家用分布式光伏系统设计(并网型)

合集下载

分布式光伏发电并网系统设计

分布式光伏发电并网系统设计

分布式光伏发电并网系统设计分布式光伏发电并网系统是指将多个光伏发电系统通过电网连接在一起,并与电网进行互动交流的一种发电模式。

这种系统设计能够提高太阳能的利用效率,减少对传统能源的依赖,实现能源的可持续利用。

下面将从硬件设计、控制策略和经济效益三个方面进行详细介绍。

在硬件设计方面,分布式光伏发电并网系统通常由光伏组件、逆变器、电网连接器、配电柜以及监控装置等组成。

光伏组件是整个系统的核心部分,它将太阳能转化为直流电能。

逆变器则将直流电转换为交流电,并与电网进行连接。

电网连接器用于连接逆变器与电网,确保系统的安全稳定运行。

配电柜用于进行电能的分配和管理,保证电能的正常供应。

监控装置用于对光伏发电系统进行实时监控和管理。

通过合理的硬件设计,可以提高光伏发电系统的效率和稳定性。

在控制策略方面,分布式光伏发电并网系统采用的常见控制策略有功率控制和电压控制两种。

功率控制策略是指根据电网的负荷需求,调节光伏发电系统的输出功率,使得光伏系统的发电功率和电网负荷需求保持匹配。

电压控制策略是指根据电网的电压变化情况,调节光伏发电系统的输出电压,保持电网的电压稳定。

这两种控制策略可以相互结合,实现光伏系统与电网的协同运行。

同时,还可以通过智能控制算法,对系统进行优化调节,提高发电效率和降低电能损耗。

在经济效益方面,分布式光伏发电并网系统能够降低电网运营成本,减少对传统能源的依赖,提高能源利用效率。

通过光伏发电系统的建设和运营,可以实现电能的分散生产和就近消费,减少电能的传输损耗。

同时,光伏发电系统还可以向电网出售多余的电能,从而实现电能的双向流动。

这样既可以降低居民和企业的用电成本,又可以提供额外的经济收益。

另外,分布式光伏发电并网系统还可以减少对传统能源的消耗,降低能源的排放,对环境保护和气候变化具有重要意义。

综上所述,分布式光伏发电并网系统设计是一项复杂而重要的工程,它涉及各个方面的技术和管理问题。

只有通过合理的硬件设计、高效的控制策略和科学的经济分析,才能实现分布式光伏发电并网系统的稳定运行和经济效益。

家用分布式光伏系统设计(并网型)

家用分布式光伏系统设计(并网型)

家用分布式光伏系统设计摘要:太阳能是最普遍的自然资源,也是取之不尽的可再生能源。

分布式光伏发电特指采用光伏组件,将太阳能直接转换为电能的分布式发电系统。

它是一种新型的、具有广阔发展前景的发电和能源综合利用方式,它倡导就近发电,就近并网,就近转换,就近使用的原则,不仅能够有效提高同等规模光伏电站的发电量,同时还有效解决了电力在升压及长途运输中的损耗问题。

目前应用最为广泛的分布式光伏发电系统,是建在建筑物屋顶的光伏发电项目,方便接入就近接入公共电网,与公共电网一起为附近的用户供电。

从发电入网角度出发,根据家庭用电情况可以给出系统施工要求、设计方法以及光伏组件、逆变器的选择等。

关键词:太阳能分布式光伏发电系统1.前言太阳能是一种重要的,可再生的清洁能源,是取之不尽用之不竭、无污染、人类能够自由利用的能源。

太阳每秒钟到达地面的能量高达50万千瓦,假如把地球表面0.1%的太阳能转换为电能,转变率5%,每年发电量可达5.6×1012kW·h,相当于目前世界上能耗的40倍。

从长远来看,太阳能的利用前景最好,潜力最大。

近30年来,太阳能利用技术在研究开发、商业化生产和市场开拓方面都获得了长足发展,成为快速、稳定发展的新兴产业之一。

本文简单地阐述了家用分布式光伏发电系统设计方法和施工要求,仅供参考。

2.太阳能光伏发电应用现状太阳能转换为电能的技术称为太阳能光伏发电技术(简称PV技术)。

太阳能光伏发电不仅可以部分代替化石燃料发电,而且可以减少CO2和有害气体的排放,防止地球环境恶化,因此发展太阳能光伏产业已经成为全球各国解决能源与经济发展、环境保护之间矛盾的最佳途径之一。

目前发达国家如美国、德国、日本的光伏发电应用领域从航天、国防、转向了民用,如德国的“百万屋顶计划”使许多家庭不仅利用太阳能光伏发电解决了自家供电,而且这些家庭还办成了一所所私人的“小型电站”,能够源源不断地为公用电网提供电能。

