方法,恰当引入参数变量或适当建立坐标系,将文字语言翻译成数学语言,将数量关系用数学式子表达.③将实际问题抽象为数学问题,将已知与所求联系起来,据题意列出满足题意的数学关系式(如函数关系、方程、不等式).要点诠释:数列的建模过程是解决数列应用题的重点,要正确理解题意,恰当设出数列的基本量. 【典型例题】类型一:数列的概念与通项 例1.写出数列:15-,103,517-,267,……的一个通项公式. 【思路点拨】从各项符号看,负正相间,可用符号(1)n-表示;数列各项的分子:1,3,5,7,……是个奇数列,可用21n -表示;数列各项的分母:5,10,17,26,……恰是221+,231+, 241+,251+,…可用2(1)1n ++表示.【解析】通项公式为:221(1)(1)1nn n a n -=-++.【总结升华】①求数列的通项公式就是求数列中第n 项与项数n 之间的数学关系式.如果把数列的第1,2,3,…项分别记作(1)f ,(2)f ,(3)f ,…,那么求数列的通项公式就是求以正整数n (项数)为自变量的函数()f n 的表达式;②通项公式若不要求写多种形式,一般只写出一个常见的公式即可;③给出数列的构造为分式时,可从各项的符号、分子、分母三方面去分析归纳,还可联想常见数列的通项公式,以此参照进行比较.举一反三:【变式1】已知数列1212312341,,,,,,,,,,,213214321则56是此数列中的( )A. 第48项B. 第49项C. 第50项D. 第51项 【答案】C将数列分为第1组1个,第2组2个,…,第组n 个,1()1,12(,)21,123(,,),321,12(,,,)11n n n -, 则第n 组中每个数的分子分母的和为n +1,则56为第10组中的第5个,其项数为(1+2+3++9)+5=50. 故选C.【变式2】根据下列条件,写出数列中的前4项,并归纳猜想其通项公式:(1)113,21+==+n n a a a (2) 111,2+==-n na a a a 【答案】(1)12343,7,15,31a a a a ====, 猜想得121n n a +=-. (2)a 1=a,a 2=a -21,a 3=a a 232--,a 4=a a 3423--, 猜想得a n =an n an n )1()2()1(-----.类型二:等差、等比数列概念及其性质的应用 例2. 在n1和1+n 之间插入n 个正数,使这2+n 个数依次成等比数列,求所插入的n 个数之积; 【解析】方法一:设插入的n 个数为n x x x ,,,21 ,且公比为q ,则111n n q n++= ∴1(1)n qn n +=+,1kk x q n=(1,2,,k n =)22)1(21221)1(11111nn n n n n n n n nn qnq n q n q n q n x x x T +===⋅⋅⋅=⋅⋅⋅=++++方法二:设插入的n 个数为n x x x ,,,21 ,1,110+==+n x nx n , nn x x x x x x n n n 112110+==⋅=⋅=⋅-+ n n x x x T ⋅⋅⋅= 21,nn n n n nn x x x x x x T )1()()()(11212+=⋅⋅⋅=- , 2)1(nn nn T +=∴【总结升华】第一种解法利用等比数列的基本量1a 、q ,先求公比,后求其它量,这是解等差数列、等比数列的常用方法,其优点是思路简单、实用,缺点是有时计算较繁;第二种解法利用等比数列的性质,与“首末项等距”的两项积相等,这在解题中常用到.举一反三:【变式1】如果一个等差数列的前12项和为354,前12项中偶数项的和与奇数项的和之比为32:27,求公差.【答案】设等差数列首项为1a ,公差为d ,则⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧==⇒⎩⎨⎧=-=+⇒=⋅⨯⨯+⋅⨯⨯++=⋅⨯⨯+520253546612273225621625621)(635411122112111111d a d a d a d a d d a d a 【变式2】已知:三个数成等比数列,积为216,若第二个数加上4,则它们构成一个等差数列,求这三个数.【答案】这三个数为2,6,18或18,6,2. 例3.设n S 是等差数列{}n a 的前n 项和,若3613S S =,则612SS 等于( ) A .310B .13C .18D .19【思路点拨】利用等差数列的性质来解:等差数列{}n a 中, k S ,2k k S S -,32k k S S -也成等差数列.【解析】由题意知3S ,63S S -,96S S -,129S S -成等差数列, 由已知得633S S =,故公差为6333()S S S S --=,所以96332S S S S -=+,故936S S =,129333S S S S -=+,故12310S S =, 所以612310S S =.故选A 。
数列知识点总结及例题讲解
人教版数学必修五第二章数列重难点解析第二章课文目录2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和【重点】1、数列及其有关概念,通项公式及其应用。
2、根据数列的递推公式写出数列的前几项。
3、等差数列的概念,等差数列的通项公式;等差数列的定义、通项公式、性质的理解与应用。
4、等差数列n项和公式的理解、推导及应用,熟练掌握等差数列的求和公式。
5、等比数列的定义及通项公式,等比中项的理解与应用。
6、等比数列的前n项和公式推导,进一步熟练掌握等比数列的通项公式和前n项和公式【难点】1、根据数列的前n项观察、归纳数列的一个通项公式。
2、理解递推公式与通项公式的关系。
3、等差数列的性质,灵活应用等差数列的定义及性质解决一些相关问题。
4、灵活应用等差数列前n项公式解决一些简单的有关问题。
5、灵活应用求和公式解决问题,灵活应用定义式及通项公式解决相关问题。
6、灵活应用等比数列定义、通项公式、性质解决一些相关问题。
一、数列的概念与简单表示法1.数列的定义:按一定次序排列的一列数叫做数列.注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n项,….3.数列的一般形式:aj,az,ag, …,an, …,或简记为{a},其中a。
是数列的第n项4.数列的通项公式:如果数列{a}的第n项a。
与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.注意: (1)并不是所有数列都能写出其通项公式,如上述数列④;(2)一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0, …它的通项公式可以是,也可以是; 1.(3)数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.数列的通项公式具有双重身份,它表示了数列的第召项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.5.数列与函数的关系:数列可以看成以正整数集N(或它的有限子集{1,2,3,…,n})为定义域的函数an= f(n),当自变量从小到大依次取值时对应的一列函数值。
高二数学必修五--数列知识点总结及解题技巧(含答案)---强烈-推荐
数学数列部分知识点梳理一数列的概念1)数列的前n 项和与通项的公式①n n a a a S +++= 21; ⎩⎨⎧≥-==-)2()1(11n S S n S a n n n2)数列的分类:①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1 ---④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >. 一、等差数列 1)通项公式d n a a n )1(1-+=,1a 为首项,d 为公差。
前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 2)等差中项:b a A +=2。
3)等差数列的判定方法:⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.4)等差数列的性质:⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则nn a aS S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇. (7)设是等差数列,则(是常数)是公差为的等差数列;(8)设,,,则有;(9)是等差数列的前项和,则;(10)其他衍生等差数列:若已知等差数列,公差为,前项和为,则①.为等差数列,公差为;②.(即)为等差数列,公差;③.(即)为等差数列,公差为.二、等比数列 1)通项公式:11-=n n q a a ,1a 为首项,q 为公比 。
高中数学必修5数列的综合复习(详解)
高中数学必修5数列的综合复习(详解)【本讲要紧内容】数列基础知识数列的概念、数列的通项公式、数列的递推公式、数列通项公式与前n 项和公式的关系。
【知识把握】 【知识点精析】1. 数列知识有着广泛的应用,而且学习数列对培养和提高观看、分析、归纳等能力都有重要的作用。
2. 数列基础知识〔1〕数列 按一定次序排列的一列数叫做数列,数列中的每一个数都叫做那个数列的项,各项依次叫做那个数列的第1项〔或首项〕,第2项,…,第n 项,…。
例如1,4,7,10,13;1,2,3,4,…,n ,…差不多上数列,数列的一样形式能够写为⋯⋯,,,321n a a a a ,,其中n a 是数列的第n 项,我们常常把上面的数列简记作{}n a 。
项数有限的数列叫做有穷数列,如上面例子中的第1个数列;项数无限的数列叫做无穷数列,如上面例子中的第2个数列,另外,我们依照数列各项数值大小的变化,能够分成递增数列,递减数列,摆动数列和常数数列。
对数列要从函数的高度深刻明白得,数列是定义域为正整数集或它的有限子集上的函数值列。
〔2〕数列的通项公式 假如一个数列的第n 项n a 与项数n 之间的函数关系能够用一个公式来表示,那么那个公式叫做那个数列的通项公式。
例如,数列,,,,65544332…的通项公式能够为*)(21N n n n a n ∈++=;数列2,5,10,17,…的通项公式能够为*)(12N n n a n ∈+=。
一个数列的通项公式的表达式也不一定是唯独的,例如-1,1,-1,1,…的通项公式既能够表示为*)()1(N n a n n ∈-=也能够表示成)(cos *∈=N n n a n π,还能够表示成⎩⎨⎧-=为偶数时为奇数时n ,1n ,1a n〔3〕数列的递推公式 假如数列{}n a 的第1项〔或前n 项〕,且任一项n a 与它的前一项1-n a 〔或前n 项〕间的关系能够用一个公式来表示,那么那个公式就叫做那个数列的递推公式,递推公式也是给出数列的一种方法。
高中数学必修五 等比数列及前n项和(总结、例题、练习)
第五节 等比数列及前n 项和【基础知识】1.等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数(不为零),那么这个数列叫作等比数列,这个常数叫作等比数列的公比,通常用字母__q __表示(q ≠0). 2.等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1·q n -1(a 1≠0,q ≠0). 3.等比中项若G 2=a ·b _(ab ≠0),那么G 为a 与b 的等比中项. 4.等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n-m,(n ,m ∈N +).(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N +),则a k ·a l =a m ·a n .(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),1n a ⎧⎫⎨⎬⎩⎭,{2n a },{a n ·b n },n n a b ⎧⎫⎨⎬⎩⎭仍是等比数列.5.等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n ,S n =111(1)(1)(1)11n n na q a a q a q q q q =⎧⎪--⎨=≠⎪--⎩6.等比数列前n 项和的性质公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为__q n __. 难点正本 疑点清源 1.等比数列的特征从等比数列的定义看,等比数列的任意项都是非零的,公比q 也是非零常数. 2.等比数列中的函数观点利用函数、方程的观点和方法,揭示等比数列的特征及基本量之间的关系.在借用指数函数讨论单调性时,要特别注意首项和公比的大小. 3.两个防范(1)由a n +1=qa n ,q ≠0并不能立即断言{a n }为等比数列,还要验证a 1≠0.(2)在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形导致解题失误.【考点剖析】考点一:等比数列基本量的运算【题组训练】1.已知等比数列{a n}满足a1=14,a3a5=4(a4-1),则a2等于()A.2B.1C.12D.18【答案】C【解析】由{a n}为等比数列,得a3a5=24a,又a3a5=4(a4-1),所以24a=4(a4-1),解得a4=2.设等比数列{a n}的公比为q,则由a4=a1q3,得2=14q3,解得q=2,所以a2=a1q=12.2.(2021·湘东五校联考)已知在等比数列{a n}中,a3=7,前三项之和S3=21,则公比q的值是()A.1 B.-1 2C.1或-12D.-1或12【答案】C【解析】当q=1时,a n=7,S3=21,符合题意;当q≠1时,由21317,(1)=211a qa qq⎧=⎪⎨-⎪-⎩得q=-12.综上,q的值是1或-12,故选C.3.(2017·全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【答案】B【解析】每层塔所挂的灯数从上到下构成等比数列,记为{a n},则前7项的和S7=381,公比q=2,依题意,得S7=71(12)12a--=381,解得a1=3..【名师微点】等比数列基本量运算的解题策略(1)等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.(2)等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =11(1)11n n a a q a q q q--=--. 考点二:等比数列的判定与证明例1.