一次函数的图象和性质(基础)知识讲解

合集下载

第2讲 一次函数的图像及性质(讲义)解析版

第2讲 一次函数的图像及性质(讲义)解析版
(2)由图像可得: x ³ 6 . 【总结】本题考察了一次函数与一元一次不等式的关系. 例 9.已知一次函数解析式是 y = 1 x - 3 .
2
(1)当 x 取何值时, y = 2 ? (2)当 x 取何值时, y > 2 ? (3)当 x 取何值时, y < 2 ? (4)当 x 取何值时, 0 < y < 2 ?
2 (4)令 0 < 1 x - 3 < 2 ,解得: 6 < x < 10 .
2 【总结】本题考察了一次函数与不等式的关系,本题也可以通过函数图像求解. 例 10.已知函数 f (x) = -3x + 1 .
(1)当 x 取何值时, f (x) = -2 ? (2)当 x 取何值时, 4 > f (x) > -2 ? (3)在平面直角坐标系中,在直线 f (x) = -3x + 1 上且位于 x 轴下方所有点,它们的横 坐标的取值范围是什么?
A. x < 0
B. x > 0
C. x < 2
D. x > 2 .
【答案】A
【分析】根据题意在函数图像中寻找 y > 3 时函数图像所在的位置,发现此时函数图像对
应的 x 范围是小于零,从而得出答案
【详解】解:∵由函数图象可知,当 x<0 时函数图象在 3 的上方,
∴当 y>3 时,x<0.
故选:A.
【总结】本题考察了一次函数与一元一次不等式的关系. 例 8.已知 y = kx + b(k ¹ 0) 的函数图像如图所示:
(1)求在这个函数图像上且位于 x 轴上方所有点的横坐标的取值范围; (2)求不等式 kx + b £ 0 的解集.

一次函数图像及性质

一次函数图像及性质

第4讲、一次函数的图象与性质姓名:____________【知识回顾】一、一次函数的图像1、一次函数通过列表、描点、连线画出来的图像是一条直线,因此我们也把一次函数y=kx+b(k ≠0)的图象叫做直线y=kx+b.特例:(0)y kx k =≠的图像是经过坐标原点的一条直线。

2、一次函数图像的画法:用取两点A (kb-,0),B (0,b )画直线的方法画图像 3、一次函数y=kx+b 中的k 叫做直线的斜率,b 叫做直线在y 轴上的截距,kb-叫做直线在x 轴上的截距;二、一次函数的性质:【典例精讲】◆【要点1】正比例函数的图像性质:正比例函数的图象是通过坐标原点的一条 直线: 当k>0时,图象在一、三象限,呈上升趋势,y 随x 的增大而增大; 当k<0时,图象在二、四象限,呈下降趋势,y 随x 的增大而减小; ◆【要点2】一次函数的图像性质:当121212k k b b =≠ 且时,∥,当1212k k ⋅⊥=-1,则,l l【例1】1、已知函数:①、0.26y x =+;②、172y x =-+;③、32y x =-;④、2y x =-; 其中y 随x 的增大而增大的函数是 ;y 随x 的增大而减小的函数是 ;2、若正比例函数3(3)m y m x -=-的图象经过二、四象限,则这个正比例函数的解析式是 ;3、点A (1x ,1y )和点B (2x ,2y )在同一直线y kx b =+上,且0k <.若12x x >,则1y ,2y 的关系是( )xyxyb >0b <0k >0k <xy Ox yO xyO xyO0b >0b <A B C D-1-111-11-11y=-x+1y=-x+1y=-x+1y=-x+1xy xy xy xyA 、12y y >B 、12y y <C 、12y y =D 、无法确定4、函数b ax y +=与y bx a =+的图象在同一坐标系内的大致位置正确的是( )变式训练1:关于一次函数y =-x +1的图象,下列所画正确的是( )◆【要点3】----求直线与坐标轴的交点直线y kx b =+与x 轴的交点坐标,令0y =,得交点(kb-,0);求与y 轴的交点坐标,令0x =,得交点(0,b );【例2】1、直线23y x =-+经过 象限,与x 轴的交点坐标是 ,直线与y 轴的交点坐标是 ,图象与坐标轴所围成的三角形面积是 ; 2、 若直线14-=+-=x y m x y 与的图象交于y 轴上一点,则________m =;3、(12培优)若直线p x y +=3与直线q x y +-=2的图象交x 轴于同一点,则p 、q 之间的关系式为 ; 练习:1、(12∙重点轮动)直线2y kx =+与x 轴交于点(1-,0),则______k =;2、(桂林)直线1-=kx y 一定经过点( )A 、(1,0) B 、(1,k ) C 、(0,k ) D 、(0,1-) 3.已知一次函数y= -2x+3, 填空:(1)此一次函数的图像是 ,它经过 象限,y 随x 的增大而(2)直线y= -2x+3的斜率是 ,在y 轴上的截距是 ,在x 轴上的截距是 与x 轴的交点坐标是 ,直线与y 轴的交点坐标是 ,交点之间的距离是 ,与两坐标轴所围成的面积是xy O xyO xyO xyOAB C D(3)将此直线向左平移3个单位得直线 ,再向上平移4个单位得直线 (4)当x 时,y >0,当x= 时,y=0, 当x 时,y <0,当 -1<y <3时,x 的取值范围是 ,当 -2<x <1时,y 的取值范围是 .(5)若一直线y=kx+b 与直线y= -2x+3平行,且过点(-3,1),则这条直线的解析式是 . ◆【要点4】----一次函数与方程(组)及不等式的关系 例3、1:函数x y =1,34312+=x y .当21y y >时,x 的范围是( ) A..x <-1 B .-1<x <2 C .x <-1或x >2 D .x >2y 2y 1(2,2)(-1,1)xyy=-2x+6o36xy2.已知函数62+-=x y 的图象如图所示,根据图象回答:⑴当x= 时,y=0,即方程062=+-x 的解为 思考:⑵当x 时,y >0,即不等式062>+-x 的解集为⑶当x 时,y <0,即不等式062<+-x 的解集为 总结:当y=0时,正好是图象与 轴的交点 当y >0时,图象位于 轴 方 当y <0时,图象位于 轴 方 ◆【要点5】、一次函数与二元一次方程组之间的关系 直线1 : y=11b x k + 直线:2 y=22b x k +(1)、当12121212k k b b =≠ 且时,∥,这时与没有公共点,所以方程组没有解 (2)、当21212121 与重合,这时与时,且b b k k ==有无数个公共点,方程组有无数个解。