近几年,我国光伏行业发展也非常迅速。

分布式光伏发电系统的电网连接方案设计

分布式光伏发电系统的电网连接方案设计

分布式光伏发电系统的电网连接方案设计一、引言分布式光伏发电系统是一种可再生能源发电系统,能够将太阳能转化为电能并接入电网供电。

为了确保分布式光伏发电系统的安全运行和高效利用,本文将针对该系统的电网连接方案进行设计,并详细阐述方案的实施方法和技术要点。

二、电网连接类型选择1.并网型连接并网型连接是将分布式光伏发电系统连接到电网中,并将发电系统的电能与电网上的用电负荷直接进行匹配。

这种连接方式简单方便,但需要满足电网的稳定性和电能质量的要求。

2.储能型连接储能型连接是将分布式光伏发电系统与储能设备相连,通过储能设备储存多余电能,并在需要时向电网供电。

这种连接方式能够在电网负荷高峰期间对电网进行支持,提高系统的稳定性。

三、并网型连接方案设计1.功率调节技术为了确保并网型分布式光伏发电系统与电网的平稳连接,需要采用功率调节技术。

常见的功率调节技术包括MPPT(最大功率点跟踪)和功率控制技术等。

通过这些技术,可以实现光伏发电系统的最大功率输出,并确保其电能与电网平衡。

2.电能质量控制并网型分布式光伏发电系统需要满足电网的电能质量要求。

在设计方案中,需要考虑低谐波、功率因数调整、电压调节等功能,以确保分布式光伏发电系统与电网的稳定连接和电能质量的控制。

3.安全保护措施在设计并网型连接方案时,需要考虑保护措施以保障系统的安全性。

包括过电压保护、过电流保护、短路保护等,以应对电网故障和异常情况,确保系统和工作人员的安全。

四、储能型连接方案设计1.储能设备选择储能型分布式光伏发电系统需要选择适合的储能设备。

可以考虑使用锂电池、铅酸电池等,根据系统需求和经济性进行选择。

同时,需要保证储能设备的容量和寿命能够满足系统的供电需求。

2.能量管理系统为了实现储能型分布式光伏发电系统的有效运行,需要配备能量管理系统。

能量管理系统可以监测和管理储能设备的充放电状态,并根据负荷需求进行智能控制。

这样可以合理存储和释放电能,提高系统的利用率。

家庭分布式光伏并网一体箱的设计及应用

家庭分布式光伏并网一体箱的设计及应用

家庭 分 布式 光伏 并 网一 体 箱 实物 如 图 4
所示 。
超过 6 k W。近年来 , 国家连 续 出 台政策 推进 家庭
分布式发电, 但用于并网的箱体设计急需进行标
准化 , 以降低成本 , 使 家庭 分 布式光 伏 并 网接 人 工
程 的时间缩 短 5 0 % 。由嘉兴供 电公 司牵头组 成 的 课题小组 对并 网箱进行 了一体化 的标准化设计 。
何 平( 1 9 8 1 一) 。 男.
高 级 工 程师 。 从 事 配
网设 计 。
关键 词 : 家庭分布式光伏并网一体箱 ; 标准化设计 ; 功能特点 ; 并 网时间
中 图分 类 号 : T U 8 5 5 文献 标 志码 :B 文 章 编 号 :I 6 7 4 — 8 4 1 7 ( 2 0 I 6 ) 1 2 - 0 0 6 1 03 -
DOI :1 0 . 1 6 6 1 8 / . . e n k i . 1 6 7 4— 8 41 7 . 2 01 6 . 1 2 . 0 1 4
0 引 言
我国自2 0 0 9年开 始启 动“ 金太阳” 工程 和 光
式光 伏并 网工 作流 程 和缩 短施 工 时 间 , 降低 分 布 式光伏并 网的设备价格 , 促 进 光 伏 产 业 健 康 发 展, 本文 对家庭 分 布式 光伏 并 网一 体 箱 进行 了研
布式 光伏 发 电并 网服 务工 作 的意 见》 以及 国家 陆 续发 布一 系列 分布式 光 伏优 惠 政 策 , 大力 扶 持 光
伏企 业 。因此 , 近几年 , 分 布 式 光 伏 发 电呈 爆 发
式增 长 。
目前 , 家庭 分布式 光 伏 并 网相 关 的新 设 备 相 对滞 后 。调查结 果显 示 , 家庭 分 布 式 光伏 并 网项 目施 工时 间普 遍 较 长 , 工作涉及业务受理 、 现 场 查勘 及编制 接人 系统 方 案 、 施工 图设计 、 审图、 设 备制 造 、 工 程施工 并 验 收并 网等 。一 个家 庭 分 布 式光 伏并 网项 目平 均 整 个 工期 在 3 0 d左 右 。 同

家庭分布式10KW光伏电站并网方案

家庭分布式10KW光伏电站并网方案

家庭分布式10KW光伏电站并⽹⽅案1. 系统简介太阳能电池板发电系统是利⽤光⽣伏打效应原理,它是将太阳辐射能量直接转换成电能的发电系统。

太阳能并⽹发电系统通过把太阳能转化为电能,不经过蓄电池储能,把满⾜负载需要后多余的电量或在没有负载情况下把产⽣的电量,通过并⽹逆变器送上电⽹。

2. 10KW系统并⽹原理图光伏并⽹系统所需主要器件由光伏电池板和光伏逆变器构成。

其⼯作模式为,当光伏能量充⾜时光伏电池板的不稳定直流电能转换为优质稳定的交流电能以电流环控制⽅式将电能注⼊电⽹,其优点是不需要蓄电池的储能 节省了投资和蓄电池的充放电设备损耗和折旧,将公共电⽹作为储能媒介。

光伏并⽹发的缺点是当电⽹异常时(电压过⾼过低异常、频率异常),根据并⽹规则与约定必须进⾏反孤岛保护⽽停⽌并⽹发电。

3. 光伏系统的主要组成1) 光伏组件光伏组件是将太阳光能直接转变为直流电能的发电装置,根据⽤户对功率和电压的需求,通过串并量得到适合的太阳能电池组件阵列,满⾜⽤电需求2) 并⽹逆变器逆变器是将直流电变换为交流电的设备,并⽹型逆变器是光伏发电系统中的重要部件之⼀。

3) 交流防雷配电柜系统配置⼀台交流防雷配电柜,按照1个10KW的交流配电单元进⾏设计,每台逆变器的交流输⼊接⼊交流配电柜,经交流断路器并⼊单相交流低压电⽹发电。

另由按照分布式家⽤并⽹要求,要求安装⼀块光伏侧单相电表和负载侧双向电表,⽤来计量电量⾃⽤和供给国⽹部分。

同时并⽹交流柜具有单独、可靠的⼑闸,具有漏电保护器空开并有失压脱扣功能,具有同电⽹同时⾃动断电功能。

4.)系统防雷接地装置为了保证本⼯程光伏并⽹发电系统安全可靠,防⽌累计、浪涌等外在因素导致系统旗舰的损坏等情况发⽣,系统的防雷接地装置必不可少。

系统的防雷接地装置措施有多重⽅法,主要有⼀下⼏个⽅⾯供参考1 地线是避雷、防雷的关键,在进⾏配电室基础建设,若原有配电室直接连接到原配电室接地⽹上,和太阳能电池⽅阵基础建设的同时,选择附近⼟层较厚、潮湿的地点,挖1~2⽶深地线坑,采⽤40扁钢,添加降阻剂并引出地线,引出线采⽤16~35mm通信电缆,接地电阻应⼩于4欧姆。