[典例精析]已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2(n ∈N *),若b n =a n +1-2a n ,求证:{b n }是等比数列. 【证明】因为a n +2=S n +2-S n +1=4a n +1+2-4a n -2=4a n +1-4a n , 所以1n n b b +=211111112442242222n n n n n n nn n n n n na a a a a a a a a a a a a ++++++++----===--- 因为S 2=a 1+a 2=4a 1+2,所以a 2=5. 所以b 1=a 2-2a 1=3.所以数列{b n }是首项为3,公比为2的等比数列.[解题技法]等比数列的判定方法[提醒] (1)前两种方法是判定等比数列的常用方法,常用于证明;后两种方法常用于选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可. 考点三:等比数列的性质及应用例2.(1)已知等比数列{a n }的各项为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( )A.12B.10C.8 D.2+log35(2)设等比数列{a n}中,前n项和为S n,已知S3=8,S6=7,则a7+a8+a9等于()A.18B.-18C. 578D.558(3)已知等比数列{a n}共有2n项,其和为-240,且奇数项的和比偶数项的和大80,则公比q=________.【答案】(1)B(2)A(3)2【解析】(1)由a5a6+a4a7=18,得a5a6=9,所以log3a1+log3a2+...+log3a10=log3(a1a2 (10)=log3(a5a6)5=5log39=10.(2)因为a7+a8+a9=S9-S6,且S3,S6-S3,S9-S6也成等比数列,即8,-1,S9-S6成等比数列,所以8(S9-S6)=1,即S9-S6=18,所以a7+a8+a9=1 8 .(3)由题意,得=240=80S SS S+-⎧⎪⎨-⎪⎩奇偶奇偶,,解得=80=160SS-⎧⎪⎨-⎪⎩奇偶,所以q=160=80SS--偶奇=2.[解题技法]应用等比数列性质解题时的2个注意点(1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m+n=p+q(m,n,p,q∈N*),则a m·a n=a p·a q”,可以减少运算量,提高解题速度.(2)在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.2.4 等比数列 基础练一、单选题1.在等比数列{}n a 中,201920168a a =,则数列{}n a 的公比q 的值为( )A .2B .3C .4D .82.已知等比数列{}n a 中,2017a ,2019a 是方程2410x x -+=的两个根,则2018a =( )A .1B .±1C .2018D .1,2018 3.已知数列{}n a 是公比为q 的等比数列,且132,,a a a 成等差数列,则公比q 的值为( )A .11,-2B .1C .1-2D .-24.若等差数列{}n a 和等比数列{}n b 满足111a b ==-,448a b ==,则22a b 为( ) A .1B .1-C .2D .2-5.已知等比数列{}n a 满足112a =,且()24341a a a ⋅=-,则5a =( ) A .8B .16C .32D .646.在各项不为零的等差数列{}n a 中,2201720182019220a a a -+=,数列{}n b 是等比数列,且20182018b a =,则()220172019log b b ⋅的值为( )A .1B .2C .4D .8二、填空题7.若,22,33x x x ++是一个等比数列的前3项,则第四项为_________.8.在等比数列{}n a 中,1132a =,当11n 时,1n a >恒成立,则公比q 的取值范围是______.9.已知数列{}n a 满足()*1111,3n n n a a n a a +==∈+N ,那么{}n a 的通项公式是___.三、解答题10.已知:n S 为{}n a 的前n 项和,且满足n n a S n +=.(1)求证:{}1n a -成等比数列; (2)求n a .2.5 等比数列的前n 项和基础练一、单选题1.已知数列{}n a 的前n 项和22n S n n =+,则数列11{}n n a a +⋅的前6项和为( )A .215 B .415 C .511 D .1011 2.数列11111,2,3,424816…的前n 项和为( )A .()211122n n n ++-B .()1111122n n n +++-C .()211222n n n ++-D .()1112122n n n ⎛⎫++- ⎪⎝⎭3.数列{}n a的通项公式为n a =n S 为其前n 项和.若9n S =,则n =( )A .99B .98C .97D .964.若数列{}n a 的通项公式为221n n a n =+-,则数列{}n a 的前n 项和n S 为( )A .221n n +-B .1221n n ++-C .1222n n ++-D .222n n +-5.数列{}n a 满足n a =123...nn ++++,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为( )A .2nn +B .22nn + C .1n n + D .21nn + 6.已知等比数列{}n a 的前n 项和为n S ,若367,63S S ==,则数列{}n na 的前n 项和为( )A .3(1)2n n -++⨯B .3(1)2n n ++⨯C .1(1)2n n ++⨯D .1(1)2n n +-⨯二、填空题7.已知数列{a n }的通项a n =2n +n ,若数列{a n }的前n 项和为Sn ,则S 8=_________8.()()11114473231n n +++=⨯⨯-+ 9.已知数列111112123123n+++++++,,,,,,则其前n 项的和等于_________.三、解答题10.已知等差数列{a n }满足a 2=0,a 6+a 8=-10.(1)求数列{a n }的通项公式;(2)求数列12n n a -⎧⎫⎨⎬⎩⎭的前n 项和.参考答案11.【答案】A【解析】设等比数列{a n }的公比为q ,∵a 2019=8a 2016,∴q 3=8,解得q =2. 故选A . 2.【答案】B【解析】∵2017a ,2019a 是方程x 2﹣4x+1=0的两个根,∴20172019a a =1,则在等比数列{a n }中,201720192018a a a =2=1,2008a ∴=±1故选B . 3.【答案】A【解析】数列{}n a 是公比为q 的等比数列,132,,a a a 故3122a a a =+,由此解得112q =-, 故选A 。
【知识】人教版高中数学必修五数列知识点及习题详解
【关键字】知识人教版数学高中必修5数列习题及知识点第二章数列1.{an}是首项a1=1,公差为d=3的等差数列,如果an=2 005,则序号n等于( ).A.667 B.668 C.669 D.6702.在各项都为正数的等比数列{an}中,首项a1=3,前三项和为21,则a3+a4+a5=( ).A.33 B.72 C.84 D.1893.如果a1,a2,…,a8为各项都大于零的等差数列,公差d≠0,则( ).A.a1a8>a4a5 B.a1a8<a4a5 C.a1+a8<a4+a5 D.a1a8=a4a54.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|等于( ).A.1 B.C.D.5.等比数列{an}中,a2=9,a5=243,则{an}的前4项和为( ).A.81 B.120 C.168 D.1926.若数列{an}是等差数列,首项a1>0,a2 003+a2 004>0,a2 003·a2 004<0,则使前n项和Sn>0成立的最大自然数n是( ).A.4 005 B.4 006 C.4 007 D.4 0087.已知等差数列{an}的公差为2,若a1,a3,a4成等比数列, 则a2=( ).A.-4 B.-6 C.-8 D.-108.设Sn是等差数列{an}的前n项和,若=,则=( ).A.1 B.-1 C.2 D.9.已知数列-1,a1,a2,-4成等差数列,-1,b1,b2,b3,-4成等比数列,则的值是( ).A.B.-C.-或D.10.在等差数列{an}中,an≠0,an-1-+an+1=0(n≥2),若S2n-1=38,则n=( ).A.38 B.20 C.10 D.9二、填空题11.设f(x)=,利用课本中推导等差数列前n项和公式的方法,可求得f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值为.12.已知等比数列{an}中,(1)若a3·a4·a5=8,则a2·a3·a4·a5·a6=.(2)若a1+a2=324,a3+a4=36,则a5+a6=.(3)若S4=2,S8=6,则a17+a18+a19+a20=.13.在和之间拔出三个数,使这五个数成等比数列,则拔出的三个数的乘积为.14.在等差数列{an}中,3(a3+a5)+2(a7+a10+a13)=24,则此数列前13项之和为.15.在等差数列{an}中,a5=3,a6=-2,则a4+a5+…+a10=.16.设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)=;当n>4时,f(n)=.三、解答题17.(1)已知数列{an}的前n项和Sn=3n2-2n,求证数列{an}成等差数列.(2)已知,,成等差数列,求证,,也成等差数列.18.设{an}是公比为q的等比数列,且a1,a3,a2成等差数列.(1)求q的值;(2)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.19.数列{an}的前n项和记为Sn,已知a1=1,an+1=Sn(n=1,2,3…).求证:数列{}是等比数列.20.已知数列{an}是首项为a且公比不等于1的等比数列,Sn为其前n项和,a1,2a7,3a4成等差数列,求证:12S3,S6,S12-S6成等比数列.第二章数列参考答案一、选择题1.C解析:由题设,代入通项公式an=a1+(n-1)d,即2 005=1+3(n-1),∴n=699.2.C解析:本题考查等比数列的相关概念,及其有关计算能力.设等比数列{an}的公比为q(q >0),由题意得a1+a2+a3=21,即a1(1+q +q2)=21,又a1=3,∴1+q +q2=7.解得q =2或q =-3(不合题意,舍去),∴a 3+a 4+a 5=a 1q 2(1+q +q 2)=3×22×7=84.3.B .解析:由a 1+a 8=a 4+a 5,∴排除C .又a 1·a 8=a 1(a 1+7d )=a 12+7a 1d ,∴a 4·a 5=(a 1+3d )(a 1+4d )=a 12+7a 1d +12d 2>a 1·a 8.4.C解析:解法1:设a 1=41,a 2=41+d ,a 3=41+2d ,a 4=41+3d ,而方程x 2-2x +m =0中两根之和为2,x 2-2x +n =0中两根之和也为2,∴a 1+a 2+a 3+a 4=1+6d =4,∴d =21,a 1=41,a 4=47是一个方程的两个根,a 1=43,a 3=45是另一个方程的两个根. ∴167,1615分别为m 或n , ∴|m -n |=21,故选C . 解法2:设方程的四个根为x 1,x 2,x 3,x 4,且x 1+x 2=x 3+x 4=2,x 1·x 2=m ,x 3·x 4=n .由等差数列的性质:若γ+s =p +q ,则a γ+a s =a p +a q ,若设x 1为第一项,x 2必为第四项,则x 2=47,于是可得等差数列为41,43,45,47, ∴m =167,n =1615, ∴|m -n |=21. 5.B解析:∵a 2=9,a 5=243,25a a =q 3=9243=27, ∴q =3,a 1q =9,a 1=3,∴S 4=3-13-35=2240=120. 6.B解析:解法1:由a 2 003+a 2 004>0,a 2 003·a 2 004<0,知a 2 003和a 2 004两项中有一正数一负数,又a 1>0,则公差为负数,否则各项总为正数,故a 2 003>a 2 004,即a 2 003>0,a 2 004<0.∴S 4 006=2+006400641)(a a =2+006400420032)(a a >0, ∴S 4 007=20074·(a 1+a 4 007)=20074·2a 2 004<0, 故4 006为S n >0的最大自然数. 选B .解法2:由a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,同解法1的分析得a 2 003>0,a 2 004<0,∴S 2 003为S n 中的最大值.∵S n 是关于n 的二次函数,如草图所示,∴2 003到对称轴的距离比2 004到对称轴的距离小,∴20074在对称轴的右侧. 根据已知条件及图象的对称性可得4 006在图象中右侧零点B 的左侧,4 007,4 008都在其右侧,S n >0的最大自然数是4 006.7.B解析:∵{a n }是等差数列,∴a 3=a 1+4,a 4=a 1+6,又由a 1,a 3,a 4成等比数列,∴(a 1+4)2=a 1(a 1+6),解得a 1=-8,∴a 2=-8+2=-6.8.A 解析:∵59S S =2)(52)(95191a a a a ++=3559a a ⋅⋅=59·95=1,∴选A . 9.A(第6题)解析:设d 和q 分别为公差和公比,则-4=-1+3d 且-4=(-1)q 4,∴d =-1,q 2=2, ∴212b a a -=2q d -=21. 10.C解析:∵{a n }为等差数列,∴2n a =a n -1+a n +1,∴2n a =2a n ,又a n ≠0,∴a n =2,{a n }为常数数列,而a n =1212--n S n ,即2n -1=238=19,∴n =10.二、填空题11.23.解析:∵f (x )=221+x , ∴f (1-x )=2211+-x =x x2222⋅+=x x 22221+, ∴f (x )+f (1-x )=x 221++x x 22221+⋅=x x 222211+⋅+=x x 22)22(21++=22. 设S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6),则S =f (6)+f (5)+…+f (0)+…+f (-4)+f (-5),∴2S =[f (6)+f (-5)]+[f (5)+f (-4)]+…+[f (-5)+f (6)]=62,∴S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)=32.12.