一次函数的图像和性质

一次函数的图像和性质

课题 一次函数的图像与性质1、一次函数的图像的画法(1)画函数图像的三步:列表-描点-连线. (2)一次函数的图象是一条直线。

一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线。

一次函数y=kx+b 也称为直线y=kx+b ,这时,我们把一次函数的解析式y=kx+b 称为这一直线的表达式。

(3)因为一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线,根据“两点确定一条直线”的基本性质,画一次函数的图象时只需描出图象上的两个点,再作过这两点的直线即可。

2、一次函数的图像的性质(1)一次函数与x 轴交点的纵坐标为0,与y 轴交点的横坐标为0.(2)一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像平行时,则12k k =。

反之,当12k k =时,两直线平行,且当12k k =,12b b =时,两直线重合。

(3)当一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像的截距相同且不平行时,则12b b =,12k k ≠。

(4)一次函数y=kx+b (k 、b 是常数,且k ≠0)当k>0时函数值随着x 的增大而增大、减小而减小,即该函数为增函数;当k<0时函数值随着x 的增大而减小、减小而增大。

即该函数为减函数。

3、一次函数图像的平移一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象向上平移h 个单位后的函数解析式为y=kx+b+h;向下平移h 个单位后的函数解析式为y=kx+b-h 。

4、一次函数图像经过的象限示意图k 、b 的符号直线y=kx+b 经过的象限增减性一.基础练习:1.一次函数y=3x-6的图像是,它与x轴的交点坐标是,它与y轴的交点坐标是2.将直线y=x向下平移4个单位,得到直线3.将直线y=-3x-5向上平移4个单位,得到直线4.若直线y=3x-5与直线y=kx-4相互平行,则k=5.若直线y=-2x-5与直线y=6x+b相交于y轴上同一点,则b=6. 请你在不同的平面直角坐标系中画出下列函数的图像(1)y=2x+6 (2)1722 y x=+(3)4833y x=--(4)1344y x=--7,做一做:画出函数y=-2x+2 的图像,结合图象回答下列问题:( 1 )这个函数中,随着x 的增大,y 将增大还是减小?( 2 )当x 取何值时,y=0 ?当y 取何值时,x=0 ?( 3 )当x 取何值时,y>0 ?( 4 )函数的图像不经过哪个象限?8、完成下列各题:(1)下列函数中,y的值随着x的增大而减小的是()A.y=2x-7B.y=0.5x+2C.y=(2-1)x+3D.y=-0.3x+1(2)函数y=4x-3中,y的值随着x值的增大而____(3)函数y=(2m-1)x+2的函数值随x的增大而减小,则m的值为______ (4)一次函数y=2x+4的图像上有两点A(3,a),B(4,b),请判断a与b的大小(5)y=x+5与y=2x-5的增减性(y 随着x 的增加而增加,还是随着x 的增加而减小)是否一样?(6)y=-2x+5与y=-2x-5的增减性是否一样?(7)A(a,6)和B(b,-2)在函数y=2x-5的图像上,请你判断a ,b 的大小关系 9、已知一次函数2(2)28y k x k =--+,分别根据下列条件求k 的值或k 的取值范围: (1)它的图像经过原点(2)它的图像经过点(0,-2)(3)它的图像与y 轴的交点在x 轴上方 (4)y 随着x 的增大而减小(5)这条直线经过一、二、三象限10、要使一次函数y=-3x+4的函数值大于4,求自变量x 的取值范围。

(完整版)一次函数图象与性质知识点

(完整版)一次函数图象与性质知识点

一次函数图象与性质知识点一次函数知识点〔 1〕、一次函数的形式:形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当 b=0 时, y=kx + b 即 y=kx ,所以说正比率函数是一种特其他一次函数.〔 2〕一次函数的图象是一条直线- b, 0〕〔 3〕一次函数与坐标轴的交点:与Y 轴的交点是〔0, b〕与X 轴的交点是〔k〔 4〕增减性: k>0 , y 随 x 的增大而增大;k<0, y 随 x 增大而减小 .〔 5〕图像的平移:当b>0时,将直线y=kx 的图象向上平移 b 个单位;当 b<0 时,将直线y=kx 的图象向下平移 b 个单位 .〔 6〕一次函数y=kx + b 的图象的画法 .依照几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先采用它与两坐标轴的交点:〔0,b〕,.即横坐标或纵坐标为0 的点 .〔 7〕一次函数图象及性质b>0b<0b=0k>经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y 随 x 的增大而增大经过第一、二、四象限经过第二、三、四象限经过第二、四象限k<图象从左到右下降,y 随 x 的增大而减小〔 8〕待定系数法求一次函数的剖析式例题精讲 :1、做一做,画出函数 y=-2x+2 的图象 ,结合图象答复以下问题。