5KW家用并网光伏发电系统设计

5KW家用并网光伏发电系统设计

5KW家用并网光伏发电系统设计一、背景介绍随着能源危机的加剧和环保意识的提高,新能源逐渐成为人们重要的能源选择。

光伏发电作为最为常见的新能源之一,其具有无污染、可再生等优点,受到越来越多人的关注。

为了将太阳能光伏发电系统应用于家庭中,需要进行系统的设计,保证其高效、可靠地发挥作用。

二、系统设计要求1.功率:系统设计为5KW,满足家庭基本用电需求。

2.可靠性:系统要能可靠地工作,并能适应不同的气候条件,如高温、低温、多云等。

3.安全性:系统要具备过载保护、短路保护等功能,确保使用过程中的安全。

4.易于操作:系统要简化操作步骤,方便使用者进行监控和维护。

5.美观性:系统的设计要考虑配备光伏组件的外观和布局,以保持建筑的美观性。

三、系统组成1.光伏组件:根据功率需求,选择合适的光伏组件,如单晶硅光伏组件或多晶硅光伏组件,保证系统的发电量。

2.逆变器:逆变器是将直流电转换为交流电的设备,选择具备高效率和稳定性的逆变器,如串联逆变器或微逆变器。

3.集中控制系统:集中控制系统包括监测设备、控制器和数据采集装置等,可以对光伏发电系统的性能进行实时监控,并通过数据采集进行数据分析和优化调整。

4.电池储能系统:电池储能系统可以将多余的电能存储起来,以备不时之需,增加光伏发电系统的可靠性。

5.电网接入装置:将光伏发电系统与电网连接起来,通过双向计量装置实现发电和购电的结算,将多余的电能发送给电网,为家庭提供电力。

6.监控系统:提供光伏发电系统的状态、发电量、电池储能情况等信息的监视与报警功能,方便用户了解系统运行情况。

四、系统布置1.光伏组件:根据建筑的外观和采光情况,将光伏组件安装在建筑的屋顶或外墙,使其可以最大程度地接收太阳辐射。

2.逆变器:逆变器可以放置在室内或室外,避免因水、尘等外界环境影响其正常工作。

3.电池储能系统:电池储能系统可以安装在室内,如地下室或储藏室,以减少对室内空间的影响。

4.电网接入装置:电网接入装置需要在室内或室外设置,与光伏发电系统和家庭电网连接。

分布式光伏发电系统电网接入及并网运行设计

分布式光伏发电系统电网接入及并网运行设计

分布式光伏发电系统电网接入及并网运行设计一、引言分布式光伏发电系统是指将太阳能光伏电池组件分布在不同的地理位置上并互相连接,形成一个分布式的发电网络。

与传统的集中式光伏发电系统相比,分布式光伏发电系统具有灵活性高、容错性强、能源利用效率高等优点。

本文旨在探讨分布式光伏发电系统的电网接入及并网运行设计,以确保系统的高效运行和安全性。

二、分布式光伏发电系统的电网接入设计1. 运行模式选择根据电网接入的需求和条件,选择适合的运行模式,包括独立运行模式、并网运行模式以及并网与独立运行模式的混合模式。

并网运行模式是分布式光伏发电系统的主要运行方式,可实现与电网的互联互通。

2. 电网接口设计确保分布式光伏发电系统与电网之间的接口匹配,采用适当的电网接口设计,包括逆变器、并网保护设备、电力电容器等。

逆变器的选择要考虑系统的功率输出、效率和稳定性,并网保护设备要满足电网接入的安全要求,电力电容器要提供有利于功率因数校正的功能。

三、分布式光伏发电系统的并网运行设计1. 并网运行策略制定合理的并网运行策略,确保系统平稳地接入和退出电网,包括并网时的功率控制策略、电压控制策略以及频率控制策略等。

根据电网的要求,合理调整并网功率的大小,避免对电网稳定性产生不利影响。

2. 互动控制系统设计设计互动控制系统,实现光伏发电系统与电网之间的实时信息交互和控制。

通过互动控制系统,可以监测光伏发电系统的功率输出、电流电压等参数,实时调整并网运行策略,保持系统的稳定性和可靠性。

3. 安全保护系统设计设计安全保护系统,保护光伏发电系统和电网的安全运行。

安全保护系统包括过压保护、欠压保护、过流保护、短路保护等功能,确保系统在异常情况下能够及时断开并网连接,避免事故的发生。

4. 功率管理系统设计设计功率管理系统,实现对分布式光伏发电系统的功率分配和调度。

通过功率管理系统,可以根据电网需求和自身条件,合理分配和调整系统的功率输出,最大程度地利用光伏发电系统的发电能力,实现经济运行和高效利用。

10.36kW户用光伏系统设计

10.36kW户用光伏系统设计

10.36kW户用光伏系统设计本项目所建设分布式光伏发电系统,供给用户自己使用,实现“自发自用,余电上网”。

光伏阵列:主要由太阳电池组件、光伏支架、直流电缆等构成;并网逆变:主要由并网逆变器构成;低压输配电:主要由低压交流配电柜、低压交流电缆等构成;监控:主要由光伏系统监控部分构成。

一、项目地勘察自建住宅,南北朝向,在闲置的楼顶装上光伏电站,选用的是370WP的组件,经过测算,安装28块组件共计10.36KW。

二、系统设计组件的朝向、倾角完全一致,分为2个相同的组串,每串14块组件,接到逆变器的直流侧,如下图所示。

1、设计方案▲系统设计原理图2、材料清单表根据现场勘察结果和系统设计方案,选择系统安装需要的材料设备,下表为该光伏系统所需材料清单列表。

管、胶带确认3、材料设备的选择1)、光伏组件的选择该用户装机容量选择了日托光伏370Wp的高效组件,该组件有着优异的低辐照性能,其技术参数如下:➀组件的主要参数Pm=370Wp;Voc=42.6V, Vmpp=35.1V,Imp=10.54A,Isc=11.16A。

➁根据组件的型号和敷设的数量计算得到10.36KWp(370Wp*28块)的装机容量。

根据装机容量、组件实际排布情况来选择合适的逆变器。

2)、并网逆变器的选择该项目容量为10.26kWp且并网电压为220V,故选择锦浪科技股份有限公司单相三路G5-GR1P10K这款光伏逆变器,超配比为1.125倍。

3)、直流侧线缆选择直流线缆选择光伏认证的专用线缆,光伏直流电缆为PV1-F 1*4mm²。

▲图光伏直流线缆图示4)、交流侧线缆的选择交流线缆主要用于逆变器交流侧至交流汇流箱或交流并网柜,可选用YJV型电缆。

长距离铺设还要考虑到电压损失和载流量大小,10.36KW三相交流线缆推荐使用YJV-3*10mm²。

▼表3 交流线缆选型表部设备选型说明:断路器断路器的一端接逆变器,一端接电网侧;交流断路器一般选择逆变器最大交流输出电流的1.25倍以上,10.36kW逆变器交流输出最大电流为45.9A,即至少选择50A的断路器。

家庭用分布式光伏发电系统的毕业设计

家庭用分布式光伏发电系统的毕业设计

滁州职业技术学院机电工程系毕业设计课题:家庭用分布式光伏发电系统的设计设计时间:_________班级:光伏材料的加工与应用学号:姓名:指导教师:完成日期:年月日家庭用分布式光伏发电系统的设计摘要将太阳能直接转换为电能的技术称为光伏发电技术。

