信息论 第三章 信源及信源熵

合集下载

信源熵

信源熵

I ( y j ) I ( y j | xi ) I ( y j )
19
条件互信息量
条件互信息量: 在给定 zk 的条件下,xi 与 y j 之间的互信
I ( xi ; y j ) 0 后验概率 先验概率,X 与 Y 统计独立
I ( xi ; y j ) 0 后验概率 先验概率:由于信道受到干扰, 信宿收到 y j 后不但未使 xi 的不确定度 减少,反而增大了 xi 的不确定度 两个消息之间的互信息不大于其中任一消息的自信息 I ( xi ; y j ) I ( xi ) I ( x i | y j ) I ( x i )
符号从平均意义上表征信源总体特性的一个量对于特定的信源其熵只有一个1log?niiipxpx????1logniiipxpx????信息熵的物理含义信源输出前表征信源的平均不确定度信源输出后表征信源发出的每个消息所能提供的平均信息量是一个统计量反映了随机变量x的随机性22统计热力学中熵是表示分子混乱程度的一个物理量在孤立系统中进行的自发过程总是沿着熵增加的方向进行它是不可逆的平衡态相应于熵取最大值的状态即熵增加原理香农借用热力学中熵来描述信源的平均不确定度在信息论中有用的信息熵只会减少不会增加所以信息熵也被称为负热熵ijxyxy
2
信源的分类
信源输出以符号形式出现的具体消息,其分类如下: 按发送消息的时间和取值空间的分布 离散信源 单符号离散信源 连续信源 信源发出的 按发出符号之间的关系 消息是离散的、 无记忆信源 有限的或无限可 列的符号,且一 有记忆信源 个符号代表一条 按发送一条消息所需要的符号数 完整的消息 单个符号信源 符号序列信源
三种表达形式等效
log log p( x i y j ) p( x i ) p( y j ) p( y j | x i ) p( y j )

信源熵的名词解释

信源熵的名词解释

信源熵的名词解释信源熵(Source Entropy)是信息论中一个重要的概念,用于衡量信息源的不确定性和信息的平均编码长度。

在信息论中,信息可以被看作是从一个信源中获取的,而信源熵用来描述这个信源的不确定性大小。

信源熵的计算方法是根据信源可能产生的符号的概率分布来进行的。

具体来说,如果一个信源有n个可能取值(符号)S1,S2,...,Sn,并且每个符号出现的概率分别为P1,P2,...,Pn,那么信源的熵H(S)可以通过下面的公式计算得出:H(S) = -P1log(P1) - P2log(P2) - ... - Pnlog(Pn)其中,log是以2为底的对数,P1,P2,...,Pn是概率分布。

信源熵的含义是,对于一个不确定性较大的信源,需要更长的编码长度来表示每一个符号,所以熵值越大,说明信息的平均编码长度越长。

相反,当一个信源的不确定性较小,即各个符号出现的概率分布较平均时,信息的平均编码长度较短,熵值较小。

以一个简单的例子来说明信源熵的概念。

假设有一个只有两个符号的信源,分别记为S1和S2,它们出现的概率分别为P1和P2。

如果这两个符号的概率分布相等(即P1 = P2 = 0.5),那么信源的熵就是最大的,因为这两个符号的不确定性相同,需要同样长度的编码来表示它们。

而如果其中一个符号的概率接近于1,另一个符号的概率接近于0,那么信源的熵就是最小的,因为其中一个符号的信息是确定的,只需要很短的编码来表示它。

这个例子可以帮助我们理解信源熵与不确定性之间的关系。

除了信源熵,信息论中还有一个重要的概念是条件熵(Conditional Entropy)。

条件熵是在已知一定的背景条件下,信源的不确定性大小,即在给定前提条件下的平均编码长度。

条件熵可以通过信源和条件之间的联合概率分布来计算,其公式为:H(S|T) = -ΣΣP(s, t)log(P(s|t))其中,P(s, t)表示符号s和条件t联合发生的概率。

信息论与编码第3版第3章习题解答

信息论与编码第3版第3章习题解答

第3章 无失真离散信源编码习题3.1 设信源1234567()0.20.190.180.170.150.10.01X a a a a a a a P X(1) 求信源熵H (X ); (2) 编二进制香农码;(3) 计算其平均码长及编码效率。

