高阶偏导数、方向导数与梯度
直观理解梯度,以及偏导数、方向导数和法向量等(转载)
直观理解梯度,以及偏导数、⽅向导数和法向量等(转载)写在前⾯梯度是微积分中的基本概念,也是机器学习解优化问题经常使⽤的数学⼯具(梯度下降算法),虽然常说常听常见,但其细节、物理意义以及⼏何解释还是值得深挖⼀下,这些不清楚,梯度就成了“熟悉的陌⽣⼈”,仅仅“记住就完了”在⽤时难免会感觉不踏实,为了“⽤得放⼼”,本⽂将尝试直观地回答以下⼏个问题,梯度与偏导数的关系?梯度与⽅向导数的关系?为什么说梯度⽅向是上升最快的⽅向,负梯度⽅向为下降最快的⽅向?梯度的模有什么物理意义?等⾼线图中绘制的梯度为什么垂直于等⾼线?全微分与隐函数的梯度有什么关系?梯度为什么有时⼜成了法向量?闲话少说,书归正传。
在全篇“作⽤域”内,假定函数可导。
偏导数在博⽂《单变量微分、导数与链式法则 | | 》中,我们回顾了常见初等函数的导数,概括地说,导数是⼀元函数的变化率(斜率)。
导数也是函数,是函数的变化率与位置的关系。
如果是多元函数呢?则为偏导数。
偏导数是多元函数“退化”成⼀元函数时的导数,这⾥“退化”的意思是固定其他变量的值,只保留⼀个变量,依次保留每个变量,则NN元函数有NN个偏导数。
以⼆元函数为例,令z=f(x,y)z=f(x,y),绘制在3维坐标系如下图所⽰,在分别固定yy和xx的取值后得到下图中的⿊⾊曲线——“退化”为⼀元函数,⼆维坐标系中的曲线——则偏导数∂z∂x∂z∂x和∂z∂y∂z∂y分别为曲线的导数(切线斜率)。
由上可知,⼀个变量对应⼀个坐标轴,偏导数为函数在每个位置处沿着⾃变量坐标轴⽅向上的导数(切线斜率)。
⽅向导数如果是⽅向不是沿着坐标轴⽅向,⽽是任意⽅向呢?则为⽅向导数。
如下图所⽰,点PP位置处红⾊箭头⽅向的⽅向导数为⿊⾊切线的斜率,来⾃链接⽅向导数为函数在某⼀个⽅向上的导数,具体地,定义xyxy平⾯上⼀点(a,b)(a,b)以及单位向量u=(cosθ,sinθ)u→=(cosθ,sinθ),在曲⾯z=f(x,y)z=f(x,y)上,从点(a,b,f(a,b))(a,b,f(a,b))出发,沿u=(cosθ,sinθ)u→=(cosθ,sinθ)⽅向⾛tt单位长度后,函数值zz为F(t)=f(a+tcosθ,b+tsinθ)F(t)=f(a+tcosθ,b+tsinθ),则点(a,b)(a,b)处u=(cosθ,sinθ)u→=(cosθ,sinθ)⽅向的⽅向导数为:=====ddtf(a+tcosθ,b+tsinθ)∣∣∣t=0limt→0f(a+tcosθ,b+tsinθ)−f(a,b)tlimt→0f(a+tcosθ,b+tsinθ)−f(a,b+tsinθ)t+limt→0f(a,b+tsinθ)−f(a,b)t∂∂xf(a,b)dxdt+∂∂yf(a,b)dydtfx(a,b)cosθ+fy(a,b)sinθ(fx(a,b),fy( (fx(a,b),fy(a,b))⋅(cosθ,sinθ)上⾯推导中使⽤了链式法则。
梯度及其与方向导数的关系
u y
2
2
2
1 r
3
3y r
2
5
,
2
u z
2
2
1 r
3
3z 下页
返回
结束 11/22
例3.
处矢径 r 的模 , 试证
x x y z
2 2 2
证:
f (r ) y
grad f (r )
f (r )
f ( r )
f (r ) x
f ( r )
x r
y r
,
f (r ) y
f (r ) z
j
f ( r )
2 2
(x y )
2 2 2 2
2
y x
2 2
2 2
(x y )
2
z y
2
x y y 2y (x y )
2 2 2
x y
2 2
2 2
(x y )
2
2 2
z x
2
z
2
y
2
y x
2 2
(x y )
2
x y
2 2
2 2
(x y )
2
1 5
目录 上页 下页
u (1,1) u ( 1,1) , el l
(6 3)
3 5
返回 结束
7/22
(1) 方向导数取最大值的方向即梯度方向,其单位向 量为
1 2 (1,1)
,方向导数的最大值为
1 2
u ( 1,1) 3 2.
8多元函数微分学专题解析
专题七:多元函数微分学【大纲要求】1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续性的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.掌握多元复合函数一阶、二阶偏导数的求法. 5.会用隐函数的求导法则.6.理解方向导数与梯度的概念并掌握其计算方法.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程. 8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.【知识要点】1.多元函数及其极限与连续:1.1 二元函数的定义:设D 为一平面点集,若()D y x ∈∀,,变量z 按一定法则,总有确定值与之相对应,则称变量z 是变量y x ,的二元函数,记作()y x f z ,=。
1.2 二元函数的极限:设函数()y x f z ,=在点()00,y x 的某去心邻域内有定义,A 为常数,如果,0,0>∃>∀δε当()()δ<-+-<20200y y x x 时,有()ε<-A y x f ,,则称函数()y x f z ,=当()y x ,趋于()00,y x 时极限为A ,记作()A y x f y y x x =→→,lim0,。
1.3 二元函数的连续性:设函数()y x f z ,=在点()00,y x 的某邻域内有定义,且()()00,,,lim0y x f y x f y y x x =→→,则称函数()y x f z ,=在点()00,y x 连续。
2. 多元函数的偏导数与全微分:2.1 偏导数: 设函数),(y x f z =在点),(00y x 的某邻域内有定义,极限xy x f y x x f x ∆-∆+→∆),(), (lim00000存在, 则称此极限为函数),(y x f z =在点),(00y x 对x 的偏导数,记为;),(00y x x z ∂∂;),(00y x x f∂∂),(00y x f x 。
方向导数梯度方向导数与梯度
方向导数梯度方向导数与梯度
梯度的概念可以推广到三元函数
三元函数u f ( x, y, z)在空间区域 G 内具有一阶连续偏
导数,则对于每一点 P( x, y, z)G,都可定义一个向量(梯度)
gradf ( x, y, z) f
方向导数梯度方向导数与梯度
定义 设函数 z f ( x, y)在平面区域 D 内具有一阶连续偏导
数,则对于每一点 P( x, y) D,都可定出一个向量f
i
f
j,
x y
这向量称为函数z f ( x, y)在点 P( x, y)的梯度,记为
gradf ( x, y) f
i
f
j.