是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。

这种技术的关键元件是太阳能电池。

太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。

光伏发电的优点是较少受地域限制,因为阳光普照大地;光伏系统还具有安全可靠、无噪声、低污染、无需消耗燃料和架设输电线路即可就地发电供电及建设周期短的优点。

光伏发电是根据光生伏特效应原理,利用太阳能电池将太阳光能直接转化为电能。

本次设计是家庭用分布式光伏发电系统设计,家庭用分布式光伏发电系统是指利用光伏发电技术,在家庭的屋顶或墙壁等场地建立发电系统,多余电量可以送入当地配电网中的发电方式。

此次设计内容包括了对光伏发电系统的容量设计和光伏发电系统的配置设计,容量设计主要对光伏组件和蓄电池的容量进行设计与计算,确定光伏组件和蓄电池的数量,发电系统的配置设计时对光伏发电系统中的光伏组件型号、安装方式及配套设备与设施进行设计。

本设计是为家用式光伏发电系统,具有节能,无污染运用方便等特点。

关键词:光生伏特效应太阳能电池板逆变器致谢毕业设计已经接近了尾声,这也意味着我的大学生活就要结束了,学生活一晃而过,回首走过的岁月,心中倍感充实,当我写完这篇毕业论文的时候,有一种如释重负的感觉,感慨良多。

首先,我要特别感谢我的指导老师朱山川老师。

做设计的过程是艰辛的,但是在我的努力之下还是完成了。

在这个过程中朱老师给了我很大的帮助,没有他的尽心指导和严格的要求,我也不会顺利完成这次设计。

每次遇到难题,我最先做的就是向朱老师寻求帮助,而朱老师每次不管忙或闲,总会抽空来找我面谈,然后一起商量解决的办法。

分布式家庭光伏并网电站施工方案

分布式家庭光伏并网电站施工方案

总则1、为鼓励及促进分布式家庭光伏并网电站的推广应用,规范化分布式家庭光伏并网电站安装、施工的流程及具体实施过程,制定本规范。

2、本规范适用于新建、改建和扩建的分布式家庭并网电站,对于与建筑相结合的光伏电站同时应符合其他建筑、电气相关标准要求。

3、施工范围包括分布式家庭光伏并网电站内的所有土建工程、设备安装工程、电气工程、设备调试、防雷接地等。

4、施工人员在施工前应熟悉本规范和现行有关安全技术标准及产品的技术文件,并按要求操作。

施工人员应具有一定的电气知识。

5、在光伏电站施工中,除应符合本规范外,还应符合国家现行有关标准的规定。

6、本标准由敖龙龙提出并负责解释。

本标准主要起草人:敖龙龙1、范围本规范适应于安装容量:1MW以下(含)分布式光伏电站。

1MW以上分布式光伏电站同样适用2、规范性引用文件下列文件中的条款通过本规范的引用而成为本规范的条款。

凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规定,但鼓励根据本规定达成协议的各方研究是否可使用这些文件的最新版本。

凡是不注日期的引用文件,其最新版本适用于本规定。

<光伏发电站施工规范><电气安装施工规范><建筑施工规范等>3、术语和定义本规范采用了下列名词和术语3.1、分布式光伏并网电站distributedgrid-tiedsolarsystem本规范所指分布式光伏并网电站指接入10kV及以下电压等级,单个并网点接入容量6MW以下在地理上具有分散性相互之间不公用并网点的的光伏并网发电电站系统。

3.2、家庭并网光伏电站house-uesdgrid-tiedsolarsystem本规范所指家庭并网光伏电站指安装容量:三相30kW 以下(含),单相10kW以下(含)的居民并网电站和安装容量:三相50kW以下(含),单相10kW以下(含)的公共建筑的并网电站。

3.3、公共连接点pointofcommoncoupling(PCC)电力系统中一个以上用户的连接处。

家用光伏配电箱并网柜原理接线图及参数资料

家用光伏配电箱并网柜原理接线图及参数资料

家用光伏配电箱并网柜原理接线图及参数资料随着国内分布式光伏的发展,特别是家用太阳能发电系统的普及,适合于家用使用的光伏配电箱产品,应市场需求,逐步集成化,不需要安装队人工在自己接线。

家用光伏配电箱并网柜原理接线图及参数资料提供给大家做参考如下美斯乐分布式光伏交直流一体配电箱性能特点●高可靠性选用光伏专用直流、交流浪涌保护器选用光伏专用直流、交流断路器,直流额定电压可达800V,交流额定电压可达AC270V●强适应性IP65防护等级,防水,防灰,防紫外线严格的高低温测试,适用地区广安装简单,系统布线简化,方便接线●灵活配置适用于1~2路MPPT输入适用于1~6KW光伏组串式逆变器的交流输入。

●快接设置直流端集成MC4接头,可快速插接,安装、检修快捷产品描述美斯乐分布式光伏交直流一体配电箱,最大可适用于直流组串电压800V,交流单相32A、6KW功率光伏系统。

配电箱配有浪涌保护,漏电保护,自复式过欠压保护等一系列安全、可靠、符合并网要求的设备。

箱体外壳采用PC(聚碳酸酯)制成,防护等级为IP65,满足内外安装要求,防水、防尘、防紫外、防酸、防碱、防盐雾、耐腐蚀;箱体重量轻,易于搬运;同时箱体具有很高的坚固性,冲击强度IK08,使用寿命长;技术参数注意事项·应在合格技术人员的指导下进行安装。

·请注意,在安装与操作接线盒前,最好断电检查。

·有必要进行风险控制检查,例如紧固运输中可能松动的线缆。

同时按压防雷保险丝,以确保其在正确的位置。

·虽然防雷保险丝在满载情况下会分开,我们仍然建议您替换之前切断电路,以避免通过传导的终端可能发生燃烧的所有风险。

美斯乐分布式光伏交流配电箱性能特点●高可靠性选用光伏专用交流浪涌保护器选用光伏专用交流断路器,额定电压可达AC270V●强适应性IP65防护等级,防水,防灰,防紫外线严格的高低温测试,适用地区广安装简单,系统布线简化,方便接线●灵活配置适用于1~6KW光伏组串式逆变器的交流输入。