(1)32;(2)4;(3)32.解析:(1)由a 3·a 5=24a ,得a 4=2,∴a 2·a 3·a 4·a 5·a 6=54a =32.(2)9136)(324222121=⇒⎩⎨⎧=+=+q q a a a a , ∴a 5+a 6=(a 1+a 2)q 4=4.(3)2=+=+++=2=+++=4444821843214q qS S a a a S a a a a S ⇒⎪⎩⎪⎨⎧⋅⋅⋅, ∴a 17+a 18+a 19+a 20=S 4q 16=32.13.216. 解析:本题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与38,227同号,由等比中项的中间数为22738⋅=6,∴插入的三个数之积为38×227×6=216. 14.26.解析:∵a 3+a 5=2a 4,a 7+a 13=2a 10,∴6(a 4+a 10)=24,a 4+a 10=4,∴S 13=2+13131)(a a =2+13104)(a a =2413⨯=26. 15.-49.解析:∵d =a 6-a 5=-5,∴a 4+a 5+…+a 10 =2+7104)(a a =25++-755)(d a d a =7(a 5+2d )=-49.16.5,21(n +1)(n -2). 解析:同一平面内两条直线若不平行则一定相交,故每增加一条直线一定与前面已有的每条直线都相交,∴f (k )=f (k -1)+(k -1).由f (3)=2,f (4)=f (3)+3=2+3=5,f (5)=f (4)+4=2+3+4=9,……f (n )=f (n -1)+(n -1),相加得f (n )=2+3+4+…+(n -1)=21(n +1)(n -2). 三、解答题 17.分析:判定给定数列是否为等差数列关键看是否满足从第2项开始每项与其前一项差为常数. 证明:(1)n =1时,a 1=S 1=3-2=1,当n ≥2时,a n =S n -S n -1=3n 2-2n -[3(n -1)2-2(n -1)]=6n -5,n =1时,亦满足,∴a n =6n -5(n ∈N*).首项a 1=1,a n -a n -1=6n -5-[6(n -1)-5]=6(常数)(n ∈N*),∴数列{a n }成等差数列且a 1=1,公差为6.(2)∵a 1,b 1,c 1成等差数列, ∴b 2=a 1+c1化简得2ac =b (a +c ). a c b ++c b a +=ac ab a c bc +++22=ac c a c a b 22+++)(=ac c a 2+)(=2++2)()(c a b c a =2·bc a +, ∴a c b +,b a c +,cb a +也成等差数列. 18.解:(1)由题设2a 3=a 1+a 2,即2a 1q 2=a 1+a 1q ,∵a 1≠0,∴2q 2-q -1=0,∴q =1或-21. (2)若q =1,则S n =2n +21-)(n n =23+2n n . 当n ≥2时,S n -b n =S n -1=22+1-))((n n >0,故S n >b n . 若q =-21,则S n =2n +21-)(n n (-21)=49+-2n n . 当n ≥2时,S n -b n =S n -1=4-11-)0)((n n , 故对于n ∈N +,当2≤n ≤9时,S n >b n ;当n =10时,S n =b n ;当n ≥11时,S n <b n .19.证明:∵a n +1=S n +1-S n ,a n +1=nn 2+S n , ∴(n +2)S n =n (S n +1-S n ),整理得nS n +1=2(n +1) S n , 所以1+1+n S n =nS n 2.故{nS n }是以2为公比的等比数列. 20.证明:由a 1,2a 7,3a 4成等差数列,得4a 7=a 1+3a 4,即4 a 1q 6=a 1+3a 1q 3, 变形得(4q 3+1)(q 3-1)=0,∴q 3=-41或q 3=1(舍). 由3612S S =qq a q q a ----1)1(121)1(3161=1213q +=161; 6612S S S -=612S S -1=qq a q q a ----1)1(1)1(61121-1=1+q 6-1=161; 得3612S S =6612S S S -. ∴12S 3,S 6,S 12-S 6成等比数列.数列基础知识点和方法归纳1. 等差数列的定义与性质定义:1n n a a d +-=(d 为常数),()11n a a n d =+-等差中项:x A y ,,成等差数列2A x y ⇔=+前n 项和()()11122n n a a n n n S na d +-==+ 性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2;(3)若三个成等差数列,可设为a d a a d -+,,(4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121m m m m a S b T --= (5){}n a 为等差数列2n S an bn ⇔=+(a b ,为常数,是关于n 的常数项为0的二次函数)n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项,即:当100a d ><,,解不等式组100n n a a +≥⎧⎨≤⎩可得n S 达到最大值时的n 值. 当100a d <>,,由100n n a a +≤⎧⎨≥⎩可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{}n a ,有 nd S S =-奇偶,1+=n n a a S S 偶奇. (7)项数为奇数12-n 的等差数列{}n a ,有 )()12(12为中间项n n n a a n S -=-,n a S S =-偶奇,1-=n n S S 偶奇. 2. 等比数列的定义与性质 定义:1n na q a +=(q 为常数,0q ≠),11n n a a q -=. 等比中项:x G y 、、成等比数列2G xy ⇒=,或G =前n 项和:()11(1)1(1)1n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩(要注意!) 性质:{}n a 是等比数列(1)若m n p q +=+,则m n p q a a a a =··(2)232n n n n n S S S S S --,,……仍为等比数列,公比为n q . 注意:由n S 求n a 时应注意什么?1n =时,11a S =;2n ≥时,1n n n a S S -=-.此文档是由网络收集并进行重新排版整理.word 可编辑版本!。
(完整)人教版高中数学必修五数列复习提纲及例题
《数列》复习1.数列的通项求数列通项公式的常用方法:(1)观察与归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变:分析符号、数字、字母与项数n 在变化过程中的联系,初步归纳公式。
(2)公式法:等差数列与等比数列。
(3)利用n S 与n a 的关系求n a :11,(1),(2)n n n S n a S S n -=⎧=⎨-≥⎩(4)构造新数列法;(5)逐项作差求和法;(6)逐项作商求积法2.等差数列{}n a 中:(1)等差数列公差的取值与等差数列的单调性; (2)1(1)n a a n d =+-()m a n m d =+-; (3){}n ka 也成等差数列;(4)两等差数列对应项和(差)组成的新数列仍成等差数列. (5)1211221213,,m m m m m m ma a a a a a a a a +++++++++++++仍成等差数列.(6)1()2n n n a a S +=,1(1)2n n n S na d -=+,21()22n d dS n a n =+-, 2121n n S a n -=-,()(21)n n nn A a f n f n B b =⇒=-.(7)若m n p q +=+,则m n p q a a a a +=+;若2p qm +=,则2p q m a a a +=,()0p q p q a q a p p q a +==≠⇒=,,()()p q p q S q S p p q S p q +==≠⇒=-+;m n m n S S S mnd +=++.(8)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和; (9)等差中项:若,,a A b 成等差数列,则2a bA +=叫做,a b 的等差中项。
(10)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法。
3.等比数列{}n a 中:(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性。
高中数学必修5--第二章《数列》复习知识点总结与练习(一)
高中数学必修5__第二章《数列》复习知识点总结与练习〔一〕一.数列的概念与简单表示法知识能否忆起1.数列的定义、分类与通项公式(1)数列的定义:①数列:按照一定顺序排列的一列数.②数列的项:数列中的每一个数.(2)数列的分类:(3)数列的通项公式:如果数列{a n}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.2.数列的递推公式如果已知数列{a n}的首项(或前几项),且任一项a n与它的前一项a n-1(n≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.(1)数列是按一定“顺序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关,这有别于集合中元素的无序性.因此,假设组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列.(2)数列中的数可以重复出现,而集合中的元素不能重复出现,这也是数列与数集的区别.2.数列的函数特征数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n})的特殊函数,数列的通项公式也就是相应的函数解析式,即f(n)=a n(n∈N*).〔一〕由数列的前几项求数列的通项公式[例1](2012·天津南开中学月考)以下公式可作为数列{a n}:1,2,1,2,1,2,…的通项公式的是( )A .a n =1B .a n =(-1)n +12C .a n =2-⎪⎪⎪⎪sin n π2D .a n =(-1)n -1+32[自主解答] 由a n =2-⎪⎪⎪⎪sin n π2可得a 1=1,a 2=2, a 3=1,a 4=2,…. [答案] C 由题悟法1.根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n 之间的关系、规律,可使用添项、通分、分割等方法,转化为一些常见数列的通项公式来求.对于正负符号变化,可用(-1)n 或(-1)n+1来调整.2.根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想以题试法写出下面数列的一个通项公式. (1)3,5,7,9,…;(2)12,34,78,1516,3132,…; (3)3,33,333,3 333,…;(4)-1,32,-13,34,-15,36,….解:(1)各项减去1后为正偶数,所以a n =2n +1.(2)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =2n -12n .(3)将数列各项改写为93,993,9993,99993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,….所以a n =13(10n -1).(4)奇数项为负,偶数项为正,故通项公式的符号为(-1)n ;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以a n =(-1)n ·2+(-1)nn,也可写为a n=⎩⎨⎧-1n,n 为正奇数,3n ,n 为正偶数.〔二〕由a n 与S n 的关系求通项a n已知数列{a n }的前n 项和S n ,求数列的通项公式,其求解过程分为三步: (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.[例2] 已知数列{a n }的前n 项和S n ,根据以下条件分别求它们的通项a n . (1)S n =2n 2+3n ;(2)S n =3n +1.[自主解答] (1)由题可知,当n =1时,a 1=S 1=2×12+3×1=5, 当n ≥2时,a n =S n -S n -1=(2n 2+3n )-[2(n -1)2+3(n -1)]=4n +1. 当n =1时,4×1+1=5=a 1,故a n =4n +1. (2)当n =1时,a 1=S 1=3+1=4, 当n ≥2时,a n =S n -S n -1=(3n +1)-(3n -1+1)=2×3n -1. 当n =1时,2×31-1=2≠a 1,故a n =⎩⎪⎨⎪⎧4, n =1,2×3n -1, n ≥2.以题试法(2012·聊城模拟)已知数列{a n }的前n 项和为S n ,且S n =n n +1,则1a 5=( )A.56 B.65 C.130D .30解析:选D 当n ≥2时,a n =S n -S n -1=n n +1-n -1n =1n (n +1),则a 5=15×6=130.〔三〕数列的性质[例3] 已知数列{a n }的通项公式为a n =n 2-21n +20.(1)n 为何值时,a n 有最小值?并求出最小值; (2)n 为何值时,该数列的前n 项和最小?[自主解答] (1)因为a n =n 2-21n +20=⎝⎛⎭⎫n -2122-3614,可知对称轴方程为n =212n ∈N *,故n =10或n =11时,a n 有最小值,其最小值为112-21×11+20=-90.(2)设数列的前n 项和最小,则有a n ≤0,由n 2-21n +20≤0,解得1≤n ≤20,故数列{a n }从第21项开始为正数,所以该数列的前19或20项和最小. 由题悟法1.数列中项的最值的求法根据数列与函数之间的对应关系,构造相应的函数a n =f (n ),利用求解函数最值的方法求解,但要注意自变量的取值.2.前n 项和最值的求法(1)先求出数列的前n 项和S n ,根据S n 的表达式求解最值;(2)根据数列的通项公式,假设a m ≥0,且a m +1<0,则S m 最大;假设a m ≤0,且a m +1>0,则S m 最小,这样便可直接利用各项的符号确定最值. 