(1)随着 x 的增大, y 将〔填“增大〞或“减小〞〕(2)它的图象从左到右〔填“上升〞或“下降〞〕(3) 图象与 x 轴的交点坐标是 ,与 y 轴的交点坐标是(4) 这个函数中 ,随着 x 的增大 ,y 将增大还是减小 ?它的图象从左到右怎样变化 ? (5) 当 x 取何值时 ,y=0?(6) 当 x 取何值时 ,y > 0?1: .正比率函数 y (3m 5) x ,当 m时, y 随 x 的增大而增大 .2.假设 y x 23b 是正比率函数,那么 b 的值是〔〕2C.2 3B.3D.323.函数 y=( k-1) x ,y 随 x 增大而减小,那么k 的范围是 ( )A. k0 B. k 1 C. k1 D. k14:假设关于 x 的函数 y (n1)x m 1是一次函数,那么m=, n.5.函数 y=ax+b 与 y=bx+a 的图象在同一坐标系内的大体地址正确的选项是〔 〕6 将直线 y = 3x 向下平移 5 个单位,获取直线;将直线 y = - x- 5 向上平移 5 个单位,获取直线 .7 函数 y = 3x+1,当自变量增加 m 时,相应的函数值增加〔〕A. 3m+1 B. 3m C. m D. 3m -18 假设 m < 0, n > 0,那么一次函数 y=mx+n 的图象不经过 〔 〕A. 第一象限B. 第二象限C.第三象限D. 第四象限10、一次函数 y =3x + b 的图象与两坐标轴围成的三角形面积是 24,求 b.一次函数图象和性质练习与反应 :1、函数 y=3x -6 的图象中:〔 1〕随着 x 的增大, y 将〔填“增大〞或“减小〞 〕〔 2〕它的图象从左到右〔填“上升〞或“下降〞 〕〔 3〕图象与 x 轴的交点坐标是 ,与 y 轴的交点坐标是2、函数 y=(m-3)x- 2.3(1) 当 m 取何值时 ,y 随 x 的增大而增大 ?(2) 当 m 取何值时 ,y 随 x 的增大而减小 ?3、直线 y=4x -2 与 x 轴的交点坐标是 ,与 y 轴的交点坐标是4、直线 y= 2x 2 与 x 轴的交点坐标是,与 y 轴的交点坐标是35、写出一条与直线 y=2x-3 平行的直线6、写出一条与直线 y=2x-3 平行,且经过点〔 2,7〕的直线7、直线 y=- 5x+7 可以看作是由直线 y=-5x -1 向 平移个单位获取的8. 函数y kx b 的图象与 y 轴交点的纵坐标为5 ,且当 x 1时, y 2 ,那么此函数的剖析式为.9. 在函数 y2x b 中,函数 y 随着 x 的增大而,此函数的图象经过点(2, 1) ,那么b.10. 如图,表示一次函数y mx n 与正比率函数 y mnx 〔 m , n 为常数,且 mn0 〕图象的是〔〕yyyyOOxOxOxxA.B.C .D .11. 在以下四个函数中,y 的值随 x 值的增大而减小的是〔〕A. y 2x B. y3x 6C. y2x 5D. y 3x 712. 一次函数 y kxk ,其在直角坐标系中的图象大体是〔〕yyy yO x O xOxOx13. 在以下函数中, 〔〕的函数值先到达 100.A .B . C.D.A. y 2x 6B. y 5xC. y 5x 1D. y 4x 214. 一 次函数y 3x 5 与一次函 数 y ax 6 ,假设它们 的图象是两 条互相同样 的直线, 那么a.15.一次函数 y x 3 与 y2x b 的图象交于y 轴上一点,那么 b.16.一次函数 y kx b 的图象不经过第三象限,也不经过原点,那么k、 b 的取值范围是〔〕A. k0 且 b 0B. k0 且 b 0C. k0 且 b 0D. k0 且 b 017.以以下图,正比率函数y kx(k 0) 的函数值y随 x 的增大而增大,那么一次函数 yx k 的图象大体是〔〕y y y yOxOxOxOxA .B.C. D .18.假设函数 y(m21)x m 2 与y轴的交点在 x 轴的上方,且m 10,m 为整数,那么吻合条件的m有〔〕A.8 个B.7个C.9个D.10个19.函数 y 34x ,y随 x 的增大而.20.一次函数 y(m3)x2m 1 的图象经过一、二、四象限,求m 的取值范围.21. 一次函数y (m 3) x m216 ,且y的值随 x 值的增大而增大.〔 1〕m的范围;〔 2〕假设此一次函数又是正比率函数,试求m 的值.。

一次函数的图象和性质知识点和典型例题讲解

一次函数的图象和性质知识点和典型例题讲解

一次函数的图象和性质一、知识要点:1、一次函数:形如y=kx+b (k≠0, k, b为常数)的函数。

注意:(1)k≠0,否则自变量x的最高次项的系数不为1;(2)当b=0时,y=kx,y叫x的正比例函数。

2、图象:一次函数的图象是一条直线,(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(-,0)(2)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。

3、性质:(1)图象的位置:(2)增减性k>0时,y随x增大而增大k<0时,y随x增大而减小4.求一次函数解析式的方法求函数解析式的方法主要有三种(1)由已知函数推导或推证(2)由实际问题列出二元方程,再转化为函数解析式,此类题一般在没有写出函数解析式前无法(或不易)判断两个变量之间具有什么样的函数关系。

(3)用待定系数法求函数解析式。

“待定系数法”的基本思想就是方程思想,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程(组)来解决,题目的已知恒等式中含有几个等待确定的系数,一般就需列出几个含有待定系数的方程,本单元构造方程一般有下列几种情况:①利用一次函数的定义构造方程组。

②利用一次函数y=kx+b中常数项b恰为函数图象与y轴交点的纵坐标,即由b来定点;直线y=kx+b平行于y=kx,即由k来定方向。

③利用函数图象上的点的横、纵坐标满足此函数解析式构造方程。

④利用题目已知条件直接构造方程。

二、例题举例:例1.已知y=,其中=(k≠0的常数),与成正比例,求证y与x也成正比例。

例2.已知一次函数=(n-2)x+-n-3的图象与y轴交点的纵坐标为-1,判断=(3-)是什么函数,写出两个函数的解析式,并指出两个函数在直角坐标系中的位置及增减性。

说明:由于一次函数的解析式含有待定系数n,故求解析式的关键是构造关于n的方程,此题利用“一次函数解析式的常数项就是图象与y轴交点纵坐标”来构造方程。

初三一次函数的图像和性质分析知识点

初三一次函数的图像和性质分析知识点

初三⼀次函数的图像和性质分析知识点2019初三⼀次函数的图像和性质分析知识点1 基本信息1.y的变化值与对应的x的变化值成正⽐例,⽐值为k即:△y/△x=k (△为任意不为零的实数),即函数图像的斜率。

2.⼀次函数的表达式:y=kx+b3.性质:当k0时,y随x的增⼤⽽增⼤;当k0时,y随x的增⼤⽽减⼩。

当b0时,该函数与y轴交于正半轴;当b0时,该函数与y轴交于负半轴当x=0时,b为函数在y轴上的截距。

4.⼀次函数定义域xR,值域f(x)R5.⼀次函数在xR上的单调性:若f(x)=kx+b,k0,则该函数在xR上单调递增。

若f(x)=kx+b,k0,则该函数在xr上单调递减。

2 函数性质1.y的变化值与对应的x的变化值成正⽐例,⽐值为k即:y=kx+b(k0) (k不等于0,且k,b为常数)2.当x=0时,b为函数在y轴上的,坐标为(0,b).当y=0时,该函数图像在x轴上的交点坐标为(-b/k,0)3.k为⼀次函数y=kx+b的斜率,k=tan(⾓为⼀次函数图象与x 轴正⽅向夹⾓,90)形、取、象、交、减。

4.当b=0时(即y=kx),⼀次函数图像变为正⽐例函数,正⽐例函数是特殊的⼀次函数.5.函数图像性质:当k相同,且b不相等,图像平⾏;当k不同,且b相等,图像相交;当k互为负倒数时,两直线垂直;当k,b都相同时,两条直线重合。