家庭分布式10kw光伏电站并网方案

家庭分布式10kw光伏电站并网方案

家庭分布式10kw光伏电站并网方案1. 引言随着可再生能源的快速发展和技术的进步,光伏发电作为一种清洁、可再生的能源方式,被越来越多的家庭所接受和采用。

家庭分布式光伏电站的建设不仅可以满足家庭用电需求,还可以将多余的电力并网上送,为家庭创造额外的经济收益。

本文将介绍一种家庭分布式10kw光伏电站并网方案,包括设备选型、系统设计和运维管理等内容,以便家庭用户更好地实施和管理分布式光伏电站。

2. 设备选型2.1 光伏组件光伏组件是光伏电站的核心组成部分,直接负责将光能转化为电能。

在选择光伏组件时,需考虑其光电转换效率、温度系数、年衰减系数等关键指标。

常见的光伏组件有单晶硅、多晶硅和薄膜太阳能电池等。

根据经济性和发电效率的需求,家庭分布式10kw光伏电站可以选择高效率的多晶硅光伏组件。

2.2 逆变器逆变器主要用于将光伏组件产生的直流电转换为交流电,并确保与公共电网的稳定并网。

逆变器的选择应考虑其转换效率、稳定性、扩容性和逆变器保护功能。

对于10kw光伏电站,可以选择容量合适、效率高的单相或三相逆变器。

2.3 电网接入设备电网接入设备用于将光伏电站产生的电能接入到公共电网中。

主要包括电表、电流互感器、保护开关等。

这些设备的选型应参考当地电网公司的规范要求和标准。

3. 系统设计3.1 光伏组件布置在家庭光伏电站中,光伏组件的布置应充分考虑屋顶空间、采光条件和安装角度等因素。

为了最大程度地利用屋顶空间,可以采用分布式的布置方式,将光伏组件均匀地安装在屋顶的适当位置。

3.2 并网连接设计并网连接是将光伏电站产生的电能与公共电网连接起来,实现家庭用电需求和多余电能的并网上送。

在设计并网连接时,需要考虑电流的传输损耗、电压的稳定性和并网保护等因素。

根据电站容量和附近电力负载情况,可以选择合适的并网方式,如单相并网、三相并网或微网并网。

4. 运维管理4.1 日常巡检对于家庭分布式光伏电站,定期的日常巡检非常重要。

巡检内容包括光伏组件的清洁、连接线路的检查和逆变器的运行状态等。

最新家用分布式光伏系统设计并网型精编版

最新家用分布式光伏系统设计并网型精编版

2020年家用分布式光伏系统设计并网型精编版家用分布式光伏系统设计邓李军(通威太阳能光伏电力事业部技术研发部,成都)摘要:太阳能是最普遍的自然资源,也是取之不尽的可再生能源。

分布式光伏发电特指采用光伏组件,将太阳能直接转换为电能的分布式发电系统。

它是一种新型的、具有广阔发展前景的发电和能源综合利用方式,它倡导就近发电,就近并网,就近转换,就近使用的原则,不仅能够有效提高同等规模光伏电站的发电量,同时还有效解决了电力在升压及长途运输中的损耗问题。

目前应用最为广泛的分布式光伏发电系统,是建在建筑物屋顶的光伏发电项目,方便接入就近接入公共电网,与公共电网一起为附近的用户供电。

从发电入网角度出发,根据家庭用电情况可以给出系统施工要求、设计方法以及光伏组件、逆变器的选择等。

关键词:太阳能分布式光伏发电系统1.前言太阳能是一种重要的,可再生的清洁能源,是取之不尽用之不竭、无污染、人类能够自由利用的能源。

太阳每秒钟到达地面的能量高达50万千瓦,假如把地球表面0.1%的太阳能转换为电能,转变率5%,每年发电量可达5.6×1012kW·h,相当于目前世界上能耗的40倍。

从长远来看,太阳能的利用前景最好,潜力最大。

近30年来,太阳能利用技术在研究开发、商业化生产和市场开拓方面都获得了长足发展,成为快速、稳定发展的新兴产业之一。

本文简单地阐述了家用分布式光伏发电系统设计方法和施工要求,仅供参考。

2.太阳能光伏发电应用现状太阳能转换为电能的技术称为太阳能光伏发电技术(简称PV技术)。

太阳能光伏发电不仅可以部分代替化石燃料发电,而且可以减少CO2和有害气体的排放,防止地球环境恶化,因此发展太阳能光伏产业已经成为全球各国解决能源与经济发展、环境保护之间矛盾的最佳途径之一。

目前发达国家如美国、德国、日本的光伏发电应用领域从航天、国防、转向了民用,如德国的“百万屋顶计划”使许多家庭不仅利用太阳能光伏发电解决了自家供电,而且这些家庭还办成了一所所私人的“小型电站”,能够源源不断地为公用电网提供电能。

3KW家用分布式发电并网系统方案(1)

3KW家用分布式发电并网系统方案(1)

家庭分布式发电3KW光伏并网逆变发电运行方案1.光伏并网发电光伏并网系统所需主要器件由光伏电池板和光伏逆变器构成。

其工作模式为当光伏能量充足时光伏电池板的不稳定直流电能转换为优质稳定的交流电能以电流环控制方式将电能注入电网,其优点是不需要蓄电池的储能,节省了投资和蓄电池的充放电设备损耗和折旧,将公共电网作为储能媒介。

光伏并网发的缺点是当电网异常时(电压过高过低异常、频率异常),根据并网规则与约定必须进行反孤岛保护而停止并网发电。

2.系统主要组件1)光伏组件光伏组件是将太阳光能直接转变为直流电能的发电装置,根据用户对功率和电压的需求,通过串2)逆变器逆变器是将直流电变换为交流电的设备,并网型逆变器是光伏发电系统中的重要部件之。

3预计投入4.经济前景全年平均发电量=365 (天数)*3KW(输出功率)*96% (逆变效率)*T (当地平均日照量)例:山东日照时间为 4.4KwH/nVd。

那全年发电量=365*3*4.4*96%=4625.28KW/H 国家补贴参考文件:发改价格[2013]1638号摘要:对分布式光伏发电实行按照全电量补贴的政策,电价补贴标准为每千瓦时0.42元山东省参考文件:鲁价格一发〔2013〕119号摘要:2013-2015年并网发电的光伏电站上网电价确定为每kWh1.2元(含税,下同),高于国家标杆电价部分由省级承担。