x y
方向导数梯度方向导数与梯度
第七节 方向导数与梯度
一、方向导数 二、梯度
第八章
方向导数梯度方向导数与梯度
一、方向导数的定义
讨论函数 zf(x在,y一)点P沿某一方向的变化率问题.
设函数z f (x, y) 在点
y
l
• P
P(x, y)的某一邻域U(P) 内有定义,自点P 引射线l.
y
••
P x
o
x
方向导数梯度方向导数与梯度
x(1,0)
(1,0)
z 2xe2y 2,
y(1,0)
(1,0)
所求方向导数 z cos()2sin () 2 .
l
4
42
方向导数梯度方向导数与梯度
例 2 求函数 f ( x, y) x2 xy y2在点(1,1)沿与 x轴方向
夹角为 的方向射线l 的方向导数.并问在怎样的方向上此方向
第六节 方向导数与梯度
y (1,0)
(1,0)
所求方向导数 z 1 .
l (1,0)
2
3、方向导函数
若
z
f
(
x,
y
)
在区域
D
内任何一点方向
el
的
方向导数都存在,则
f l
是
D上的一个函数,
称为方向导函数.
4、推广可得三元函数方向导数的定义
设函数 u
f
(
x
,
y, z
)
在
点
P
(
x0
,
( x0 , y0 )
表示曲线
l
:
z b( x
f (x, y) x0 ) a( y
y0 )
0
在点 ( x0 , y0 , f ( x0 , y0 )) 处的切线相对于el 的
斜率 tan .
*6、二阶方向导数
如果 f 在 ( l
就把它为
x0 f
, (
y0 x,
)y沿) 在el(仍x0有, y方0 ) 向沿导el 数的二l 阶f方l 向( x0,,y0
t0
t
存在 , 则称这极限为函数z f (x, y) 在点 P 沿
方向
l
的方向导数
,
记为f
,即
l ( x0,y0 )
f
lim f ( x0 t cos , y0 t cos ) f ( x0 , y0 )
l ( x0,y0 )
t0
t
依定义,函数 f ( x, y) 在点 P 沿着 x 轴正向
第六节 方向导数与梯度
一、问题的提出 二、方向导数的定义 三、梯度的概念
同济版高数知识点归纳总结大全
同济版高数知识点归纳总结大全# 同济版高数知识点归纳总结大全## 一、极限与连续1. 极限的定义:数列极限、函数极限、无穷小量。
2. 极限的性质:唯一性、有界性、保号性、夹逼定理。
3. 无穷小的比较:高阶无穷小、同阶无穷小。
4. 极限的运算法则:四则运算、复合函数的极限。
5. 连续性:连续点、连续函数、间断点的分类。
6. 连续函数的性质:局部有界性、最值定理、零点定理。
## 二、导数与微分1. 导数的定义:导数的几何意义、物理意义。
2. 基本初等函数的导数:幂函数、指数函数、对数函数、三角函数。
3. 导数的运算法则:和差法则、积商法则、链式法则。
4. 高阶导数:二阶导数、三阶导数及其应用。
5. 隐函数与参数方程的导数:隐函数求导、参数方程求导。
6. 微分:微分的定义、微分与导数的关系。
## 三、中值定理与导数的应用1. 罗尔定理:定理条件、几何意义。
2. 拉格朗日中值定理:定理条件、几何意义、应用。
3. 柯西中值定理:定理条件、应用。
4. 泰勒公式:泰勒展开、麦克劳林公式。
5. 导数在几何上的应用:曲线的切线、法线、弧长、曲率。
6. 导数在物理上的应用:速度、加速度、变速运动。
## 四、不定积分1. 不定积分的定义:原函数、积分号。
2. 基本积分公式:基本积分表。
3. 换元积分法:第一类换元法、第二类换元法。
4. 分部积分法:分部积分公式、应用。
5. 有理函数的积分:部分分式分解、积分。
6. 三角函数的积分:正弦函数、余弦函数的积分。
## 五、定积分1. 定积分的定义:黎曼和、定积分的性质。
2. 定积分的计算:牛顿-莱布尼茨公式、定积分的换元法、分部积分法。
3. 定积分的应用:面积、体积、平均值、物理意义。
4. 反常积分:无穷区间上的积分、无界函数的积分。
## 六、多变量函数微分学1. 偏导数:偏导数的定义、高阶偏导数。
2. 全微分:全微分的定义、全微分与偏导数的关系。
3. 多元函数的极值:拉格朗日乘数法、条件极值。
导数、偏导数、方向导数、梯度,有何区别?
