相交线与平行线知识点总结教学教材
相交线与平行线知识点总结

相交线与平行线知识点总结相交线和平行线是几何学中两个重要的概念和性质。
下面是对相交线和平行线的知识点的总结。
一、相交线的性质:1.相交线的定义:在平面上,两条不重合的线段(或直线)在某一点相交,那么称这两条线段(或直线)为相交线。
2.相交线的分类:-相交线:两条线段在一点相交,但不共线。
-交叉线:两条线段在两个不同的点处相交。
-夹角线:两条直线之间形成的夹角称为夹角线。
3.相交线的性质:-相交线的交点是两条线段(或直线)共同的点,也是相交线上所有点的唯一共同点。
-相交线上的点在两条线段(或直线)上都有,而且在相交点上的两条线段(或直线)上都有。
-相交线的交点可以分为内点、外点和边上点。
4.相交线的判定:-直观法:两条线段(或直线)在平面上画出来,如果有交点,则存在相交线。
-代数法:通过方程组来求解两条线段(或直线)的交点,如果存在实数解,则存在相交线。
二、平行线的性质:1.平行线的定义:两条线段(或直线)在平面上没有交点,则称这两条线段(或直线)为平行线。
2.平行线的判定:-直观法:通过观察两条线段(或直线)之间是否平行来判断。
-几何法:利用两条平行线的性质,如平行线与平面关系、等角定理、相等短整数、全等三角形等来判定平行线。
-代数法:通过线段(或直线)的方程来计算斜率,如果两条线段(或直线)的斜率相等,则它们是平行的。
3.平行线的性质:-平行线的斜率相等。
-平行线的任意两条直线之间的夹角相等。
-平行线与平行线之间的距离相等。
-平行线与平行线之间可以通过平移相互转化。
4.平行线的性质的应用:-平行线的性质可以用于解决几何问题,如证明两个线段(或直线)平行、证明三角形相似等。
-平行线的性质还可以用于解决实际问题,如测量两条平行线之间的距离、设计平行线街道等。
总结:相交线和平行线是几何学中的重要概念和性质。
相交线的性质包括相交线的定义、分类和性质等,而平行线的性质包括平行线的定义、判定和性质等。
相交线和平行线的性质可以应用于解决几何问题和实际问题。
七年级下册数学平行线与相交线

第一讲 两条直线的位置关系知识点一 :相交线、平行线的概念(1)相交线平行定义:若两条直线只有一个公共点,我们称这两条直线为相交线 (2)平行线定义:在同一平面内,不相交的两条直线叫做平行线(3)两套直线的位置关系:在同一平面内,两条直线的位置关系有相交和平行两种 (4)两条直线是指不重合的两条直线注意:1、两条直线在同一平面内2、我们有时说两条射线或线段平行,实际上是指它们所在的直线平行 知识点二:关于对顶角的定义和性质定义 对顶角:像这样直线AB 与直线CD 相交于O ,∠1与∠2有公共顶点,它们的两边互为反向延长线,这样的两个角叫做对顶角.注意:对顶角的判断条件:⎪⎩⎪⎨⎧无公共边有公共顶点两条直线相交另外,从对顶角的定义还可知:对顶角总是成对出现的,它们是互为对顶角;一个角的对顶角只有一个。
性质 同角或等角的对顶角相等。
一般题型 下列说法中,正确的是( ). A .有公共顶点,并且相等的角是对顶角 B .如果两个角不相等,那么它们一定不是对顶角 C .如果两个角相等,那么这两个角是对顶角 D .互补的两个角不可能是对顶角 练习 1、如图2-1,共有________对对顶角.图2-1知识点三: 互为余角、互为补角的概念及其性质定义:互为余角:如果两个角的和是直角,则这两个角互为余角. 互为补角:如果两个角的和是平角,则这两个角互为补角 钝角没有余角注意: 互为余角、互为补角只与角的度数有关,与角的位置无关. 性质 同角或等角的余角相等,同角或等角的补角相等一般例题 ⑴∵1∠和2∠互余,∴=∠+∠21_____(或2_____1∠-=∠) ⑵∵1∠和2∠互补,∴=∠+∠21_____(或2_____1∠-=∠)练习1、若∠α=50º,则它的余角是 ,它的补角是 。
若∠β=110º,则它的补角是 ,它的补角的余角是 。
2若∠1与∠2互余,∠3和∠2互补,且∠3=120º,那么∠1= 。
相交线与平行线知识点总结

相交线与平行线知识点总结相交线与平行线第一节相交线一:相交线(1)相交线的定义两条直线交于一点,我们称这两条直线相交.相对的,我们称这两条直线为相交线.(2)两条相交线在形成的角中有特殊的数量关系和位置关系的有对顶角和邻补角两类.(3)在同一平面内,两条直线的位置关系有两种:平行和相交(重合除外).对顶角与邻补角(1)对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.(2)邻补角:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.(3)对顶角的性质:对顶角相等.(4)邻补角的性质:邻补角互补,即和为180°.(5)邻补角、对顶角成对出现,在相交直线中,一个角的邻补角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的一种位置关系.它们都是在两直线订交的前提下构成的.二:垂线(1)垂线的界说当两条直线订交所成的四个角中,有一个角是直角时,就说这两条直线相互垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.(2)垂线的性质过一点有且只有一条直线与已知直线垂直.注意:“有且只有”中,“有”指“存在”,“只有”指“唯独”“过一点”的点在直线上或直线外都可以.垂线段最短(1)垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.(2)垂线段的性质:垂线段最短.正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.(3)实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.点到直线的距离(1)点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离.(2)点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.它只能量出或求出,而不克不及说画出,画出的是垂线段这个图形.第二节平行线及其断定一:平行线平行线在同一平面内,两条直线的位置干系有两种:平行和订交(重合除外).(1)平行线的定义:在同一平面内,不相交的两条直线叫平行线.记作:a∥b;读作:直线a平行于直线b.(2)同一平面内,两条直线的位置关系:平行或相交,对于这一知识的理解过程中要注意:①前提是在同一平面内;②对于线段或射线来说,指的是它们所在的直线.平行线公理及推论(1)平行正义:颠末直线外一点,有且只有一条直线与这条直线平行.(2)平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.(3)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.(4)平行公理的推论可以看做是平行线的一种判定方法,在解题中要注意该结论在证明直线平行时应用.二:平行线的断定同位角、内错角同旁内角(1)同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.(2)内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.(3)同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.(4)三线八角中的某两个角是否是同位角、内错角或同旁内角,完整由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边动手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.平行线的断定(1)定理1:两条直线被第三条所截,假如同位角相等,那末这两条直线平行.XXX说成:同位角相等,两直线平行.(2)定理2:两条直线被第三条所截,假如内错角相等,那末这两条直线平行.XXX单说成:内错角相等,两直线平行.(3)定理3:两条直线被第三条所截,假如同旁内角互补,那末这两条直线平行.XXX单说成:同旁内角互补,两直线平行.(4)定理4:两条直线都和第三条直线平行,那么这两条直线平行.(5)定理5:在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.第三节平行线的性质平行线的性质1、平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等.XXX说成:两直线平行,同位角相等.。
相交线与平行线全章教案

相交线与平行线全章教案第一章:相交线与平行线的概念介绍教学目标:1. 了解相交线与平行线的定义及特点。
2. 能够识别和判断直线之间的相交与平行关系。
3. 掌握平行线的性质及推论。
教学内容:1. 相交线的定义及特点。
2. 平行线的定义及特点。
3. 平行线的性质及推论。
教学活动:1. 通过图片和生活实例引导学生认识相交线与平行线。
2. 利用几何工具(直尺、三角板)进行实际操作,让学生观察和体验相交线与平行线的关系。
3. 引导学生通过观察和思考,总结出平行线的性质及推论。
作业布置:1. 请学生运用几何工具,画出两条相交线和两条平行线。
2. 请学生总结平行线的性质及推论,并加以证明。
第二章:相交线的性质与判定教学目标:1. 掌握相交线的性质及判定方法。
2. 能够运用相交线的性质解决实际问题。
教学内容:1. 相交线的性质。
2. 相交线的判定方法。
教学活动:1. 通过几何图形的观察和分析,引导学生掌握相交线的性质。
2. 利用几何工具进行实际操作,让学生体验相交线的判定方法。
作业布置:1. 请学生运用相交线的性质,解决一些实际问题。
2. 请学生总结相交线的判定方法,并加以证明。
第三章:平行线的性质与判定教学目标:1. 掌握平行线的性质及判定方法。
2. 能够运用平行线的性质解决实际问题。
教学内容:1. 平行线的性质。
2. 平行线的判定方法。
教学活动:1. 通过几何图形的观察和分析,引导学生掌握平行线的性质。
2. 利用几何工具进行实际操作,让学生体验平行线的判定方法。
作业布置:1. 请学生运用平行线的性质,解决一些实际问题。
2. 请学生总结平行线的判定方法,并加以证明。
第四章:平行线的应用教学目标:1. 掌握平行线的应用方法。
2. 能够运用平行线的性质解决实际问题。
教学内容:1. 平行线的应用方法。
2. 实际问题解决。
教学活动:1. 通过几何图形的观察和分析,引导学生掌握平行线的应用方法。
2. 提供一些实际问题,让学生运用平行线的性质解决。
相交线与平行线的知识点