3 图像性质1.作法与图形:通过如下3个步(1)列表(2)描点:⼀般取两个点,根据两点确定⼀条直线的道理;(3)连线,可以作出⼀次函数的图像⼀条直线。

因此,作⼀次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x 轴和y轴的交点分别是-k分之b与0,0与b)2.性质:(1)在⼀次函数上的任意⼀点P(x,y),都满⾜等式:y=kx+b(k0)。

(2)⼀次函数与y轴交点的坐标总是(0,b),与x 轴总是交于(-b/k,0)正⽐例函数的图像都是过原点。

3.函数不是数,它是指某⼀变化过程中两个变量之间的关系。

一次函数的图象和性质知识讲解

一次函数的图象和性质知识讲解

一次函数的图象和性质知识讲解一次函数是数学中最简单的函数之一,通常表示为y = ax + b,其中a和b都是实数且a ≠ 0。

一次函数也被称为线性函数,因为它的图像是一条直线。

1.找到x轴和y轴的交点,并标记为(x1,0)和(0,y1)。

2.连接两个点,得到直线。

如果x1等于0,则直线与y轴平行;如果y1等于0,则直线与x轴平行;如果两个轴的交点都不是原点,则直线会穿过原点。

1.斜率:一次函数的斜率是直线的倾斜程度。

斜率可以通过直线上的两个点计算得出,斜率等于纵坐标的变化量除以横坐标的变化量。

在一次函数中,斜率等于a。

2.y轴截距:一次函数在y轴上的截距是直线与y轴的交点的纵坐标。

在一次函数中,截距等于b。

3.x轴截距:一次函数在x轴上的截距是直线与x轴的交点的横坐标。

在一次函数中,截距等于-x1/a(如果存在)。

4.定义域和值域:一次函数的定义域是所有实数,因为对于任何实数x,一次函数都有对应的y值。

一次函数的值域也是所有实数,因为直线可以无限延伸。

5.单调性:如果a大于0,则一次函数是增函数,意味着随着x的增加,y值也增加。

如果a小于0,则一次函数是减函数,意味着随着x的增加,y值减少。

6.对称性:一次函数的图像在直线y=x/2上对称,这意味着如果一个点(x,y)在一次函数的图像上,则另一个点(y,x)也在图像上。

7.平移:通过改变常数b的值,可以使一次函数的图像平移。

当b大于0时,图像向上平移;当b小于0时,图像向下平移。

8.相关性:一次函数的系数a和b的值决定了直线的斜率和截距。

更具体地说,a决定了直线的倾斜程度,而b决定了直线与y轴的交点的纵坐标。

总结:一次函数是数学中最简单的函数之一,其图像是一条直线,由斜率和截距决定。

一次函数具有很多重要的性质,如斜率、截距、定义域、值域、单调性、对称性、平移和相关性。

熟悉这些性质可以帮助我们更好地理解和分析一次函数的特征和行为。

(完整版)一次函数的图像与性质

(完整版)一次函数的图像与性质

一次函数的性质和图像目录一、函数的定义(一)、一次函数的定义函数。

(二)、正比例函数的定义二、函数的性质(一)、一次函数的性质(二)、正比例函数的性质三、函数的图像(一)、一次函数和正比例函数图像在坐标上的位置(二)、一次函数的图像1、一次函数图像的形状2、一次函数图像的画法(三)、正比例函数的图像1、正比例函数图像的形状2、正比例函数图像的画法3、举例说明正比例函数图像的画法四、k、b两个字母对图像位置的影响K、b两个字母的具体分工是:(一次项系数)k决定图象的倾斜度。

(常数项)b决定图象与y轴交点位置。

五、解析式的确定(一)一个点坐标决定正比,两个点坐标决定一次(二)用待定系数法确定解析式六、两条函数直线的四种位置关系两直线平行,k1= k2,b1≠b2两直线重合,k1= k2,b1=b2两直线相交,k1≠k2两直线垂直,k1×k2=-1(一)两条函数直线的平行(二)两条函数直线的相交(三)两条函数直线的垂直一次函数、反比例函数中自变量x前面的字母k称为比例系数这一节我们要学习正比例函数和一次函数。

一次函数的解析式是y=kx+b,如果当这个式子中的b=0时,式子就变成了正比例函数y=kx。

因此,正比例函数是一次函数当b=0时的特殊情况。

正是因为正比例函数实际上就是一次函数,所以把正比例函数和一次函数结合在一起来学习。

在正比例函数y=kx和反比例函数y=k/x中,由于函数y与自变量x之间有比例关系,就要在自变量x前面用字母系数k表示它们之间的比例关系,因而字母k就取名为比例系数。

确定了比例系数k就可以直接确定正比例函数或反比例函数的解析式。

但是,在一次函数y=kx+b和二次函数y=ax2+bx+c中,我们从观察解析式就可以看出,函数y与自变量x之间没有相直接对应的比例关系,因此这两种函数自变量x前面的k,就不能叫比例系数,只能叫常数。

若欲确定一次函数或二次函数的解析式时,题意仅已知常数k还不行,还需要其他常数如b、c等常数的协助。

一次函数的图象与性质(基础)

一次函数的图象与性质(基础)