导数、偏导数、⽅向导数、梯度,有何区别?0、总结1、定义①导数:反映的是函数y=f(x)在某⼀点处沿x轴正⽅向的变化率。
再强调⼀遍,是函数f(x)在x轴上某⼀点处沿着x轴正⽅向的变化率/变化趋势。
直观地看,也就是在x轴上某⼀点处,如果f’(x)>0,说明f(x)的函数值在x点沿x轴正⽅向是趋于增加的;如果f’(x)<0,说明f(x)的函数值在x点沿x轴正⽅向是趋于减少的。
②偏导数:导数与偏导数本质是⼀致的,都是当⾃变量的变化量趋于0时,函数值的变化量与⾃变量变化量⽐值的极限。
直观地说,偏导数也就是函数在某⼀点上沿坐标轴正⽅向的的变化率。
(注意:偏导数的⽅向不是切线⽅向,⽽是沿着⾃变量坐标轴的⽅向)区别在于:导数,指的是⼀元函数中,函数y=f(x)在某⼀点处沿x轴正⽅向的变化率;偏导数,指的是多元函数中,函数y=f(x1,x2,…,xn)在某⼀点处沿某⼀坐标轴(x1,x2,…,xn)正⽅向的变化率。
③⽅向导数:在前⾯导数和偏导数的定义中,均是沿坐标轴正⽅向讨论函数的变化率。
那么当我们讨论函数沿任意⽅向的变化率时,也就引出了⽅向导数的定义,即:某⼀点在某⼀趋近⽅向上的导数值。
通俗的解释是:我们不仅要知道函数在坐标轴正⽅向上的变化率(即偏导数),⽽且还要设法求得函数在其他特定⽅向上的变化率,⽽⽅向导数就是函数在其他特定⽅向上的变化率。
④梯度:梯度的提出只为回答⼀个问题:函数在变量空间的某⼀点处,沿着哪⼀个⽅向有最⼤的变化率?梯度定义如下:函数在某⼀点的梯度是这样⼀个向量,它的⽅向与取得最⼤⽅向导数的⽅向⼀致,⽽它的模为⽅向导数的最⼤值。
这⾥注意三点: 1)梯度是⼀个向量,即有⽅向有⼤⼩; 2)梯度的⽅向是最⼤⽅向导数的⽅向,即函数增长最快的⽅向; 3)梯度的值是最⼤⽅向导数的值。
2、理解如下视频和⽂章有助于直观理解:注意:假设⼀个⼆元函数z=f(x,y),可视化后是⼀个可以呈现在xyz坐标系中的三维图像,求某个⽅向的偏导数或梯度时,原函数会降⼀维。
考研高数二全部知识点总结
考研高数二全部知识点总结一、多元函数微分学1. 多元函数的概念多元函数是指自变量有两个以上的函数。
在多元函数微分学中,需要掌握多元函数的定义、取值范围、图像等知识。
2. 偏导数偏导数是多元函数微分学的基础,偏导数的概念、性质、计算方法是高数二中的重点内容。
在复习过程中,需要重点掌握偏导数的计算方法,包括利用定义求偏导数、隐函数求导、高阶偏导数等内容。
3. 方向导数和梯度方向导数是用来表示函数在某一点沿着某一方向的变化率,梯度是方向导数的一种特殊情况,是多元函数在某一点的变化率最大的方向。
复习时需要掌握方向导数和梯度的定义、性质、计算方法等知识点。
4. 隐函数与参数方程在高数二中,隐函数与参数方程是重要的内容,需要掌握隐函数的存在性与偏导数求法、参数方程的导数、相关方程的结论等知识点。
5. 全微分全微分是多元函数微分学中的重要概念,包括全微分的定义、性质、计算方法等内容,需要在复习过程中重点掌握。
6. 泰勒公式泰勒公式是多元函数微分学中的重要内容,需要掌握泰勒公式的一阶、二阶、多元泰勒公式等内容。
二、多元函数积分学1. 重积分重积分是多元函数积分学的重要内容,包括重积分的定义、性质、计算方法等内容。
复习时需要重点掌握二重积分、三重积分的计算方法,包括直角坐标系下的积分、极坐标系下的积分、柱坐标系下的积分等内容。
2. 曲线、曲面积分曲线积分和曲面积分是高数二中的难点内容,需要复习时掌握曲线积分和曲面积分的定义、性质、计算方法等知识。
3. 格林公式格林公式是多元函数积分学中的重要内容,复习时需要掌握格林公式的定义、性质、应用等知识点。
4. 散度和旋度在多元函数积分学中,散度和旋度是重要的内容,需要掌握散度和旋度的定义、性质、计算方法等知识。
5. 曲线积分公式和斯托克斯定理曲线积分公式和斯托克斯定理是多元函数积分学中的重要内容,需要复习时掌握曲线积分公式和斯托克斯定理的定义、性质、应用等知识点。
总结:多元函数微分学和多元函数积分学是高数二的重要内容,在复习高数二的过程中,需要掌握多元函数微分学和多元函数积分学的全部知识点,包括偏导数、方向导数、梯度、全微分、泰勒公式、重积分、曲线、曲面积分、格林公式、散度和旋度、曲线积分公式和斯托克斯定理等内容。
多元函数的偏导数与方向导数计算
多元函数的偏导数与方向导数计算在多元函数中,偏导数与方向导数是常用的求导工具,可以帮助我们研究函数在不同方向上的变化率和导数值。
本文将介绍计算多元函数的偏导数和方向导数的方法和公式,并通过实例进行说明。
一、多元函数的偏导数多元函数是指含有多个自变量的函数,其偏导数表示在各个自变量上的变化率。
1. 一阶偏导数对于二元函数 $z = f(x, y)$,其一阶偏导数表示对每个自变量的偏导数值。
分别记作 $\frac{{\partial z}}{{\partial x}}$ 和 $\frac{{\partial z}}{{\partial y}}$,计算方法如下:$$\frac{{\partial z}}{{\partial x}} = \lim_{{\Delta x \to 0}} \frac{{f(x + \Delta x, y) - f(x, y)}}{{\Delta x}}$$$$\frac{{\partial z}}{{\partial y}} = \lim_{{\Delta y \to 0}} \frac{{f(x, y + \Delta y) - f(x, y)}}{{\Delta y}}$$2. 高阶偏导数如果一阶偏导数存在,我们还可以继续求解二阶、三阶乃至更高阶的偏导数。
对于二阶偏导数,我们可以通过对一阶偏导数再次求导得到,记作 $\frac{{\partial^2 z}}{{\partial x^2}}$、$\frac{{\partial^2 z}}{{\partial x \partial y}}$ 和 $\frac{{\partial^2 z}}{{\partial y^2}}$。
计算方法如下:$$\frac{{\partial^2 z}}{{\partial x^2}} = \frac{{\partial}}{{\partial x}} \left(\frac{{\partial z}}{{\partial x}}\right)$$$$\frac{{\partial^2 z}}{{\partial x \partial y}} =\frac{{\partial}}{{\partial x}} \left(\frac{{\partial z}}{{\partial y}}\right)$$$$\frac{{\partial^2 z}}{{\partial y^2}} = \frac{{\partial}}{{\partial y}} \left(\frac{{\partial z}}{{\partial y}}\right)$$二、多元函数的方向导数方向导数表示函数在某个方向上的变化率,是由函数的梯度(gradient)来表示的。
高等数学方向导数与梯度
cos 1 , cos 4
17
17
y
P
O 1 2 x
60 17
例3. 设 n 是曲面
在点 P(1, 1, 1 )处
指向外侧的法向量, 求函数
在点P 处沿
方向 n 的方向导数.