相交线与平行线的知识点一、相交线。
1. 邻补角。
- 定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角。
- 性质:邻补角互补,即它们的和为180°。
例如,∠AOC和∠BOC是邻补角,那么∠AOC+∠BOC = 180°。
2. 对顶角。
- 定义:有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种位置关系的两个角,互为对顶角。
- 性质:对顶角相等。
如∠AOC和∠BOD是对顶角,则∠AOC = ∠BOD。
3. 垂直。
- 定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
- 性质:- 在同一平面内,过一点有且只有一条直线与已知直线垂直。
- 连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
- 点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
二、平行线。
1. 平行线的定义。
- 在同一平面内,不相交的两条直线叫做平行线。
用符号“∥”表示平行关系,如直线a平行于直线b,记作a∥b。
2. 平行公理及推论。
- 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
- 推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
即如果a∥b,b∥c,那么a∥c。
3. 平行线的判定。
- 同位角相等,两直线平行。
例如,直线a、b被直线c所截,如果∠1 = ∠2(∠1和∠2是同位角),那么a∥b。
- 内错角相等,两直线平行。
如直线a、b被直线c所截,若∠2 = ∠3(∠2是内错角,∠3是同位角),则a∥b。
- 同旁内角互补,两直线平行。
当直线a、b被直线c所截,若∠2+∠4 = 180°(∠2和∠4是同旁内角),那么a∥b。
4. 平行线的性质。
- 两直线平行,同位角相等。
若a∥b,则∠1 = ∠2(∠1和∠2是同位角)。
北师大版七年级下册第二单元相交线与平行线单元——同位角、内错角、同旁内角(知识梳理与考点分类讲解)

北师大版七年级下册第二单元相交线与平行线单元——同位角、内错角、同旁内角(知识梳理与考点分类讲解)【知识点一】同位角、内错角、同旁内角的概念(“三线八角”模型)如图1,直线AB、CD 与直线EF 相交(或者说两条直线AB、CD 被第三条直线EF 所截),构成八个角,简称为“三线八角”,如图1.特别提醒:⑴两条直线AB,CD与同一条直线EF 相交.⑵“三线八角”中的每个角是由截线与一条被截线相交而成.【知识点二】同位角、内错角、同旁内角的定义在“三线八角”中,如上图1,(1)同位角:像∠1与∠5,这两个角分别在直线AB、CD 的同一方,并且都在直线EF 的同侧,具有这种位置关系的一对角叫做同位角.(2)内错角:像∠3与∠5,这两个角都在直线AB、CD 之间,并且在直线EF 的两侧,像这样的一对角叫做内错角.(3)同旁内角:像∠3和∠6都在直线AB、CD 之间,并且在直线EF 的同一旁,像这样的一对角叫做同旁内角.特别提醒:(1)“三线八角”是指上面四个角中的一个角与下面四个角中的一个角之间的关系,显然是没有公共顶点的两个角.(2)“三线八角”中共有4对同位角,2对内错角,2对同旁内角.【知识点三】同位角、内错角、同旁内角位置特征及形状特征图1特别提醒:巧妙识别三线八角的两种方法:(1)巧记口诀来识别:一看三线,二找截线,三查位置来分辨.(2)借助方位来识别根据这三种角的位置关系,我们可以在图形中标出方位,判断时依方位来识别,如图2.【考点目录】【考点1】“三线八角”模型的认识;【考点2】同位角、内错角、同旁内角的辨别;【考点3】与同位角、内错角、同旁内角相关的综合【考点1】“三线八角”模型的认识;【例1】(1)图1中,∠1、∠2由直线被直线所截而成.(2)图2中,AB为截线,∠D是否属于以AB为截线的三线八角图形中的角?【答案】(1)EF,CD;AB;(2)不是.【分析】(1)根据三线八角的定义求解即可;(2)根据三线八角的定义求解即可;解:(1)∠1、∠2两角共同的边所在的直线为截线,而另一边所在的直线为被截线.所以图1中,∠1、∠2由直线EF,CD被直线AB所截而成.(2)因为∠D的两边都不在直线AB上,所以∠D不属于以AB为截线的三线八角图形中的角.【点拨】此题主要考查了“三线八角”,熟练掌握:“三线八角”的定义是解答此题的关键.【变式1】如图,下列说法正确的是()A.∠2与∠3是同旁内角B.∠1与∠2是同位角C.∠1与∠3是同位角D.∠1与∠2是内错角【答案】A【分析】根据同旁内角定义可判断A、根据同位角定义可判断B、根据内错角的定义可判断C、D即可.解:A、由图与同旁内角定义,∠2和∠3是两直线被第三条直线所截,在截线的同侧,在被截直线内部的角可知:∠2和∠3是同旁内角,故选项A正确符合题意;B、∠1和∠2是两条直线被两条直线所截得到的角,不是同位角,故选项B不正确不符合题意;C、∠1和∠3是两直线被第三条直线所截,在截线的两侧,在被截直线内部的角是内错角,不是同位角,故选项C不符合题意;D、∠1和∠2是两条直线被两条直线所截得到的角不是内错角,故选项D不符合题意;故选:A .【点拨】本题考查了同旁内角、同位角、内错角,熟练掌握同位角、内错角、同旁内角的定义是解题关键.【变式2】如图,有下列说法:①能与DEF ∠构成内错角的角的个数有2个;②能与BFE ∠构成同位角的角的个数有2个;③能与C ∠构成同旁内角的角的个数有4个.其中正确结论的序号是.【答案】①【分析】根据同位角、内错角、同旁内角的定义判断.解:①能与DEF ∠构成内错角的角的个数有2个,即EFA Ð和EDC ∠,故正确;②能与EFB ∠构成同位角的角的个数只有1个:即FAE ∠,故错误;③能与C ∠构成同旁内角的角的个数有5个:即CDE ∠,B ∠,CED ∠,CEF ∠,A ∠,故错误;所以结论正确的是①.故答案为:①.【点拨】本题主要考查了同位角、内错角、同旁内角,解题的关键是熟记相关的定义.【考点2】同位角、内错角、同旁内角的辨别;【例2】两条直线被第三条直线所截,∠1是∠2的同旁内角,∠2是∠3的内错角.(1)画出示意图,标出∠1,∠2,∠3.(2)若∠1=2∠2,∠2=2∠3,求∠3的度数.【答案】(1)见分析;(2)36°【分析】(1)根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角;同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行分析即可,进而画出图形即可;(2)利用邻补角的关系可求出∠3的度数.解:(1)如图所示:(2)∵∠1=2∠2,∠2=2∠3,∴设∠3=x,则∠2=2x,∠1=4x,故x+4x=180°,解得:x=36°,故∠3的度数为36°.【点拨】此题主要考查了三线八角以及邻补角的性质,得出∠1与∠3的关系是解题关键.【变式1】下列四幅图中,1∠和2∠是同位角的是几个()A.1个B.2个C.3个D.4个【答案】B【分析】根据同位角的定义(截线的同一侧,被截线的同一方位)解决此题.解:根据同位角的定义,第一张图和第四张图中的∠1和∠2是同位角.故选:B.【点拨】本题主要考查同位角的定义,熟练掌握同位角的定义是解决本题的关键.【变式2】如图,直线a,b被直线c所截,145∠=︒,2110∠=︒,则1∠的同位角的度数是;4∠的内错角的度数是;3∠的同旁内角的度数是.【答案】70︒/70度45︒/45度70︒/70度【分析】根据同位角,内错角和同旁内角的概念以及邻补角求解即可.解:∵24180∠+∠=︒,2110∠=︒,∴470∠=︒,∵1∠和4∠是一组同位角,∴1∠的同位角的度数是70︒;∵145∠=︒,∴31801135∠=︒-∠=︒,∴4∠的内错角的度数是180318013545︒-∠=︒-︒=︒;3∠的同旁内角4∠的度数是70︒.故答案为:70︒;45︒;70︒.【点拨】此题考查了邻补角,同位角,内错角和同旁内角的概念,解题的关键是熟练掌握以上知识点.【考点3】与同位角、内错角、同旁内角相关的综合【例3】如图,直线AB ,CD 被直线EF 所截,交点分别为G ,H ,∠CHG =∠DHG =34∠AGE .(1)CD 与EF 有怎样的位置关系?请说明理由.(2)求∠CHG 的同位角、内错角、同旁内角的度数.【答案】(1)CD ⊥EF ;(2)∠CHG 的同位角∠AGE =120°,内错角∠BGF =∠AGE =120°,同旁内角∠AGF =60°【分析】(1)先由∠CHG +∠DHG =180°及∠CHG =∠DHG ,可得∠CHG =∠DHG =90°,再根据垂直的定义得到CD 与EF 互相垂直;(2)先由∠CHG =∠DHG =34∠AGE ,可得∠AGE =120°,再根据同位角、内错角、同旁内角的定义即可求解.解:(1)CD ⊥EF .理由如下:因为CD是直线,所以∠CHG+∠DHG=180°,又∠CHG=∠DHG,所以∠CHG=∠DHG=90°,所以CD⊥EF.(2)由(1)知∠CHG=∠DHG=90°,因为∠CHG=∠DHG=34∠AGE,所以∠AGE=120°,所以∠CHG的同位角∠AGE=120°,内错角∠BGF=∠AGE=120°,同旁内角∠AGF=180°-∠AGE=60°.【点拨】本题考查了垂直的定义,邻补角的定义,同位角、内错角、同旁内角的定义,以及对顶角和邻补角的性质的计算,是基础知识,比较简单.【变式1】如图,下列判断正确的是()A.有2对同位角,2对内错角,2对同旁内角B.有2对同位角,2对内错角,3对同旁内角C.有4对同位角,2对内错角,4对同旁内角D.以上判断均不正确【答案】B【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角作答.解:观察图形可知,有2对同位角,2对内错角,3对同旁内角.故选B.【点拨】本题考查了同位角、内错角、同旁内角的概念.三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形.注意按顺序一个点一个点的数,不要重复,不要遗漏.【变式2】如图两条直线被第三条直线所截,2∠是3∠的同旁内角,1∠是3∠的内错角,若243∠=∠,321∠=∠,则1∠的度数是.【答案】20︒/20度【分析】设1x ∠=︒,则32x ∠=︒,28x ∠=︒,根据邻补角互补可得方程,求解即可.解:如图,设1x ∠=︒,则32x ∠=︒,28x ∠=︒,∵12180∠+∠=︒,∴8180x x ︒+︒=︒,解得:20x =,∴120∠=︒.故答案为:20︒.【点拨】本题考查了内错角、同旁内角、邻补角互补、角的计算,解本题的关键是掌握内错角的边构成“Z ”形,同旁内角的边构成“U ”。
(完整版)相交线与平行线复习知识点总结