一次函数的图象与性质(基础)【要点梳理】要点一、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,k ≠0)的函数,叫做一次函数.要点诠释:当b =0时,y kx b =+即y kx =,所以说正比例函数是一种特殊的一次函数.一次函数的定义是根据它的解析式的形式特征给出的,要注意其中对常数k ,b 的要求,一次函数也被称为线性函数. 要点二、一次函数的图象与性质1.函数y kx b =+(k 、b 为常数,且k ≠0)的图象是一条直线 ;当b >0时,直线y kx b =+是由直线y kx =向上平移b 个单位长度得到的;当b <0时,直线y kx b =+是由直线y kx =向下平移|b |个单位长度得到的.2.一次函数y kx b =+(k 、b 为常数,且k ≠0)的图象与性质:3. k 、b 对一次函数y kx b =+的图象和性质的影响:k 决定直线y kx b =+从左向右的趋势,b 决定它与y 轴交点的位置,k 、b 一起决定直线y kx b =+经过的象限.4. 两条直线1l :11y k x b =+和2l :22y k x b =+的位置关系可由其系数确定:(1)12k k ≠⇔1l 与2l 相交; (2)12k k =,且12b b ≠⇔1l 与2l 平行;【高清课堂:391659 一次函数的图象和性质,待定系数法求函数的解析式】要点三、待定系数法求一次函数解析式一次函数y kx b =+(k ,b 是常数,k ≠0)中有两个待定系数k ,b ,需要两个独立条件确定两个关于k ,b 的方程,这两个条件通常为两个点或两对x ,y 的值.要点诠释:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而具体写出这个式子的方法,叫做待定系数法.由于一次函数y kx b =+中有k 和b 两个待定系数,所以用待定系数法时需要根据两个条件列二元一次方程组(以k 和b 为未知数),解方程组后就能具体写出一次函数的解析式.要点四、分段函数对于某些量不能用一个解析式表示,而需要分情况(自变量的不同取值范围)用不同的解析式表示,因此得到的函数是形式比较复杂的分段函数.解题中要注意解析式对应的自变量的取值范围,分段考虑问题.要点诠释:对于分段函数的问题,特别要注意相应的自变量变化范围.在解析式和图象上都要反映出自变量的相应取值范围.【典型例题】类型一、待定系数法求函数的解析式1、根据函数的图象,求函数的解析式.举一反三:【变式1】已知一次函数的图象与正比例函数2y x =的图象平行且经过(2,1)点,则一次函数的解析式为________.【变式2】已知函数y 1=2x ﹣3,y 2=﹣x+3.(1)在同一坐标系中画出这两个函数的图象.(2)求出函数图象与x 轴围成三角形的面积.类型二、一次函数图象的应用2、为缓解用电紧张的矛盾,某电力公司制定了新的用电收费标准,每月用电量x (度)与应付电费y (元)的关系如图所示.根据图象求出y 与x 的函数关系式.类型三、一次函数的性质3、已知一次函数()()243y m x n =++-.(1)当m 、n 是什么数时,y 随x 的增大而增大;(2)当m 、n 是什么数时,函数图象经过原点;(3)若图象经过一、二、三象限,求m 、n 的取值范围.4、已知点A (4,0)及在第一象限的动点P (x ,y ),且x+y=5,0为坐标原点,设△OPA 的面积为S .(1)求S 关于x 的函数解析式;(2)求x 的取值范围;(3)当S=4时,求P 点的坐标.巩固练习一.选择题1. 已知一次函数(1)y a x b =-+的图象如图所示,那么a 的取值范围是( )A .1a >B .1a <C .0a >D .0a <2.关于一次函数y=﹣2x+3,下列结论正确的是( )A .图象过点(1,﹣1)B .图象经过一、二、三象限C .y 随x 的增大而增大D .当x >时,y <03. 已知一次函数k x k y +-=)21(的图象经过第一、二、三象限,则k 的取值范围是( )A.0>kB.0<kC.210<<kD.21<k 4.某村办工厂今年前五个月中,每月某种产品的产量c (件)关于时间t (月)的函数图象如图所示,该厂对这种产品的生产是( )A .1月至3月每月生产量逐月增加,4、5两月每月生产量逐月减少B .1月至3月每月生产量逐月增加,4、5两月每月生产量与3月持平C .1月至3月每月生产量逐月增加,4、5两月均停止生产D .1月至3月每月生产量不变,4、5两月均停止生产5.已知直线y x =和直线12y x b =-+相交于点(2,c ),则b 、c 的值分别为( ). A .2,3 B .3,2 C .12-,2 D .12-,3 6. 如图弹簧的长度与所挂物体的质量关系为一次函数,则不挂物体时,弹簧长度为( ).A .7cmB .8cmC .9cmD .10cm二.填空题7. 如果直线y ax b =+经过第一、二、三象限,那么ab 0.8. 点()()111222,,,P x y P x y 是一次函数43y x =-+图象上的两个点,且12x x <,则 1y _ 2y .(填>,<或=)9. 已知一次函数的图象2y kx =-与直线34y x =+平行, 则k = .10. 一次函数113y x =-+的图象与x 轴的交点坐标是_____,与y 轴的交点坐标是______. 11.已知一次函数y=kx+b (k≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,则此一次函数的解析式为 .12.一次函数2y x b =+与两坐标轴围成三角形的面积为4,则b =________.三.解答题13.已知直线y=kx+3经过点A (﹣4,0),且与y 轴交于点B ,点O 为坐标原点.求k 的值;14.已知1-y 与1+x 成正比例,且当x =1时,y =5(1)求y 与x 之间的函数关系式;(2)若图象与x 轴交于A 点,与y 交于B 点,求△AOB 的面积.。

一次函数的概念、图象和性质

一次函数的概念、图象和性质

次函数的概念、图象和性质一次函数的概念一、知识要点1.一次函数的定义:形如y=kx+b(k、b是常数,k≠0)的函数叫做一次函数。

注意:(1)判断一个以x为自变量的函数(以后称关于x的函数)是不是一次函数?从其解析式的形式上看,就是它能否化成关于x的一次二项式即kx+b的形式。

其中一次项系数k必须是不为零的常数,常数项b可以为任何常数。

若k=0,它不是一次函数。

(2)要确定一个一次函数,可利用待定系数法,设y=kx+b为所求,只要依据已知条件求出k、b的值即可。

2.一次函数与正比例函数的关系在一次函数y=kx+b中,当b=0时,即y=kx(其中常数k≠0)是正比例函数。

这时又称y 与x成正比例,且比例系数为k。

y=kx+b(k、b是常数,k≠0)b≠0时,它是一般的一次函数b=0时,它是正比例函数二、例题选讲例1.已知关于变量s、t的关系式为3s+2t=5,(1)若t为自变量,则函数s=____,它是关于t的____次函数;(2)若s为自变量,则函数t=___,它是关于s的___函数;(3)s-1与t-1的关系是_____,它的比例系数是____。

提示:3s+2t=5,◇3(s-1)=-2(t-1),◇例2.若函数是关于x的一次函数,求k。

并求出这个一次函数。

解:∵函数是关于x的一次函数,当k=1时,函数为y=2x+2∴y=2x+2为所求。

一次函数的图象一、知识要点1.正比例函数y=kx的图象(1)对于正比例函数y=kx,因为当x=0时,y=0;当x≠0时,y/x=k,所以正比例函数y=kx的图象是一条经过原点和(1,k)点的直线,又称为直线y=kx。

例如:正比例函数它的图象是经过原点和点的一条直线。

(2)当k>0时,直线y=kx经过第一、三象限,它的倾斜角是锐角;当k<0时,直线y=kx经过第二、四象限,它的倾斜角是钝角。

k>0:0<k<10°<α<45°K≥145°≤α<90°k<0k<-190°<α<135°-1≤K<0135°≤α<180°2.一次函数y=kx+b的图象(1)一次函数y=kx+b的图象是过(0,b)点且与直线y=kx平行的一条直线。

一次函数的图象与性质(知识点串讲)(原卷版)