解: n (4x , 6 y , 2z) P 2(2 , 3 , 1)
方向余弦为 cos 2 , cos 3 , cos 1
14
14
14
而
u x P z
6x 6x2 8y2
P
6 14
同理得
u 1 6 2 8 3 141 11
n P 14
7
二、梯度
方向导数公式 f f cos f cos f cos
l x
y
z
令向量
G
f, x
f, y
f z
l (cos , cos , cos )
当 l 与 G 方向一致时, 方向导数取最大值:
第七节
第八章
方向导数与梯度
一、方向导数 二、梯度 三、物理意义
一、方向导数
l
定义: 若函数 f (x, y, z) 在点 P(x, y, z) 处
沿方向 l (方向角为 , , ) 存在下列极限:
P
lim f
0
P(x, y, z)
lim
0
f
(x
x,
y
y, z
z)
f
(x,
y,
z)
记作
f l
则称 f 为函数在点 P 处沿方向 l 的方向导数.
l
定理: 若函数 f (x, y, z) 在点 P(x, y, z) 处可微 ,
方向导数和梯度的关系
⽅向导数和梯度的关系
先来看看⾼中学的导数,就是⼀元函数的切线称为导数
偏导数是针对多元函数的,
我们以两个⾃变量为例,z=f(x,y),从导数到偏导数,也就是从曲线来到了曲⾯,曲线上的⼀点,其切线只有⼀条。
但是曲⾯的⼀点,切线有⽆线条。
我们所说的偏导数指的是多元函数沿坐标轴的变化率。
⽐如:
fx(x,y)指的是函数在y⽅向不变,函数值沿着x轴⽅向的变化率
fy(x,y)指的是函数在x⽅向不变,函数值沿着y轴⽅向的变化率
由这两个表达可能觉得,偏导数有局限性,只能针对⽅向轴进⾏,但是我们想要的是沿任意⽅向的偏导数,那么就引出了⽅向导数,⽐如说我们的数据点在两个轴之间,那么,我们的偏导数是沿固定数据的⽅向进⾏,那应该是变化最快的⽅向。
所以就引出了梯度。
梯度是指,数据向量的⽅向成为梯度,那么⽅向导数如果⽅向跟梯度⽅向⼀样,那么就是下降最快的⽅向
所以总结:
偏导数连续才有梯度存在
⽅向导数是⼀个值,⽅向导数的最⼤值是⽅向跟梯度⼀样的
梯度是⼀个⽮量,其⽅向上的⽅向导数最⼤,其⼤⼩正好是此最⼤⽅向导数。
2011竞赛辅导-多元函数微分学
二、 偏导数
(一) 多元函数的一阶偏导数与全微分
7. 设f ( x, y) ( x y) xy , 求f x (1,1), f y (1,0).
f x (1,1) 1 2 ln 2, f y (1,0) 0.
x 练习: 设f ( x, y ) x ( y 1) arcsin , 求f x ( x,1). 答案: 1 y f ( x , y ) f ( x , y ) 8. 设 在 全 平 面 上 有 0, 0, 则在下列 x y (C ) . 条件中能保证 f ( x1 , y1 ) f ( x2 , y2 )的是
, 证明对任意正数 t有 20. 设f ( x, y )具有连续偏导
f (tx, ty ) t k f ( x, y )的充要条件是 f ( x, y )满足 欧拉方程
f f x y kf ( x , y ). x y
(三) 隐函数求导
•由一个方程所确定的隐函数 •由方程组所确定的隐函数
C . 1;
1 1 dx dy 2e 2
D. 2.
10.(江苏06竞赛) 已知由 x ze y z 可确定 z z( x, y ),
则dz(e,0) (
1 z
)
5,176 li 4.16
x 练习:设f ( x , y, z ) y , 求df (1,1,1).
lim
f ( x, y ) 1, 则f ( x , y )在(0,0)处(D) . 2 2 x y
A. 极限存在但不连续
B. 连续但偏导数不存在 D. 可微
C. 偏导存在但不可微
(0,0)处可微的一个充分条件 是( C ) 5. 函数f ( x, y)在点 (09数二)
导数-偏导数-方向导数-梯度及其关系
导数:()()()00'000lim lim x x f x x f x yfx x x∆→∆→+∆-∆==∆∆,导数的意义为函数的变化率。
由定义可知,导数是对应一元函数的。
偏导数:()()()0000000,,,limx x f x x y f x y f x y x∆→+∆-=∆()()()0000000,,,limy y f x y y f x y f x y y∆→+∆-=∆.偏导数是对应于多元函数的。
其意义是:偏导数反应的是函数沿坐标轴方向的变化率。
方向导数:设l 为xOy 平面上以()000,P x y 为始发点的一条射线,()cos ,cos l αβ=e 是与l 同方向的单位向量。
则该射线的参数方程为:00cos cos x x t y y t αβ=+=+,那么,函数(,)f x y ,在()000,P x y 沿l 方向的方向导数为:()()()0000000,cos ,y cos ,lim t x y f x t t f x y f ltαβ+→++-∂=∂。
从方向导数的定义可知,方向导数()00,x y f l∂∂就是函数(,)f x y 在点()000,P x y 沿方向l 的变化率。
方向导数也是对应于多元函数的。
方向导数是一个标量值。
方向导数与偏导数的关系:如果函数(,)f x y 在点()000,P x y 可微分,那么函数在改点沿任意方向l 的方向导数存在,且有()()()000000,,cos ,cos x y x y ff x y f x y lαβ∂=+∂,其中()cos ,cos l e αβ=为方向l 的方向余弦。