第五章 相交线与平行线复习 5.1.1相交线(详见课本第2页)1、相交线的概念:在同一平面内,如果两条直线只有一个 点,那么这两条直线叫做相交线,公共点称为两条直线的交点. 如图1所示,直线AB 与直线CD 相交于点O.2、对顶角的概念:若一个角的两条边分别是另一个角的两条边的 延长线, 那么这两个角叫做对顶角. 如图2所示,∠1与∠3、∠2与∠4都是对顶角. 3、对顶角的性质:对顶角 .4、邻补角的概念:如果把一个角的一边 延长,这条反向延长线与这个角的另一边构成一个角,此时就说这两个角互为邻补角. 如图3所示,∠1与∠2互为邻补角,由平角定义可知∠1+∠2=180°.5.1.2垂线(详见课本第3-5页)1、垂线的概念:当两条直线相交所成的四个角中,有一个角是 角时,就说这两条直线互相 ,其中一条直线叫做另一条直线的 ,它们的交点叫做 .2、垂线的性质 (1)(垂直公理)性质1:在同一平面内,经过直线外或直线上一点,有且只有 条直线与已知直线垂直,即过一点有且只有 条直线与已知直线 . (2)(垂直推理)性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短. 即垂线段最 . 3、点到直线的距离:直线外一点到这条直线的 线段的长度,叫做点到直线的 . 如图5所示,l 的垂线段PO 的长度叫做点P 到 直线l 的距离. 4、 垂线的画法(工具:三角板或量角器)画法指点:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上, ⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线.5.1.3同位角、内错角、同旁内角(详见课本第6-7页) 1、三线八角两条直线被第 条直线所截形成 个角,它们构成了同位角、内错角与同旁内角. 如图5,直线b a ,被直线l 所截①∠1与∠5在截线l 的同侧,同在被截直线b a ,的上方,叫做 角(位置相同)同位角是“F ”型 ②∠5与∠3在截线l 的两旁(交错),在被截直线b a ,之间(内),叫做 角(位置在内且交错)内 错角是“Z ”型③∠5与∠4在截线l 的同侧,在被截直线b a ,之间(内),叫做 角. 同旁内角是“U ”型 2、如何判别三线八角判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把 图形补全. 如上图6 5.2.1平行线(详见课本第11-12页)1、 平行线的概念:在同一平面内,不 的两条直线叫做平行线.2、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴ ;⑵ .(通常把 的两直线看成一条直线)判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:AB CD 14321A BC DO 图2 OD C BA 图1 图5图6 21OC B A图3图4 623 4 5 78 9BA D EC13、平行线的表示方法平行用“ ”表示,如图7所示,直线AB 与直线CD 平行,记作AB ∥CD ,读作AB 平行于CD .4、平行线的画法:5、平行线的基本性质 (1)平行公理:经过直线 一点,有且只有 条直线与已知直线 .(2)平行推理:如果两条直线都和第 条直线平行,那么这两条直线也 .如上图8所示 5.2.2平行线的判定(详见课本第12-14页)1、平行线的判定方法:(1)判定1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角 ,两直线 .(2)判定2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角 ,两直线 .(3)判定3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角 ,两直线 .(4)平行线的概念:同一平面内,如果两条直线没有交点(不 ),那么两直线平行.(5)两条直线都和第三条直线平行,那么这两条直线 .(平行于同一条直线的两条直线也 ) (6)在同一平面内,如果两条直线同时垂直于同一条直线, 那么这两条直线 .(垂直于同一条直线的两条直线 )5.3.1平行线的性质(详见课本第18-19页) 1、平行线的性质:(1)两条平行线被第三条直线所截,同位角相等. 简记:两直线 ,同位角 . (2)两条平行线被第三条直线所截,内错角相等. 简记:两直线 ,内错角 .(3)两条平行线被第三条直线所截,同旁内角互补. 简记:两直线 ,同旁内角 . 2、两条平行线的距离如图10,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F , 则称线段EF 的长度为两平行线AB 与CD 间的距离. 3.平行线的性质与判定是互逆的关系: ○1两直线平行 同位角相等;○2两直线平行 内错角相等; ○3两直线平行 同旁内角互补.5.3.2命题、定理(详见课本第20页) 1、命题的概念: 一件事情的语句,叫做命题.2、命题的组成:每个命题都是 、 两部分组成. (1)题设是 事项; (2)结论是由已知事项 的事项.3、命题的表述句式:命题常写成“ ……, ……”的形式. 具有这种形式的命题中,用“如果”开始的部分是 ,用“那么”开始的部分是 . 5.4平移(详见课本第28-29页)1、平移变换的概念:把一个图形 沿某一 方向移动,会得到一个新图形的平移变换.2、平移的特征:①大小: ; ②形状: ; ③位置: ; ④对应点的连线: 且 . (1的形状与大小都没有发生变化. (2)经过平移后,对应点所连的线段平行(或在同一直线上)且相等.AD EBC 1 2图7 D C BA a b c 图8A EG B C F H D图10 性质判定性质性质判定判定A D BE CF 图12A B C DEF1 2 34自我检测1.如果两个角是互为邻补角,那么一个角是锐角,另一个角是钝角.( )2.同一平面内,一条直线不可能与两条相交直线都平行.( )3.两条直线被第三条直线所截,内错角的对顶角一定相等.( )4.互为邻补角的两个角的平分线互相垂直.( )5.两条直线都与同一条直线相交,这两条直线必相交.( )6.如右下图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.7.设a 、b 、c 为同一平面上三条不同直线,a) 若//,//a b b c ,则a 与c 的位置关系是_________; b) 若,ab bc ⊥⊥,则a 与c 的位置关系是_________; c)若//a b ,b c ⊥,则a 与c 的位置关系是________.8.如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.9.如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.10.如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE 过点C 作CF ∥AB ,则B ∠=∠____( ) 又∵AB ∥DE ,AB ∥CF ,∴____________( ) ∴∠E =∠____( ) ∴∠B +∠E =∠1+∠2 即∠B +∠E =∠BCE .11.⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.12.阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ . 证明:∵AB ∥CD ,∴∠MEB =∠MFD ( ) 又∵∠1=∠2, ( )∴∠MEB -∠1=∠MFD -∠2, ( ) 即 ∠MEP =_______∴EP ∥_____.( )13.已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小; ⑵∠P AG 的大小.14.如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA 交CA 于G .求证12∠=∠.15.已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.。
人教版初中数学相交线与平行线全章知识点

人教版初中数学相交线与平行线全章知识点相交线与平行线是初中数学中的基础知识之一,本章主要介绍了相关概念、性质和应用。
一、基本概念1. 平行线:在同一平面内,不相交且在无限远处也不相交的两条直线称为平行线。
2. 相交线:在同一平面内,有公共点的两条直线称为相交线。
3. 夹角:由两条相交的直线和它们所夹的两个角所组成的角称为夹角。
夹角可以用符号“∠”表示。
4. 同位角:当一条直线与另外两条直线相交时,同侧对应的角互为同位角,它们的度数相等。
5. 对顶角:由两条相交的直线所形成的两组相对角称为对顶角,它们的度数相等。
二、性质与定理1. 平行线的性质:平行线具有如下性质:(1)平行线不相交,无交点。
(2)平行线所成的同位角互相相等。
(3)平行线与一条截面所成的内角和为180°。
2. 相交线的性质:相交线具有如下性质:(1)相交线所成的对顶角互相相等。
(2)相交线所成的内角和为360°。
三、应用1. 判断两条直线的关系:根据两条直线的位置关系可以判断它们是否平行或者相交。
2. 求解线段长度:通过利用相似三角形的性质,可以计算出在平行线所形成的三角形中,线段长度之间的比例关系。
3. 构造平行线:通过辅助线的方法,可以在给定的平面内构造出一条与已知线段平行的直线。
4. 解题方法:利用夹角、同位角、对顶角等概念与性质,结合所给条件,运用相关的定理和公式进行计算和推理。
相交线与平行线是初中数学中的基本概念和知识点,对于理解和掌握平面几何学有着重要的作用。
通过熟练掌握相关的概念和性质,可以更好地应用到实际问题和解决生活中的问题中去。
平行线与相交线的知识点总结与归纳

平行线与相交线的知识点总结与归纳一、平行线的定义平行线是在同一个平面上,永远也不会相交的两条直线。
平行线的特点是它们的斜率相等,且不相交。
若两条直线平行,则可表示为l,m。
平行线的性质:1.平行线具有等于90°的斜角。
2.平行线与同一条直线垂直的直线也是平行线。
这一性质被称为垂直平行线定理。
3.如果一条直线与两条平行线相交,则它与另一条平行线的交角与第一条直线与第二条直线的交角相等。
4.平行线的反身性质:如果l,m,则m,l。
二、平行线的判定方法1.高度差法:通过计算两线间的垂直距离和斜率判断是否平行。
2.点斜式法:通过两点确定的直线斜率相等来判定。
3.斜率法:两直线斜率相等,则平行。
4.三角形内角和法:若两直线被一条直线所截,则截线两侧内角和相等,则平行。
三、相交线的定义相交线是指在同一个平面上,会相交的两条或更多条直线。
相交线两两相交于一点,称之为交点。
相交线的性质:1.相交线之间的交角之和等于180°,即交角互补。
2.两条相交线总有一对互为垂直的直线。
3.相交线的交点称为顶点,可以通过顶点来判断直线相交的情况,包括内角和外角。
四、平行线与相交线的关系1.平行线切割相交线定理:当一条直线与两条平行线相交时,它切割的两条平行线与该直线所夹的两对内角互补。
2.内错角定理:当两条平行线被一条截线相交时,直线截线所夹的内错角相等。
3.同位角定理:同位角为同侧的内角,当两直线被另一直线切割时,同位角相等。
4.外错角定理:当两条平行线被一条截线相交时,直线截线所夹的外错角互补。
五、应用举例1.在平行四边形中,对角线互相平分。
2.平行线截割三角形:当一条线段与两条平行线相交时,它将三角形切割成两个面积相等的三角形。
3.测量高度:通过测量两个平行线之间的垂直距离来确定垂直高度。
4.道路设计:在公路设计中,平行线可以将车道分隔开,并引导交通流向。
在几何学中,平行线与相交线是解决问题和证明定理中经常用到的概念。
人教版七年级下册数学《平行线的判定》相交线与平行线说课研讨复习教学课件