一次函数的图象与性质(知识点串讲)(原卷版)

专题12 一次函数的图象与性质知识网络重难突破知识点一 一次函数的定义一般地,函数y =kx +b (k ≠0,k 、b 是常数)叫做一次函数,当b=0时,y =kx +b 就成为y =kx (k 是常数,k ≠0)叫做正比例函数,常数k 叫做比例系数.【典例1】(2018秋•杭州期末)下列函数中是一次函数的是( )A .t =B .s =t (50﹣t )C .y =x 2+2xD .y =6﹣2x【变式训练】1.(2019春•温岭市期末)下列变量之间关系中,一个变量是另一个变量的正比例函数的是( )A .正方形的面积S 随着边长x 的变化而变化B .正方形的周长C 随着边长x 的变化而变化C .水箱有水10LL /min 的流量往外放水,水箱中的剩水量V (L )随着放水时间t (min )的变化而变化D .面积为20的三角形的一边a 随着这边上的高h 的变化而变化2.(2015秋•萧山区校级月考)下列函数:①y =﹣πx ,②y =﹣x ,③y =8,④y =﹣8x 2+6,⑤y =﹣x ﹣1中,一次函数有( )A .1个B .2个C .3个D .4个 知识点二 一次函数的图象1. 正比例函数y =kx 的图象为过(0,0),(1,k )两点的一条直线.①当k >0时,函数y =kx 的图象经过第一、三象限;②当k <0时,函数y =kx 的图象经过第二、四象限;y =kx +b 的图象是过点⎪⎭⎫ ⎝⎛-0,k b ,()b ,0的一条直线. ①当k >0,b >0时,函数y =kx +b 的图象经过第一、二、三象限;②当k >0,b <0时,函数y =kx +b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y =kx +b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y =kx +b 的图象经过第二、三、四象限.【典例2】(2019•杭州)已知一次函数y 1=ax +b 和y 2=bx +a (a ≠b ),函数y 1和y 2的图象可能是( )A.B.C.D.【变式训练】1.(2017秋•慈溪市期末)已知,一次函数y=ax﹣b的图象如图所示,则()A.a>0,b>0 B.a>0,b<0 C.a<0,b>0 D.a<0.b<02.(2018秋•临安区期末)在同一坐标系中,函数y=kx与y=3x﹣k的图象大致是()A.B.C.D.3.(2019•绍兴)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1 B.0 C.3 D.44.(2018秋•诸暨市期末)已知直线y=kx+b经过点(﹣1,4)和(2,1).(1)求该直线的函数表达式;(2)求该直线与x轴,y轴的交点坐标.知识点三一次函数的性质一次函数的性质:对于一次函数y=kx+b(k≠0,k、b是常数)当k>0时,y随x的增大而增大;当k<0时,y随x 的增大而减小.【典例3】(2018秋•余杭区期末)已知(﹣1,y1),(1,y2)是直线y=﹣x+3上的两点,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定【变式训练】1.(2018秋•滨江区期末)已知(x1,﹣2),(x2,﹣3),(x3,1)是直线y=﹣5x+b(b为常数)上的三个点,则x1,x2,x3的大小关系是()A.x1>x2>x3 B.x2>x1>x3 C.x3>x1>x2 D.x3>x2>x12.(2019•黄岩区二模)对于一次函数y=3x﹣1,下列说法正确的是()A.图象经过第一、二、三象限B.函数值y随x的增大而增大C.函数图象与直线y=3x相交D.函数图象与y轴交于点(0,)3.(2018秋•庆元县期末)已知点A(k,10)在直线y=kx+1上,且y随x的增大而减小,则k的值为()A.3 B.﹣3 C.﹣9 D.±34.(2018•江干区一模)已知x﹣2y=6,当0≤x≤2时,y有最值(填“大”或“小”),这个值为.5.(2018秋•德清县期末)已知直线l:y=kx+3经过A、B两点,点A的坐标为(﹣2,0)(1)求直线l的解析式;(2)当kx+3>0时,根据图象直接写出x的取值范围.知识点四一次函数的图象变换【典例4】(2018秋•婺城区期末)将直线y=3x向左平移2个单位所得的直线的解析式是()A.y=3x+2 B.y=3x﹣2 C.y=3(x﹣2)D.y=3(x+2)【变式训练】1.(2019•东阳市模拟)将直线y=﹣x+a的图象向右平移2个单位后经过点A(3,3),则a的值为()A.4 B.﹣4 C.2 D.﹣22.(2018秋•上虞区期末)把函数y=x的图象向上平移3个单位,则下列各坐标所表示的点中,在平移后的直线上的是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)3.(2019•龙湾区一模)如图,点P(﹣2,3)向右平移n个单位后落在直线y=2x﹣1上的点P′处,则n 的值为()A.4 B.5 C.6 D.7巩固训练1.(2018秋•太湖县期末)若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.2.(2018秋•绍兴期末)一次函数y=﹣x+3的图象经过坐标系的()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限3.(2018秋•余杭区期末)已知坐标平面内的点A(3,2),B(1,3),C(﹣1,﹣6),D(2a,4a﹣4)中只有一点不在直线l上,则这一点是()A.点A B.点B C.点C D.点D4.(2018•南浔区一模)对于一次函数y=﹣2x+4,下列结论错误的是()A.函数的图象不经过第三象限B.函数的图象与x轴的交点坐标是(0,4)C.函数值随自变量的增大而减小D.函数的图象向下平移4个单位长度得y=﹣2x的图象5.(2018秋•江干区期末)对于一次函数y=ax+b(a,b为常数,且a≠0),有以下结论:①若b=3﹣2a时,一次函数图象过定点(2,3);②若b=3﹣2a,且一次函数y=ax+b图象过点(1,a),则a=;③当a=b+1,且函数图象过一、三、四象限时,则0<a≤1;④若b=2﹣a,一次函数y=ax+b的图象可由y=ax+2向左平移1个单位得到;请选择正确的序号:.6.(2019•嘉兴一模)数学课上,老师提出问题:“一次函数的图象经过点A(3,2),B(﹣1,﹣6),由此可求得哪些结论?”小明思考后求得下列4个结论:①该函数表达式为y=2x﹣4;②该一次函数的函数值随自变量的增大而增大:③点P(2a,4a﹣4)在该函数图象上;④直线AB与坐标轴围成的三角形的面积为8.其中错误的结论是()A.①B.②C.③D.④7.(2018春•上虞区期末)对于函数y=﹣|2x﹣3|+4,当|x|≥2时的最大值是()A.﹣3 B.0 C.3 D.48.(2018秋•滨江区期末)在平面直角坐标系中,点P(m+7,2m)是一次函数y=﹣2x+2图象上一点.(1)求点P的坐标.(2)当﹣2<x≤3时,求y的取值范围.9.(2018秋•长兴县期末)如图直线y=kx+6(k≠0)与x轴,y轴分别交于点E,F,点E的坐标为(﹣8,0),点A的坐标为(﹣6,0),点P(x,y)是线段EF上的一个动点(1)求k的值;(2)求点P在运动过程中△OP A的面积S与x的函数关系式,并写出自变量x的取值范围;(3)当△OP A的面积为9时,求点P的坐标.。