以题试法3.(2012·江西七校联考)数列{a n }的通项a n =nn 2+90,则数列{a n }中的最大值是( )A .310B .19 C.119D.1060解析:选C a n =1n +90n ,由基本不等式得,1n +90n ≤1290,由于n ∈N *,易知当n =9或10时,a n =119最大.二.等差数列及其前n 项和知识能否忆起一、等差数列的有关概念1.定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).2.等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.二、等差数列的有关公式 1.通项公式:a n =a 1+(n -1)d . 2.前n 项和公式:S n =na 1+n (n -1)2d =(a 1+a n )n2. 三、等差数列的性质1.假设m ,n ,p ,q ∈N *,且m +n =p +q ,{a n }为等差数列,则a m +a n =a p +a q . 2.在等差数列{a n }中,a k ,a 2k ,a 3k ,a 4k ,…仍为等差数列,公差为kd .3.假设{a n }为等差数列,则S n ,S 2n -S n ,S 3n -S 2n ,…仍为等差数列,公差为n 2d . 4.等差数列的增减性:d >0时为递增数列,且当a 1<0时前n 项和S n 有最小值.d <0时为递减数列,且当a 1>0时前n 项和S n 有最大值.5.等差数列{a n }的首项是a 1,公差为d .假设其前n 项之和可以写成S n =An 2+Bn ,则A =d 2,B =a 1-d2,当d ≠0时它表示二次函数,数列{a n }的前n 项和S n =An 2+Bn 是{a n }成等差数列的充要条件.n 项和有关的三类问题(1)知三求二:已知a 1、d 、n 、a n 、S n 中的任意三个,即可求得其余两个,这表达了方程思想.(2)S n =d2n 2+⎝⎛⎭⎫a 1-d 2n =An 2+Bn ⇒d =2A . (3)利用二次函数的图象确定S n 的最值时,最高点的纵坐标不一定是最大值,最低点的纵坐标不一定是最小值.2.设元与解题的技巧已知三个或四个数组成等差数列的一类问题,要善于设元,假设奇数个数成等差数列且和为定值时,可设为…,a -2d ,a -d ,a ,a +d ,a +2d ,…;假设偶数个数成等差数列且和为定值时,可设为…,a -3d ,a -d ,a +d ,a +3d ,…,其余各项再依据等差数列的定义进行对称设元.考点等差数列的判断与证明[例1] 在数列{a n }中,a 1=-3,a n =2a n -1+2n +3(n ≥2,且n ∈N *).(1)求a 2,a 3的值;(2)设b n =a n +32n (n ∈N *),证明:{b n }是等差数列.[自主解答] (1)∵a 1=-3,a n =2a n -1+2n +3(n ≥2,且n ∈N *),∴a 2=2a 1+22+3=1,a 3=2a 2+23+3=13.(2)证明:对于任意n ∈N *,∵b n +1-b n =a n +1+32n +1-a n +32n =12n +1[(a n +1-2a n )-3]=12n +1[(2n +1+3)-3]=1,∴数列{b n }是首项为a 1+32=-3+32=0,公差为1的等差数列.由题悟法1.证明{a n }为等差数列的方法:(1)用定义证明:a n -a n -1=d (d 为常数,n ≥2)⇔{a n }为等差数列; (2)用等差中项证明:2a n +1=a n +a n +2⇔{a n }为等差数列; (3)通项法:a n 为n 的一次函数⇔{a n }为等差数列; (4)前n 项和法:S n =An 2+Bn 或S n =n (a 1+a n )2.2.用定义证明等差数列时,常采用的两个式子a n +1-a n =d 和a n -a n -1=d ,但它们的意义不同,后者必须加上“n ≥2”,否则n =1时,a 0无定义.以题试法1.已知数列{a n }的前n 项和S n 是n 的二次函数,且a 1=-2,a 2=2,S 3=6. (1)求S n ;(2)证明:数列{a n }是等差数列. 解:(1)设S n =An 2+Bn +C (A ≠0), 则⎩⎪⎨⎪⎧-2=A +B +C ,0=4A +2B +C ,6=9A +3B +C ,解得A =2,B =-4,CS n =2n 2-4n . (2)证明:∵当n =1时,a 1=S 1=-2.当n ≥2时,a n =S n -S n -1=2n 2-4n -[2(n -1)2-4(n -1)]=4n -6. ∴a n =4n -6(n ∈N *).a n +1-a n =4, ∴数列{a n }是等差数列. 等差数列的基本运算典题导入[例2] (2012·重庆高考)已知{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12.(1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,假设a 1,a k ,S k +2成等比数列,求正整数k 的值. [自主解答] (1)设数列{a n }的公差为d ,由题意知⎩⎪⎨⎪⎧ 2a 1+2d =8,2a 1+4d =12,解得⎩⎪⎨⎪⎧a 1=2,d =2.所以a n =a 1+(n -1)d =2+2(n -1)=2n .(2)由(1)可得S n =n (a 1+a n )2=n (2+2n )2=n (n +1).因为a 1,a k ,S k +2成等比数列,所以a 2k =a 1S k +2. 从而(2k )2=2(k +2)(k +3),即k 2-5k -6=0, 解得k =6或k =-1(舍去),因此k =6.由题悟法1.等差数列的通项公式a n =a 1+(n -1)d 及前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d ,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,表达了方程的思想.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.以题试法2.(1)在等差数列中,已知a 6=10,S 5=5,则S 8=________.(2)设等差数列{a n }的前n 项和为S n ,假设S 412-S 39=1,则公差为________.解析:(1)∵a 6=10,S 5=5,∴⎩⎪⎨⎪⎧a 1+5d =10,5a 1+10d =5.解方程组得⎩⎪⎨⎪⎧a 1=-5,d =3.则S 8=8a 1+28d =8×(-5)+28×3=44.(2)依题意得S 4=4a 1+4×32d =4a 1+6d ,S 3=3a 1+3×22d =3a 1+3d ,于是有4a 1+6d 12-3a 1+3d9=1,由此解得d =6,即公差为6.答案:(1)44 (2)6 等差数列的性质典题导入[例3] (1)等差数列{a n }中,假设a 1+a 4+a 7=39,a 3+a 6+a 9=27,则前9项和S 9等于( )A .66B .99C .144D .297(2)(2012·天津模拟)设等差数列{a n }的前n 项和S n ,假设S 4=8,S 8=20,则a 11+a 12+a 13+a 14=( )A .18B .17C .16D .15[自主解答] (1)由等差数列的性质及a 1+a 4+a 7=39,可得3a 4=39,所以a 4=13.同理,由a 3+a 6+a 9=27,可得a 6=9.所以S 9=9(a 1+a 9)2=9(a 4+a 6)2=99.(2)设{a n }的公差为d ,则a 5+a 6+a 7+a 8=S 8-S 4=12,(a 5+a 6+a 7+a 8)-S 4=16d ,解得d =14,a 11+a 12+a 13+a 14=S 4+40d =18.[答案] (1)B (2)A由题悟法1.等差数列的性质是等差数列的定义、通项公式以及前n 项和公式等基础知识的推广与变形,熟练掌握和灵活应用这些性质可以有效、方便、快捷地解决许多等差数列问题.2.应用等差数列的性质解答问题的关键是寻找项的序号之间的关系.以题试法3.(1)(2012·江西高考)设数列{a n },{b n }都是等差数列,假设a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________.(2)(2012·海淀期末)假设数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9解析:(1)设两等差数列组成的和数列为{c n },由题意知新数列仍为等差数列且c 1=7,c 3=21,则c 5=2c 3-c 1=2×21-7=35.(2)∵a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列,∴a n =19+(n-1)×(-3)=22-3n .设前k 项和最大,则有⎩⎪⎨⎪⎧ a k ≥0,a k +1≤0,即⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)≤0,解得193≤k ≤223.∵k ∈N *,∴kn 的值为7.答案:(1)35 (2)B三.等比数列及其前n 项和[知识能否忆起]1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (n ∈N *,q 为非零常数). (2)等比中项:如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列{a n }的常用性质(1)在等比数列{a n }中,假设m +n =p +q =2r (m ,n ,p ,q ,r ∈N *),则a m ·a n =a p ·a q =a 2r . 特别地,a 1a n =a 2a n -1=a 3a n -2=….(2)在公比为q 的等比数列{a n }中,数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列,公比为q k ;数列S m ,S 2m -S m ,S 3m -S 2m ,…仍是等比数列(此时q ≠-1); a n =a m q n -m.(1)从等比数列的定义看,等比数列的任意项都是非零的,公比q 也是非零常数. (2)由a n +1=qa n ,q ≠0并不能立即断言{a n }为等比数列,还要验证a 1≠0. 2.等比数列的前n 项和S n(1)等比数列的前n 项和S n 是用错位相减法求得的,注意这种思想方法在数列求和中的运用.(2)在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形导致解题失误考点等比数列的判定与证明典题导入[例1] 已知数列{a n }的前n 项和为S n ,且a n +S n =n . (1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{a n }的通项公式.[自主解答] (1)证明:∵a n +S n =n ,① ∴a n +1+S n +1=n +1.② ②-①得a n +1-a n +a n +1=1, ∴2a n +1=a n +1,∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12.∵首项c 1=a 1-1,又a 1+a 1=1, ∴a 1=12,c 1=-12.又c n =a n -1,故{c n }是以-12为首项,12为公比的等比数列.(2)由(1)可知c n =⎝⎛⎭⎫-12·⎝⎛⎭⎫12n -1=-⎝⎛⎭⎫12n , ∴a n =c n +1=1-⎝⎛⎭⎫12n.在本例条件下,假设数列{b n }满足b 1=a 1,b n =a n -a n -1(n ≥2),证明{b n }是等比数列. 证明:∵由(2)知a n =1-⎝⎛⎭⎫12n , ∴当n ≥2时,b n =a n -a n -1 =1-⎝⎛⎭⎫12n -⎣⎡⎦⎤1-⎝⎛⎭⎫12n -1 =⎝⎛⎭⎫12n -1-⎝⎛⎭⎫12n =⎝⎛⎭⎫12n .又b 1=a 1=12也符合上式,∴b n =⎝⎛⎭⎫12n . ∵b n +1b n =12,∴数列{b n }是等比数列.由题悟法等比数列的判定方法(1)定义法:假设a n +1a n =q (q 为非零常数,n ∈N *)或a na n -1=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)等比中项法:假设数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.(3)通项公式法:假设数列通项公式可写成a n =c ·q n (c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.以题试法1. (2012·沈阳模拟)已知函数f (x )=log a x ,且所有项为正数的无穷数列{a n }满足log a a n +1-log a a n =2,则数列{a n }()A .一定是等比数列B .一定是等差数列C .既是等差数列又是等比数列D .既不是等差数列又不是等比数列解析:选A 由log a a n +1-log a a n =2,得log a a n +1a n =2=log a a 2,故a n +1a n=a 2.又a >0且a ≠1,所以数列{a n }为等比数列.等比数列的基本运算典题导入[例2] {a n }为等比数列,求以下各值: (1)a 6-a 4=24,a 3a 5=64,求a n ;(2)已知a 2·a 8=36,a 3+a 7=15,求公比q. 解:(1)设数列{a n }的公比为q ,由题意得⎩⎪⎨⎪⎧a 6-a 4=a 1q3q 2-1=24, ①a 3a 5=a 1q 32=64. ②由②得a 1q 3=±8,将a 1q 3=-8代入①中,得q 2=-2(舍去).将a 1q 3=8代入①中,得q 2=4,q =±2. 当q =2时,a 1=1,∴a n =a 1qn -1=2n -1.当q =-2时,a 1=-1,∴a n =a 1q n -1=-(-2)n -1.∴a n =2n -1或a n =-(-2)n -1.(2)∵a 2·a 8=36=a 3·a 7,而a 3+a 7=15,∴⎩⎪⎨⎪⎧a 3=3,a 7=12或⎩⎪⎨⎪⎧a 3=12,a 7=3.∴q 4=a 7a 3=4或14.∴q =±2或q =±22.由题悟法1.等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)可迎刃而解.2.在使用等比数列的前n 项和公式时,应根据公比q 的情况进行分类讨论,切不可无视q 的取值而盲目用求和公式.