是为什么?
解题秘方:找出AB,CD 被
AE 所截形成的同旁内角,利
用两个角之间的数量关系来
说明这两条直线平行.
感悟新知
解:因为∠ 1= ∠ AOD(对顶角相等),∠ 1=70°, 所以∠ AOD=70°. 又因为∠ A=110°, 所以∠ A+ ∠ AOD=180°. 所以AB ∥ CD(同旁内角互补,两直线平行).
(3)直线l1,l2位置关系如何?
两直线平行
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
.P
A
B
1
相关概念:判定1:同位角相等,两直线平行
平行线判定1:
两条直线被第三条直线所截 ,
如果同位角相等, 课件 课件 课件 课件 课件
2. 表达方式:如图5.2-12, 因为∠ 1+ ∠ 2=180°(已 知), 所以a ∥ b(同旁内角互补, 两直线平行).
感悟新知
特别解读 利用同旁内角说明两直线平行时,同旁内角之
间的关系是互补,不是相等.
感悟新知
例 3 如图5.2-13, 直线AE,CD 相交于点O, 如果
∠ A=110°,∠ 1=70°,就可以说明AB ∥ CD,这
【例1】如图,∠1=∠2=35°,
则AB与CD的关系是___A__B_∥_C_D____,
理课 课 课件 件 件 由课课课件件件 是___同___位__角__相__等__,__两__直__线__平__行__.
(完整版)初一数学下册《相交线与平行线》知识点归纳

相交线与平行线一、目标与要求1.理解对顶角和邻补角的概念,能在图形中辨认;2.掌握对顶角相等的性质和它的推证过程;3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力。
二、重点在较复杂的图形中准确辨认对顶角和邻补角;两条直线互相垂直的概念、性质和画法;同位角、内错角、同旁内角的概念与识别。
三、难点在较复杂的图形中准确辨认对顶角和邻补角;对点到直线的距离的概念的理解;对平行线本质属性的理解,用几何语言描述图形的性质;能区分平行线的性质和判定,平行线的性质与判定的混合应用。
四、知识框架五、知识点、概念总结1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.对顶角和邻补角的关系4.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。
5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
6.垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。
7.垂线性质(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。
(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
8.同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。
10.平行线:在同一平面内,不相交的两条直线叫做平行线。
11.命题:判断一件事情的语句叫命题。
12.真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。
13.假命题:条件和结果相矛盾的命题是假命题。
相交线与平行线总结

《相交线与平行线》总结By Miss Gao(参考2018版5年中考3年模拟)一、思维导图二、识记点1,在同一平面内,过一点有且只有一条直线与已知直线垂直;2,同一平面内,两条直线不是相交就是平行(垂直是一种特殊的相交);3,经过直线外一点,有且只有一条直线与这条直线平行;三、提点1,看清楚题目内容及要求,不要粗心大意;2,解题说明过程尽可能完整,有几个问题就回答几个;3,学会换角度看问题和思考问题;4,学会发现和利用图形中的隐含条件;5,解题方法:①目标(如何解决问题)②条件(把所有条件写出来【已知和隐含】)③筛选,组合,利用条件④结论四、自我补充寄语:在生活上遇到的难题的时候,也可以用目标,条件,筛选和结论这种方法哦,记住要把一切自己可以利用的条件都列出来哦。
有时候休息一下,放松一下再去想问题,或者换个方向,也许会有不错的收获哦!By Miss Gao《相交线和平行线》经典、易错题1,如图,∠ACB=90°,∠CDB=90°2,如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池。
(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据。
3,下列说法正确的是()A、两条不相交的直线叫做平行线B、经过一点,有且只有一条直线与已知直线平行C、在同一平面内,不相交的两条线段相互平行D、在同一平面内,不相交的两条直线叫做平行线4、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是()A. 第一次右拐50°,第二次左拐130°B. 第一次左拐50°,第二次右拐130°C. 第一次左拐50°,第二次左拐130°D. 第一次右拐50°,第二次左拐50°5、如图所示,已知直线a、b被直线c所截,以下结论:①∠1=∠2;②∠1=∠3;③∠2=∠3;④∠3+∠4=180°其中正确的个数有()A、1个B、2个C、3个D、4个6,已知,如图,∠BAE+∠AED=180°,∠M=∠N.试说明:∠1=∠2.7,已知,如图,BC,DE相交于点O,给出下面三个论断:①∠B=∠E;②AB//DE;③BC//EF。
第二章 相交线与平行线