已享受国家金太阳示范工程补助资金、太阳能光电建筑应用补助资金以及我省新能源产业发展专项资金扶持项目不再享受电价补贴。

那山东的并网发电补贴全年能拿到:4625.28*1.2=5550.336元(除补贴外,国家电网还会对并入国网的电进行收购,收购价按当地电网报价为准)注:全国各省市光伏扶持政策汇总近几年,国家出台一系列促进光伏产业发展的政策措施,各省市也积极响应,全国多个地方分布式太阳能补贴政策也相继出炉。

下面对我国各省市光伏扶持政策进行汇总:一、江西省参考文件:赣发改能源字〔2013〕1062号摘要:江西省万家屋顶光伏发电示范工程除了国家补贴0.42元/kWh外,省专项资金补助,一期工程补助4元/W,二期工程暂定补助3元/W。

分布式光伏电站并网与管理系统设计

分布式光伏电站并网与管理系统设计

分布式光伏电站并网与管理系统设计随着能源需求的增加和对环境保护的关注,可再生能源的应用变得越来越重要。

光伏发电作为一种常见的可再生能源,其分布式光伏电站逐渐成为解决能源供应问题的可行方案。

然而,分布式光伏电站不仅需要实现电力的有效并网,还需要一个可靠的管理系统来监测和控制发电效率、能源输出和电网参与度。

本文旨在讨论分布式光伏电站的并网和管理系统设计,包括并网技术、系统架构和实施要点。

一、分布式光伏电站并网技术1. 并网方式分布式光伏电站的并网方式可以分为单相并网和三相并网两种。

单相并网适用于小型光伏电站,三相并网适用于大型光伏电站。

而在实际应用中,通过合理的规划和组织,也可以将多个小型光伏电站通过三相并网进行集中调度和管理。

2. 并网逆变器并网逆变器是分布式光伏电站中的核心设备,用于将光伏电池板产生的直流电转换为交流电并注入电网。

并网逆变器需要满足高效、稳定、安全的要求,并通过与电网的通信接口实现双向信息交互和参与调度。

二、分布式光伏电站管理系统设计1. 系统架构分布式光伏电站管理系统由光伏电站监测子系统、控制子系统和运维管理子系统构成。

光伏电站监测子系统负责实时监测光伏阵列的工作状态、发电效率和能源输出情况。

控制子系统负责对光伏阵列进行参数调节和电网参与度控制,以实现最大化的发电效率和收益。

运维管理子系统负责对光伏电站进行设备维护、故障诊断和运行记录,以优化系统稳定性和可靠性。

2. 功能要求(1)实时监测与数据采集:系统能够实时监测光伏阵列的电压、电流、功率等重要参数,并将数据按照一定的时间间隔进行采集和存储。

这些数据将作为系统运行状态和性能评估的依据。

(2)故障诊断与智能预警:系统能够通过分析监测数据,自动诊断光伏电站的故障类型和位置,并能够发送智能预警信息,帮助运维人员及时发现和解决问题,避免发电效率和收益的损失。

(3)参数调节与电网参与度控制:系统能够根据当地光照强度、电网负荷需求和电价变化等因素,智能地调节光伏阵列的工作参数,最大化发电效率和收益。

家庭并网光伏发电系统的优化设计

家庭并网光伏发电系统的优化设计

《太阳能光伏发电系统》课程设计课题名称:家庭并网光伏发电系统的优化设计专业班级:学生姓名:学生学号:指导教师:设计时间:沈阳工程学院报告正文第1章绪论 (3)1.1设计背景 (3)1.2设计意义 (3)第2章朝阳市气象资料及地理情况 (4)第3章家用并网型 (6)太阳能光伏发电系统的优化设计 (6)3.1设计方案 (6)3.2负载的计算 (8)3.3太阳能电池板容量及串并联的设计及选型 (9)3.4太阳能电池板的方位角与倾斜角的设计 (10)3.5蓄电池容量及串并联的设计及选型 (11)3.6控制器、逆变器的选型 (12)3.7 电气配置及其设计 (13)3.8系统配置清单 (15)第4章家用并网型太阳能光伏发电系统的优化结果与讨论 (17)第5章心得体会 (18)第1章绪论1.1设计背景太阳能发电是利用电池组件将太阳能直接转变为电能的装置。

太阳能电池组件(Solar cells)是利用半导体材料的电子学特性实现P-V转换的固体装置,在广大的无电力网地区,该装置可以方便地实现为用户照明及生活供电,一些发达国家还可与区域电网并网实现互补。

1.2设计意义太阳能发电是利用电池组件将太阳能直接转变为电能的装置。

太阳能电池组件(Solar cells)是利用半导体材料的电子学特性实现P-V转换的固体装置,在广大的无电力网地区,该装置可以方便地实现为用户照明及生活供电,一些发达国家还可与区域电网并网实现互补。

第2章朝阳市气象资料及地理情况朝阳市位于辽宁西部。

辽宁省省辖市,东连辽宁中部工业城市群,南临渤海之滨,西接京、津、冀经济圈,北依内蒙古腹地,海陆兼备,交通便利,地理位置优越。

朝阳居于北温带大陆性季风气候区,尽管东南部受海洋暖湿气影响,但由于北部蒙古高原的干燥冷空气经常侵入,形成了半干燥半湿润易干燥地区,四季分明,雨热同季,日照充足,日温差较大,降水偏少。

全年平均气温5.4C 〜87C;年均日照时数2850〜2950小时;年降水量450〜580毫米;无霜期120〜155天。

家用3kw分布式光伏发电系统设计

家用3kw分布式光伏发电系统设计

家用3kw分布式光伏发电系统设计—.光伏发电系统简介1.并网式:太阳能并网光伏发电系统是将光伏阵列产生的直流电经过并网逆变器转换成符合公共电网要求的交流电之后直接接入公共电网。

因直接将电能输入到公共电网,免除了配置蓄电池,省掉了蓄电池储能和释放的过程,可以充分利用光伏阵列所发的电力,从而减小了能量的损耗,提高了系统对太阳辐射能的使用率,降低了系统的成本。

并网光伏发电系统按接入方式分为集中式大型并网光伏系统和分布式中小型并网发电系统。

集中式大型并网光伏电站一般都是国家级电站,主要特点是装机容量大,通常都是MW级以上,其将所发电能升压后直接输送到国家输电网上,再由电网统一调配向用户供电。

但这种电站投资大、建设周期长、占地面积大。

而分布式中小型并网光伏系统,特别是光伏建筑一体化光伏发电,主要是利用建筑物的房顶或外立面,由于投资小、建设快、占地面积小、国家政策支持力度大等优点,是目前分布式并网光伏发电的主流。