(若方向()1,0l =e 也就是x 轴方向,则()0000,(,)x x y ff x y l∂=∂,若方向()0,1l =e 也就是y 轴方向,则()0000,(,)y x y f f x y l∂=∂).梯度:设函数(,)f x y 在平面区域D 内有一阶连续偏导数,则对于每一个点()000,P x y D ∈都可以定出一个向量()()0000,,x y f x y f x y +i j ,这向量称为函数(,)f x y 在点()000,P x y 的梯度,即()()()000000 ,,,x y f x y f x y f x y =+grad i j 。
多元函数的偏导数、方向导数、梯度以及微分之间的关系思考
本篇文章,探讨下多元函数微分学下的一些知识点之间的关系。
包括全微分、偏导数、方向导数、梯度、全导数等内容。
初学这些知识的时候,学生会明显觉得这些概念不难掌握,而且定义及计算公式也很容易记住,但总觉得差那么点东西,说又不知道从何说起。
反正笔者是这种感觉。
其实最根本的原因是没有理清这些知识间的关系,对这些知识并没有本质的理解。
不妨现在就跟笔者一起再重新认识下它们,看看是否解开了你内心得些许疑惑。
一、导数和微分到底是什么,以及为什么会有这些概念关于导数和微分到底是个什么玩意,笔者在探讨一元函数微分的时候有清晰的描述,现在再复述一遍,如下:导数和微分其实就是数学家创造的两个代数工具,是为了从代数的角度来描述函数图像在几何上的变化。
说白了,就是每次描述函数图像变化,不用再画图了,有了这个,直接用算式算算就行了。
因此导数和微分也是沟通几何和代数的重要桥梁之一。
而导数描述的是函数在一点处的变化快慢的趋势,是一个变化的速率,微分描述的是函数从一点(移动一个无穷小量)到另一点的变化幅度,是一个变化的量。
我们知道在一元函数中,函数从一点到另一点的变化只有一个方向,就是沿着函数曲线移动就行了。
而且函数在某一点处的切线也只有一条,因此函数的变化快慢只由这个切线(的斜率)决定。
然而多元函数就不同了,多元函数往往是一个面,这也是为什么多元函数的微分学会多出那么多东西,催生那么多概念。
但是不要怕,其实多出的东西只是一元函数微分的拓展,本质都是一样的,不信请跟着笔者往下看,不难的,万变不离其宗。
我们来看图1。
现在跟着笔者,咱们一起像数学家一样来思考(其实学会从数学家的角度来思考问题,往往最能达到理解知识的本质的目的)。
描述函数的变化,一个是描述函数的变化快慢,一个是描述函数变化多少。
比如图1中,类似于一元函数的探讨,我想知道函数在A点变化的快慢趋势,以及从A点到B点变化的幅度是多少。
另外我们多元函数的图像还有一个有意思的问题,就是函数可以固定一个变量,让另一个变量来变化,那么这又是与一元函数的十分不同的变化了,其实这是一个变化维度的问题。
(完整word版)(整理)数学分析教案(华东师大版)第十七章多元函数微分学
第十七章多元函数微分学教学目的:1.理解多元函数微分学的概念,特别应掌握偏导数、全微分、连续及偏导存在、偏导连续等之间的关系;2.掌握多元函数特别是二元函数可微性及其应用。
教学重点难点:本章的重点是全微分的概念、偏导数的计算以及应用;难点是复合函数偏导数的计算及二元函数的泰勒公式。
教学时数:18学时§1 可微性一.可微性与全微分:1.可微性:由一元函数引入. 亦可写为, 时.2.全微分:例1 考查函数在点处的可微性 . P107例1二.偏导数:1.偏导数的定义、记法:2.偏导数的几何意义: P109 图案17—1.3.求偏导数:例2 , 3 , 4 . P109—110例2 , 3 , 4 .例5. 求偏导数.例6. 求偏导数.例7. 求偏导数, 并求.例8. 求和.解=,=.例9证明函数在点连续, 并求和.证. 在点连续 .,不存在 .三.可微条件:1.必要条件:Th 1 设为函数定义域的内点.在点可微, 和存在, 且. ( 证) 由于, 微分记为.定理1给出了计算可微函数全微分的方法.两个偏导数存在是可微的必要条件, 但不充分.例10考查函数在原点的可微性 . [1]P110 例5 .2.充分条件:Th 2 若函数的偏导数在的某邻域内存在, 且和在点处连续 . 则函数在点可微 . ( 证) P111 Th 3 若在点处连续, 点存在,则函数在点可微 .证.即在点可微 .要求至少有一个偏导数连续并不是可微的必要条件 .例11验证函数在点可微, 但和在点处不连续 . (简证,留为作业)证因此, 即,在点可微, . 但时, 有,沿方向不存在, 沿方向极限不存在; 又时,,因此, 不存在, 在点处不连续. 由关于和对称,也在点处不连续 .四.中值定理:Th 4 设函数在点的某邻域内存在偏导数 . 若属于该邻域, 则存在和, , 使得. ( 证) 例12设在区域D内. 证明在D内.五.连续、偏导数存在及可微之间的关系:六.可微性的几何意义与应用:1.可微性的几何意义:切平面的定义. P113.Th 5 曲面在点存在不平行于轴的切平面的充要条件是函数在点可微 . ( 证略)2. 切平面的求法: 设函数在点可微,则曲面在点处的切平面方程为(其中),法线方向数为,法线方程为.例13试求抛物面在点处的切平面方程和法线方程 . P115例63. 作近似计算和误差估计: 与一元函数对照, 原理 .例14 求的近似值. P115例7例15 应用公式计算某三角形面积 . 现测得,. 若测量的误差为的误差为. 求用此公式计算该三角形面积时的绝对误差限与相对误差限. P116.§2 复合函数微分法简介二元复合函数: .以下列三种情况介绍复合线路图;, ;.一.链导法则: 以“外二内二”型复合函数为例.Th 设函数在点D可微, 函数在点可微, 则复合函数在点可微, 且,. ( 证) P118称这一公式为链导公式 . 