线段与角的计算

合集下载

线段和角度的计算

线段和角度的计算

线段和角度的计算线段和角度是几何学中基础而重要的概念,对于几何学的研究和实际应用具有重要的意义。

本文将介绍线段和角度的计算方法,并且提供一些实例来帮助读者更好地理解。

一、线段的计算线段是几何学中最基础的图形,其长度的计算是几何学中最常见的问题之一。

计算线段的长度需要知道线段的两个端点的坐标,然后根据坐标计算两个点之间的距离即可。

假设线段的两个端点的坐标分别为A(x1, y1)和B(x2, y2),则线段AB的长度可以使用以下公式计算:AB = √[(x2-x1)^2 + (y2-y1)^2]其中√代表求平方根。

举例来说,如果线段的一个端点坐标为A(2, 3),另一个端点坐标为B(5, 7),则线段AB的长度可以计算如下:AB = √[(5-2)^2 + (7-3)^2]= √[3^2 + 4^2]= √[9 + 16]= √25= 5因此,线段AB的长度为5。

二、角度的计算角度是描述两条相交线之间关系的概念,它是几何学中重要的衡量单位。

计算角度需要知道角的顶点和两条边的坐标,然后通过计算得出角的度数。

假设角的顶点坐标为O(x0, y0),边OA的坐标为A(x1, y1),边OB 的坐标为B(x2, y2),则角AOB的度数可以使用以下公式计算:θ = arccos[(OA·OB)/(|OA|·|OB|)]其中arccos代表反余弦函数,|OA|和|OB|代表OA和OB的长度,·表示点乘运算(坐标相乘后相加)。

举例来说,如果角AOB的顶点坐标为O(0, 0),边OA的坐标为A(1, 2),边OB的坐标为B(3, 4),则角AOB的度数可以计算如下:θ = arccos[((1-0)(3-0) + (2-0)(4-0))/((√[(1-0)^2 + (2-0)^2])*(√[(3-0)^2 + (4-0)^2]))]= arccos[(3+8)/(√(1+4) * √(9+16))]= arccos[11/(√5 * √25)]≈ arccos(0.9806)≈ 0.1944 radians因此,角AOB的度数约为0.1944弧度。

综合算式专项练习题线段与角的计算

综合算式专项练习题线段与角的计算

综合算式专项练习题线段与角的计算综合算式专项练习题——线段与角的计算一、线段计算题1. 已知线段AB的长度为5cm,线段BC的长度为7cm,求线段AC 的长度。

解析:根据线段加法原理,线段AC的长度等于线段AB的长度加上线段BC的长度。

即AC = AB + BC = 5cm + 7cm = 12cm。

2. 在平面直角坐标系中,已知点A(-3, 4)和点B(5, -2),求线段AB的长度。

解析:根据两点间距离公式,线段AB的长度可以计算为√[(x2 -x1)² + (y2 - y1)²]。

带入坐标得到AB = √[(5 - (-3))² + (-2 - 4)²] = √[64 + 36] = √100 = 10。

二、角计算题1. 已知一条线段DE,角BED为90°,角AEB为120°,求角DEB的度数。

解析:根据角的和为180°,∠DEB = 180° - ∠BED - ∠AEB = 180° - 90° - 120° = -30°。

2. 已知∠ABC = 30°,∠BCD = 120°,求∠ABD的度数。

解析:根据角的外角性质,∠ABD = ∠BCD - ∠ABC = 120° - 30° = 90°。

三、混合算式题1. 一条线段的长度为9cm,截取其中的1/4作为新线段的长度,再将新线段平均分成3段,求每段的长度。

解析:新线段的长度为9cm * (1/4) = 9cm * 0.25 = 2.25cm。

将新线段平均分成3段,则每段的长度为2.25cm / 3 = 0.75cm。

2. 若一物体从点A开始沿直线运动,经过8秒后到达点B,然后还需经过5秒才能到达点C,求从A到C的总时间。

解析:从A到B的时间已知为8秒,从B到C的时间已知为5秒。

学习数学中的线段和角度计算

学习数学中的线段和角度计算

学习数学中的线段和角度计算数学是一门既抽象又实用的学科,线段和角度计算是数学中基础且重要的概念。

学好线段和角度的计算对于后续的数学学习和实际问题的解决都至关重要。

本文将详细介绍线段和角度的计算方法及其应用。

一、线段计算在数学中,线段是指由两个点A和B组成的线段AB。

对于线段的计算,常见的问题有计算线段的长度、线段的中点以及两个线段的关系等。

1. 计算线段的长度计算线段的长度是最常见的线段计算问题。

假设有线段AB,其中A的坐标为(x1, y1),B的坐标为(x2, y2),则根据勾股定理,线段AB的长度L可通过以下公式计算:L = √((x2-x1)² + (y2-y1)²)其中(x2-x1)和(y2-y1)分别代表AB线段在x轴和y轴方向上的投影长度。

2. 计算线段的中点线段的中点是线段的重要属性,它的坐标可以通过线段的两个端点坐标求得。

假设线段AB的中点坐标为M(x,y),A的坐标为(x1, y1),B的坐标为(x2, y2),则M的坐标可以通过如下公式计算:x = (x1+x2)/2y = (y1+y2)/23. 判断两个线段的关系当需要判断两个线段的关系时,可以从以下几个方面进行考虑。

- 首先,可以计算两个线段的长度。

如果两个线段的长度相等,则可以判断它们是相等的线段。

- 其次,可以计算两个线段的斜率。

如果两个线段的斜率相等,则可以判断它们是平行的线段。

- 最后,可以比较两个线段的垂直距离和水平距离。

如果两个线段之间的水平距离和垂直距离都为零,则可以判断它们是重合的线段。

二、角度计算在数学中,角度是指由两条射线组成的形状。

角度的计算是数学中的重要内容,常见的问题包括计算角度的大小和正余弦等。

1. 计算角度的大小计算角度的大小需要根据角度所涉及的几何图形进行计算。

常见的几何图形包括直角三角形、等边三角形等。

对于直角三角形,可以通过已知的两条边长计算角度的大小。

而对于等边三角形,则可以通过已知的一个边长计算角度的大小。

线段与角的概念和计算

线段与角的概念和计算

线段与角的概念和计算一、线段的概念线段是几何学中的基本概念之一,它是指由两个端点确定的具有有限长度的直线部分。

在平面几何中,线段用两个大写字母表示,如AB、CD等。

线段的长度通常用小写字母表示,如|AB|表示线段AB的长度。

二、角的概念角是点和其两条射线组成的图形,通常用希腊字母表示,如∠ABC,其中B为角的顶点,而A、C分别为角的两个边。

角度可以用度数(°)或弧度(rad)表示,度数是人们最常用的度量单位。

三、线段的计算1. 线段的长度线段的长度可以通过两个端点的坐标计算得出。

设线段AB的两个端点坐标分别为A(x₁, y₁)和B(x₂, y₂),则线段AB的长度可以通过以下公式计算:|AB| = √((x₂ - x₁)² + (y₂ - y₁)²)2. 线段的中点线段的中点是指线段的中心位置,在平面几何中也是一个重要的概念。