第二章相交线与平行线第1节两直线的位置关系∙知识点聚焦1.相交线与平行线(1)相交线:在同一平面内如果两条直线只有一个公共点时,我们称这两条直线相交.∙(2)平行线:在同一平面内,永不相交的两条直线叫做平行线.注:(1)在同一平面内,两条直线的位置关系有相交和平行两种.(2)两条直线相交,只有一个交点.2.对顶角与邻补角(1)对顶角:两条直线相交所成的四个角中,一个角的两边与另一个角的;两边互为反向延长线,这两个角叫作对顶角,对顶角相等.注:相等的角不一定是邻补角.(2)邻补角:两条直线相交所成的四个角中,两个角有一条公共边,另一边互为反向延长线,这两个角叫作邻补角,邻补角互补.注:互补的角不一定是邻补角.3.余角和补角(1)余角①定义:如果两个角的和是o90,那么称这两个角“互为余角”,简称“互余”,也可以说其中一个角是另一个角的余角.②性质:同角或等角的余角相等.(2)补角180那么称这两个角“互为补角”,简称“互补”,①定义:如果两个角的和是o也可以说其中一个角是另一个角的补角.②性质:同角或等角的补角相等.4.垂线(1)定义:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足.(2)性质:①在同一平面内,过一点有且只有一条直线与已知直线垂直. ②连接直线外一点与直线上的所有点的连线中,垂线段最短.简称垂线段最短.(3)点到直线的距离:直线外一点到这条到这条直线的垂线段的长度,叫作点到直线的距离.注:距离是指线段的长度,是一个数量;线段是图形,它们之间不能等同. (4)垂线的画法一靠:用三角尺一条直角边靠在已知直线上. 二移:移到三角尺使已知点落在它的另一条直角边上. 三画:沿着这条直角画线.注:①画一条线段或射线的垂线,就是画它们所在直线的垂线.②过一点作线段的垂线,垂足可以线段上,也可以在线段的延长线上.典型例题 例1.如图,三条直线AB 、CD 、EF 相交于点O ,一共构成哪几对对顶角?一共 构成哪几对邻补角?分析:⑴对顶角和邻补角是两条直线所形成的图角.⑵对顶角:有一个公共顶点,并且一个角的两边是另一个角的两边的反向延长线.⑶邻补角:两个角有一条公共边,另一边互为反向延长线. 有6对对顶角.12对邻补角.ABC DEF例2.如图所示,点O 是直线AB 上一点,OE 、OF 分别平分∠BOC 、∠AOC .⑴求∠EOF 的度数;⑵写出∠BOE 的余角及补角.分析:⑴∵OE 、OF 平分∠BOC 、∠AOC ∴,21BOC EOC ∠=∠,21AOC FOC ∠=∠∴)(212121AOC BOC AOC BOC FOC EOC EOF ∠+∠=∠+∠=∠+∠=∠又∵︒=∠+∠180AOC BOC ∴︒=︒⨯=∠9018021EOF⑵∠BOE 的余角是:∠COF 、∠AOF ;∠BOE 的补角是:∠AOE.例3.(1)已知,如图,直线AB 、CD 交于点O ,且o BOC AOD 120=∠+∠,求AOC ∠的度数.(2)如图,AB 、CD 、EF 交于点O ,o AOE 25=∠,o DOF 45=∠,求AOD ∠的对顶角的度数.(3)如图,AB 、CD 交于点O ,OE 平分AOD ∠,o BOD BOC 30-∠=∠,求CO E ∠的度数.分析:(1)由对顶角相等可得o BOC AOD 60=∠=∠,从而可得o o o A O C 12060180=-=∠.CEF(2)由对顶角相等可知o DOF EOC 45=∠=∠,从而可得o o o o A O D 1102545180=--=∠.(3)o BOD COB 180=∠+∠,o BOD BOC 30-∠=∠,则o C O B 75=∠,o BOD 105=∠,o COB AOD 75=∠=∠,OE 平分AOD ∠,则o AOE 5.37=∠, o BOD AOC 105=∠=∠,则o o o AOE COA COE 5.1425.37105=+=∠+∠=∠.例 4.已知,如图所示直线AB 、CD 、EF 交于点O ,BOD APF ∠=∠2,AOC COE ∠=∠23,求COE ∠的度数.分析:方程思想,将图中的角用未知数表示,找到等量关系,设方程,一般设较小的为x .例5.如图,OE 与CD 相交与点O ,且21,90∠=∠︒=∠=∠COE DOE .(1)BOE AOE ∠∠与有什么关系?为什么? (2)BOC AOD ∠∠与有什么关系?为什么? 分析:(1)BOE AOE ∠∠与相等.因为21,902,901∠=∠︒=∠+∠︒=∠+∠且BOE AOE ,所以BOE AOE ∠=∠.(2)BOC AOD ∠∠与相等,21,1802,1801∠=∠︒=∠+∠︒=∠+∠且BOC AOD ,所以BOC AOD ∠=∠.例6.(1)如图,已知o ACB 90=∠,AB CD ⊥,垂足为D ,则点A 到直线CB 的距离为线段 的长;线段DB 的长为点 到直线 的距离.AE CB OD12(2)如图,在直角三角形ABC 中,o C 90=∠,c AB =,b AC =,a BC =,则AB BC AC BC AB AB AC -++-+-= .分析:(1)垂线的性质.(2)垂线段最短+两点间线段最短.例7.探索规律(1)2条直线相交于一点,有多少对不同的对顶角? (2)3条直线相交于一点,有多少对不同的对顶角? (3)4条直线相交于一点,有多少对不同的对顶角?(4)n 条直线相交于一点,有多少对不同的对顶角?分析:两条直线相交时可出现两对不同的对顶角,故找对顶角的对数其实质就是找有多少对不同的直线相交.课堂练习1.下列说法正确的是( )A.同一平面内没有公共点的两条线段平行B.两条不相交的直线是平行线C.同一平面内没有公共点的两条直线平行D.同一平面没有公共点的两条射线平行2.下面四个图形中,∠1与∠2是对顶角的图形有( )A.0B.1C.2D.33.如图所示,∠1的邻补角是( )A .BOC ∠B .BOE ∠和AOF ∠C .AOF ∠D .BOE ∠和AOC ∠4.下列各图中,∠1与∠2互为余角的是( )A. B .C .D .5.如图,直线1l 与2l 相交于点O ,1l OM ⊥,若o 44=∠α,则=∠β等于( )A .o 56B .o 46C .o 45D .o 446.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm 的点的个数是( )个.A .0B .1C .2D .37.如图,已知直线AB 与CD 交于点O ,ON 平分DOB ∠,若o BOC 110=∠,则AON ∠的度数为___度.8.如图所示,o ACB 90=∠,AB CD ⊥,BC DE ⊥,①钝角与锐角互补; ②α∠的余角是α∠-090; ③β∠的补角是β∠-o 180;④若∠1+∠2+∠3=90°,则∠1、∠2、∠3互余.10.已知:如图,三条直线AB ,CD EF 相交于O ,且EF CD ⊥,11.已知,所示,o ACB 90=∠,cm BC 5=,cm AC 12=,12.通过画图,寻找对顶角和邻补角(不含平角):(1)若2条直线相交于同一点,则有 对对顶角, 对邻补角. (2)若3条直线相交于同一点,则有 对对顶角, 对邻补角. (3)若4条直线相交于同一点,则有 对对顶角, 对邻补角.(4)通过(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于同一点,则可形成 对对顶角, 对邻补角.13.如图,AB ,CD ,EF 相交于点O ,如果o AOC 65=∠,o DOF 50=∠.(1)求BOE ∠的度数;(2)计算AOF ∠的度数,发现射线OA 有什么特殊性吗?14.如图,AOB 是一条直线,o EOC BOD AOD 90=∠==∠.1:3:=∠∠AOE BOD , (1)求COD ∠的度数. (2)图中有哪几对角互为余角? (3)图中有哪几对角互为补角?15.将一张长方形纸片按图中的方式折叠,BC ,BD 为折痕,求CBD ∠的大小.16.已知:如图,直线AB ,CD 相交于点O ,OE 平分BOD ∠,OF 平分COB ∠,1:4:=∠∠DOE AOD .求AOF ∠的度数.17.如图,若EO ⊥AB 于O ,直线CD 过点O ,∠EOD ︰∠EOB =1︰3,求∠AOC 、∠AOE 的度数.18.如图,O 为直线AB 上一点,∠BOC =3∠AOC ,OC 平分∠AOD .CDBAEO19.已知:直线AB 与直线CD 相交于点O ,o BOD 45=∠.(1)如图1,若AB EO ⊥,求DOE ∠的度数; (2)如图2,若FO 平分AOC ∠,求DOF ∠的度数.20.如图所示,已知直线AB 、CD 交于点0,x =1,1-=y 是方程34-=+y ax 的解,也是方程a ay bx 21+=-的解,且a b AOD AOC ::=∠∠,AB EO ⊥. (1)求EOC ∠的度数.(2)若射线OM 从OC 出发,绕点O 以s o /1的速度顺时针转动,射线ON 从OD 出发,绕点O 以s o /2的速度逆时针第一次转动到射线OE 停止,当ON 停止时,OM 也随之停止.在转动过程中,设运动时间为t ,当t 为何值时,ON OM ⊥. (3)在(2)的条件下,当ON 运动到EOC ∠内部时,下列结论:①BON EOM ∠-∠2不变;②BON EOM ∠+∠2不变,其中只有一个是正确的,请选择并证明.第2节 探索直线平行的条件∙知识点聚焦1.同位角具有1∠和5∠这样位置关系的角称为同位角, 图中的同位角还有2∠和6∠,3∠和7∠,4∠和8∠ 2.内错角具有3∠和5∠这样位置关系的角称为内错角, 图中的内错角还有4∠和6∠ 3.同旁内角具有4∠和5∠这样位置关系的角称为同旁内角,图中的同旁内角还有3∠和6∠ 注:(1)同位角、内错角、同旁内角是成对出现的,两直线被第三条直线所截形成的8个角中有4对同位角,2对内错角,2对同旁内角.(2)同位角、内错角、同旁内角各自的位置关系:同位角是“同旁同侧”,内错角是“内部异侧”,同旁内角“内部同侧” 4.两条直线平行条件(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称为:同位角相等.两直线平行.(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简称:内错角相等.两直线平行.(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简称:同旁内角互补.两直线平行. (4)平行于同一条直线的两条直线平行.(5)在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行 5.平行线的性质:过直线外一点有且只有一条直线与这条直线平行41 2 3 5 876DCBEAF例1:如图所示:⑴图中∠1与∠2是哪两条直线被哪一条直线所截形成的?⑵图中∠1与哪个角是同位角?它们是哪两条直线被哪一条直线所截形成的? ⑶∠3与∠C 是什么位置关系的角?它们是哪两条直线被哪一条直线所截形成的?分析:⑴∠1与∠2是直线AB 、DE 被直线EF 所截形成的;⑵∠1与∠B 是同位角,它们是直线EF 、BC 被直线AB 所截形成的; ⑶∠3与∠C 是同旁内角,它们是直线AC 、DE 被直线BC 所截形成的.例2: 如图,指出下列各组角是哪两条直线被哪一条直线所截而得到的,并说出它们的名称:分析:(1)∠1和∠2:是AB 、EF 被直线CD 所截而得到的,一组同位角(2)∠1和∠3:是AB 、CD 被直线CD 所截而得到的,一对内错角(3)∠1和∠6:是AB 、CD 被直线CD 所截而得到的,一对同旁内角(4)∠2和∠6:是EF 、CD 被直线AB 所截而得到的,一对同位角 (5)∠2和∠4:是EF 、AB 被直线CD 所截而得到的,一对同旁内角 (6)∠3和∠5:是EF 、CD 被直线AB 所截而得到的,一对内错角 (7)∠3和∠4:是AB 、CD 被直线EF 所截而得到的,一对同旁内角 例3:如图,根据下列条件,可推得哪两条直线平行?并说明理由. ⑴∠CBD =∠ADB ; ⑵∠BCD +∠ADC =180°; ⑶∠ACD =∠BAC ;3CFEBAD1 423 65ABCDO分析: ⑴由∠CBD =∠ADB ,可推得AD ∥BC ;根据内错角相等,两直线平行. ⑵由∠BCD +∠ADC =180°,可推得AD ∥BC ;根据同旁内角互补,两直线平行. ⑶由∠ACD =∠BAC 可推得AB ∥DC ;根据内错角相等,两直线平行.例4: 如图,平面内有六条两两不平行的直线,试证:在所有的交角中,至少有一个角小于31°.分析:如图⑵,我们可以将所有的直线移动后,使它们相交于同一点,此时的图形为图⑵.证明:假设图⑵中的12个角中的每一个角都不小于31° 则12×31°=372°>360° 这与一周角等于360°矛盾所以这12个角中至少有一个角小于31°课堂练习01.如图,∠EAC =∠ADB =90°.下列说法正确的是( ) A .α的余角只有∠B B .α的邻补角是∠DAC C .∠ACF 是α的余角 D .α与∠ACF 互补02.如图,已知直线AB 、CD 被直线EF 所截,则∠EMB 的同位角为( ) A .∠AMF B .∠BMF C .∠ENC D .∠ENDl 1l 2l 3 l 4l 5l 6图⑴l 1l 2 l 3l 4l 5l 6图⑵A E BCF DABC D FEMNα第1题图 第2题图ABDC第4题图03.下列语句中正确的是( )A .在同一平面内,一条直线只有一条垂线B .过直线上一点的直线只有一条C .过直线上一点且垂直于这条直线的直线有且只有一条D .垂线段就是点到直线的距离04.如图,∠BAC =90°,AD ⊥BC 于D ,则下列结论中,正确的个数有( ) ①AB ⊥AC ②AD 与AC 互相垂直 ③点C 到AB 的垂线段是线段AB ④线段AB 的长度是点B 到AC 的距离 ⑤垂线段BA 是点B 到AC 的距离 ⑥AD >BD A .0 B . 2 C .4 D .605.点A 、B 、C 是直线l 上的三点,点P 是直线l 外一点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离是( )A .4cmB .5cmC .小于4cmD .不大于4cm06.将一副直角三角板按图所示的方法旋转(直角顶点重合),则∠AOB +∠DOC = .07.如图,矩形ABCD 沿EF 对折,且∠DEF =72°,则∠AEG = . 08.在同一平面内,若直线a1∥a2,a2⊥a3,a3∥a4,…则a1 a10.(a1与a10不重合)09.如图所示,直线a 、b 被直线c 所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判断a ∥b 的条件的序号是 .10.在同一平面内两条直线的位置关系有 .11.如图,已知BE 平分∠ABD ,DE 平分∠CDB ,且∠E =∠ABE +∠EDC .试说明AB ∥CD ?12.如图,已知BE 平分∠ABC ,CF 平分∠BCD , ∠1=∠2,那么直线AB 与CD 的位置关系如何?ABCDOABCDEFG H abc第6题图第7题图第9题图1 2 3 4 5 6 7 81A C D EB A BC DEF 1 213.如图,推理填空:⑴∵∠A = (已知) ∴AC ∥ED ( )⑵∵∠2= (已知)∴AC ∥ED ( )⑶∵∠A + =180°(已知) ∴AB ∥FD .14.如图,请你填上一个适当的条件 .使AD ∥BC .15.在同一平面内有9条直线如何安排才能满足下面的两个条件?⑴任意两条直线都有交点; ⑵总共有29个交点.1 23 AB C DE F第13题图 AB C D E F第14题图GFEDCB A第3节 平行线的性质∙知识点聚焦1. 平行线的性质(1)两条平行线被第三条直线所截,同位角相等.简称为:两直线平行,同位角相等.(2)两条平行线被第三条直线所截,内错角相等.简称为:两直线平行,内错角相等.(3)两条平行线被第三条直线所截,同旁内角互补.简称为:两直线平行,同旁内角互补.2.平行线的判定与性质的区别与联系 (1)直线平行的条件同位角相等;内错角相等;同旁内角互补;两直线平行; (2)平行线的性质两直线平行;同位角相等;内错角相等;同旁内角互补;例1 如图,平行线CD AB ,被直线AE 所截.(1) 从︒=∠1101可以知道2∠是多少度吗?为什么? (2) 从︒=∠1101可以知道3∠是多少度吗?为什么? (3) 从︒=∠1101可以知道4∠是多少度吗?为什么? 分析:(1)︒=∠1102( 两直线平行,内错角相等.)(2)︒=∠1103 ( 两直线平行,同位角相等.) (4)︒=∠704 (两直线平行,同旁内角互补.)例2 如图,已知C A CF AE CD AB ∠︒=∠,39,//,//是多少度?为什么? 分析:因为CF AE //,所以FGB A ∠=∠因为CD AB //,所以C FGB ∠=∠ 所以︒=∠39C例3 如图,AB ∥CD ,AE 、DF 分别是∠BAD 、∠CDA 的角平分线,AE 与DF 平行吗?•为什么?分析:平行. ∵AB ∥CD ,∴∠BAD=∠CDA (两直线平行,内错角相等). ∵AE 、DF 分别是∠BAD 、∠CDA 的平分线,∴∠EAD=12∠BAD ,∠FDA=12∠CDA .∴∠EAD=∠FDA .∴AE ∥DF (内错角相等,两直线平行).例4 如图,已知∠AMB=∠EBF ,∠BCN=∠BDE ,求证:∠CAF=∠AFD .分析:∵∠AMB=∠DMN ,又∠ENF=∠AMB ,∴∠DMN=∠ENF , ∴BD ∥CE .∴∠BDE+∠DEC=180°.又∠BDE=∠BCN ,∴∠BCN+∠CED=180°, ∴BC ∥DE ,∴∠CAF=∠AFD .例5 如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角A 是120°,第二次拐的角B 是150°,第三次拐的角是∠C ,这时的道路恰好和第一次拐弯之前的道路平行,问∠C 是多少度?说明你的理由.分析:∠C=150°.理由:如答图,过点B 作BE ∥AD ,则∠ABE=∠A=120°(两直线平行,内错角相等).∴∠CBE=∠ABC-∠ABE=150°-120°=30°. ∵BE ∥AD ,CF ∥AD ,∴BE ∥CF (平行于同一条直线的两直线平行). ∴∠C+∠CBE=180°(两直线平行,同旁内角互补). ∴∠C=180°-∠CBE=180°-30°=150°.西B 30°A北东南例6 (1)如图,若AB ∥DE ,∠B=135°,∠D=145°,你能求出∠C 的度数吗?(2)在AB ∥DE 的条件下,你能得出∠B 、∠C 、∠D 之间的数量关系吗?并说明理由.分析:(1)如答图5-3-2,过点C 作CF ∥AB ,则∠1=180°-∠B=180°-135°=45°(两直线平行,同旁内角互补).∵CF ∥AB ,DE ∥AB ,∴CF ∥DE (平行于同一条直线的两直线平行).∴∠2=∠180°-∠D=180°-145°=35°(两直线平行,同旁内角互补). ∴∠BCD=∠1+∠2=45°+35°=80°. (2)∠B+∠C+∠D=360°.理由:如答图5-3-2过点C 作CF ∥AB ,得∠B+∠1=180°(两直线平行,•同旁内角互补).∵CF ∥AB ,DE ∥AB ,∴CF ∥DE (平行于同一条直线的两直线平行). ∴∠D+∠2=180°(两直线平行,同旁内角互补). ∴∠B+∠1+∠2+∠D=360°. 即∠B+∠BCD+∠D=360°.点拨:辅助线CF 是联系AB 与DE 的纽带.课堂练习01.如图,由A 测B 得方向是( ) A .南偏东30° B .南偏东60°C .北偏西30°D .北偏西60°02.命题:①对顶角相等;②相等的角是对顶角;③垂直于同一条直线的两直线平行;④平行于同一条直线的两直线垂直.其中的真命题的有( ) A .1个B .2个C .3个D .4个03.一个学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐60°,第二次向左拐120°04.下列命题中,正确的是()A.对顶角相等 B.同位角相等 C.内错角相等D.同旁内角互补05.学习了平行线后,小敏想出过直线外一点画这条直线的平行线的新方法,是通过折一张半透明的纸得到的[如图⑴—⑷]从图中可知,小敏画平行线的依据有()①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①② B.②③C.③④D.①④06.在A、B两座工厂之间要修建一条笔直的公路,从A地测得B地的走向是南偏东52°.现A、B两地要同时开工,若干天后,公路准确对接,则B地所修公路的走向应该是()A.北偏东52° B.南偏东52° C.西偏北52°D.北偏西38°07.下列几种运动中属于平移的有()①水平运输带上的砖的运动;②笔直的高诉公路上行驶的汽车的运动(忽略车轮的转动);③升降机上下做机械运动;④足球场上足球的运动.A.1种 B.2种C.3种D.4种08.如图,网格中的房子图案正好处于网格右下角的位置.平移这个图案,使它正好位于左上角的位置(不能出格)09.观察图,哪个图是由图⑴平移而得到的()10.如图,AD∥BC,AB∥CD,AE⊥BC,现将△ABE进行平移. 平移方向为射线AD 的方向. 平移距离为线段BC的长,则平移得到的三角形是图中()图的阴影部分.11.判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.⑴对顶角是相等的角;⑵相等的角是对顶角;⑶两个锐角的和是钝角;⑷同旁内角互补,两直线平行.150°120°DBCE湖4321ABEFC D4P231A BEFC D12.如图,在湖边修一条公路.如果第一个拐弯处∠A=120°,第二个拐弯处∠B =150°,第三个拐弯处∠C,这时道路CE恰好和道路AD平行,问∠C是多少度?并说明理由.13.如图,一条河流两岸是平行的,当小船行驶到河中E点时,与两岸码头B、D成64°角. 当小船行驶到河中F点时,看B点和D点的视线FB、FD恰好有∠1=∠2,∠3=∠4的关系. 你能说出此时点F与码头B、D所形成的角∠BFD的度数吗?14.如图,AB∥CD,∠1=∠2,试说明∠E和∠F的关系.第4节尺规作图知识点聚焦1.“尺规作图”的含义(1)在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.尺规作图在操作过程中不允许度量.(2)基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.2.熟练掌握尺规作图题的规范语言(1)用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、× .3.了解尺规作图题的一般步骤(1)已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;(2)求作:能根据题目写出要求作出的图形及此图形应满足的条件;(3)作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.例1. 例2.例3. 典型例题如下图,已知线段a 和b ,求作一条线段AD 使它的长度等于b a -2.解:(1)作射线AM ;(2)在射线AM 上,顺次截取AB =BC =a ;(3)在线段CA 上截取CD =b ,则线段AD 就是所求作的线段.求作一个角等于已知角∠MON .解:(1)作射线11M O ;(2)以O 为圆心,任意长为半径作弧,交OM 于点A ,交ON 于点B ; (3)以1O 为圆心,OA 的长为半径作弧,交11M O 于点C ; (4)以C 为圆心,以AB 的长为半径作弧,交前弧于点D ; (5)过点D 作射线D O 1.则∠D CO 1就是所要求作的角.如下图,已知α∠及线段a ,求作等腰三角形,使它的底角为α,底边为a .分析 先假设等腰三角形已经作好,根据等腰三角形的性质,知两底角∠B =∠C =∠α,底边BC =a ,故可以先作∠B =∠α,或先作底边BC =a .∙作法 如下图(1)∠MBN =∠α;(2)在射线BM 上截取BC =a ;(3)以C 为顶点作∠PCB =∠α,射线CP 交BN 于点A .△ABC 就是所要求作的等腰三角形.说明 画复杂的图形时,如一时找不到作法,一般是先画出一个符合条件的草图,再根据这个草图进行分析,逐步寻找画图步骤.已知∠AOB ,求作∠AOB 的平分线OC .解(1)以点O 为圆心,任意长为半径作弧,分别交OA 、OB 于D 、E 两点;(2)分别以D 、E 为圆心,以大于21DE 的长为半径作弧,两弧交于C 点;(3)作射线OC ,则OC 为∠AOB 的平分线.如下图,在一次军事演习中,红方侦察员发现蓝方指挥部在A 区内,到铁路与公路的距离相等,且离铁路与公路交叉处B 点700米,如果你是红方的指挥员,请你在图示的作战图上标出蓝方指挥部的位置.分析 依据角平分线的性质可以知道,蓝方指挥部必在A 区内两条路所夹角的平分线上,然后由蓝方指挥部距B 点的距离,依据比例尺,计算出图上的距离为3.5cm ,就可以确定出蓝方指挥部的位置.解 如下图,图中C 点就是蓝方指挥部的位置.例4. 例5.课堂练习1.如图,已知∠A 、∠B ,求作一个角,使它等于B A ∠-∠.2.如图作△ABC ,使得BC=a 、AC=b 、AB=c3.如图,画一个等腰△ABC ,使得底边BC=a ,它的高AD=h4.如图,已知∠AOB 及M 、N 两点,求作:点P ,使点P 到∠AOB 的两边距离相等,且到M 、N 的两点也距离相等。
七下第六章《相交线与平行线》知识树与重难点分析