该公式的形式可在复合线路图中用所谓“分线加,沿线乘”或“并联加,串联乘”)来概括 .对所谓“外三内二”、“外二内三”、“外一内二”等复合情况,用“并联加,串联乘”的原则可写出相应的链导公式.链导公式中内函数的可微性可减弱为存在偏导数 . 但对外函数的可微性假设不能减弱.对外元, 内元, 有,.外元内一元的复合函数为一元函数 . 特称该复合函数的导数为全导数.例1. 求和. P120例1例2, . 求和.例3, 求和.例4设函数可微 ..求、和.例5用链导公式计算下列一元函数的导数:ⅰ> ; ⅱ> . P121例4例6设函数可微. 在极坐标变换下, 证明. P120例2 例7设函数可微, . 求证.二.复合函数的全微分: 全微分和全微分形式不变性 .例8. 利用全微分形式不变性求, 并由此导出和.P122 例5§3 方向导数和梯度一.方向导数:1.方向导数的定义:定义设三元函数在点的某邻域内有定义 .为从点出发的射线 . 为上且含于内的任一点, 以表示与两点间的距离 . 若极限存在, 则称此极限为函数在点沿方向的方向导数, 记为或、.对二元函数在点, 可仿此定义方向导数 .易见, 、和是三元函数在点分别沿轴正向、轴正向和轴正向的方向导数 .例1=. 求在点处沿方向的方向导数,其中ⅰ>为方向; ⅱ>为从点到点的方向.解ⅰ>为方向的射线为. 即. ,.因此,ⅱ>从点到点的方向的方向数为方向的射线为., ;.因此,2. 方向导数的计算:Th 若函数在点可微, 则在点处沿任一方向的方向导数都存在, 且++,其中、和为的方向余弦. ( 证) P125 对二元函数, +, 其中和是的方向角.註由++==, , , , , 可见, 为向量, , 在方向上的投影.例2 ( 上述例1 )解ⅰ>的方向余弦为=, =, =.=1 , =, =.因此, =++=.ⅱ>的方向余弦为=, =, =. 因此, =.可微是方向导数存在的充分条件, 但不必要 .例3 P126 .二. 梯度( 陡度):1. 梯度的定义: , , .|= .易见, 对可微函数, 方向导数是梯度在该方向上的投影.2. 梯度的几何意义: 对可微函数, 梯度方向是函数变化最快的方向 . 这是因为|.其中是与夹角. 可见时取最大值, 在的反方向取最小值 .3. 梯度的运算:ⅰ> .ⅱ>(+) = +.ⅲ> () = +.ⅳ> .ⅴ> () = .证ⅳ> , ..§4 Taylor公式和极值问题一、高阶偏导数:1.高阶偏导数的定义、记法:例9 求二阶偏导数和. P128例1 例10 . 求二阶偏导数. P128例2 2.关于混合偏导数: P129—131.3.求含有抽象函数的二元函数的高阶偏导数: 公式, P131-132例11 . 求和. P132例34. 验证或化简偏微分方程:例12 . 证明+ . ( Laplace方程) 例13 将方程变为极坐标形式.解., , , ., ;因此, .方程化简为.例14试确定和, 利用线性变换将方程化为.解, .=+++==+2+.=+++==++.=++.因此,+ (+ . 令, 或或……, 此时方程化简为.二.中值定理和泰肋公式:凸区域 .Th 1 设二元函数在凸区域D 上连续, 在D的所有内点处可微 . 则对D内任意两点 D , 存在, 使.证令.系若函数在区域D上存在偏导数, 且, 则是D上的常值函数.二. Taylor公式:Th 2 (Taylor公式) 若函数在点的某邻域内有直到阶连续偏导数, 则对内任一点,存在相应的, 使证P134例1 求函数在点的Taylor公式( 到二阶为止) . 并用它计算P135—136例4 .三. 极值问题:1. 极值的定义: 注意只在内点定义极值.例2 P136例52.极值的必要条件:与一元函数比较 .Th 3 设为函数的极值点 . 则当和存在时, 有=. ( 证)函数的驻点、不可导点,函数的可疑点 .3. 极值的充分条件:代数准备: 给出二元( 实)二次型. 其矩阵为.ⅰ> 是正定的,顺序主子式全,是半正定的,顺序主子式全;ⅱ> 是负定的,, 其中为阶顺序主子式.是半负定的, .ⅲ> < 0时, 是不定的.充分条件的讨论: 设函数在点某邻域有二阶连续偏导数 . 由Taylor公式, 有++ .令, , , 则当为驻点时, 有.其中.可见式的符号由二次型完全决定.称该二次型的矩阵为函数的Hesse矩阵. 于是由上述代数准备, 有ⅰ> , 为( 严格) 极小值点;ⅱ> , 为( 严格) 极大值点;ⅲ> 时, 不是极值点;ⅳ> 时, 可能是极值点, 也可能不是极值点 .综上, 有以下定理 .Th 4 设函数在点的某邻域内有连续的二阶偏导数, 是驻点 . 则ⅰ> 时, 为极小值点;ⅱ> 时, 为极大值点;ⅲ> 时, 不是极值点;ⅳ> 时, 可能是极值点, 也可能不是极值点 .例3—7 P138—140 例6—10 .四.函数的最值:例8 求函数在域D = 上的最值 .解令解得驻点为. .在边界上, , 驻点为, ;在边界上, , 没有驻点;在边界上, , 驻点为, .又.于是,..[]。
【微积分】导数,偏导数,方向导数与梯度
【微积分】导数,偏导数,方向导数与梯度1. 引言1.1 概述微积分是数学中一个重要的分支,研究的是变化与无限小量的关系。
在微积分中,导数、偏导数和梯度是最基础的概念之一。
它们能够描述函数在某一点上的变化率以及方向性,并且在许多科学和工程领域中都有广泛应用。
1.2 文章结构本文将围绕导数、偏导数、方向导数和梯度展开讨论。
首先介绍导数的定义、性质和计算方法,接着详细讲解偏导数及其与多元函数的关系以及计算方法。