设线段AB的两个端点坐标分别为A(x₁, y₁)和B(x₂, y₂),则线段AB的中点坐标可以通过以下公式计算:M((x₁ + x₂)/2, (y₁ + y₂)/2)四、角的计算1. 角度角度是人们常用的度量单位,一周等于360°。

当需要计算角度时,可以利用以下公式来进行计算:角度 = 弧长 / 半径2. 弧度弧度是另一种常用的角度单位,它是圆周上弧长等于半径的一部分。

当需要计算弧度时,可以利用以下公式来进行计算:弧度 = 弧长 / 半径3. 弧度与角度的转换弧度与角度之间可以通过以下公式进行转换:角度 = 弧度× 180° / π弧度 = 角度× π / 180°五、实例应用为了更好地理解线段与角的概念和计算方法,以下通过一个实例进行说明。

假设有一条线段AB,其中A(-2, 3)和B(4, -1)分别为线段的两个端点坐标。

我们首先可以计算线段AB的长度:|AB| = √((4 - (-2))² + ((-1) - 3)²)= √(6² + (-4)²)= √(36 + 16)= √52≈ 7.211然后我们可以计算线段AB的中点坐标:M(((-2) + 4)/2, (3 + (-1))/2)≈ M(1, 1)接下来我们可以计算角ADC的度数。

线段与角的和差倍分计算

线段与角的和差倍分计算

线段与角的和差倍分计算
在几何学中,我们经常遇到线段与角之间的和、差和倍分计算问题。

这些计算方法是为了帮助我们更好地理解图形的性质和关系。

本文将详细
介绍线段与角之间的和、差和倍分计算方法。

一、线段的和、差计算
1.线段的和计算:给定线段AB和线段BC,我们需要计算出两个线段
的和,即线段AB+BC。

计算方法是将线段AB和BC的长度相加,即AB+BC。

2.线段的差计算:给定线段AB和线段BC,我们需要计算出两个线段
的差,即线段AB-BC。

计算方法是将线段AB的长度减去线段BC的长度,
即AB-BC。

二、角的和、差计算
1.角的和计算:给定角α和角β,我们需要计算出两个角的和,即
角α+角β。

计算方法是将两个角的度数相加,即α+β。

2.角的差计算:给定角α和角β,我们需要计算出两个角的差,即
角α-角β。

计算方法是将角α的度数减去角β的度数,即α-β。

三、线段与角的倍分计算
1.线段的倍分计算:给定线段AB,我们需要计算出线段AB的一半或
一四分之一的长度。

计算方法是将线段AB的长度除以2或4,即AB/2或AB/4
2.角的倍分计算:给定角α,我们需要计算出角α的一半或一四分
之一的度数。

计算方法是将角α的度数除以2或4,即α/2或α/4
以上是线段与角的和、差和倍分计算的基本方法。

在实际应用中,我们还可以利用一些几何定理和性质来简化计算,例如角的补角、互补角和对应角等关系。

小三奥数--线段和角的计数问题

小三奥数--线段和角的计数问题

第一讲 线段与角的计数问题教室 姓名 学号【知识要点】一、定义在直线上任意取出两点之间的部分叫做线段,所取出的两点叫做该线段的端点。

由一点引出两条射线就组成了角。

角有一个顶点,这两条射线都称做角的边,一个角有两条边。

二、线段与角的计数方法仔细观察,寻找规律。

有条理、有次序地计数,才能做到不重复、不遗漏。

1、线段的计数方法:线段总数=1+2+3+…+n 。

(n 为基本线段数) 基本线段就是指内部不含有其他线段的线段。

2、角的计算公式:角总数=1+2+3+…+n 。

(n 为基本角数) 基本角就是指内部不含有其他角的角。

【例题精讲】★例1:数一数,下图中有多少条线段?A B C D E F★例2:下图中有多少条线段?★例3:下图中有几个锐角?★★例4:5个同学打乒乓球,如果每2个人打一盘,一共要打多少盘?★★例5:乘火车从北京到上海,共经过9个火车站(包括北京站和上海站),那么有几种不同的票价(不同的车站之间的票价都互不相同)?有几种不同的火车票?★★★例6:上海开往杭州的列车,除了起点和终点外,还要停靠4个站,问:要准备几种不同的车票?A BCD EFG O AB C D【为了掌握】★1、右图中共有( )条线段。

★2、右图中有( )条线段。

★3、某班有21名同学,每两人握一次手,一共要握多少次手?★4、右图中有几条线段?★5、放暑假了,三年级(2)班的王老师要求小朋友互相用电话联系,如果每两个小朋友要通一次电话,那么全班24个小朋友一共要通( )次电话。

老师也加入进来的话,要通( )次电话。

(写出过程)【为了优秀】★★1、右图中有几个角?★★2、图中一共有多少条线段?★★3、右图中有多少条线段?B★★4、数一数图中共有多条线段?【为了竞赛】★★★1、右图中有几条线段?【温馨提示】下节课我们将学习图形计数问题,请作好预习。

例1:下图中有几个三角形?例2:图中分别有几个三角形?BEB E B E。

线段与角的计算

线段与角的计算

线段与角的计算线段和角是几何学中常见的概念,它们在解决各种几何问题中起着重要的作用。

本文将介绍线段和角的计算方法,并通过例子详细说明其应用。

一、线段的计算线段是两点之间的直线部分,其长度可通过坐标、勾股定理或其他方法进行计算。

1. 坐标计算法设在笛卡尔坐标系中,已知两点A(x₁, y₁)和B(x₂, y₂),则线段AB的长度计算公式为:d = √((x₂ - x₁)² + (y₂ - y₁)²)其中,d表示线段AB的长度。

例如,已知点A(2, 3)和点B(5, 7),则线段AB的长度为:d = √((5 - 2)² + (7 - 3)²)= √(3² + 4²)= √(9 + 16)= √25= 5因此,线段AB的长度为5。