以题试法2.(2012·山西适应性训练)已知数列{a n }是公差不为零的等差数列,a 1=2,且a 2,a 4,a 8成等比数列.(1)求数列{a n }的通项公式; (2)求数列{3a n }的前n 项和.解:(1)设等差数列{a n }的公差为d (d ≠0). 因为a 2,a 4,a 8成等比数列, 所以(2+3d )2=(2+d )·(2+7d ), 解得d =2.所以a n =2n (n ∈N *).(2)由(1)知3a n =32n ,设数列{3a n }的前n 项和为S n , 则S n=32+34+…+32n =9(1-9n )1-9=98(9n -1). 等比数列的性质典题导入[例3] (1)(2012·威海模拟)在由正数组成的等比数列{a n }中,假设a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为( )A.12 B.32C .1D .-32(2)设等比数列{a n }的前n 项和为S n ,假设S 6∶S 3=1∶2,则S 9∶S 3等于( ) A .1∶2 B .2∶3 C .3∶4D .1∶3[自主解答] (1)因为a 3a 4a 5=3π=a 34,所以a 4=3π3. log 3a 1+log 3a 2+…+log 3a 7 =log 3(a 1a 2…a 7)=log 3a 74 =7log 33π3=7π3,故sin(log 3a 1+log 3a 2+…+log 3a 7)=32. (2)由等比数列的性质:S 3,S 6-S 3,S 9-S 6仍成等比数列,于是(S 6-S 3)2=S 3·(S 9-S 6), 将S 6=12S 3代入得S 9S 3=34.[答案] (1)B (2)C由题悟法等比数列与等差数列在定义上只有“一字之差”,它们的通项公式和性质有许多相似之处,其中等差数列中的“和”“倍数”可以与等比数列中的“积”“幂”相类比.关注它们之间的异同有助于我们从整体上把握,同时也有利于类比思想的推广.对于等差数列项的和或等比数列项的积的运算,假设能关注通项公式a n =f (n )的下标n 的大小关系,可简化题目的运算.以题试法3.(1)(2012·新课标全国卷)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( )A .7B .5C .-5D .-7(2)(2012·成都模拟)已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( )A .16(1-4-n ) B .16(1-2-n ) C.323(1-4-n )D.323(1-2-n ) 解析:(1)选D 法一:由题意得⎩⎪⎨⎪⎧a 4+a 7=a 1q 3+a 1q 6=2,a 5a 6=a 1q 4×a 1q 5=a 21q 9=-8,解得⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,故a 1+a 10=a 1(1+q 9)=-7.法二:由⎩⎪⎨⎪⎧ a 4+a 7=2,a 5a 6=a 4a 7=-8,解得⎩⎪⎨⎪⎧ a 4=-2,a 7=4或⎩⎪⎨⎪⎧a 4=4,a 7=-2.则⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,故a 1+a 10=a 1(1+q 9)=-7. (2)选C ∵a 2=2,a 5=14,∴a 1=4,q =12,a n a n +1=⎝⎛⎭⎫122n -5. 故a 1a 2+a 2a 3+…+a n a n +1=8⎝⎛⎭⎫1-14n 1-14=323(1-4-n ). 练习题1.(教材习题改编)数列1,23,35,47,59…的一个通项公式是 ( )A .a n =n2n +1B .a n =n2n -1C .a n =n2n -3D .a n =n2n +3答案:B2.设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16 C .49D .64解析:选A a 8=S 8-S 7=64-49=15.3.已知数列{a n }的通项公式为a n =nn +1,则这个数列是( )A .递增数列B .递减数列C .常数列D .摆动数列解析:选A a n +1-a n =n +1n +2-n n +1=(n +1)2-n (n +2)(n +1)(n +2)=1(n +1)(n +2)>0.4.(教材习题改编)已知数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧2·3n -1(n 为偶数),2n -5(n 为奇数),则a 4·a 3=________.解析:a 4·a 3=2×33·(2×3-5)=54. 答案:545.已知数列{a n }的通项公式为a n =pn +q n ,且a 2=32,a 4=32,则a 8=________.解析:由已知得⎩⎨⎧2p +q 2=32,4p +q 4=32,解得⎩⎪⎨⎪⎧p =14,q =2.则a n =14n +2n ,故a 8=94.答案:941.(2012·福建高考)等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1 B .2 C .3D .4解析:选B 法一:设等差数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧2a 1+4d =10,a 1+3d =7.解得⎩⎪⎨⎪⎧a 1=1,d =2.故d =2.法二:∵在等差数列{a n }中,a 1+a 5=2a 3=10,∴a 3=5. 又a 4=7,∴公差d =7-5=2.2.(教材习题改编)在等差数列{a n }中,a 2+a 6=3π2,则sin ⎝⎛⎭⎫2a 4-π3=( )A.32B.12 C .-32D .-12解析:选D ∵a 2+a 6=3π2,∴2a 4=3π2.∴sin ⎝⎛⎭⎫2a 4-π3=sin ⎝⎛⎭⎫3π2-π3=-cos π3=-12. 3.(2012·辽宁高考)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( ) A .58 B .88 C .143D .176解析:选B S 11=11(a 1+a 11)2=11(a 4+a 8)2=88.4.在数列{a n }中,假设a 1=1,a n +1=a n +2(n ≥1),则该数列的通项a n =________. 解析:由a n +1=a n +2知{a n }为等差数列其公差为2. 故a n =1+(n -1)×2=2n -1. 答案:2n -15.(2012·北京高考)已知{a n }为等差数列,S n 为其前n 项和,假设a 1=12,S 2=a 3,则a 2=________,S n =________.解析:设{a n }的公差为d ,由S 2=a 3知,a 1+a 2=a 3,即2a 1+d =a 1+2d , 又a 1=12,所以d =12,故a 2=a 1+d =1,S n =na 1+12n (n -1)d =12n +12(n 2-n )×12=14n 2+14n . 答案:1 14n 2+14n1.(2011·江西高考){a n }为等差数列,公差d =-2,S n 为其前n 项和.假设S 10=S 11,则a 1=( )A .18B .20C .22D .24解析:选B 由S 10=S 11,得a 11=S 11-S 10=0,a 1=a 11+(1-11)d =0+(-10)×(-2)=20.2.(2012·广州调研)等差数列{a n }的前n 项和为S n ,已知a 5=8,S 3=6,则S 10-S 7的值是( )A .24B .48C .60D .72解析:选B 设等差数列{a n }的公差为d ,由题意可得⎩⎪⎨⎪⎧ a 5=a 1+4d =8,S 3=3a 1+3d =6,解得⎩⎪⎨⎪⎧a 1=0,d =2,则S 10-S 7=a 8+a 9+a 10=3a 1+24d =48.3.(2013·东北三校联考)等差数列{a n }中,a 5+a 6=4,则log 2(2a 1·2a 2·…·2a 10)=( ) A .10 B .20 C .40D .2+log 25解析:选B 依题意得,a 1+a 2+a 3+…+a 10=10(a 1+a 10)2=5(a 5+a 6)=20,因此有log 2(2a 1·2a 2·…·2a 10)=a 1+a 2+a 3+…+a 10=20.4.(2012·海淀期末)已知数列{a n }满足:a 1=1,a n >0,a 2n +1-a 2n =1(n ∈N *),那么使a n <5成立的n 的最大值为( )A .4B .5C .24D .25解析:选C ∵a 2n +1-a 2n =1,∴数列{a 2n }是以a 21=1为首项,1为公差的等差数列.∴a 2n =1+(n -1)=n .又a n >0,∴a n =n .∵a n <5,∴nnn 的最大值为24.5.已知等差数列{a n }的前n 项和为S n ,并且S 10>0,S 11<0,假设S n ≤S k 对n ∈N *恒成立,则正整数k 的值为( )A .5B .6C .4D .7解析:选A 由S 10>0,S 11<0知a 1>0,d <0,并且a 1+a 11<0,即a 6<0,又a 5+a 6>0,所以a 5>0,即数列的前5项都为正数,第5项之后的都为负数,所以S 5最大,则k =5.6.数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).假设b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .11解析:选B 因为{b n }是等差数列,且b 3=-2,b 10=12, 故公差d =12-(-2)10-3b 1=-6,且b n =2n -8(n ∈N *),即a n +1-a n =2n -8.所以a 8=a 7+6=a 6+4+6=a 5+2+4+6=…=a 1+(-6)+(-4)+(-2)+0+2+4+6=3.7.(2012·广东高考)已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________.解析:设等差数列公差为d ,∵由a 3=a 22-4,得1+2d =(1+d )2-4,解得d 2=4,即d=±2.由于该数列为递增数列,故d =2.∴a n =1+(n -1)×2=2n -1. 答案:2n -18.已知数列{a n }为等差数列,S n 为其前n 项和,a 7-a 5=4,a 11=21,S k =9,则k =________. 解析:a 7-a 5=2d =4,则d =2.a 1=a 11-10d =21-20=1, S k =k +k (k -1)2×2=k 2k ∈N *,故k =3.答案:39.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,假设对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 解析:∵{a n },{b n }为等差数列, ∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6.∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941,∴a 6b 6=1941. 答案:194110.(2011·福建高考)已知等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)假设数列{a n }的前k 项和S k =-35,求k 的值. 解:(1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d . 由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n . (2)由(1)可知a n =3-2n ,所以S n =n [1+(3-2n )]2=2n -n 2.由S k =-35,可得2k -k 2=-35, 即k 2-2k -35=0,解得k =7或k =-5. 又k ∈N *,故k =7.11.设数列{a n }的前n 项积为T n ,T n =1-a n ,(1)证明⎩⎨⎧⎭⎬⎫1T n 是等差数列;(2)求数列⎩⎨⎧⎭⎬⎫a n T n 的前n 项和S n .解:(1)证明:由T n =1-a n 得,当n ≥2时,T n =1-T nT n -1,两边同除以T n 得1T n -1T n -1=1.∵T 1=1-a 1=a 1, 故a 1=12,1T 1=1a 1=2.∴⎩⎨⎧⎭⎬⎫1T n 是首项为2,公差为1的等差数列. (2)由(1)知1T n =n +1,则T n =1n +1,从而a n =1-T n =n n +1.故a nT n=n .∴数列⎩⎨⎧⎭⎬⎫a n T n 是首项为1,公差为1的等差数列.∴S n =n (n +1)2.12.已知在等差数列{a n }中,a 1=31,S n 是它的前n 项和,S 10=S 22. (1)求S n ;(2)这个数列的前多少项的和最大,并求出这个最大值. 解:(1)∵S 10=a 1+a 2+…+a 10, S 22=a 1+a 2+…+a 22,又S 10=S 22, ∴a 11+a 12+…+a 22=0,即12(a 11+a 22)2=0,故a 11+a 22=2a 1+31d =0.又∵a 1=31,∴d =-2,∴S n =na 1+n (n -1)2d =31n -n (n -1)=32n -n 2.(2)法一:由(1)知S n =32n -n 2,故当n =16时,S n 有最大值,S n 的最大值是256. 法二:由S n =32n -n 2=n (32-n ),欲使S n 有最大值, 应有1<n <32,从而S n ≤⎝⎛⎭⎪⎫n +32-n 22=256, 当且仅当n =32-n ,即n =16时,S n 有最大值256.1.(教材习题改编)等比数列{a n }中,a 4=4,则a 2·a 6等于( ) A .4 B .8 C .16D .32解析:选C a 2·a 6=a 24=16.2.已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n =( )A .4·⎝⎛⎭⎫32nB .4·⎝⎛⎭⎫23n C .4·⎝⎛⎭⎫32n -1D .4·⎝⎛⎭⎫23n -1 解析:选C (a +1)2=(a -1)(a +4)⇒a =5, a 1=4,q =32,故a n =4·⎝⎛⎭⎫32n -1. 3.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7=( ) A .64 B .81 C .128D .243解析:选A q =a 2+a 3a 1+a 2=2,故a 1+a 1q =3⇒a 1=1,a 7=1×27-1=64.4.