学生学习缺乏主动性 独立思维能力较差 动手操作能力相对稍强
推理能力较弱。
1 .了解邻补角,对顶角的概念,了 解垂线,垂线段概念。 2.了解平行线的概念,知道平行公理及 其推论,会识别同位角,内错角,同旁 内角,探索平行线的性质和判定方法。 3.通过具体实例认识平移,理解对应点 连线平行且相等的性质。 4.了解命题的概念,能初步区分命题的 题设和结论。
1. 本章的重点是垂线的概念与 平行线的判定和性质。 2.本章的难点就是学生推理 能力的培养,让学生学会说 理。
ቤተ መጻሕፍቲ ባይዱ
平面内两条直线的位置关系是“空间与 图形”所要研究的基本问题。这些内容 学生在前两个学段已经有所接触。本 章在学生已有知识的基础上继续研究 平面内两条直线的位置关系。这些内 容在以后学习过程中经常要用到。
教学重点、 难点
教学目标
第
五
章 相 交
线
与 平 行 线
第一页,共1页。
说学情
教法 学法
1.给学生提供探索学习交流的 时间和空间。
2.注意加强直观性。 3.注意突出重点内容 。
4.有意识地培养学生有条理地思考和 表达。注重几何语言的教学及概念间 的联系。
(完整版)相交线与平行线最全知识点