2. 勾股定理勾股定理是用于计算直角三角形的边长的常用方法。

当线段确定为直角三角形的一条边时,可以使用勾股定理来计算其长度。

设直角三角形的一条直角边长为a,另外两条边分别为b和c,则勾股定理可以表示为:a² = b² + c²根据这个公式,可以计算出线段的长度。

例如,已知直角三角形的两条边分别为5和12,求第三边的长度。

根据勾股定理,可得:a² = 5² + 12²= 25 + 144= 169因此,直角三角形的第三边长度为√169,即13。

二、角的计算角是由两条射线共享一个端点形成的图形,可以通过度数或弧度来进行计算。

1. 度数计算法角的度数计算方法包括以下几种:(1) 已知两条射线的坐标,可以通过坐标计算得出角的度数。

例如,已知射线OA和射线OB,可以通过计算斜率、弧度或反三角函数来得到角的度数。

(2) 已知角的度数,可以通过度数的加减乘除来计算其他角度。

例如,已知角AOB的度数为50°,求角BOC的度数,若角COB为直角,求角AOC的度数。

2. 弧度计算法弧度是计量角度的单位,用于计算圆周上的弧长。

线段和角的计算

线段和角的计算

线段和角的计算在数学的广阔天地中,线段和角是两个基础且重要的概念。

它们不仅在几何中频繁出现,也与我们的日常生活有着千丝万缕的联系。

今天,让我们一同走进线段和角的计算世界,探索其中的奥秘。

首先,我们来聊聊线段。

线段是指直线上两点间的有限部分。

它有两个端点,并且长度是固定的。

计算线段的长度是线段相关问题中的常见任务。

比如,已知线段 AB 的长度为 5 厘米,线段 BC 的长度为 3 厘米,那么线段 AC 的长度是多少呢?这就很简单啦,当点 B 在点 A 和点 C 之间时,AC 的长度就是 AB 的长度加上 BC 的长度,即 5 + 3 = 8 厘米。

但如果点 C 在点 A 和点 B 之间,那么 AC 的长度就是 AB 的长度减去 BC 的长度,即 5 3 = 2 厘米。

再来看一个稍微复杂点的例子。

有一条线段被分成了若干段,已知其中几段的长度,要求出整个线段的长度。

这时候,我们只需要把已知各段的长度相加就可以了。

除了计算线段的长度,线段的中点也是一个重要的概念。

如果点 M 是线段 AB 的中点,那么 AM 的长度就等于 MB 的长度,都等于 AB 长度的一半。

通过中点,我们可以将线段进行等分,从而方便计算和解决问题。

接下来,我们把目光转向角。

角是由两条有公共端点的射线组成的几何图形。

这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

角的度量单位通常是度,用符号“°”表示。

将一个圆平均分成 360 等份,每一份所对的角的大小就是 1 度。

在计算角的度数时,我们常常会遇到角的和差问题。

比如,已知∠AOB 的度数为 30°,∠BOC 的度数为 20°,那么∠AOC 的度数是多少呢?这就要分两种情况,如果∠BOC 在∠AOB 的内部,那么∠AOC 的度数就是∠AOB 的度数减去∠BOC 的度数,即 30° 20°= 10°;如果∠BOC 在∠AOB 的外部,那么∠AOC 的度数就是∠AOB 的度数加上∠BOC 的度数,即 30°+ 20°= 50°。

第1讲-线段与角度的相关计算

第1讲-线段与角度的相关计算

第1讲-线段与角度的相关计算一、线1.基本概念:(1)直线:能够向两端无限延伸的线叫做直线.表示方法:①直线可以用两个大写字母来表示,这两个大写字母表示直线上的点,不分先后顺序;②直线也可以用一个小写字母来表示.【例】如图1:可以记为直线AB 或直线BA ;如图2:记为直线l .图1 图2(2)射线:直线上的一点和这点一旁的部分叫射线,这个点叫做射线的端点.表示方法:①射线可以用两个大写字母来表示,第一个大写字母表示射线的端点,第二个大写字母表示射线上的点;②射线也可以用一个小写字母来表示.【例】如图3:记为射线OA ,但不能记为射线AO ;如图4:记为射线l .图3 图4(3)线段:直线上两点和中间的部分叫线段,这两个点叫做线段的端点.连接两点间的线段的长度,叫做这两点的距离.表示方法:①线段可以用两个大写字母来表示,这两个大写字母表示线段的两个端点,不分先后顺序;②线段也可以用一个小写字母来表示.【例】如图5:可以记为线段AB 或线段BA ;如图6:记为线段l .图5 图6(4)中点:把线段分成两条相等的线段的点叫做这条线段的中点.【例】如图7:点O 是线段AB 的中点,此时AO BO AB 1==2.图72.公理:(1)两点确定一条直线:经过两点有且只有一条直线; (2)两点之间,线段最短:两点之间的连线中,线段最短. 二、角1.定义: (1)静态定义:有公共端点的两条射线组成的图形叫做角.这个公共端点是角的顶点,这两条射线是角的两条边,可以无限延伸.llA O (5) l A B(6)l(2)动态定义:由一条射线绕着它的端点旋转到另一个位置所成的图形叫做角.处于初始位置的那条射线叫做角的始边,终止位置的那条射线叫做角的终边.表示方法:①通常用三个字母表示:两条边上的点的字母写在两旁,顶点上的字母写在中间.②用一个大写字母来表示:这个大写字母一定要表示角的顶点,而且以它为顶点的角只有一个.③用数字或希腊字母来表示:可以用希腊字母(α,β,γ,θ,ϕ, ...)表示角的大小。