解: (1)()()log ()(.log ..log ..log ..log ..log ..log ..log .).7212222222=-020201901901801801701701501501010010012609 i i i H X p a p a bit symbol(2)a i p (a i ) p a (a i ) k i 码字 a 1 0.2 0 3 000 a 2 0.19 0.2 3 001 a 3 0.18 0.39 3 011 a 4 0.17 0.57 3 100 a 5 0.15 0.74 3 101 a 6 0.1 0.89 4 1110 a 70.010.9971111110(3)()3(0.2+0.19+0.18+0.17+0.15)+40.1+70.01=3.1471i i i K k p a()() 2.609=83.1%3.14H X H X R K3.2 对习题3.1的信源编二进制费诺码,计算其编码效率。

解:a i p (a i ) 编 码 码字 k i a 1 0.2 000 2 a 2 0.19 1 0 010 3 a 3 0.18 1 011 3 a 4 0.17 110 2 a 5 0.15 10 110 3 a 6 0.1 10 1110 4 a 70.011 11114()2(0.2+0.17)+3(0.19+0.18+0.15)+4(0.1+0.01)=2.7471i i i K k p a()() 2.609=95.2%2.74H X H X R K3.3 对习题3.1的信源分别编二进制和三进制赫夫曼码,计算各自的平均码长及编码效率。

信息论与编码2-信源及信源熵

信息论与编码2-信源及信源熵
随机英文字母信源,其中每个英文字母出现的概率是固定的。
实例3
随机天气状况信源,其中晴天、雨天、雪天出现的概率分别是0.7、0.2、0.1。
实例1
随机二进制信源,其中每个二进制符号(0或1)出现的概率为0.5。
离散无记忆信源的实例
离散有记忆信源
03
离散有记忆信源是输出符号序列中符号与符号之间存在记忆关系的离散随机序列。
应用场景
广泛应用于网络通信、金融交易、军事通信等领域,保障信息安全和隐私。
加密通信
03
应用景
广泛应用于通信系统、数据存储等领域,如CD、DVD、硬盘等存储设备的纠错编码。
01
纠错原理
通过在数据中添加冗余信息,检测和纠正数据传输过程中的错误。
02
常见纠错编码
如奇偶校验码、海明码、循环冗余校验码等,这些编码利用数学原理对数据进行校验,确保数据的正确性。
纠错编码
THANKS
感谢观看
离散有记忆信源的输出符号之间存在统计依赖关系,这种关系会影响信息熵的计算。
定义
性质
离散有记忆信源的定义与性质
计算方法
条件熵
联合熵
离散有记忆信源熵的计算
离散有记忆信源熵是描述信源不确定性的度量,可以通过统计模型来计算。具体计算方法包括条件熵和联合熵等。
条件熵是在给定前一个或多个符号条件下,输出符号的熵。
应用场景
广泛应用于文件存储、网络传输、多媒体处理等领域,如JPEG图片压缩、MP3音频压缩等。
数据压缩原理
通过去除数据中的冗余信息,将数据压缩至更小的存储空间,提高存储和传输效率。
数据压缩
加密原理
通过特定的加密算法将明文转换为密文,确保信息在传输过程中的保密性。

第三章 信息论基础知识(Part2)

第三章 信息论基础知识(Part2)

信息论基础知识主要内容:信源的数学模型 信源编码定理 信源编码算法 信道容量 通信的容限第 1 页 2011-2-21引言一、信息论的研究范畴 信息论是研究信息的基本性质及度量方法,研究信息的获取、传输、存储和处理的一般规律的科学。

狭义信息论:通信的数学理论,主要研究信息的度量方 法,各种信源、信道的描述和信源、信道的编码定理。

实用信息论:信息传输和处理问题,也就是狭义信息 论方法在调制解调、编码译码以及检测理论等领域的应用。

广义信息论,包括信息论在自然和社会中的新的应用, 如模式识别、机器翻译、自学习自组织系统、心理学、生物 学、经济学、社会学等一切与信息问题有关的领域。

第 2 页 2011-2-21二、信息论回答的问题通信信道中,信息能够可靠传 输的最高速率是多少?噪声信道编码定理 噪声信道编码定理信息进行压缩后,依然可以从已压 缩信息中以无差错或低差错恢复的 最低速率是多少?香农信源编码理论 香农信源编码理论最佳系统的复杂度是多少?第 3 页2011-2-21三、香农的贡献香农(Claude Elwood Shannon,1916~2001年), 美国数学家,信息论的创始人。