八年级数学一次函数的图象和性质

八年级数学一次函数的图象和性质

描点作图
将计算出的点在坐标轴上 标出,并使用平滑的曲线 连接这些点。
一次函数图象的特点
线性关系
一次函数图象是一条直线,函数 值随自变量的变化而均匀变化。
斜率
一次函数的斜率表示函数值随自 变量变化的速率,斜率k>0时, 函数值随自变量增大而增大;斜 率k<0时,函数值随自变量增大
而减小。
y轴上的截距
05 练习与巩固
基础练习题
2、已知一次函数$y = kx + b(k neq 0)$的图象经过第一、三、四 象限,则$k$的取值范围是( )
3、已知一次函数$y = kx + b(k neq 0)$的图象经过第一、三、四 象限,则$k$的取值范围是____.
1、已知函数$y = (2m + 1)x + m - 3$,若这个函数的图象不经过第 二象限,则$m$的取值范围是 ____.
一次函数的表示方法
一次函数可以用解析式表示为 $y=kx+b$,其中$k$是斜率,$b$是 截距。
也可以通过表格或图象来表示一次函 数的关系。
一次函数的基本性质
斜率
斜率$k$决定了函数的增减性,当$k>0$时,函数随$x$ 的增大而增大;当$k<0$时,函数随$x$的增大而减小。
单调性
一次函数的单调性由斜率决定,斜率$k>0$时,函数为增 函数;斜率$k<0$时,函数为减函数。
一次函数与坐标轴的关系
一次函数与x轴的交点
当y=0时,x的值即为与x轴的交点。
一次函数与坐标轴围成的三角形面积
可以通过截距和与x轴交点来计算三角形面积。
04 一次函数的应用
一次函数在实际问题中的应用

一次函数知识点讲解

一次函数知识点讲解

一次函数知识点一、正比例函数及性质一般,形如y=kx (k 是常数,k≠0) 的函数叫做正比例函数,其中k 叫做比例系数.注:正比例函数一般形式 y=kx (k 不为零) ① k ≠0 ② x 指数为1 ③ b =0 解析式:y=kx (k 是常数,k ≠0)(1) 图像必过点:(0,0)、(1,k )(2) 走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限(3) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小二、一次函数及性质一般地,形如y=kx +b (k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1③ b 取任意实数一次函数y=kx+b 的图象是经过(0,b )和(-kb ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b(k 、b 是常数,k ≠0)(2)图像必过点:(0,b )和(-kb ,0) (3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 ⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限 (4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)图像的平移:当b>0时,将直线y=kx的图象向上平移b个单位;当b<0时,将直线y=kx的图象向下平移|b|个单位.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可。

(完整版)一次函数的图像与性质知识点总结

(完整版)一次函数的图像与性质知识点总结

一次函数的图像与性质知识点总结知识点1 、 一次函数和正比例函数的概念若两个变量x,y 间的关系式可以表示成y=kx+b(k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数。

例如:y=2x+3,y=—x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数.知识点2、 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点 3、一次函数的图象由于一次函数y=kx+b(k,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b .由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b),直线与x 轴的交点(-kb ,0)。