(2011·北京高考)在等比数列{a n }中,假设a 1=12,a 4=4,则公比q =________;a 1+a 2+…+a n =________.解析:a 4=a 1q 3,得4=12q 3,解得q =2,a 1+a 2+…+a n =12(1-2n )1-2=2n -1-12. 答案:2 2n -1-125.(2012·新课标全国卷)等比数列{a n }的前n 项和为S n ,假设S 3+3S 2=0,则公比q =________.解析:∵S 3+3S 2=0,∴a 1+a 2+a 3+3(a 1+a 2)=0,∴a 1(4+4q +q 2)=0.∵a 1≠0,∴q =-2.答案:-21.设数列{a n }是等比数列,前n 项和为S n ,假设S 3=3a 3,则公比q 为( )A .-12B .1C .-12或1 D.14解析:选C 当q =1时,满足S 3=3a 1=3a 3.当q ≠1时,S 3=a 1(1-q 3)1-q=a 1(1+q +q 2)=3a 1q 2, 解得q =-12,综上q =-12或q =1. 2.(2012·东城模拟)设数列{a n }满足:2a n =a n +1(a n ≠0)(n ∈N *),且前n 项和为S n ,则S 4a 2的值为( )A.152B.154 C .4 D .2解析:选A 由题意知,数列{a n }是以2为公比的等比数列,故S 4a 2=a 1(1-24)1-2a 1×2=152. 3.(2012·安徽高考)公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则log 2a 10=( )A .4B .5C .6D .7解析:选B ∵a 3·a 11=16,∴a 27=16.又∵等比数列{a n }的各项都是正数,∴a 7=4.又∵a 10=a 7q 3=4×23=25,∴log 2a 10=5.4.已知数列{a n },则“a n ,a n +1,a n +2(n ∈N *)成等比数列”是“a 2n +1=a n a n +2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 显然,n ∈N *,a n ,a n +1,a n +2成等比数列,则a 2n +1=a n a n +2,反之,则不一定成立,举反例,如数列为1,0,0,0,…5.(2013·太原模拟)各项均为正数的等比数列{a n }的前n 项和为S n ,假设S n =2,S 3n =14,则S 4n 等于( )A .80B .30C .26D .16解析:选B 设S 2n =a ,S 4n =b ,由等比数列的性质知:2(14-a )=(a -2)2,解得a =6或a =-4(舍去),同理(6-2)(b -14)=(14-6)2,所以b =S 4n =30.6.已知方程(x 2-mx +2)(x 2-nx +2)=0的四个根组成以12为首项的等比数列,则m n=( )A.32B.32或23C.23 D .以上都不对解析:选B 设a ,b ,c ,d 是方程(x 2-mx +2)(x 2-nx +2)=0的四个根,不妨设a <c <d <b ,则a ·b =c ·d =2,a =12,故b =4,根据等比数列的性质,得到c =1,d =2,则m =a +b =92,n =c +d =3,或m =c +d =3,n =a +b =92,则m n =32或m n =23. 7.已知各项不为0的等差数列{a n },满足2a 3-a 27+2a 11=0,数列{b n}是等比数列,且b 7=a 7,则b 6b 8=________.解析:由题意可知,b 6b 8=b 27=a 27=2(a 3+a 11)=4a 7,∵a 7≠0,∴a 7=4,∴b 6b 8=16.答案:168.(2012·江西高考)等比数列{a n }的前n 项和为S n a 1=1,则对任意的n ∈N *,都有a n +2+a n +1-2a n =0,则S 5=________.解析:由题意知a 3+a 2-2a 1=0,设公比为q ,则a 1(q 2+qq 2+q -2=0解得q =-2或q =1(舍去),则S 5=a 1(1-q 5)1-q=1-(-2)53=11. 答案:119.(2012·西城期末)已知{a n }是公比为2的等比数列,假设a 3-a 1=6,则a 1=________;1a 21+1a 22+…+1a 2n=________. 解析:∵{a n }是公比为2的等比数列,且a 3-a 1=6,∴4a 1-a 1=6,即a 1=2,故a n =a 12n -1=2n ,∴1a n =⎝⎛⎭⎫12n ,1a 2n =⎝⎛⎭⎫14n ,即数列⎩⎨⎧⎭⎬⎫1a 2n 是首项为14,公比为14的等比数列, ∴1a 21+1a 22+…+1a 2n =14⎝⎛⎭⎫1-14n 1-14=13⎝⎛⎭⎫1-14n . 答案:2 13⎝⎛⎭⎫1-14n 10.设数列{a n }的前n 项和为S n ,a 1=1,且数列{S n }是以2为公比的等比数列.(1)求数列{a n }的通项公式;(2)求a 1+a 3+…+a 2n +1.解:(1)∵S 1=a 1=1,且数列{S n }是以2为公比的等比数列,∴S n =2n -1, 又当n ≥2时,a n =S n -S n -1=2n -2(2-1)=2n -2.∴a n =⎩⎪⎨⎪⎧1,n =1,2n -2,n ≥2. (2)a 3,a 5,…,a 2n +1是以2为首项,以4为公比的等比数列,∴a 3+a 5+…+a 2n +1=2(1-4n )1-4=2(4n -1)3. ∴a 1+a 3+…+a 2n +1=1+2(4n -1)3=22n +1+13. 11.设数列{a n }的前n 项和为S n ,其中a n ≠0,a 1为常数,且-a 1,S n ,a n +1成等差数列.(1)求{a n }的通项公式;(2)设b n =1-S n ,问:是否存在a 1,使数列{b n }为等比数列?假设存在,求出a 1的值;假设不存在,请说明理由.解:(1)依题意,得2S n =a n +1-a 1.当n ≥2时,有⎩⎪⎨⎪⎧ 2S n =a n +1-a 1,2S n -1=a n -a 1. 两式相减,得a n +1=3a n (n ≥2).又因为a 2=2S 1+a 1=3a 1,a n ≠0, 所以数列{a n }是首项为a 1,公比为3的等比数列. 因此,a n =a 1·3n -1(n ∈N *).(2)因为S n =a 1(1-3n )1-3=12a 1·3n -12a 1, b n =1-S n =1+12a 1-12a 1·3n . 要使{b n }为等比数列,当且仅当1+12a 1=0,即a 1=-2. 所以存在a 1=-2,使数列{b n }为等比数列.12. (2012·山东高考)已知等差数列{a n }的前5项和为105,且a 10=2a 5.(1)求数列{a n }的通项公式;(2)对任意m ∈N *,将数列{a n }中不大于72m 的项的个数记为b m .求数列{b m }的前m 项和S m .解:(1)设数列{a n }的公差为d ,前n 项和为T n , 由T 5=105,a 10=2a 5,得⎩⎨⎧ 5a 1+5×(5-1)2d =105,a 1+9d =2(a 1+4d ),解得a 1=7,d =7.因此a n =a 1+(n -1)d =7+7(n -1)=7n (n ∈N *).(2)对m ∈N *,假设a n =7n ≤72m ,则n ≤72m -1. 因此b m =72m -1.所以数列{b m }是首项为7,公比为49的等比数列,故S m =b 1(1-q m )1-q =7×(1-49m )1-49=7×(72m -1)48=72m +1-748.。
高中数学必修5(人教A版)第二章数列2.4知识点总结含同步练习及答案
第二章 数列 2.4 等比数列
一、学习任务 理解等比数列的概念;掌握等比数列的通项公式,能运用公式解决一些简单的问题.能在具体的 问题情境中,发现数列的等比关系.了解等比数列与指数函数的关系. 二、知识清单
等比数列的概念与性质
三、知识讲解
1.等比数列的概念与性质 描述: 等比数列 一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一常数,那么这个数列叫 做等比数列(geometric sequence),这个常数叫做等比数列的公比(common ratio),公比通 常用字母 q 表示 (q ≠ 0) . 如果在 a 与 b 中间插入一个数 G,使 a ,G,b 成等比数列,那么 G 叫做 a 与 b 的等比中 项. 等比数列的通项公式:an = a1 q n−1 . 等比数列的性质 an ,am 为等比数列中任意两项,则 an = am q n−m (n, m ∈ N + ) . 若 n,m ,p ,r ∈ N ∗ 且 n + m = p + r ,则 an ⋅ am = ap ⋅ ar . 下标(即项的序号)成等差数列的项,仍然成等比数列. 等比数列前 n 项和
27 是否为这个数列中的一项?如 2
a(3a + 3) = (2a + 2)2 ,
解得 a = −1 或 a = −4 . 当 a = −1 时,数列的前三项依次为 −1,0 ,0 ,与等比数列的定义相矛盾,故舍去. 当 a = −4 时,数列的前三项依次为 −4,−6,−9,则公比为 q =
3 .所以 2
q = 1, ⎧ na1 , n 等比数列的前 n 项和 S n = ⎨ a1 (1 − q ) a − an q ⎩ = 1 , q ≠ 1. 1−q 1−q 等比数列的前 n 项和的性质 当 S n ,S 2n − S n ,S 3n − S 2n 均不为零时,数列 S n ,S 2n − S n ,S 3n − S 2n 构成等比数列;
人教版高中数学必修五数列知识点及习题详解
人教版数学高中必修5数列习题及知识点第二章 数列1.{an }是首项a1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ).A.667 ﻩ ﻩB.668ﻩﻩﻩﻩC .669ﻩ ﻩﻩD .6702.在各项都为正数的等比数列{an }中,首项a 1=3,前三项和为21,则a 3+a 4+a5=( ).A .33 ﻩB .72ﻩ ﻩC .84ﻩﻩﻩ D.1893.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d≠0,则( ).A.a 1a8>a4a5 ﻩB .a 1a8<a 4a 5C .a 1+a8<a4+a5D .a 1a 8=a4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为41的等差数列,则 |m -n |等于( ).A .1 ﻩB .43 ﻩ ﻩC.21 ﻩD. 83 5.等比数列{a n }中,a2=9,a 5=243,则{an }的前4项和为( ).A.81 B.120 C .168 D.1926.若数列{a n}是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a2 004<0,则使前n项和S n >0成立的最大自然数n 是( ).A .4 005ﻩﻩ B.4 006 ﻩC .4 007 ﻩﻩ D.4 0087.已知等差数列{an }的公差为2,若a 1,a3,a 4成等比数列, 则a2=( ).A.-4ﻩ ﻩﻩB.-6 ﻩ C.-8ﻩ ﻩ D . -108.设Sn 是等差数列{an }的前n 项和,若35a a =95,则59S S =( ). A .1 B .-1 ﻩ ﻩC.2ﻩ ﻩﻩD .21 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b1,b 2,b 3,-4成等比数列,则212b a a 的值是( ). A .21ﻩﻩﻩ B.-21ﻩ ﻩC.-21或21ﻩ D .41 10.在等差数列{an }中,a n ≠0,a n -1-2n a +an +1=0(n ≥2),若S 2n -1=38,则n =( ).A .38ﻩ B.20ﻩ ﻩC.10 ﻩﻩﻩD.9二、填空题 11.设f(x)=221+x ,利用课本中推导等差数列前n项和公式的方法,可求得f (-5)+f(-4)+…+f (0)+…+f (5)+f (6)的值为 .12.已知等比数列{a n }中,(1)若a 3·a 4·a 5=8,则a 2·a3·a 4·a5·a6= .(2)若a 1+a 2=324,a 3+a 4=36,则a5+a 6= .(3)若S 4=2,S 8=6,则a17+a18+a19+a 20= .13.在38和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为 . 14.在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则此数列前13项之和为 .15.在等差数列{a n}中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= .16.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f(4)= ;当n >4时,f (n )= .三、解答题17.(1)已知数列{a n}的前n项和S n =3n2-2n,求证数列{an}成等差数列.(2)已知a 1,b 1,c 1成等差数列,求证a c b +,b a c +,cb a +也成等差数列.18.设{a n}是公比为 q 的等比数列,且a 1,a 3,a2成等差数列.(1)求q的值;(2)设{b n }是以2为首项,q 为公差的等差数列,其前n 项和为S n ,当n ≥2时,比较S n 与bn 的大小,并说明理由.19.数列{a n }的前n 项和记为Sn ,已知a 1=1,a n +1=n n 2+S n (n=1,2,3…). 求证:数列{n S n }是等比数列.20.已知数列{an }是首项为a 且公比不等于1的等比数列,S n 为其前n项和,a 1,2a7,3a 4成等差数列,求证:12S 3,S6,S 12-S 6成等比数列.第二章 数列参考答案一、选择题1.C解析:由题设,代入通项公式a n =a 1+(n-1)d ,即2 005=1+3(n -1),∴n=699.2.C解析:本题考查等比数列的相关概念,及其有关计算能力.设等比数列{a n}的公比为q (q >0),由题意得a1+a 2+a 3=21,即a 1(1+q +q 2)=21,又a 1=3,∴1+q +q 2=7.解得q=2或q =-3(不合题意,舍去),∴a 3+a 4+a5=a 1q 2(1+q +q 2)=3×22×7=84.3.B .解析:由a 1+a 8=a4+a 5,∴排除C .