然后深入探究方向导数的定义、意义以及如何计算方向导数。
最后,将介绍梯度的概念,并探讨其在微积分中的应用。
1.3 目的本文旨在全面介绍和阐述微积分中与导数、偏导数、方向导数以及梯度相关的知识。
通过对这些概念进行详细解析,读者可以加深对它们背后原理和运用方法的理解。
同时,希望能够激发读者对微积分更深层次的思考,并提供进一步学习和研究的方向建议。
2. 导数2.1 导数的定义导数是微积分中一个重要的概念,用来描述函数在某一点上的变化率。
在数学上,给定函数y=f(x),如果它在点x处有定义且在该点附近存在极限,那么它在点x 处的导数可以表示为f'(x)或dy/dx。
导数可以理解为函数的瞬时变化率。
2.2 导数的性质导数具有以下几个基本性质:- 可加性:若f(x)和g(x)可导,则(f+g)(x)也可导,并且其导函数为(f+g)'(x)=f'(x)+g'(x)。
- 常数倍性:若f(x)可导,则对于任意实常数a,af(x)也可导,并且其导函数为(a*f)'(x)=af'(x)。
- 乘积法则:若f(x)和g(x)可导,则(f*g)(x)也可导,并且其导函数为(f*g)'(x)=f'(x)*g(x)+f(x)*g'(x)。
- 商法则:若f(x)和g(x)都可导且g(x)≠0,则(f/g)(x)也可导,并且其导函数为(f/g)'(x)=(f'(x)*g(x)-f(x)*g'(x))/[g^2 (x)]。
高阶偏导数、方向导数与梯度PPT课件
有
而初等 说明: 因为初等函数的偏导数仍为初等函数 ,
函数在其定义区域内是连续的 , 故求初等函数的高阶导 数可以选择方便的求导顺序. (与求导次序无 关. )
7/30
二、方向导数
f ( x, y, z ) 在点 P( x, y, z ) 处 定义: 若函数
沿方向
0
l
, , ) 存在下列极 l (方向角为
6/30
r2
定理. 若 f x y ( x,y) 和 f y x ( x,y) 都在点 ( x0 ) f y x ( x0 , y0 )
(证明在P29-30)
本定理对 n 元函数的高阶混合导数也成立. 例如, 对三元函数 u = f (x , 当三阶混合偏导数 y , (z 在点 x) ,, y , z) 连续时,
n
3/3
3 例1. 求函 z x2y . ze 的二阶偏导数及 2 数 y x z z 解 : 2 e x2y e x2y y x
z x2y e 2 x 2 2 z z x2y x2y 4e 2e 2 y x y 3 2 z z x2y ( ) 2 e y x 2 x y x 2z 2z , 但这一结论并不总成立. 注意:此处 x y y x
导 数: z 2z z 2 z ( ) f x y ( x, y ) ( ) 2 f x x ( x, y ); y x y x x x x
2 z z ( ) f y x ( x, y) f 21 ( x, y); x y x y 2 z z ( ) f y y ( x, y) f 22 ( x, y) 2 y y y
5/30
高等数学高数课件 9.7方向导数与梯度
u
1 z
(6
x2
8
y2
1
)2
解
u
6;
x p
14
u
8;
y p
14
例5
设
n
是曲面
2x2
3
y2
z2
6
在点
P(1,1,1)
处的指向外侧的法向量, 求函数
在此处沿方向
n
的方向导数.
u
1 z
(6
x2
8
y2
1
)2
解
u x
p
6; 14
u y
p
8; 14
u z p
6x2 8y2
z2
14.
p
所以
u n
p
解 由方向导数的计算公式知
f l
(1,1)
fx (1,1)cos
f y (1,1)sin
(2x y) cos (2 y x) sin
(1,1)
(1,1)
cos sin
2
sin
4
,
解 由方向导数的计算公式知
f l
(1,1)
2
sin
4
,
解 由方向导数的计算公式知
f l
(1,1)
2 sin
在此处沿方向
n
的方向导数.
u
1 z
(6
x2
8
y2
1
)2
解
Fx p
4,
Fy p
6, Fz p
2,
n
{4,6,2},
|n|
2 14,
cos 2 , cos 3 , cos 1 .
14
高数讲义第七节方向导数与梯度
故
对于三元函数 u = f ( x , y , z ) ,它在点
处沿方向
的方向导数定义为
如果 u = f ( x , y , z ) 在点
处可微,则
例3 设 是曲面
在点
处的指向外侧的法向量,求函数 在此处沿方向 的方向导数.
解: 令 则曲面上任意一点 P ( x , y , z ) 处的法向量可取为
(2)等值线与梯度 等值线在点 P ( x , y ) 处的一 个法向量可取为
梯度与等值线的关系:
梯度的概念可以推广到三元函数
三元函数 在空间区域G内具有一阶连续偏导数,则对于每一点
,都可定义一个向量(梯度)
类似于二元函数,此梯度也是一个向量, 其方向与取得最大方向导数的方向一致,其模 为方向导数的最大值.
一、问题的提出
考虑二元函数 z = f ( x , y ) 的偏导数
仅反映函数在水平方向 (横轴方向)上的变化率。 同理,偏导数 仅反映函数在垂直平方向 上的变化率。 在实际问题中,还需要考虑函数在斜方向上的变化 率问题,如冷热空气的流动,温度场的变化等。
实例:一块长方形的金属板,四个顶点的坐标是 (1,1),(5,1),(1,4),(5,4).在坐标原点处有一个 火焰,它使金属板受热.假定板上任意一点处的 温度与该点到原点的距离成反比.在(4,3)处有一 个蚂蚁,问这只蚂蚁应沿什么方向爬行才能最快 到达较凉快的地点?