线段和角的计算

线段和角的计算

线段与角的计算1.已知:如图,点M 、N 分别是线段AB 、BC 的中点,且AB =a ㎝,BC =b ㎝. 求:线段MN 的长.解:∵点M 、N 分别是线段AB 、BC 的中点,且AB =a ㎝,BC =b ㎝.∴BM =21AB =21a ㎝,BN =21BC =21b ㎝, ∴MN =BM +BN =21( a +b ) ㎝. 即线段MN 的长为21( a +b ) ㎝.2. 已知:如图,射线OM 、ON 分别是∠AOB 、∠BOC 的角平分线,且∠AOB =α,∠BOC =β.求: ∠MON 的度数.解:∵OM 、ON 分别是∠AOB 、∠BOC 的角平分线,且∠AOB =α,∠BOC =β.∴∠BOM =21∠AOB =21α ,∠BON =21∠BOC =21β, ∴∠MON =∠BOM +∠BON =21( α+β). 即∠MON 的度数为21( α+β).3.已知:如图,点M 、N 分别是线段AB 、BC 的中点,且AB =a ㎝,BC =b ㎝. 求:线段MN 的长.O解:∵点M 、N 分别是线段AB 、BC 的中点,且AB =a ㎝,BC =b ㎝.∴BM =21AB =21a ㎝,BN =21BC =21b ㎝, ∴MN =BM -BN =21( a -b ) ㎝. 即线段MN 的长为21( a -b ) ㎝.4. 已知:如图,射线OM 、ON 分别是∠AOB 、∠BOC 的角平分线,且∠AOB =α,∠BOC =β.求: ∠MON 的度数.解:∵OM 、ON 分别是∠AOB 、∠BOC 的角平分线,且∠AOB =α,∠BOC =β. ∴∠BOM =21∠AOB =21α ,∠BON =21∠BOC =21β,∴∠MON =∠BOM -∠BON =21( α-β). 即∠MON 的度数为21( α-β).5.已知:如图,点C 在线段AB 上,点M 、N 分别是线段AB 、BC 的中点,且AC =a ㎝,BC =b ㎝. 求:线段MN 的长.解:∵点M 、N 分别是线段AB 、BC 的中点,且AC =a ㎝,BC =b ㎝.O222BN =21BC =21b ㎝,∴MN =BM -BN =21( a +b )-21b =21a ㎝. 即线段MN 的长为21a ㎝.6. 已知:如图,射线OM 、ON 分别是∠AOC 、∠BOC 的角平分线,且∠AOB =α,∠BOC =β.求: ∠MON 的度数.解:∵OM 、ON 分别是∠AOC 、∠BOC 的角平分线,且∠AOB =α,∠BOC =β. ∴∠COM =21∠AOC =21(∠AOB +∠BOC )=21(α+β),∠CON =21∠BOC =21β,∴∠MON =∠COM -∠CON =21( α+β)-21β=21α. 即∠MON 的度数为21α.7.已知:如图,点C 在线段AB 上,点M 、N 分别是线段AB 、AC 的中点,且AC =a ㎝,BC =b ㎝. 求:线段MN 的长.解:∵点M 、N 分别是线段AB 、AC 的中点,且AC =a ㎝,BC =b ㎝.O222AN =21AC =21a ㎝,∴MN =AM -AN =21( a +b )-21a =21b ㎝. 即线段MN 的长为21b ㎝.8. 已知:如图,射线OM 、ON 分别是∠AOC 、∠AOB 的角平分线,且∠AOB =α,∠BOC =β.求: ∠MON 的度数.解:∵OM 、ON 分别是∠AOC 、∠AOB 的角平分线,且∠AOB =α,∠BOC =β.∴∠AOM =21∠AOC =21(∠AOB +∠BOC )=21(α+β),∠AON =21∠AOB =21α,∴∠MON =∠AOM -∠AON =21( α+β)-21α=21β. 即∠MON 的度数为21β.9.已知:如图,点C 、D 在线段AB 上,点M 、N 分别是线段AC 、BD 的中点,且AB =a ㎝,CD =b ㎝. 求:线段MN 的长.解:∵点M 、N 分别是线段AC 、BD 的中点,∴CM =21AC ,DN =21BD , ∵AB =a ㎝,CD =b ㎝,∴CM +DN =21(AC +BD )=21(AB -CD ) =21(a -b ) ㎝,∴MN =CM +CD +DN =21(a -b )-b =21(a +b ) ㎝. 即线段MN 的长为21(a +b ) ㎝.10. 已知:如图,射线OM 、ON 分别是∠AOC 、∠BOD 的角平分线,且∠AOB =α,∠COD =β.求: ∠MON 的度数.解:∵OM 、ON 分别是∠AOC 、∠BOD 的角平分线,∴∠COM =21∠AOC ,∠DON =21∠BOD , ∵∠AOB =α,∠COD =β,∴∠COM +∠DON =21(∠AOC +∠BOD )=21(∠AOB -∠COD ) =21(α-β),∴∠MON =∠COM +∠COD +∠DON =21( α-β)+β=21( α+β). 即∠MON 的度数为21( α+β).。

线段与角的计算

线段与角的计算

5.已知线段AB=4,BC=3,且点C在直线AB上, 点M是AB的中点.求线段 CM的长。
答案: CM=5或CM=1
14
三、规律探索
1、典例分析
例1.观察图中的图 形,并阅读图形下面的 相关文字:
两条直线相交, 最多有1个交点.
三条直线相交, 最多有3个交点.
像这样,6条直线相交, 最多有
四条直线相交, 最多有6个交点.
的距离是( D )
A.8 cm
B、2㎝
C.8cm或2 cm
D.不能确定
3、将一张长方形纸片,按图中的方式折叠,
BC,BD为折痕,则∠CBD的度数为 90 度。
13
4. 如图,直线AB、CD相交与点O,OE是∠AOD 的平分线,∠AOC=26°.
求∠AOE的度数。
答案:∠AOE =770
DE
BO
A
C
=∠DOB+_∠__A_O_B__
B C
O
A
图3
C
D
B
O
图4
A
4

5.1+2+3+4+…+n= n (n 1) ______2_
(n为正整数)
5
问题1:已知线段AB=5cm,C为线段AB上一点,且BC
=3cm,则线段AC=
cm。
• 答案:2cm,(说明:C的位置唯一确定)
问题2:已知线段AB=5cm,C为直线AB上一点,且BC
18
六、课后作业:
1.如图,B、C是线段AD上任意两点,M是AB 的中点,N是CD的中点,若MN=a,BC=b.则线 段AD的长是( )
A、2(a-b) B、2a-b C、a+b D、a-b

类比线段和角的有关计算

类比线段和角的有关计算

类比计算 轻松解题角和线段有很多类似的属性,因此在研究有关角的计算问题,常可通过类比线段问题予以轻松解决.现举例说明,供参考.一、有关等分计算问题例1 如图1,∠AOB 是直角,∠BOC 是锐角,OE 平分∠AOC ,OF 平分∠BOC ,求∠EOF 的度数.分析:由于角的图形比较复杂,要解决这个问题,可退而先求与其类似的有关线段等分计算问题“如图2,线段AB=8,C 点在线段AB 的延长线上,E 是线段AC 中点,F 是线段BC 中点,求线段EF 的长.”解决这个问题,显然要比解决上面角的问题简单.从图形可以看出,EF=EC -FC ,而E 是线段AC 中点,F 是线段BC 中点,所以EF=21AC -21BC=21( AC -BC)=21AB=4.类比此解法,可以求出∠EOF 的度数.解:因为∠EOF=∠EOC -∠FOC ,而OE 平分∠AOC ,OF 平分∠BOC ,所以∠EOF=21∠AOC -21∠BOC=21(∠AOC -∠BOC)=21∠AOB=45º. 二、有关和差计算问题例2 如图3,已知∠AOC=∠BOD=50º,∠BOC=20º,求∠AOD 的度数. 分析:图形比较复杂,类比“如图4,已知AC=BD=5,BC=2,求AD 的长.”由图4,显然有AC+BD=AB+BC+BC+CD=AD+BC ,所以AD=AC+BD -BC=5+5-2=8的度数.解:因为∠AOC+∠BOD=∠AOB+∠BOC+∠BOC+∠COD=∠AOD+∠COD,所以∠AOD=∠AOC+∠BOD-∠BOC=50º+50º-20º=80º.点评:从上面的解法可以看出,有很多角与线段的类似计算问题,我们可以通过类比,在解决线段问题的同时,也能顺利解决角的问题,由于线段相关的知识和图形比较简单,容易理解与掌握,因此对于图形比较复杂的角的计算问题,我们提倡大家利用类比推理的方法去进行研究,这样不但有助于理解新知识,还有利于创新意识的培养.。

线段与角的计算及解题方法归纳

线段与角的计算及解题方法归纳

B AO
A.上 B.海 C.世 ★ D.博
C
11.如果,点 O 在直线 AB 上且 AB第⊥1O1D 若∠COA=36°则∠DOB 的大小为( )
第 13
A 36° B 54° C 64° D 72题°