2.分布式:分布式光伏发电是指区别于集中式光伏发电的建设方法,一般建在用户侧,所生产的电力主要为自用。

目前应用最为广泛的分布式光伏发电系统,是建在建筑物屋顶的光伏发电项目。

该类项目必须接入公共电网,与公共配电网一起为附近的用户供电。

如果没有公共电网支撑,分布式系统就无法保证用户的用电可靠性和用电质量,所以为了减小光伏系统对当地配电网的影响,一般要求装机量不能大于当地配电变压器容量的30%。

其特点是:1电压等级低、容量小,以10kV及以下电压等级接入电网,且单个并网点总装机容量不超过6Mw 的光伏发电项目;2并网点在配电侧;3电流是双向的,可以从电网取电,也可以向电网送电;4大部分光伏发电量直接被用户负荷消耗。

家用3kw屋顶分布式光伏发电系统设计民用屋顶分布式光伏发电系统有别于大型集中式并网光伏发电系统,由于受到安装光伏组件的可用面积等问题,一般容量较小,往往只几个kw至几十个kW, 有以下特点:1)并网点在配电侧(并网电压为230V或400V);2)电流是双向,可以从电网取电,也可以向电网送电;3)大部分光伏发电的电量直接被用户负荷消耗,自发自用,余电上网。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

家用分布式光伏系统设计邓李军(通威太阳能光伏电力事业部技术研发部,成都)摘要:太阳能是最普遍的自然资源,也是取之不尽的可再生能源。

分布式光伏发电特指采用光伏组件,将太阳能直接转换为电能的分布式发电系统。

它是一种新型的、具有广阔发展前景的发电和能源综合利用方式,它倡导就近发电,就近并网,就近转换,就近使用的原则,不仅能够有效提高同等规模光伏电站的发电量,同时还有效解决了电力在升压及长途运输中的损耗问题。

目前应用最为广泛的分布式光伏发电系统,是建在建筑物屋顶的光伏发电项目,方便接入就近接入公共电网,与公共电网一起为附近的用户供电。

从发电入网角度出发,根据家庭用电情况可以给出系统施工要求、设计方法以及光伏组件、逆变器的选择等。

关键词:太阳能分布式光伏发电系统1.前言太阳能是一种重要的,可再生的清洁能源,是取之不尽用之不竭、无污染、人类能够自由利用的能源。

太阳每秒钟到达地面的能量高达50万千瓦,假如把地球表面0.1%的太阳能转换为电能,转变率5%,每年发电量可达5.6×1012kW·h,相当于目前世界上能耗的40倍。

从长远来看,太阳能的利用前景最好,潜力最大。

近30年来,太阳能利用技术在研究开发、商业化生产和市场开拓方面都获得了长足发展,成为快速、稳定发展的新兴产业之一。

本文简单地阐述了家用分布式光伏发电系统设计方法和施工要求,仅供参考。

2.太阳能光伏发电应用现状太阳能转换为电能的技术称为太阳能光伏发电技术(简称PV技术)。

太阳能光伏发电不仅可以部分代替化石燃料发电,而且可以减少CO2和有害气体的排放,防止地球环境恶化,因此发展太阳能光伏产业已经成为全球各国解决能源与经济发展、环境保护之间矛盾的最佳途径之一。

目前发达国家如美国、德国、日本的光伏发电应用领域从航天、国防、转向了民用,如德国的“百万屋顶计划”使许多家庭不仅利用太阳能光伏发电解决了自家供电,而且这些家庭还办成了一所所私人的“小型电站”,能够源源不断地为公用电网提供电能。

近几年,我国光伏行业发展也非常迅速。

国家对光伏发电较为重视,国家和地方政府相继出台了一些列的补贴政策以促进光伏产业的发展,国家发改委实施“送电到乡”、“光明工程”等惠农项目,地方政府也陆续启动了光伏照明项目工程。

与此同时,偏远地区消费者逐渐认可光伏产品,越来越多的居民开始使用家用太阳能电源产品。

光伏应用市场发展较为迅速。

但目前我国的太阳能光伏发电技术和国外相比还有很大差距,主要表现为技术水平较低、电池效率低、成本高。

因此我国还必须不断改进技术,使我国的太阳能光伏发电产业更上新台阶。

3.分布式光伏系统结构太阳能光伏发电系统是利用光伏组件半导体材料的“光伏”效应,将太阳光的辐射直接转换为电能的一种新型发电系统。

它的规模可大可小,在发电过程中不会排放污染物质,具有安装方便,没有噪音,整个寿命期间几乎无需维护等优点。

太阳能光伏发电系统分为两大类,一类是太阳能光伏发电独立系统,另一类是太阳能光伏发电并网系统,本文只讲述后者。

太阳能光伏发电并网系统主要包括太阳能光伏组件、光伏汇流箱、直流配电柜、并网型逆变器和交流配电柜等,家用并网型分布式光伏系统由于规模不大,汇流箱和交直流配电柜都用不到,整体框架如图1所示。

图1 太阳能光伏发电并网系统本文涉及的家用太阳能光伏发电系统为小型分布式光伏系统,因此在设计过程中应充分考虑实际情况,一般应遵循经济适用原则,可靠性高、牢固耐用、容易维护、充分考虑地理和气候环境的影响。