又a1·a 8=a 1(a1+7d )=a 12+7a 1d ,∴a 4·a 5=(a 1+3d )(a1+4d )=a 12+7a 1d +12d2>a 1·a 8.4.C解析:解法1:设a 1=41,a2=41+d ,a 3=41+2d ,a 4=41+3d ,而方程x 2-2x +m =0中两根之和为2,x2-2x +n =0中两根之和也为2,∴a 1+a2+a 3+a 4=1+6d=4,∴d=21,a 1=41,a 4=47是一个方程的两个根,a 1=43,a 3=45是另一个方程的两个根. ∴167,1615分别为m 或n ,∴|m -n|=21,故选C.解法2:设方程的四个根为x 1,x2,x3,x 4,且x 1+x 2=x 3+x 4=2,x1·x 2=m,x 3·x 4=n .由等差数列的性质:若γ+s =p+q,则a γ+a s=a p+a q ,若设x 1为第一项,x 2必为第四项,则x2=47,于是可得等差数列为41,43,45,47, ∴m =167,n =1615, ∴|m -n |=21. 5.B解析:∵a 2=9,a5=243,25a a =q 3=9243=27, ∴q =3,a 1q=9,a1=3,∴S 4=3-13-35=2240=120. 6.B解析:解法1:由a2 003+a 2 004>0,a 2 003·a 2 004<0,知a2 003和a 2 004两项中有一正数一负数,又a1>0,则公差为负数,否则各项总为正数,故a 2 003>a 2 004,即a 2 003>0,a 2 004<0.∴S 4 006=2+006400641)(a a =2+006400420032)(a a >0, ∴S4 007=20074·(a1+a4 007)=20074·2a2 004<0, 故4 006为S n >0的最大自然数. 选B.解法2:由a 1>0,a2 003+a 2 004>0,a 2 003·a2 004<0,同解法1的分析得a 2 003>0,a 2 004<0,∴S2 003为S n 中的最大值.∵S n 是关于n的二次函数,如草图所示,∴2 003到对称轴的距离比2 004到对称轴的距离小,∴20074在对称轴的右侧. 根据已知条件及图象的对称性可得4 006在图象中右侧零点B 的左侧,4 007,4 008都在其右侧,S n >0的最大自然数是4 006. (第6题)7.B解析:∵{a n}是等差数列,∴a 3=a 1+4,a 4=a1+6,又由a 1,a 3,a 4成等比数列,∴(a 1+4)2=a1(a 1+6),解得a 1=-8,∴a 2=-8+2=-6.8.A 解析:∵59S S =2)(52)(95191a a a a ++=3559a a ⋅⋅=59·95=1,∴选A. 9.A解析:设d和q分别为公差和公比,则-4=-1+3d 且-4=(-1)q4,∴d=-1,q 2=2, ∴212b a a -=2q d -=21. 10.C解析:∵{an }为等差数列,∴2n a =a n -1+an+1,∴2n a =2a n ,又a n≠0,∴a n=2,{an }为常数数列,而a n =1212--n S n ,即2n -1=238=19,∴n=10.二、填空题11.23.解析:∵f (x)=221+x , ∴f (1-x )=2211+-x =x x 2222⋅+=x x 22221+, ∴f (x )+f (1-x )=x 221++x x 22221+⋅=x x 222211+⋅+=x x 22)22(21++=22. 设S =f (-5)+f (-4)+…+f(0)+…+f (5)+f (6),则S =f (6)+f (5)+…+f (0)+…+f (-4)+f(-5),∴2S=[f (6)+f (-5)]+[f(5)+f (-4)]+…+[f (-5)+f (6)]=62,∴S=f (-5)+f (-4)+…+f (0)+…+f(5)+f(6)=32.12.(1)32;(2)4;(3)32.解析:(1)由a3·a 5=24a ,得a 4=2,∴a 2·a 3·a 4·a 5·a 6=54a =32.(2)9136)(324222121=⇒⎩⎨⎧=+=+q q a a a a , ∴a 5+a 6=(a 1+a 2)q 4=4. (3)2=+=+++=2=+++=4444821843214q q S S a a a S a a a a S ⇒⎪⎩⎪⎨⎧⋅⋅⋅, ∴a 17+a 18+a 19+a 20=S 4q 16=32.13.216.解析:本题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与38,227同号,由等比中项的中间数为22738⋅=6,∴插入的三个数之积为38×227×6=216. 14.26.解析:∵a 3+a5=2a 4,a 7+a 13=2a 10,∴6(a4+a 10)=24,a4+a 10=4,∴S 13=2+13131)(a a =2+13104)(a a =2413⨯=26. 15.-49.解析:∵d =a 6-a5=-5,∴a4+a 5+…+a 10 =2+7104)(a a =25++-755)(d a d a=7(a5+2d )=-49.16.5,21(n+1)(n -2). 解析:同一平面内两条直线若不平行则一定相交,故每增加一条直线一定与前面已有的每条直线都相交,∴f (k )=f(k -1)+(k-1).由f (3)=2,f (4)=f (3)+3=2+3=5,f (5)=f (4)+4=2+3+4=9,……f (n )=f (n -1)+(n-1),相加得f (n)=2+3+4+…+(n-1)=21(n +1)(n -2). 三、解答题17.分析:判定给定数列是否为等差数列关键看是否满足从第2项开始每项与其前一项差为常数.证明:(1)n=1时,a 1=S 1=3-2=1,当n≥2时,a n=Sn -S n -1=3n2-2n -[3(n -1)2-2(n -1)]=6n -5,n =1时,亦满足,∴a n =6n-5(n ∈N*).首项a 1=1,a n -an -1=6n -5-[6(n-1)-5]=6(常数)(n ∈N*),∴数列{a n }成等差数列且a 1=1,公差为6.(2)∵a 1,b 1,c 1成等差数列, ∴b 2=a 1+c1化简得2ac =b(a +c ). a c b ++c b a +=ac ab a c bc +++22=ac c a c a b 22+++)(=ac c a 2+)(=2++2)()(c a b c a =2·bc a +, ∴a c b +,ba c +,cb a +也成等差数列. 18.解:(1)由题设2a 3=a 1+a 2,即2a 1q 2=a 1+a 1q ,∵a 1≠0,∴2q 2-q-1=0,∴q=1或-21.(2)若q =1,则S n =2n +21-)(n n =23+2n n . 当n ≥2时,S n -b n =Sn-1=22+1-))((n n >0,故S n >b n . 若q =-21,则S n =2n+21-)(n n (-21)=49+-2n n . 当n ≥2时,S n-b n =S n -1=4-11-)0)((n n , 故对于n ∈N+,当2≤n ≤9时,S n >b n ;当n =10时,Sn =bn ;当n≥11时,S n<b n .19.证明:∵a n +1=S n+1-S n ,a n +1=nn 2+S n , ∴(n +2)S n =n (Sn+1-S n),整理得nSn +1=2(n +1) S n, 所以1+1+n S n =n S n 2. 故{nS n }是以2为公比的等比数列. 20.证明:由a1,2a7,3a 4成等差数列,得4a7=a 1+3a 4,即4 a 1q6=a 1+3a 1q 3, 变形得(4q3+1)(q 3-1)=0,∴q 3=-41或q3=1(舍). 由3612S S =qq a q q a ----1)1(121)1(3161=1213q +=161; 6612S S S -=612S S -1=qq a q q a ----1)1(1)1(61121-1=1+q 6-1=161; 得3612S S =6612S S S -.ﻩ ∴12S 3,S 6,S 12-S 6成等比数列.数列基础知识点和方法归纳1. 等差数列的定义与性质定义:1n n a a d +-=(d 为常数),()11n a a n d =+-等差中项:x A y ,,成等差数列2A x y ⇔=+前n 项和()()11122n n a a n n n S na d +-==+ 性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2;(3)若三个成等差数列,可设为a d a a d -+,,(4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121m m m m a S b T --= (5){}n a 为等差数列2n S an bn ⇔=+(a b ,为常数,是关于n 的常数项为0的二次函数)n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项,即:当100a d ><,,解不等式组100n n a a +≥⎧⎨≤⎩可得n S 达到最大值时的n 值. 当100a d <>,,由100n n a a +≤⎧⎨≥⎩可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{}n a ,有),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S nd S S =-奇偶,1+=n n a a S S 偶奇. (7)项数为奇数12-n 的等差数列{}n a ,有---- )()12(12为中间项n n n a a n S -=-, n a S S =-偶奇,1-=n n S S 偶奇. 2. 等比数列的定义与性质 定义:1n na q a +=(q 为常数,0q ≠),11n n a a q -=. 等比中项:x G y 、、成等比数列2G xy ⇒=,或G =前n 项和:()11(1)1(1)1n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩(要注意!) 性质:{}n a 是等比数列(1)若m n p q +=+,则mn p q a a a a =·· (2)232n n n n n S S S S S --,,……仍为等比数列,公比为n q . 注意:由n S 求n a 时应注意什么?1n =时,11a S =;2n ≥时,1n n n a S S -=-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 数列的通项求数列通项公式的常用方法:(1) 观察与归纳法:先观察哪些因素随项数 n 的变化而变化,哪些因素不变:分析符号、数字、字母与项数n 在变化过程中的联系,初步归纳公式。
(2) 公式法:等差数列与等比数列。
(4)构造新数列法;(5)逐项作差求和法;(6)逐项作商求积法2. 等差数列{%}中:(1 )等差数列公差的取值与等差数列的单调性; (2) a n a 1 (n 1)d a m (n m)d ;(3) {ka n }也成等差数列;(4)两等差数列对应项和(差)组成的新数列仍成等差数列a p q,a qp(p q)a p q 0,S p q,S q p(p q)S p q(p q); S m n S m S mnd .(8) “首正”的递减等差数列中,前 n 项和的最大值是所有非负项之和;a b(9) 等差中项:若a,A,b 成等差数列,则 A —— 叫做a,b 的等差中项。
2(10) 判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法。
3•等比数列何}中:《数列》复习(3)利用S n 与a n 的关系求a n : a nS i ,(n 1)S n Sn 1,(n 2)a 3m L 仍成等差数列(6) S nn(a 1 2 a n )S,S nna 1a nS 2n 1A nf,f (n)2n 1B n⑺若 m n p q ,则 a ma nn(n 1),d 2d dS nn 佝 -)n ,222直 f(2n1).b np qa p a qa pa q; 若 m则a m22⑸ a ia 2L a m,a m 1 a m 1 La 2m ,a 2m 1a 2m 1 L(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性n 1 n m(2)a n a i q a m q ;(3){| a n |}、{ka n}成等比数列;{a n}、{b n}成等比数列{a n b n}成等比数列.(4)两等比数列对应项积(商)组成的新数列仍成等比数列•(5) q a2 La m,a k a k 1L ak m1,L成等比数列n^(q1)na1(q1) (6)a1a n q 印(1 q n)a1 n耳/(q1)q 彳-(q1) 1q 1 q 1 q 1q(7)p q m n b p b q b m b n ;2m2P q b m b p b q m nS n n S m q S n S n q S(8)“首大于1”的正值递减等比数列中,前n项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前n项积的最小值是所有小于或等于1的项的积;(9)并非任何两数总有等比中项•仅当实数a,b同号时,实数a,b存在等比中项•对同号两实数a,b的等比中项不仅存在,而且有一对G . ab •也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时)。