12.如图,直线 AB 与直线 CD 相交于点 O,E 是∠AOD 内一点,已知 OE⊥AB,∠BOD
3. 根据图形及已知条件,利用解方程的方法求解 例 3. 如图 3,一条直线上顺次有 A、B、C、D 四点,且 C 为 AD 的中点,
,求 BC 是 AB 的多少倍 图3
分析:题中已给出线段 BC、AB、AD 的一个方程,又 C 为 AD 的中点,即
,观察
图形可知,
,可得到 BC、AB、AD 又一个方程,从而可用 AD 分别表示 AB、
BC。
解:因为 C 为 AD 的中点,所以
因为
,即

由<1>、<2>可得: 即 BC=3AB 例 4. 如图 4,C、D、E 将线段 AB 分成 2:3:4:5 四部分,M、P、Q、N 分别是 AC、CD、 DE、EB 的中点,且 MN=21,求 PQ 的长。 图4 分析:根据比例关系及中点性质,若设 AC=2x,则 AB 上每一条短线段都可以用 x 的代数 式表示。观察图形,已知量 MN=MC+CD+DE+EN,可转化成 x 的方程,先求出 x,再求出 PQ。 解:若设 AC=2x,则
所以 又因为 CD=10cm,所以 AB=96cm 2.利用线段中点性质,进行线段长度变换 例 2. 如图 2,已知线段 AB=80cm,M 为 AB 的中点,P 在 MB 上,N 为 PB 的中点,且 NB= 14cm,求 PA 的长。 图2 分析:从图形可以看出,线段 AP 等于线段 AM 与 MP 的和,也等于线段 AB 与 PB 的差,所 以,欲求线段 PA 的长,只要能求出线段 AM 与 MP 的长或者求出线段 PB 的长即可。 解:因为 N 是 PB 的中点,NB=14 所以 PB=2NB=2×14=28 又因为 AP=AB-PB,AB=80 所以 AP=80-28=52(cm) 说明:在几何计算中,要结合图形中已知线段和所求线段的位置关系求解,要做到步步有 根据。

线段与角的计算中的思想方法(二)

线段与角的计算中的思想方法(二)

线段与角的计算中的思想方法模型一:方程想想1、如图,已知线段AB上有C、D两点,且AC:CD:DB=2:3:4,E,F 分别是AC, DB的中点,EF=3.6cm,求AB的长.1∠DOC,2、如图,点O在直线AC上,OD平分∠AOB,∠BOE=2∠DOE=70° ,求∠EOC的度数.3、类型2 分类讨论思想3、已知线段AB=8 cm,在直线AB上画线段BC,使它等于3 cm,则AC 的长为( )A.11 cmB.5cmC.11 cm或5 cmD.8cm或11cm4.在直线AB上任取一点O,过点O作射线OC,OD,使∠COD=100°,当∠AOC=30°时,∠BOD的度数是( )A.50°B.80°C.80°或150°D. 50°或110°5.如图,将一根绳子对折后用线段AB表示,现从P处将绳子剪断,剪断后的各段绳子中最长的一段为60cm。

若AP=2/3PB,则这根绳子的原长为多少?6.已知线段AB=4.8cm,C是AB的中点,D是CB的中点,点E在1AC。

请你画出图形并计算DE的长AB上,且CE=3类型3 整体思想7.如图1,已知线段AB=20cm,点C为AB上的一个动点,点D,E 分别是AC和BC的中点。

(1)若点C恰好是AB的中点,求DE的长(直接写出结果)(2)若BC=14cm,求DE的长(3)试说明不论BC取何值(不超过20cm),DE的长不变;∠知识迁移:如图2,已知∠AOB=130°,过∠AOB的内部任意一点C 画射线OC,若OD,OE分别平分∠AOC和∠BOC,试求出∠DOE的大小,并说明∠DOE的大小与射线OC的位置是否有关。

线段的长度与角度

线段的长度与角度

线段的长度与角度在几何学中,线段的长度与角度是两个重要的概念。

线段是指两个点之间的直线部分,长度是描述线段的大小,而角度则是两条线段之间的夹角大小。

本文将从理论和实际应用的角度分别讨论线段长度与角度的相关性。

一、线段长度线段长度是指两个点之间的距离,可以用数值表示。

在平面几何学中,我们可以通过两点之间的坐标计算线段的长度。

假设有两个点A(x₁, y₁)和B(x₂, y₂),则线段AB的长度可以通过以下公式计算:AB = √((x₂ - x₁)² + (y₂ - y₁)²)这个公式被称为勾股定理,也是线段长度的计算公式。