一、本章共分4大节共14个课时;(2.16~3.7第1、4周)章节内容课时第五章 相交线与平行线145.1 相交线35.2 平行线及其判定 35.3 平行线的性质 45.4 平移2单元小结2二、本章有四个数学基本事实1.过直线外一点有且只有一条直线与这条直线平行;2.过一点有且只有一条直线与这条直线垂直;3.两条直线被第三条直线所截,如果同位角相等,那么两直线平行;4.两直线平行,同位角相等. 三、本章共有19个概念1.对顶角2.邻补角3.垂直4.垂线5.垂足6.垂线段7.点到直线的距离8.同位角9.内错角10.同旁内角11.平行12.数学基本事实13.平行公理14.命题15.真命题16.假命题17.定理18.证明19.平移四、转化的数学思想遇到新问题时,常常把它转化为已知(或已解决)的问题.P14五、平移1.找规律2.转化求面积3.作图(2009年安徽中考)学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加d cm ,如图所示.已知每个菱形图案的边长cm ,其一个内角为60°.(1)若d =26,则该纹饰要231个菱形图案,求纹饰的长度L ;【解】(2)当d =20时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案?【解】第19题图相交线与平行线知识点5.1相交线1、邻补角与对顶角两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:图形顶点边的关系大小关系对顶角∠1与∠2有公共顶点∠1的两边与∠2的两边互为反向延长线对顶角相等即∠1=∠2邻补角∠3与∠4有公共顶点∠3与∠4有一条边公共,另一边互为反向延长线.∠3+∠4=180°注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角.⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个.2、垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.符号语言记作:如图所示:AB ⊥CD ,垂足为O⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短.3、垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线.注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上.画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线.1243AB C DO4、点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离记得时候应该结合图形进行记忆.如图,PO ⊥AB ,同P 到直线AB 的距离是PO 的长.PO 是垂线段.PO 是点P 到直线AB 所有线段中最短的一条.现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用.5、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念分析它们的联系与区别⑴垂线与垂线段 区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度. 联系:具有垂直于已知直线的共同特征.(垂直的性质)⑵两点间距离与点到直线的距离 区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间. 联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与垂足)间距离.⑶线段与距离 距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同.5.2平行线1、平行线的概念:在同一平面内,不相交的两条直线叫做平行线,直线与直线互相平行,记作∥a b a .b 2、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行.因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这里,我们把重合的两直线看成一条直线)判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:①有且只有一个公共点,两直线相交;②无公共点,则两直线平行;③两个或两个以上公共点,则两直线重合(因为两点确定一条直线)3、平行公理――平行线的存在性与惟一性经过直线外一点,有且只有一条直线与这条直线平行4、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行 如左图所示,∵∥,∥b a c a ∴∥b cPA BOab 注意符号语言书写,前提条件是两直线都平行于第三条直线,才会结论,这两条直线都平行.5、三线八角 两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角. 如图,直线被直线所截b a ,l ①∠1与∠5在截线的同侧,同在被截直线的上方,l b a ,叫做同位角(位置相同) ②∠5与∠3在截线的两旁(交错),在被截直线之间(内),叫做内错角(位置在l b a ,内且交错) ③∠5与∠4在截线的同侧,在被截直线之间(内),叫做同旁内角.l b a , ④三线八角也可以成模型中看出.同位角是“F ”型;内错角是“Z ”型;同旁内角是“U ”型.6、如何判别三线八角 判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全. 例如: 如图,判断下列各对角的位置关系:⑴∠1与∠2;⑵∠1与∠7;⑶∠1与∠BAD ;⑷∠2与∠6;⑸∠5与∠8. 我们将各对角从图形中抽出来(或者说略去与有关角无关的线),得到下列各图. 如图所示,不难看出∠1与∠2是同旁内角;∠1与∠7是同位角;∠1与∠BAD 是同旁内角;∠2与∠6是内错角;∠5与∠8对顶角.abl1234567816B A D 2345789FEC A BF 21ABC17ABCD26ADBF1AF58C注意:图中∠2与∠9,它们是同位角吗?不是,因为∠2与∠9的各边分别在四条不同直线上,不是两直线被第三条直线所截而成.7、两直线平行的判定方法方法一 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行 简称:同位角相等,两直线平行方法二 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行 简称:内错角相等,两直线平行方法三 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行 简称:同旁内角互补,两直线平行 几何符号语言: ∵ ∠3=∠2 ∴ AB ∥CD (同位角相等,两直线平行) ∵ ∠1=∠2 ∴ AB ∥CD (内错角相等,两直线平行) ∵ ∠4+∠2=180° ∴ AB ∥CD (同旁内角互补,两直线平行)请同学们注意书写的顺序以及前因后果,平行线的判定是由角相等,然后得出平行.平行线的判定是写角相等,然后写平行.注意:⑴几何中,图形之间的“位置关系”一般都与某种“数量关系”有着内在的联系,常由“位置关系”决定其“数量关系”,反之也可从“数量关系”去确定“位置关系”.上述平行线的判定方法就是根据同位角或内错角“相等”或同旁内角“互补”这种“数量关系”,判定两直线“平行”这种“位置关系”.⑵根据平行线的定义和平行公理的推论,平行线的判定方法还有两种:①如果两条直线没有交点(不相交),那么两直线平行.②如果两条直线都平行于第三条直线,那么这两条直线平行.典型例题:判断下列说法是否正确,如果不正确,请给予改正: ⑴不相交的两条直线必定平行线. ⑵在同一平面内不相重合的两条直线,如果它们不平行,那么这两条直线一定相交. ⑶过一点可以且只可以画一条直线与已知直线平行解答:⑴错误,平行线是“在同一平面内不相交的两条直线”.“在同一平面内”是一项重要条件,不能遗漏. ⑵正确 ⑶不正确,正确的说法是“过直线外一点”而不是“过一点”.因为如果这一点不在已知直线上,是作不出这条直线的平行线的.典型例题:如图,根据下列条件,可以判定哪两条直线平行,并说明判定的根据是什么?解答:⑴由∠2=∠B 可判定AB ∥DE ,根据是同位角相等,两直线平行;A BC DEF 1234⑵由∠1=∠D 可判定AC ∥DF ,根据是内错角相等,两直线平行;⑶由∠ACF +∠F =180°可判定AC ∥DF ,根据同旁内角互补,两直线平行.5.3平行线的性质1、平行线的性质: 性质1:两直线平行,同位角相等; 性质2:两直线平行,内错角相等; 性质3:两直线平行,同旁内角互补. 几何符号语言: ∵AB ∥CD ∴∠1=∠2(两直线平行,内错角相等) ∵AB ∥CD ∴∠3=∠2(两直线平行,同位角相等) ∵AB ∥CD ∴∠4+∠2=180°(两直线平行,同旁内角互补)2、两条平行线的距离 如图,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F ,则称线段EF 的长度为两平行线AB 与CD 间的距离.注意:直线AB ∥CD ,在直线AB 上任取一点G ,过点G 作CD 的垂线段GH ,则垂线段GH 的长度也就是直线AB 与CD 间的距离.3、命题:⑴命题的概念:判断一件事情的语句,叫做命题.⑵命题的组成每个命题都是题设、结论两部分组成.题设是已知事项;结论是由已知事项推出的事项.命题常写成“如果……,那么……”的形式.具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论. 有些命题,没有写成“如果……,那么……”的形式,题设和结论不明显.对于这样的命题,要经过分析才能找出题设和结论,也可以将它们改写成“如果……,那么……”的形式.注意:命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;命题的结论部分,有时也可用“求证……”或“则……”等形式表述.4、平行线的性质与判定①平行线的性质与判定是互逆的关系A BC DEF 1234A EGBC FHDn 两直线平行 内错角相等; 两直线平行 同旁内角互补.其中,由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质.典型例题:已知∠1=∠B ,求证:∠2=∠C 证明:∵∠1=∠B (已知) ∴DE ∥BC (同位角相等, 两直线平行) ∴∠2=∠C (两直线平行 同位角相等)注意,在了DE ∥BC ,不需要再写一次了,得到了DE ∥BC ,这可以把它当作条件来用了.典型例题:如图,AB ∥DF ,DE ∥BC ,∠1=65° 求∠2、∠3的度数解答:∵DE ∥BC (已知) ∴∠2=∠1=65°(两直线平行,内错角相等) ∵AB ∥DF (已知) ∴AB∥DF (已知) ∴∠3+∠2=180°(两直线平行,同旁内角互补) ∴∠3=180°-∠2=180°-65°=115°5.4平移1、平移变换 ①把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同. ②新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点 ③连接各组对应点的线段平行且相等2、平移的特征: ①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化. ②经过平移后,对应点所连的线段平行(或在同一直线上)且相等.典型例题:如图,△ABC 经过平移之后成为△DEF ,那么:⑴点A 的对应点是点_________;⑵点B 的对应点是点______.⑶点_____的对应点是点F ;⑷线段AB的对应线段是线段_______;⑸线段BC 的对应线段是线段_______;⑹∠A 的对应角是______. ⑺____的对应角是∠F.AD FBE C123解答: ⑴D;⑵E;⑶C;⑷DE;⑸EF;⑹∠D;⑺∠ACB.思维方式:利用平移特征:平移前后对应线段相等,对应点的连线段平行或在同一直线上解答.考点一:对相关概念的理解对顶角的性质,垂直的定义,垂线的性质,点到直线的距离,垂线性质与平行公理的区别等例1:判断下列说法的正误。
相交线与平行线知识点总结及例题解析