(10)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法4.等差数列与等比数列的联系:各项都不为零的常数列既是等差数列又是等比数列5.数列求和的常用方法:(1)公式法: ①等差数列求和公式;②等比数列求和公式③1 2 3 L n ±n(n21),122232L n2i n(n 1)(2n 1),1 3 5 L (2n 1) n2,1 3 5 L (2n 1)(n 1)2.(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和a n 3n1(3) 倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相 关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法)(4) 错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选 用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比(5) 裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项 相消法求和•常用裂项形式有: ①1 1丄 n(n 1) n n1②11(1亠n(n k) k n n k1 1 12[n(n 1) (n 1)(n 2)]【典型例题】(一)研究等差等比数列的有关性质1.研究通项的性质n 1例题1.已知数列{an}满足a 1 Z 3 a n 1(n 2)(1)求 也® ;3n 1(2)证明 2 .解: (1) Q d 1,a 2 3 1 4,a 332 4 13(2) 证明:由已知 a n a n1 3n 1故 a n(a n a n 1 ) (a n 1a n 2)(a 2 ajn 1j 23n1 3n1a 33 L 3 1a n2 ,所以证得2 .例题2.数列9n 的前n 项和记为S1 ,a 1 1,a n 1 2S1 1(n 1)(I)求 9n的通项公式;(n)等差数列b n的各项为正,其前n 项和为Tn ,且T 3 15,又印 九也求Tn . 解: (I)由 an 12S i 1可得 an2S n 1 1(n 2),两式相减得:a n 1 a n 2a n ,a n 1 3a n (n 2),又322S| 1 3 82 3a 〔故a n 是首项为1,公比为3的等比数列数列的项数是原数列的项数减一的差”!!(这也是等比数列前 n 和公式的推导方法之一)1 n(n 1)( n 2)b2,a3 b3成等比数列,2b n+1 = a n+1 + 3n+2①(n)设b n 的公比为d ,由T 315得,可得b i b 2b 315,可得b25故可设 3 5 d4 5 d ,又 a i 1,a 2 3耳 9 , 由题意可得(5d 1)(5 d 9) (523), 解得 d 1 2,d 210•••等差数列b n 的各项为正,d 0d 2n(n 1) c2T n 3n2 n 2n2例题3.已知数列9n2 ^n 8n对任意的 的前三项与数列 bn 的前三项对应相同,且n N都成立,数列 bn 1 bn 是等差数列. 22a 2 2 a 3 ...⑴求数列9n ⑵是否存在k点拨:(1) a 1 知Sn 求a n 的方法, 与b nN ,使得b k ak(0,1),请说明理由.2 n 1 2n 12a 2 2 a 3 ... 2 a n 8n 左边相当于是数列 % 的通项公式;当 n 2 时,Si Si 1 a n 前n 项和的形式,可以联想到已 b k %看作一个函数,利用函数的思想方法来研究 8n (n N * [① 1) (n N* ) (2 )把 2 解:(1)已知 a 1 2a 2 2 a 3a 1 2a 2 22 a 3. bk 穌的取值情况. n 2时, ①一②得,在①中令所以a n 由题意3Y 1 % 8,求得 n 1,可得得a 1 n a n • • 2n 1a n 2n 2a n 1 n2418(n (n N* ). b 2 4, b 3bn }的公差为2,所以b 22 ( 4) 2,4, b 3 b 2b n 1 b h4 (n 1) 22n 6,b n b 1 (b 24) (b 3 b 2)L(b n b n 1 )(4)( 2) L (2n 8)2n 7n 14 (n N(2) b ka k k 2 7k 14 24k,7 2 7f(k) (k)2 —当k 4时, 2 4 24 k 单调递增,所以k 4时,f (k) k 2 7k 1424 k1 ,又 f(1) f (2) f (3) 0所以,不存在 k N*,使得 b ka k (0,1).例题4.设各项均为正数的数列 {a n }和{b n }满足:a n 、 a 1 = 1, b 1 = 2 , a 2 = 3 ,求通项 a n ,b n解:依题意得: • ••数列{bn 1* ).b n 、a n+1成等差数列,b n 、a n+1、b n+1成等比数列,且22a n+1 =b n b n+1a n 、b n 为正数,由②得9n1■■-b n bl1,9n2;b nib n2 代入①并同除以;b n 1得:2 b n 1 .. b n .. b n 2 , • •• { .bn }为等差数列 2 9 a ; mb ?,则 b 2 一 T b 1 = 2 , a 2 =3 , 2 , — — 9 — 、2 (n 1)2{b n (2 (n 1)^2 运)—(n 1), b n—2 -----•••当 n > 2 时,a n ...b n b n1 n(n 1) 又a 1 = 1,当n = 1时成立, a nn(n 1) 22.研究前n 项和的性质 例题5. 已知等比数列{a n }的前n 项和为Sb 的值及数列{a n }的通项公式; (1 )求 a 、 (2 )设 解: (1) n 2时,又a 1 3 得a, n nb — (2)a n3 2 1 1 1 2 -T n (- .2 2 3 2 2T 2 1 (1 n n 1b n3 a 2n b ,且 a 1 3 n a n ,求数列{bn }的前n 项和T n a n S n S n 1 2 a .而{a n }为等比数列, a 1 21 1a从而an 3 2 T n 1(1 1 .又 Q a 1 2a b 3, 1) 12Tn1 3(14(1 1n 3(1歹盯例题6.数列{an }是首项为 1 b k 「(©厲 lga 2 L lga k ) (k N1000,公比为 10的等比数列,数列{b n }满足(1)求数列{bn }的前n 项和的最大值;4 n a n10解:(1)由题意: -lga n(2)求数列{|b n|}的前n 项和S n .4lg a 1 lg a 2 L lg a k 3kk(k 1) 2n,•数列{lg an }是首项为3,公差为, 1 皿 n(n 1)、 7 b n[3n ] n 2 1的等差数列,b n由b n 1,得6n 7,•数列{bn }的前n 项和的最大值为 Ss S 721 2 .的最小值.解:(1)设等比数列的公比为q (q > 1),由1 a 1q+a 1q 2+a 1q 3=28,a 1q+a 1q 3=2 (a 1q 2+2),得:a 1=2, q=2 或 a 1=32, q= 2 (舍)二 a n =2 •(nF =2nb n a n log 丄 a nn 2n(2) I2S n =—( 1 2+2 22+3 23+…+ 2n )二 2:=—( 1 22+2 23+…+ 2n+1),S n =2+22+23+…+2— n 2n+1=—( n — 1) 2n+1— 2,若S n +n 2n+1 > 30成立,则2n+1 >32,故n > 4,「. n 的最小值为5.例题8.已知数列{an}的前n 项和为S n ,且1,Sn ,an1成等差数列,n N,印1.函数f(X )log 3X.(I )求数列{an}的通项公式;(II )设数列{bn }满足(n 3)[f (an )2],记数列{b n }的前n 项和为T n ,试比较5 2n 5 「与12 : 312的大小.解:(1)Q 1,S n , a n1成等差数列,2S na n 11①当n2 时,2S n 1 a in 1a n 13.①—②得: 2(S n Sn 1)a n 1 a n3a na n 1,a na 2 门a 23, —3,当n=1时, 由①得 2S 1 2a 〔 a ?1,又a 11,a 1{ a n }是以 1为首项 3为公比的等比数列,a n3n 1.(II )v f x log 3 :xf (a n ) log 3a nlog 3 3 r 1n 1111 z 1 1 、b n(-) (n 3)叫)2] (n 1)(n 3)2 n 1 n 3〒 1 ,11 111111 , 1 1 11 、T n(L) 2 2 4 35 46 57 n n 2 n 1n 3(2)由(1 )当 n7时, b nb i,当 n 7 时,bn7 n 产)nb n3 (-13 n 47时,S nS nb b 2 L1 2 -n 4 1 2n 4 b 7 b 8 13 n (n4 13 … n 214b 97) (n 例题7. (1)7)已知递增的等比数列{a n }满足 b n2S 7 (bb 2 L b n )》24% 214a 2 求{a n }的通项公式a n ; (2)若bn a 3 a 428,且 8n lOg 1 3nSa 3 2是 a 2 , b ia 4的等差中项•b n 求使S n n 2n 130成立的n2)(n 3) 312,即「-12 3125 "口 M 2(n 2)(n 3)312,即Tn —10且n N 时123.研究生成数列的性质n n例题9. ( I )已知数列6,其中62 3,且数列C n 1P cn 为等比数列,求常数 P ;(II )设an 、6是公比不相等的两个等比数列, 6 a n b n,证明数列 cn 不是等比数列解:(I)因为{C h+1— pe n }是等比数列,故有 (C n+1— pe n ) 2= ( C n+2 — pC n+1) ( C n — pe n - 1), 将C n =2n + 3n 代入上式,得 [2n +1+3n +1 — p (2n + 3n ) ]2=[2n +2+3n +2 — p (2n+1+ 3n+1) ] • [2n +3n — p (2n —1+ 3n —1)],即[(2— p ) 2n + (3— p ) 3n ]2 =[(2 — p ) 2n+1+ (3 — p )3n+1][(2— p ) 2n —1+(3— p ) 3n —1],1整理得 6 (2— p ) (3 — p ) 2n 3n =0, 解得p=2或p=3.(n)设{a n }、{b n }的公比分别为 p 、q , p M q , C n =a n +b n .2为证{C n }不是等比数列只需证 6 M C 1 C 3.2 2 .2事实上,6= (a 1p + b 1q ) 2=a1 p 2 + b1 q 2+ 2a 1b 1pq ,由于 p M q , p 2 + q 2>2pq ,又 a 1、b 1 不为零, 因此C 2 C 1 C 3,故{6}不是等比数列.例题10. n 2 ( n 》4)个正数排成n 行n 列:其中每一行的数成等差数列,每一列的数成等比数列,并且1 1 1 1 152n 5(- 2 23 n 2 n 3) 12 2(n 2)(n 3),T 与 亍52n 5比较n 12 312的大小, 只需比较 2(n 2)(n 又2(n 2)(n 3) 312 2(n25n 6 156) 2(n312,即T n2(n 5 12 15)(n 10)2n 5;312 ;10 时,2(n2n 5312 . C 1 C 3= (a 1 + b 1) ( a 1 p 2 + b 1q 2)=2 2a1p 2 + 1 q 2+ a 1b 1 ( p 2 + q 2)23)与312的大小即可.5n 150)n 9且n N * 时,2(n2)(n3)1 3a42-, a43—所有公比相等已知a24=1, 8 16求S=a l1 + a22 + a33 + …+ a nn解:设数列{a1k}的公差为d,数列{aik}(i=1, 2, 3,…,n)的公比为q 则a〔k = an + (k—1) d , a kk = [an + (k—1) d]q k 1依题意得: a24(a113d)q1(a11・、31a42d)q8a43(an2d)q331a ii = d = q = ± 2,解得:又n2个数都是正数,1 .an = d = q =2 1 22s 两式相减得:kF ...akk = 2、12f(x) log3(ax 例题11.已知函数(1 )求数列{a n}的通项公式;a nb n -n,T n b1 b2(2 )设2(1 (3)求使不等式a2)1盯,1nb)的图象经过点b n(1A(2,1)和B(5,2),记a n 3(),n N .,若T n m(m Z),求m的最小值; 丄)a np ■2n 对一切n N*均成立的最大实数P解:(1)f(x) 由题意得log3(2xlog3(2alog3(5ab)b)(2) 2T n2T n 2n 1 2 n 112132(1 )得122_2_221n 1b n1) a n2n 13'og3(2n,解得1}2nf(n 1) f(n)3歹2232n2n2n2* 122 n 111,n N1 3 5n歹2n 32n2 2n2 n 2门1n 22n 3 2n 1小2 小32 22n 12* 112112n2n②1(1212n①—②得丄2232n,2n 3丁』2n 5“ 12n 32n2n 3n ,n2n,则由2n 52(2 n 3) 2n 3时,T nN随n的增大而减小3又T n m(m Z)恒成立,mmin3(3 )由题意得2n 11 1F(n) ------------- (1 )(1 记 2n 1 a11 1---------- (1 —)(1 F(n 1) . 2n 3 印F(n) 1 ~~(1 ~~1 ----------------- (|.2n 1 a 11 1 ,)(1 -)(1)对n a 1 a 2 a n1、1、) (1)a 2an ,则1、1、“ 1 、a 2)(1 —)(1 a n a—)n 1 )(1 丄)(1丄)a 2 a n1N 恒成立 2n 2 ,(2n 1)(2n 3) F(n) 0, F(n2(n 1)2 n 1.4(n 1)2 (n 1)2n 11) F(n),即F(n)是随n 的增大而增大2F(n)的最小值为F ⑴3"2 P 3'3,即(二)证明等差与等比数列 例题12. 数列{a n }中, a 8,a 4 ⑴求数列 {a n }的通项公式; ⑵设S n ⑻丨|a 21 1 |a n | ⑶设bn = n(12 a n ) (nN *),T n b 1.转化为等差等比数列• b 2 L m 32成立若存在,求出 m 的值; 2且满足 ,求 Sn ; a n 2 b n (n 解:(1)由题意,冇2 % 1由题意得2 (2 )若 10a 2 L8 3d d 2,2n 0则 n 5,8 10 2na n2a n 1 a n , nN N ),是否存在最大的整数 m ,使得对任意n N *,若不存在,请说明理由. 1 a n,{an}为等差数列,设公差为 d ,a n 8 2(n 1) 10 2n5 时,S n a n9n n 2,|a 1 | |a 2 ||a n |n 6 时,SnS 5 (S n S 5)a ?a 5a 6 a 7 a n9n Sn2故门* 2S 52 n9n 40 S n9n 40Qb n (3)1n (12 a n )T n若T n1 -[(1 2m1 (1 32对任意 Q&(n N )2n(n 1 1 3) (1 1)成立,即11 J nn 11 -) n1 (- n1「)】2(n 1) 16对任意n成立,的最小值是2,m 16 12,m 的最大整数值是7.1即存在最大整数 m 7,使对任意n N *,均有Tn32例题13.已知等比数列{b n }与数列{a n }满足b n 3a,,n N*.(1) 判断{a n }是何种数列,并给出证明; (2) 若 a 8 印3 m,求bQL b ?。