通过这个公式,我们可以得到线段的精确长度,无论线段是水平、垂直还是倾斜的。

线段长度的计算在实际中有广泛的应用。

例如,在建筑设计中,需要计算建筑物的各个模块的尺寸,包括线段的长度。

在工程测量中,也常常需要测量线段的长度来确定地块的大小或测绘地形图。

线段长度的准确计算对于这些应用非常重要。

二、线段角度线段的角度是指两个线段之间的夹角大小。

角度可以用弧度或度数来表示。

在平面几何学中,我们通常使用度数来表示角度。

360度是一个完整的圆,而角度的单位可以是任意的。

例如,直角是90度,平分一个直角则是45度。

要计算线段的角度,我们需要明确两个线段之间关系的性质和角度的计算方法。

例如,两条直线相交时,相交处形成的角度叫做相交角。

相交角的计算可以使用数学中的三角函数。

通过三角函数的计算,我们可以得到线段之间的夹角大小。

线段角度的计算在实际中也有广泛的应用。

例如,在导航系统中,我们需要知道两条线段之间的角度,以确定行驶方向或路径选择。

在机器人技术中,精确计算线段角度可以帮助机器人进行路径规划和避障。

总结:线段的长度与角度是几何学中重要的概念。

线段长度可以通过勾股定理计算,而线段角度可以通过三角函数计算。

线段长度与角度的准确计算在实际应用中有广泛的应用,包括建筑设计、工程测量、导航系统和机器人技术等领域。

线段和角的基本概念及其计算

线段和角的基本概念及其计算

线段和角的基本概念及其计算线段和角是几何学中的基本概念,对于几何学的学习和应用具有重要意义。

线段是由两个端点确定的有限直线段,而角是由两个射线共享一个端点而形成的图形。

在本文中,将介绍线段和角的基本概念,并探讨如何进行相关计算。

一、线段的基本概念线段是指由两个端点和着连结两个端点的直线所组成的有限部分。

线段可以用字母和横线表示,例如AB表示一条由点A和点B连接的线段。

线段的长度可以通过测量直线上的两个端点之间的距离来获得。

长度的测量单位可以是厘米、米等。

计算线段长度的方法是使用坐标系下的距离公式,根据两点的坐标计算两点之间的距离。

二、角的基本概念角是由两个射线共享一个端点而形成的图形。

共享的端点称为角的顶点,而两个射线则是角的边。

角可以用大写字母表示,例如∠ABC表示由射线AB和射线BC所形成的一个角。

角可以分为几类:锐角、直角、钝角和平角。

锐角是小于90°的角,直角是等于90°的角,钝角是大于90°但小于180°的角,平角是等于180°的角。

三、线段的计算1. 线段的加法线段的加法是指将两个线段连接起来形成一个更长的线段的操作。

这可以通过线段的端点进行连接而实现。

例如,给定线段AB和线段BC,我们可以通过将A和C连接来得到更长的线段AC。

2. 线段的减法线段的减法是指将一个线段从另一个线段中减去的操作。

这可以通过线段的端点来实现。

例如,给定线段AC和线段BC,我们可以通过从AC中减去BC来得到线段AB。

3. 线段的乘法线段的乘法是指将一个线段的长度与一个数进行乘法运算的操作。

例如,给定线段AB,如果要将其长度扩大2倍,可以将线段的长度乘以2。

四、角的计算1. 角的加法角的加法是指将两个角连接起来形成一个更大的角的操作。

这可以通过角的顶点和边进行连接而实现。

例如,给定∠ABC和∠BCD,我们可以通过将射线AB和射线CD连接来得到更大的角∠ABD。

平面几何中的线段与角度计算

平面几何中的线段与角度计算

平面几何中的线段与角度计算在平面几何学中,线段和角度是两个基本的概念。

线段是一个有两个端点的直线部分,它可以通过测量长度来确定。

而角度是由两条交叉的线段形成的空间区域,用于描述物体之间的方位关系。

在本文中,我们将讨论线段的计算和测量,以及角度的计算方法。

一、线段的计算和测量方法1. 直尺法直尺法是一种常用的线段计算和测量方法。

首先,我们需要一把直尺,将其边与线段的一端对齐,然后沿着直尺的边缘延伸,直到达到线段的另一端。

通过读取直尺上的刻度,我们可以得到线段的长度。

2. 钢尺法钢尺法也是一种常用的线段计算和测量方法。

与直尺法类似,我们需要一把刻有刻度的钢尺。

将钢尺的一端对齐线段的一端,然后延伸钢尺直到达到线段的另一端。

通过读取钢尺上的刻度,我们可以得到线段的长度。

相比直尺法,钢尺法的精度更高。

3. 割线法割线法是一种通过几何原理计算线段长度的方法。

首先,我们需要一块刻有刻度的长直板。

将直板上的一条边与线段的一端对齐,并用手指按住与线段相切的另一条边。

然后,将直板沿着手指的位置移动,直到与线段的另一端相切。

通过读取直板上的刻度,我们可以得到线段的长度。

二、角度的计算方法1. 量角器法量角器是一种用于测量和计算角度的工具。

将量角器的一个端点对齐于角的顶点,然后将量角器的另一条边与角的一条边对齐。

通过读取量角器上的刻度,我们可以得到角的度数。

2. 三角函数法三角函数是一种用于计算角度的数学工具。

在平面几何中,常用的三角函数有正弦、余弦和正切等。

通过使用三角函数的定义和性质,我们可以计算某些特定角度的值。

3. 直观估计法在某些情况下,我们可以通过直观估计的方式得到角度的近似值。

例如,对于钝角或锐角,我们可以根据视觉判断来估计其大致值。

这种方法通常用于大致的角度计算,不适用于精确的测量。

结论通过直尺法、钢尺法和割线法,我们可以计算和测量线段的长度。

而借助量角器法、三角函数法和直观估计法,我们可以计算角度的大小。

线段及角的计算

线段及角的计算

线段及角的计算【例1】如图,B、C两点把线段AD分成2∶3∶4的三部分,M是AD的中点,CD=8,求MC的长.DBA【解法指导】由AB∶BC∶CD=2∶3∶4,可设AB=2x,CD=3x,CD=4x,由CD=4x=8,而求得x的值,进而求出MC的长.解:设AB=2x,由AB∶BC∶CD=2∶3∶4,得CD=4x,CD=3x,AD=(2+3+4)x=9x,∵CD=8,∴x=2,∴AD=9x=18,∵M是AD的中点,∴MC=MD-CD=12AD-CD=12×18-8=1【变式题组】01.(河北)如图,长度为12cm的线段AB的中点为M,C点将线段MB分MC∶CB=1∶2,则线段AC的长度为()A.2cm B.8cm C.6cm D.4cm02.(随州)已知线段AB=16cm,点C在线段AB上,且BC=13AC,M为BC的中点,则AM的长为________.03.(黄冈)已知线段AB=12cm,直线AB上有一点C,且BC=6cm,M是线段AC的中点,求线段AM的长.【例2】已知:线段AB=10cm,M为AB的中点,在AB所在直线上有一点P,N为AP的中点,若MN=1.5cm,求AP的长.【解法指导】题中已说明P在AB所在直线上,即说明P点可能在线段AB 上,也可能在AB的延长线上(不可能在BA的延长线上),故应分类讨论.解:⑴如图①,当点P在线段AB上时,点N在点M的左侧,则AP=2AN=2(AM-MN)=2(12AB-MN)=2×(5-1.5)=7(cm);①⑵当点P在线段AB的延长线上时,N点在M点的右侧如图②,则AP=2AN=2(AM+MN)=2(12AB+MN)=2×(5+1.5)=13(cm);BA②A N M所以AP 的长为7cm 或13cm 【变式题组】01.(昆明)已知A 、B 、C 为直线l 上的三点,线段AB =9cm ,BC =1cm ,那么A 、C 两点间的距离是( ) A .8cm B .9cm C .10cm D .8cm 或10cm02.(十堰)如图C 、D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3cmB .6cmC .11cmD .14cm4、如图,已知点C 为AB 上一点,AC =18cm, CB =32AC ,D 、E 分别为AC 、AB 的中点.求DE 的长.3.(佛山实验区)A 车站到B 车站之间还有3个车站,那么从A 车站到B 车站方向发出的车辆,一共有多少种不同的车票( ) A .8 B .9 C .10 D .11【例3】如图⑴,一只昆虫要从正方体的一个顶点A 爬行相距它最远的另一个顶点B ,哪条路径最短?说明理由.图(2)图(1)A【解法指导】解答此类题的方法是将立方体展开,再根据两点之间,线段量短.解:将立方体展开成如图⑵,由两点之间线段最短知线段AB 即为最短路线. 【变式题组】1、如图,某人从A 点出发,先至B 点处牵牛,再E D C BA将牛带到河边喝水,请问他怎样走路程最短? 请你在图中作出最短路线.河【例4】摄制组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃饭,由于堵车,中午才赶到一个小镇,只行驶了原计划的三分之一,过了小镇,汽车赶了400千米,傍晚才停下来休息,司机说,再走从C 市到这里路程的二分之一就到达目的地了,问A 、B 两市相距多少千米?【解法指导】条件中只有路程,而没有给出时间与速度,所以可以画出线段表示各段路程,借助图形思考它们之间的关系.解:设小镇为D ,傍晚汽车在E 休息,则AD =12DC ,EB =12CE ,AD +EB=12DE =200, ∴AB =AD +EB +DE =200+400=600. 答:A 、B 两市相距600千米. 【变式题组】01.(哈尔滨)已知点O 在直线AB 上,且线段OA 的长度为4cm ,线段OB 的长度为6cm ,E 、F 分别为线段OA 、OB 的中点,则线段EF 的长度为____cm . 02.(银川)AB 、AC 是同一条直线上的两条线段,M 是线段AB 的中点,N 是线段AC 的中点,线段BC 与MN 的大小有什么关系?请说明理由.03.(河南)如图,线段AB =4,点O 是线段AB 上一点,C 、D 分别是线段OA 、OB 的中点,小明据此很轻松地求得CD =2,但他在反思的过程突发奇想:若点O 运动到AB 的延长线上,原有的结论“CD =2”是否仍成立?请帮小明画出图形并说明理由.3.(2017秋•阜宁县期末)如图1,点O 为直线AB 上一点,过点O 作射线OC ,使∠BOC=112°.将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请说明理由;(2)将图1中的三角板绕点O按每秒4°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为多少?(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.变式训练01.如图①点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(∠MON=90°)(1)将如图①中的三角板绕O点旋转一定角度得到如图②,使边OM恰好平分∠BOC,问ON是否平分∠AOC?请说明理由.(2)将如图①中的三角板绕O点旋转一定角度得到如图③,使边ON在∠BOC 的内部,如果∠BOC=60°,则∠BOM与∠NOC之间存在怎样的数量关系,请说明理由.演练巩固01.当AB=5cm,BC=3cm时,A、C两点间的距离是()A.无法确定B.2cm C.8cm D.7cm 02.下列说法正确的是()A.延长直线AB B.延长线段AB C.延长射线ABD.延长线段AB03.若PA+PB=AB,则()A.P点一定在线段AB上B.P点一定在线段AB外C.P点一定在AB的延长线上D.P点一定在线段BA的延长线上04.(内江)已知点C是线段AB上的一点,下列说法中不能说明点C是线段AB的中点是()A.AC=BC B.AC=12AB C.AC+BC=ABD.2AC=AB05.如图,已知线段AD>BC,则线段AC与BD的关系是()A.AC>BD B.AC=BD C.AC<BDD.不能确定06.(黄冈)某公司员工分别在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人,三个区在一条直线上,位置如图所示,该公司的接送车打算在此间只设一个停靠点,那么它有位置应在()A.A区B.B区C.C区D.A、B 两区之间07.(广州)线段AB=4cm,在直线AB上截取BC=1cm,则AC=________.08.(云南)延长线段AB到点C,使BC=13AB,D为AC的中点,且DC=6cm,则AB的长是________cm.09.在直线l上任取一点A,截取AB=16cm,再截取AC=40cm,求AB的中点D与AC的中点E的距离.Q PNM CBA10.线段AB 上有两点M 、N ,点M 将AB 分成2∶3两部分,点N 将AB 分成4∶1两部分,且MN=3cm ,求AM 、NB 的长.11.如图,C 是线段AB 上一点,D 是线段BC 的中点,已知图中所有线段长度之和为23,线段AC 与线段CB 的长度都是正整数,则线段AC 的长度是多少?12.如图B 、C 两点把线段AD 分成2∶3∶4的三部分,M 是AD 的中点,CD=8,求MC 的长.ABD13、如图,已知B 是线段AC 上的一点,M 是线段AB 的中点,N 是线段AC 的中点,P 是NA 的中点,Q 为MA 的中点,求MN ﹕PQ 的值。