相交线与平行线知识点总结、例题解析知识点1【相交线】在同一平面内,不重合的两条直线的位置关系有两种:平行和相交1、相交线相交线的定义:两条直线交于一点,我们称这两条直线相交.相对的,我们称这两条直线为相交线.知识点2【对顶角和邻补角】两条相交线在形成的角中有对顶角和邻补角两类,它们具有特殊的数量关系和位置关系。
1、邻补角(1)邻补角的概念:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角叫做互为邻补角.如图,∠1与∠2有一条公共边OD,它们的另一条边OA、OB互为反向延长线,则∠1与∠2互为邻补角(2)邻补角的性质:邻补角互补,即和为180°。
例如:若∠1与∠2互为邻补角,则∠1+∠2=180°注意:①互为邻补角的两个角一定互补,但互补的两个角不一定互为邻补角;②相交的两条直线会产生4对邻补角。
2、对顶角(1)对顶角的概念:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.如图,∠3与∠4有一个公共顶点O,并且∠3的两边OB、OC分别是∠4的两边OA、OD的反向延长线,则∠1与∠2互为对顶角.(2)对顶角的性质:对顶角相等.注意:两条相交的直线,会产生2对对顶角。
3、邻补角、对顶角成对出现,在相交直线中,一个角对顶角只有一个,但邻补角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的一种位置关系.它们都是在两直线相交的前提下形成的.注意:如果多条直线相交于同一点,那么产生的邻补角的数量是对顶角的2倍。
【例题1】如图所示,∠1的邻补角是( )A、∠BOCB、∠BOE和∠AOFC、∠AOFD、∠BOC和∠AOF【解析】】据相邻且互补的两个角互为邻补角进行判断,∠1是直线AB、EF相交于点O形成的角,所以它的邻补角与直线CD无关,即它的邻补角是∠BOE和∠AOF,故选B【答案】B【例题2】下面四个图形中,∠1与∠2是邻补角的是( )【答案】D【例题3】如图所示,∠1和∠2是对顶角的图形有( )A、1个B、2个C、3个D、4个【解析】考察对顶角的概念【答案】A【例题4】下列说法中:①因为∠1与∠2是对顶角,所以∠1=∠2;②因为∠1与∠2是邻补角,所以∠1=∠2;③因为∠1与∠2不是对顶角,所以∠1≠∠2;④因为∠1与∠2不是邻补角,所以∠1+∠2≠180,其中正确的有________ (填序号)【解析】对顶角、邻补角【答案】①【例题5】如图1,直线AB、CD、EF都经过点O,图中有几对对顶角?几对邻补角?【解析】考察对顶角的概念。
人教版七年级数学下册《平行线的性质》相交线与平行线PPT优秀课件

感悟新知
特别警示 ●两条直线平行是前提,只有在这个前提下才有同
位角相等; ●格式书写时,顺序不能颠倒,与判定不能混淆.
感悟新知
例 1 如图5.3-2,把三角尺的直角顶点放在直尺的一边上, 若∠ 1=30°,则∠ 2 的度数为( A ) A.60° B.50° C.40° D.30°
感悟新知
1-1.[中考·柳州] 如图,直线a,b 被直线c 所截,若a ∥ b, ∠ 1=70 °,则∠ 2 的度数是( C ) A. 50° B. 60° C. 70° D. 110°
感悟新知
知识点 2 平行线的性质2
1. 性质2:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.
2. 表达方式:如图5.3-3,因为a ∥ b(已知), 所以∠ 1= ∠ 2(两直线平行,内错角相等).
感悟新知
特别警示 并不是所有的内错角都相等,只有在“两直线平
行”的前提下,才有内错角相等.
感悟新知
例2 如图5.3-4,AB ∥ CD,BE 平分∠ ABC,CF 平分 ∠ BCD,你能发现BE 和CF 有何特殊的位置关系吗? 说说你的理由. 解题秘方:由两直线平行得到 内错角相等,再由内错角相等 得到两直线平行.
感悟新知
解:BE∥CF.理由如下:∵ AB∥CD(已知),
∴∠ ABC= ∠ BCD (两直线平行,内错角相等).
∵ BE 平分∠ ABC,CF 平分∠ BCD (已知),
∴∠ 2=
1 2
∠ ABC,∠ 1=Fra bibliotek1 2
相交线与平行线最全知识点

相交线与平行线最全知识点1.平行线的定义:在平面上,如果两条直线在平面内没有交点,那么它们就是平行线。
记作AB,CD。
2.平行线性质:-平行线朝向差:平行线的两个方向向量相等。
-平行线对应角相等:如果两条平行线被截取为若干对应的交线段,那么这些交线段的对应角相等。
-平行线的内错性:如果一条直线与一对平行线相交,那么对这两条平行线上的任意一点A及其在第一条直线上的任意一点B,有AB,CD。
-平行线的传递性:如果两条直线都与第三条直线平行,那么这两条直线也平行。
3.相交线的定义:在平面上,如果两条直线的方向向量不相等,那么它们就是相交线。
4.相交线性质:-相交线对应角相等:如果两条相交线被截取为若干对应的交线段,那么这些交线段的对应角相等。
-相交线的交点:两条相交线的交点是它们的唯一交点。
-相交线的截距恒等:如果两条相交线与同一直线相交,那么它们在这条直线上的截距相等。
5.平行线与垂直线:-平行线与垂直线的性质:平行线与同一直线的垂线垂直;平行线的两个垂线方向向量相等。
-平行线的判定:如果两条直线的垂直方向向量相等,那么它们是平行线。
-直线倾斜角度和斜率:平行线的倾斜角度相等,斜率(如果存在)相等;垂直线的倾斜角度之和为90度,其中一个倾斜角度为负倾斜角度的倒数。
6.平行线的判定:-两条直线判定法:如果两条直线的倾斜角度相等,那么它们是平行线。
-点斜式判定法:如果一条直线的斜率k和一点在直线上,那么直线的方程为y-y1=k(x-x1);如果两条直线的斜率相等且截距不相等,那么它们是平行线。
- 截距式判定法:如果一条直线的方程为y = kx + b,那么它与直线y = kx + b1平行当且仅当b = b17.平行线的应用:-常见图形的平行线特性:矩形的对边平行,对角线相等;平行四边形的对边平行且相等,对角线互相平分。
-平行线在解题中的应用:根据平行线的性质,可以解决一些几何问题,如求证两条线段平行、证明一个四边形是平行四边形等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相交线与平行线知识
点总结
相交线与平行线
第一节相交线一:相交线
对顶角与邻补角
二:垂线
垂线段最短
点到直线的距离
第二节平行线及其判定一:平行线
平行线
平行线公理及推论
二:平行线的判定
同位角、内错角同旁内角
平行线的判定
第三节平行线的性质
平行线的性质
1、平行线性质定理
定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.
定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补.
定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.
2、两条平行线之间的距离处处相等
平行线的判定及性质
(1)平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.
(2)(2)应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.
(3)(3)平行线的判定与性质的联系与区别
(4)区别:性质由形到数,用于推导角的关系并计算;判定由数到形,用于判定两直线平行.
(5)联系:性质与判定的已知和结论正好相反,都是角的关系与平行线相关.
(6)(4)辅助线规律,经常作出两平行线平行的直线或作出联系两直线的截线,构造出三类角
平行线之间的距离
(1)平行线之间的距离
(2)从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离.
(3)(2)平行线间的距离处处相等
第四节平移
生活中的平移现象
1、平移的概念
2、在平面内,把一个图形整体沿某一的方向移动,这种图形的平
行移动,叫做平移变换,简称平移.
3、2、平移是指图形的平行移动,平移时图形中所有点移动的方
向一致,并且移动的距离相等.
4、3、确定一个图形平移的方向和距离,只需确定其中一个点平
移的方向和距离
平移的性质
②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等
作图----平移变换
魅羽枫之夜制造。