但也不必一定选取这两个特殊点。

画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可. 知识点4 、 一次函数y=kx+b (k ,b 为常数,k ≠0)的性质(1)k 的正负决定直线的倾斜方向;①k >0时,y 的值随x 值的增大而增大;②k ﹤O 时,y 的值随x 值的增大而减小.(2)|k |大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置;①当b >0时,直线与y 轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);②当k>0,b﹥O时,直线经过第一、三、四象限(直线不经过第二象限);③当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);④当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点5、正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.知识点6、点P(x0,y)与直线y=kx+b的图象的关系(1)如果点P(x0,y)在直线y=kx+b的图象上,那么x,y的值必满足解析式y=kx+b;(2)如果x0,y是满足函数解析式的一对对应值,那么以x,y为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.知识点7、确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y 的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点8、待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.知识点9、用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数的图象与性质(基础)
【学习目标】
1. 理解一次函数的概念,理解一次函数y kx b 的图象与正比例函数y kx 的图象之间的关系;
2. 能正确画出一次函数y kx b 的图象.掌握一次函数的性质.利用函数的图象解决与一次函数有
关的问题,还能运用所学的函数知识解决简单的实际问题.
3. 对分段函数有初步认识,能运用所学的函数知识解决实际问题.【要点梳理】
要点一、一次函数的定义
一般地,形如y kx b (k , b是常数,k工0)的函数,叫做一次函数•
要点诠释:当b = 0时,y kx b即y kx,所以说正比例函数是一种特殊的一次函
数.一次函数的定义是根据它的解析式的形式特征给出的,要注意其中对常数k,b的要求, 一次函数也被称为线性函数.
要点二、一次函数的图象与性质
1. 函数y kx b (k、b为常数,且k工0)的图象是一条直线;
当b >0时,直线y kx b是由直线y kx向上平移b个单位长度得到的;
当b v0时,直线y kx b是由直线y kx向下平移| b l个单位长度得到的•
2. 一次函数y kx b (k、b为常数,且k工0)的图象与性质:
3. 、对一次函数y kx b的图象和性质的影响:
k决定直线y kx b从左向右的趋势,b决定它与y轴交点的位置,k、b 一起决定
直线y kx b经过的象限.
4.两条直线11: y k1x b和l2: y k2x b2的位置关系可由其系数确定:
(1)k i k2 l i 与 J 相交;(2)k i k2,且b i b2 h 与 J平行;
要点三、待定系数法求一次函数解析式
一次函数y kx b (k , b是常数,k丰0)中有两个待定系数k , b,需要两个独立
条件确定两个关于k, b的方程,这两个条件通常为两个点或两对x, y的值.
要点诠释:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而具体写出这个式子的方法,叫做待定系数法•由于一次函数y kx b中有k和b两个待定系数,所
以用待定系数法时需要根据两个条件列二元一次方程组(以k和b为未知数),解方程组后就能具体写出一次函数的解析式•
要点四、分段函数
对于某些量不能用一个解析式表示,而需要分情况(自变量的不同取值范围)用不同的
解析式表示,因此得到的函数是形式比较复杂的分段函数 •解题中要注意解析式对应的自变
量的取值范围,分段考虑问题 •
要点诠释:对于分段函数的问题,特别要注意相应的自变量变化范围 •在解析式和图象
上都要反映出自变量的相应取值范围 【典型例题】
【思路点拨】由于此函数的图象过 (o ,2),因此b = 2,可以设函数的解析式为 y kx 2 , 再利用过点(1.5 , 0),求出相应k 的值.
【答案与解析】利用待定系数法求函数的解析式 .
解:设函数的解析式为 y kx b .
函数的解析式为
【答案】 y 2x 3 ;
(2 , 1)点,代入得1= 2X 2 + b .解得b 3 .
一次函数解析式为 y 2x 3.
【变式2】(2015春?广安校级月考)已知函数 y 1=2x - 3, y 2=- x+3
.
Q 它的图象过点(1.5 , 0), (o , 2)
1.5k b 0
4 -x 2. 3
【总结升华】用待定系数法时需要根据两个条件列二元一次方程组(以 解方程组后就能具体写出一次函数的解析式 .
•••该函数的解析式为
k 和b 为未知数),
举一反三: 【变式1】已知一次函数的图象与正比例函数
y 2x 的图象平行且经过
(2 , 1)点,则一次
提示:设一次函数的解析式为
y kx b ,它的图象与 y 2x 的图象平行,则
k 2,又因为一次函数的图象经过
(1)在同一坐标系中画出这两个函数的图象.
(2 )求出函数图象与x轴围成三角形的面积.
【答案】解:(1)函数y i=2x-3与x轴和y轴的交点是(1.5 , 0 )和(0,- 3), y2= - x+3 与x 轴和y轴的交点是(3, 0)和(0, 3),其图象如图:
- 3
(2)设y i=2x - 3, y2= - x+3的交点为点 A 可得:£,
y= - x+3
可得:产◎
1尸1
1 1 s
S AB=丄BC?1=_ X (3 - 1.5 ) X 1匚.
类型二、一次函数图象的应用
C2、(2016春?南昌期末)电力公司为鼓励市民节约用电,采取按月用电量分段收费的
办法,已知某户居民每月应缴电费y (元)与用电量x (度)的函数图象是一条折线(如图
所示),根据图象解答下列问题.
(1)分别写出当0W x< 100和x> 100时,y与x之间的函数关系式;
(2)若该用户某月用电80度,则应缴费多少元?若该用户某月缴费105元,则该用户该月用了多少度电?
【思路点拨】(1)对0w x< 100段,列出正比例函数y=kx,对x > 100段,列出一次函数y=kx+b ; 将坐标点代入即可求出.
(2)根据(1)的函数解析式以及图标即可解答即可.
【答案与解析】解:(1)当0W x< 100时,
设y=kx,则有65=100k,解得k=0.65 .
••• y=0.65x .
当x> 100时,
设y=ax+b,则有-,
|[136a+b=8S
解得产①8
[b二-15
••• y=0.8x - 15.
(2)当用户用电80度时,该月应缴电费0.65 X 80=52 (元).
当用户缴费105元时,由105=0.8x - 15,解得x=150 .
•••该用户该月用电150度.
【总结升华】本题主要考查一次函数的应用,关键考查从一次函数的图象上获取信息的能力.
举一反三:
【变式】小高从家骑自行车去学校上学,先走上坡路到达点A,再走下坡路到达点B,最后走平路到达学校C,所用的时间与路程的关系如图所示.放学后,如果他沿原路返
回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要
的时间是()
A.14分钟
B.17分钟
C.18分钟
D.20分钟
提示:由图象可知,上坡速度为80米/分;下坡速度为200米/分;走平路速度为
100米/分.原路返回,走平路需要8分钟,上坡路需要10分钟,下坡路需要2分
钟,一共20分钟.
类型三、一次函数的性质
3、已知一次函数y 2m 4 x 3 n .
(1)当m、n是什么数时,y随x的增大而增大;
(2)当m、n是什么数时,函数图象经过原点;
(3)若图象经过一、二、三象限,求m、n的取值范
围.
【答案与解析】
解:(1) 2m 4 0,即m >—2, n为任何实数时,y随x的增大而增大;
2m 4 0 m2
(2)当m、n是满足即时,函数图象经过原点;
3 n 0 n 3
的值增大而增大;
的值增大而增大;
的值增大而减小;
的值增大而减小.
【答案与解析】解:(1)如图所示,
■/ x+y=5, ••• y=5 - x ,
/• S 匸X 4X ( 5 - x ) =10 - 2x ;
3
(2) •••点 P (x , y )在第一象限,且 x+y=5 ,
•- 0v x v 5 ;
(3) •/ 由(1)知,S=10- 2x ,
•••10- 2x=4,解得 x=3, • y=2,
(3)若图象经过一、二、三象限,则
2m 4 0 ,即
3 n 0
【总结升华】一次函数y kx b 的图象有四种情况:
①当k > 0, b > 0时, 函数 kx b 的图象经过第
一、
y 的值随 ②当k > 0, b v 0时, 函数
kx b 的图象经过第一、 三、四象限,
y 的值随
③当k v 0, b >0时,函数
kx b 的图象经过第一、 二
、四象限, y 的值随
④当k v 0, b v 0时,函数
kx b 的图象经过第二、 三、四象限,
y 的值随
、(2015春?咸丰县期末)已知点 0为坐标原点,设 △ OPA 的面积为S . (1 )求S 关于x 的函数解析式; (2 )求x 的取值范围; (3 )当S=4时,求P 点的坐标. 【思路点拨】(1)根据题意画出图形,由 得出结论;(2)由点P ( 代入(1)中的关系式求出
A( 4, 0)及在第一象限的动点 P (x , y ),且 x+y=5 ,
x+y=5可知y=5 - x ,再由三角形的面积公式即可
x , y )在第一象限,且 x+y=5得出x 的取值范围即可;(3)把S=4 x 的值,
进而可得出 y 的值.
【总结升华】本题考查的是一次函数的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.
举一反三:
【变式】函数y kx |k(k 0)在直角坐标系中的图象可能是( ).

乩 B. C. D.
【答案】B;
提示:不论k为正还是为负,k都大于0,图象应该交于x轴上方,故选B.。

相关文档
最新文档