解 由梯度计算公式得 故
例5:设在 xo y 平面上,各点的温度与点的位置关系为
解 故
例5:设在 xo y 平面上,各点的温度与点的位置关系为 解
例5:设在 xo y 平面上,各点的温度与点的位置关系为
解 (3)沿梯度方向温度变化率最大,最大值为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2ex2y
注意:此处 2 z 2 z , 但这一结论并不总成立. xy yx
4/30
例如,
f (x, y)
xy
x2 x2
y2 y2
,
0,
x2 y2 0 x2 y2 0
fx (x, y)
y
x4
4x2y2 (x2 y2)2
y4
,
0,
x2 y2 0 x2 y2 0
本定理对 n 元函数的高阶混合导数也成立. 例如, 对三元函数 u = f (x , y , z) , 当三阶混合偏导数 在点 (x , y , z) 连续时, 有
说明: 因为初等函数的偏导数仍为初等函数 , 而初等 函数在其定义区域内是连续的 , 故求初等函数的高阶导 数可以选择方便的求导顺序. (与求导次序无关. )
l
l
arccos 6
130
f l M
grad f M
26/30
备用题 1. 函数
处的梯度
2 (1, 2, 2) 9
在点
( 具有轮换对称性
2 (1, 2, 2) 9
27/30
2. 函数u ln(x y2 z2 )在点A( 1 , 0 , 1) 处沿点A
f y (x, y)
x
x4
4x2y2 (x2 y2)2
y4
,
0,
x2 y2 0 x2 y2 0
f xy (0,0)
lim
y 0
f x (0,
y) y
f x (0, 0)
lim y y0 y
1
二 者
f yx (0,0)
lim
x0
第2.2节 高阶偏导数、方向导数与梯度
一、高阶偏导数 二、方向导数 三、梯度
作业 习题5.2(A) 15, 16, 17, 18, 19, 21, 22, 25
一、高阶偏导数
设 z = f (x , y)在域 D 内存在连续的偏导数
z x
fx (x,
y) ,
z y
f y (x,
y)
若这两个偏导数仍存在偏导数,则称它们是z = f ( x , y )
( f x , f y ) P grad f P
同样, 对应函数 有等值面(等量面)
y
f c3
f c2
P f c1
当各偏导数不同时为零时, 其上
点P处的法向量为 grad f P .
o
x
(设c1 c2 c3)
16/30
函数在一点的梯度垂直于等值面(或等值线) 在该点的切线(或梯度与等值线在相应点的法线 平行),指向函数增大的方向.
22/30
4. 几个概念之间的关系
• 可微
方向导数存在
偏导数存在
• f grad f l 0 梯度在方向 l 上的投影. l
5. 方向导数的几何意义(P26)
23/30
思考与练习
1. 设函数 (1) 求函数在点 M ( 1, 1, 1 ) 处沿曲线
在该点切线方向的方向导数; (2) 求函数在 M( 1, 1, 1 ) 处的梯度与(1)中切线方向
15/30
对函数
z
f
(x,
y) ,曲线
z
f (x, zC
y) 在
xoy
面上的投
影L* : f (x, y) C 称为函数 f 的等值线(P5) .
(等值线实质就是曲面 z=f(x,y)与平面z=C
的交线在xoy坐标平面上的投影.)
设 f x , f y 不同时为零 , 则L*上点P 处的法向量为
y
z
9/30
对于二元函数 f (x, y), 在点P(x, y)处沿方向 l (方向角
为, ) 的方向导数为
f lim f (x x, y y) f (x, y)
l 0
y lP
l
fx (x, y) cos f y (x, y) cos
o
x
14/30
1. 定义
向量 G 称为函数 f (P) 在点 P 处的梯度 (gradient), 记作grad f , 即
f (P)
f , x
f, y
f z
同样可定义二元函数
在点P(x, y) 处的梯度
说明: 函数的方向导数为梯度在该方向上的投影. 2. 梯度的几何意义
f y (x,
0) x
f y (0, 0)
lim
x0
x x
1
不 等
5/30
例2. 证明函数
满足拉普拉斯
方程
u
2u x2
2u y2
2u z2
0
(偏微分方程)
证:
r2
2u x2
1 r3
3 r
x
4
r x
1 r3
3x2 r5
利用对称性
,
证明: 由函数 f (x, y, z) 在点 P 可微 , 得
P(x, y, z)
f f x f y f z o( )
x y z
o( )
故 f lim f f cos f cos f cos
l 0 x
的二阶偏导数 . 按求导顺序不同, 有下列四个二阶偏导
数:
(z) x x
2 x
z
2
f xx (x, y);
(z) y x
2z
yx
f x y (x,
y)
(z) x y
2z x y
f y x (x, y)
f21(x, y);
(z) y y
处所产生的电位为 u q ( r x2 y2 z2 ), 试证
4 r
gradu E
(场强
E
4π
q ε
r2
r
0
)
证: 利用例4的结果 grad f (r) f (r) r 0
grad u
q
4 r
r
0
4
q
r
2
r
0 E
这说明场强: 垂直于等位面, 且指向电位减少的方向.
第14周(5月27号)主B-304上数学实验理论课
第15周上机实验,地点:理科楼-226 1.核工程01,建环01,土木01 时间: (6月1号)星期三3-4节10:00-12:00 2.核工程02,03, 地环01 时间:(6月3号)星期五3-4节10:00-12:00;
14
14
14
而
u
x P z
6x 6x2 8y2
P
6 14
同理得
u 1 6 2 8 3 141 11
n P 14
7
13/30
三、梯度
方向导数公式 f f cos f cos f cos
l x
y
z
令向量
g
19/30
内容小结
1. 高阶偏导数
• 混合偏导数连续
与求导顺序无关
• 求高阶偏导数的方法
逐次求导法
(与求导顺序无关时, 应选择方便的求导顺序)
20/30
2. 方向导数
• 三元函数
在点
为, , ) 的方向导数为
沿方向 l (方向角
f f cos f cos f cos
f x
,
f y
,
f z
l 0 (cos , cos , cos )
f
g
l 0
g
c
os
(g
,
l
0
)
l 0 1
g与l0l方向一致时,方向导数取最大值:
这说明 g
max(f ) g l
方向:f 的值增长最快的那个方向;
模 : f 的最大方向导数的值.
r
f (r) f (r) z
z
r
grad
f
(r)
f
(r)
i
f
(r)
j
f
(r)
k
z
x
y
z
P
f (r) 1 (x
i y
jz
k)
r
r
o
y
f (r) 1 r f (r) r0
x
r
18/30
例7. 已知位于坐标原点的点电荷 q 在任意点
17
17
yP o 1 2 x
60 17
12/30
例5. 设n 是曲面
在点 P(1, 1, 1 )处
指向外侧的法向量, 求函数
在点P 处沿
方向 n 的方向导数.
解: n (4x , 6 y , 2z) P 2(2 , 3 , 1)
方向余弦为 cos 2 , cos 3 , cos 1
指向 B( 3, -2 , 2) 方向的方向导数是
1 2
. (96考研)
提示:
则
{cos , cos , cos }
ln(x 1)
ln(1 y2 1)
1 2
28/30