线段及角的和差倍分计算

线段及角的和差倍分计算

线段及角的和差倍分计算
首先我们来介绍线段的和、差计算方法。

1.线段的和计算:
设线段AB的长度为a,线段BC的长度为b,那么线段AC的长度为
a+b。

2.线段的差计算:
设线段AB的长度为a,线段BC的长度为b,那么线段AC的长度为,
a-b,即两个线段长度的差的绝对值。

接下来我们来介绍角的和、差计算方法。

1.角的和计算:
设角A的度数为α,角B的度数为β,那么角A和角B的度数和为
α+β。

2.角的差计算:
设角A的度数为α,角B的度数为β,那么角A和角B的度数差为,α-β,即两个角度数的差的绝对值。

--------------------------------------------
下面我们来介绍线段和角的倍数计算方法。

1.线段的倍数计算:
设线段AB的长度为a,倍数为n,那么线段AB的n倍长度为na。

2.角的倍数计算:
设角A的度数为α,倍数为n,那么角A的n倍度数为nα。

需要注
意的是,角度的n倍有时候不是一个具体的度数,而是一种表示角度大小
关系的相对概念。

线段和角的等分计算方法:
1.线段的等分计算:
设线段AB的长度为a,要将其等分成n份,那么每一份的长度为a/n。

例如,要将线段AB等分成3份,那么每一份的长度为a/3
2.角的等分计算:
设角A的度数为α,要将其等分成n份,那么每一份的度数为α/n。

例如,要将角A等分成2份,那么每一份的度数为α/2。

计算线段和角的个数的方法介绍

计算线段和角的个数的方法介绍

计算线段和角的个数的方法
问题一
平面上有n个点A1,A2,……,A n,没有三点在同一直线上,那么以这些点为端点的线段有多少条?
方法1
从这些点中任意选取一个,如A1,以这个点为端点的线段有(n-1)条,所以,以这些点为端点的线段都有(n-1)条,这样以这些点为端点的线段是不是有n(n -1)条呢?不是!因为如果这样算,每条线段都计算了两次,如线段A1A4,它既是以线段A1为端点的线段,又是以A4为端点的线段,所以,将这个结果除以2即为所求线段的条数。