4.安装地点选择家庭分布式光伏系统的选址一般可选择在自家屋顶或空地上,需要考虑的条件就是可使用面积、房屋结构和承重要求、地面基础情况和气象水文条件等。

若选择安装在自家屋顶上,屋面承重能力必须大于20kg/m2。

房屋房梁如果是木质结构的话就不要考虑了,光伏系统使用年限长达25年,木质房梁易腐坏,建议不要进行安装。

若在人字结构屋顶建设太阳能光伏电站,不能像地面电站那样设计最佳倾角,并且考虑前后遮挡间距。

为了便于光伏组件和屋顶结合,一般都在屋面上直接平铺支架,北半球铺朝南面,南半球铺朝北面,这样方可最大效率利用光能。

支架与屋顶采用夹具连接,电池组件再安装于支架上。

这种方式不仅美观,而且可以实现屋顶面积利用最大化,见图2。

在平顶结构屋顶建设太阳能光伏电站,需要架设光伏支架和设计最佳倾角和组件前后间距,见图3。

图2 人字屋顶安装方式图3 平顶屋顶安装方式若选择安装在自家空地上,可以采用锚桩和混凝土条基做支架基础,见图4和图具体选哪种则需要从地质情况和成本综合考虑了。

另外,支架基础强度的设计还要以当地气象条件做依据。

图4 锚桩基础图5 水泥条基础需要注意一点,考虑到组件的热胀冷缩效应,安装时上下左右组件之间的间隔要达到3cm左右为佳。

5.家用分布式光伏系统设计5.1 光伏组件目前使用较多的两种太阳能电池板是单晶硅和多晶硅太阳电池组件。

(1)单晶硅太阳能电池目前单晶硅太阳能电池板的单体光电转换效率为16%~18%,是转换效率最高的,但是制作成本高,还没有实现大规模的应用。

(2)多晶硅太阳能电池多晶硅太阳能电池板的单体光电转换效率约15%~17%。

制作成本比单晶硅太阳能电池要便宜一些,材料制造简便,节约电耗,总生产成本较低,因此得到大量发展。

目前主流的组件是250Wp多晶硅太阳电池组件,技术参数见表1。

太阳能电池组件种类多晶硅指标单位数据峰值功率Wp 250组件效率% 15.3最大工作电压(Vmpp)V 30.3最大工作电流(Impp) A 8.27开路电压(Voc)V 38.0短路电流Isc A 8.79开路电压系数/℃0.32%短路电流系数/℃0.053%抗风力Pa 2400最大保险丝额定电流 A 15最高系统电压V 1000尺寸mm 1650×992×40表1 250Wp太阳电池组件技术参数(3)我国太阳能资源分布情况如下一类地区年日照3200~3300小时,辐射量7500~9250MJ/m2。

青藏高原、甘肃北部、宁夏北部和新疆南部等地。

二类地区年日照3000~3200小时,辐射量5850~7500MJ/m2。

河北西北部、山西北部、内蒙古南部、宁夏南部、甘肃中部、青海东部、西藏东南部和新疆南部等地。

此区为我国太阳能资源较丰富区。

三类地区年日照2200~3000小时,辐射量5000~5850 MJ/m2。

山东、河南、河北东南部、山西南部、新疆北部、吉林、辽宁、云南、陕西北部、甘肃东南部、广东南部、福建南部、江苏中北部和安徽北部等地。

四类地区年日照1400~2200小时,辐射量4150~5000 MJ/m2。

长江中下游、福建、浙江和广东的一部分地区。

五类地区全年日照时数约1000~1400小时,辐射量3350~4190MJ/m2。

四川、贵州两省。

此区是我国太阳能资源最少的地区。

结合现在的光伏发电技术,1k Wp的多晶硅太阳能电池组件五类区域年发电量大致如下:用户可以根据系统的安装地点和自己年用电量情况来合理选择装机规模。

例如A家庭位于太阳能资源四类区域,平均年用电量是3000 kWh,装机3000W就够用了;B家庭位于二类地区,平均年用电量也是3000 kWh,装机2000W就可以了。

5.2 光伏组件阵列安装朝向和角度如果安装地点是平面,则要计算光伏支架的倾角,北半球朝南,南半球相反。

考虑到跟踪系统虽然能提高系统效率,但需要维护,而且会增加故障率,再结合费用、实用性等因素,家庭分布式光伏系统采用固定的光伏方阵较好。

从气象站得到的资料,均为水平面上的太阳能辐射量,需要换算成光伏阵列倾斜面的辐射量才能进行发电量的计算。

对于某一倾角固定安装的光伏阵列,所接受的太阳辐射能与倾角有关,较简便的辐射量计算经验公式为:Rβ=S×[sin(α+β)/sinα]+D式中:Rβ——倾斜光伏阵列面上的太阳能总辐射量S ——水平面上太阳直接辐射量D ——散射辐射量α——中午时分的太阳高度角β——光伏阵列倾角根据当地气象局提供的太阳能辐射数据,按上述公式可以计算出不同倾斜面的太阳辐射量,确定太阳能光伏阵列安装倾角。

现在用得很多的是利用RETScreen软件来分析不同倾角是斜面上的辐照度,再根据组件的相关参数计算出不同倾角的年发电量,最后取年发电量最大所对应的倾角。

例如A地不同倾斜面各月的辐射量(KWh/m2)见表2所示,表2从中可以看出,当倾角在38°~40°之间时,光伏阵列上的辐射量能达到最大,固A 地的太阳能光伏阵列安装最佳倾角就在38°~40°之间。

5.3 太阳电池方阵间距计算计算当太阳能电池组件子阵前后安装时的最小间距D。

一般确定原则:冬至当天早9:00至下午3:00太阳能电池组件方阵不应被遮挡。

计算公式如下:式中:φ:为纬度(在北半球为正、南半球为负),根据项目地点经纬度计算;H:为光伏方阵阵列的高度;光伏方阵阵列间距应不小于D。

6.并网逆变器的选择6.1 选型并网逆变器主要分高频变压器型、低频变压器型和无变压器型三大类。

根据所设计系统以及业主的具体要求,主要从安全性和效率两个层面来考虑变压器类型。

以下是它们之间的对照表:类型安全性转换效率成本价格重量、尺寸因素高频变压器型中低中中低频变压器型高中高大无变压器型低高低小家用分布式光伏系统是小系统,不需要很高的技术指标,逆变器不带隔离变压器时,能源转换效率更高,再结合成本等因素,选择无变压器型较为合理。

6.2容量匹配设计并网系统设计中要求电池阵列与所接逆变器的功率容量相匹配,一般的设计思路是:组件标称功率×组件串联数×组件并联数=电池阵列功率在容量设计中,并网逆变器的最大输入功率应近似等于电池阵列功率,已实现逆变器资源的最大化利用。

6.3 MPP电压范围与电池组电压匹配根据太阳能电池的输出特性,电池组件存在功率最大输出点,并网逆变器具有在特点输入电压范围内自动追踪最大功率点的功能,因此电池阵列的输出电压应处于逆变器MPP电压范围以内。

电池组件电压×组件串联数=电池阵列电压一般的设计思路是电池阵列的标称电压近似等于并网逆变器MPP电压的中间值,这样可以达到MPPT的最佳效果。

6.4 最大输入电流与电池组电流匹配电池组阵列的最大输出电流应小于逆变器最大输入电流。

为了减少组件到逆变器过程中的直流损耗,以及防止电流过大对逆变器造成过热或电气损坏,逆变器最大输入电流值与电池阵列的电流值的差值应尽量大一些。

电池组件短路电流×组件并联数=电池阵列最大输出电流6.5 转换效率并网逆变器的效率标示一般分最大效率和欧洲效率,通过加权系数修正的欧洲效率更为科学。

逆变器在其它条件满足的情况下,转换效率应越高越好。

相关文档
最新文档