也就是说:
以平面上有n个点〔没有三点在同一直线上〕为端点的线段有n(n-1)
2条!
方法2
从点A1开始,以它为端点的线段有(n-1)条,再从点A2开始,除了已经算过的一条线段外,以它为端点的线段有(n-2)条,如此下去,可以知道,以这些点为端点的线段共有(n-1)+(n-2)+……+1条,再将这个式子的第1项和倒数第1项相加,第2项和倒数第2项相加,依次类推,可以得到以这些点为端点的
线段共有n(n-1)
2条!
问题二
如图,从点O出发的射线有n条,它们依次是OA1,OA2,……,OA n,以
这些射线为边的角共有多少个?方法:
A
1
从这些射线中任意选取一条,如OA1,以这条射线为边的角有(n-1)个,和
问题一的计算方法相同,这些射线为边的角共有n(n-1)
2条!
思考题
1.平面上n条直线两两相交,最多有多少个交点?最少呢?
2.n边形有多少条对角线?〔连接不相邻的两个顶点的线段叫多边形的对角线〕
3.如图,直线a上有5个点,A1,A2,……,A5,图中共有多少个三角形?
1235
4。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线段与角的计算一、选择题1.如图,下列不正确的几何语句是( ) A.直线AB 与直线BA 是同一条直线 B.射线OA 与射线OB 是同一条射线C.射线OA 与射线AB 是同一条射线 第1题图D.线段AB 与线段BA 是同一条线段2 . 已知α、β都是钝角,甲、乙、丙、丁四人计算61(α+β)的结果依次是28°、48°、60°、88°,其中只有一人计算正确,他是( ) A. 甲B. 乙C. 丙D. 丁3. 已知A 、B 两点之间的距离是10 cm ,C 是线段AB 上的任意一点,则AC 中点与BC 中点 间的距离是( ) A.3 cm B.4 cm C.5 cmD.不能计算4、下列各直线的表示法中,正确的是( ).A 、直线AB 、直线ABC 、直线abD 、直线Ab 5、一个钝角与一个锐角的差是( ). A 、锐角B 、钝角C 、直角D 、不能确定6、下列说确的是( ).A 、角的边越长,角越大B 、在∠ABC 一边的延长线上取一点D C 、∠B=∠ABC+∠DBCD 、以上都不对7、下列说法中正确的是( ). A 、角是由两条射线组成的图形 B 、一条射线就是一个周角C 、两条直线相交,只有一个交点D 、如果线段AB=BC ,那么B 叫做线段AB 的中点8、同一平面互不重合的三条直线的交点的个数是( ).A 、可能是0个,1个,2个B 、可能是0个,2个,3个C 、可能是0个,1个,2个或3个D 、可能是1个可3个9、下列说法中,正确的有().①过两点有且只有一条直线;②连接两点的线段叫做两点的距离;③两点之间,线段最短;④若AB=BC,则点B是线段AC的中点.A、1个B、2个C、3个D、4个10、钟表上12时15分钟时,时针与分针的夹角为().A、90°B、82.5°C、67.5°D、60°11、按下列线段长度,可以确定点A、B、C不在同一条直线上的是().A、AB=8cm,BC=19cm,AC=27cmB、AB=10cm,BC=9cm,AC=18cmC、AB=11cm,BC=21cm,AC=10cmD、AB=30cm,BC=12cm,AC=18cm12.汽车车灯发出的光线可以看成是( )A.线段 B.射线 C.直线 D.弧线13.下列图形中表示直线AB的是( )A B C D14.下列说确的是( )A.平角是一条直线 B.角的边越长,角越大C.大于直角的角叫做钝角 D.把线段AB向两端无限延伸可得到直线AB 15.木匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是( ) A.两点确定一条直线 B.两点确定一条线段C.过一点有一条直线 D.过一点有无数条直线16.如图,若∠AOC=∠BOD,则∠AOD与∠BOC的关系是( )A.∠AOD>∠BOC B.∠AOD<∠BOCC.∠AOD=∠BOC D.无法确定17.如图,点C在线段AB上,则下列说确的是( )A.AC=BC B.AC>BCC.图中共有两条线段 D.AB=AC+BC18.如图是一块手表早上8时的时针、分针的位置图,那么分针与时针所成的角的度数是( )A.60° B.80°C.120° D.150°19.下列计算错误的是( )A.0.25°=900″ B.1.5°=90′C.1 000″=(518)° D.125.45°=1 254.5′20.已知线段AB=5 cm,在直线AB上画线段BC=2 cm,则AC的长是( )A.3 cm B.7 cmC.3 cm或7 cm D.无法确定21.下列说法中,正确的有()A.过两点有且只有一条直线B.连接两点的线段叫做两点的距离C.两点之间,直线最短D.AB=BC,则点B是AC的中点22. 已知平面上B CA、、三点,过每两点画一条直线,那么直线的条数一共有()(A) 3条 (B) 1条 (C) 1条和3条 (D) 0条23. 下列说法错误的是()(A) 任何线段都能度量它们的长度(B) 因为线段有长度,所以它们之间能比较大小(C) 利用圆规配合刻度尺可以进行线段的度量,也能比较它们的大小(D) 两条直线也能进行度量和比较大小24. 在右图的跳远比赛中,由点E跳到点F的跳远成绩应该是()(A)线段EF (B)垂线段MF (C)垂线段MF的长度(D)线段EF的长度F ME沙池小明家超市12325. 右图C、D是线段AB上的两点,E是AC的中点,F是BD的中点,若EF=m,CD=n,则AB=()(A) m-n (B) 2m-n (C) m+n (D) 2m+n26. 如果两个不相等的角的和为180 ,则这两个角可能是()(A) 两个锐角 (B) 两个钝角 (C) 一个锐角,一个钝角 (D) 以上答案都不对27. 如果线段AB=5cm,BC=4cm,那么A、C两点的距离是()(A) 1cm (B) 9cm (C) 1cm 或9cm (D) 以上答案都不对28. 如右下图,从小明家到超市有3条路,其中第2条路最近,因为()(A) 两点之间的所有连线中,线段最短(B) 经过两点有且只有一条直线(C) 经过直线外一点,有且只有一条直线与这条直线平行(D) 在同一平面,过一点有且只有一条直线与已知直线垂直29. 如图,O为直线AB上一点,∠COB=26,则∠1=()A.154B.164C.174D.18430.如图,C、D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cmB.6cmC.11cmD.14cm31. 平面上有四点,经过其中的两点画直线最多可画出()A. 三条B.四条C.五条D.六条32. 在实际生产和生活中,下列四个现象:①用两个钉子把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设天线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程。

其中可用“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④33. 平面上有三点A,B,C,如果AB=8,AC=5,BC=3,那么()A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外DFDCE BA34.如果线段AB=7.2cm, 点C在线段AB上,且3AC=AB。

点M是线段AB的中点,则MC=()。

2.47.2MC BAA、1.2cmB、2.4cmC、3.6cmD、4.8cm35.点A,B,C在同一条直线上,AB=4cm,BC=5cm,则AC=()。

A、1cmB、9cmC、1cm或9cmD、以上都不对二、填空题1 . 已知线段AB=10 cm,BC=5 cm,A、B、C三点在同一条直线上,则AC=_ _.2. (1)15°30′5″=_______″;(2)7 200″=_______´=________°;(3)0.75°=_______′=________″;(4)30.26°=_______°_______´______〞.3.3.76=______度______分______秒;'"223224=_______度.4. 在直线AB上取C、D两个点,如图所示,则图中共有射线_____条。

5. 现在是9点20分,此时钟面上的时针与分针的夹角是_______.6. 如图12,已知点C为AB上一点,AC=12cm, CB=32AC,D、E分别为AC、AB的中点,求DE= .7.时钟表面3点30分,时针与分针所成夹角的度数是.第20题图BCE图128.已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若AB=9cm,则DC 的长为.9.如图,B、C两点在线段AD上,(1)BD=BC+ ;AD=AC+BD﹣;(2)如果CD=4cm,BD=7cm,B是AC的中点,则AB的长为cm.10.如图,把一长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为.11. '''__________︒_'98;2042.6︒=_____'_________'︒,︒=3312. 要把木条固定在墙上至少要钉两颗钉子,这是因为。

13.将弯曲的河道改直,可以缩短航程,其依据是_ 。

14.时钟表面5点时,时针与分针所夹角的度数是_ 。

15. 6.25°=°′″。

相关文档
最新文档