创造性的采用概率论的方法来研究通信中的问题,并且对 信息给予了科学的定量描述,第一次提出了信息熵的概念。

1948年,《通信的数学理论》(A mathematical theory of communication ) 以及1949年,《噪声下的通信》标志了信息论的创立。

1949年,《保密通信的信息理论》,用信息论的观点对信息保密问题做了 全面的论述,奠定了密码学的基础。

1959年,《保真度准则下的离散信源编码定理》,它是数据压缩的数学基 础,为信源编码的研究奠定了基础。

1961年发表“双路通信信道”,开拓了多用户信息理论(网络信息论)的研 究;第 4 页 2011-2-21四、信息论发展历史1924年 奈奎斯特(Nyquist,H.)总结了信号带宽和信息速率之 间的关系。

信息论与编码技术第三章课后习题答案

信息论与编码技术第三章课后习题答案

Chap3 思考题与习题 参考答案3.1 设有一个信源,它产生0、1 序列的消息。

它在任意时间而且不论以前发生过什么符号,均按P(0)=0.4,P(1)=0.6 的概率发出符号。

(1) 试问这个信源是否平稳的? (2) 试计算H(X 2),H(X 3/X 1X 2)及H ∞。

(3) 试计算H(X 4),并写出X 4 信源中可能有的所有符号。

解:(1)根据题意,此信源在任何时刻发出的符号概率都是相同的,均按p(0)=0.4,p(1)=0.6,即信源发出符号的概率分布与时间平移无关,而且信源发出的序列之间也是彼此无信赖的。

所以这信源是平稳信源。

(2)23123121()2()2(0.4log 0.40.6log 0.6) 1.942(/)(|)()()log ()(0.4log 0.40.6log 0.6)0.971(/)lim (|)()0.971(/)i i iN N N N H X H X bit symbols H X X X H X p x p x bit symbol H H X X X X H X bit symbol ∞−→∞==−×+===−=−+====∑" (3)4()4()4(0.4log 0.40.6log 0.6) 3.884(/)H X H X bit symbols ==−×+=4X 的所有符号:0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 11113.2 在一个二进制的信道中,信源消息集X={0,1}且p(1)=p(0),信宿的消息集Y={0,1},信道传输概率(10)1/p y x ===4,(01)1/p y x ===8。

求:(1) 在接收端收到y=0后,所提供的关于传输消息x 的平均条件互信息I(X ;y=0); (2) 该情况下所能提供的平均互信息量I(X ;Y)。

信息论第3章信源及信息熵

信息论第3章信源及信息熵

举例
数学描述
离散信源 (数字信源)
连续信号
文字、数据、 离散化图象
离散随机变量 序列
跳远比赛的结果、语音 连续随机变量
信号抽样以后
序列
波形信源 (模拟信源)
语音、音乐、热噪声、 图形、图象
不常见
随机过程
表3.1 信源的分类
3.1 信源的分类及其数学模型
我们还可以根据各维随机变量的概率分布是否随时间的推移 而变化将信源分为平稳信源和非平稳信源,根据随机变量间 是否统计独立将信源分为有记忆信源和无记忆信源。
定义3.2 随机变量序列中,对前N个随机变量的联合熵求平
均:
HN
(X)
1 N
H ( X1X 2
XN)
称为平均符号熵。如果当N
时上式极限存在,则
lim
N
H
N
(X)
称为熵率,或称为极限熵,记为
def
H
lim
N
H
N
(
X
)
3.3.1 离散平稳无记忆信源
离散平稳无记忆信源输出的符号序列是平稳随机序列,并且
H(X ) H(X1X2 XN ) H ( X1) H ( X2 | X1) H ( X3 | X1X 2 ) H ( X N | X1X 2 X N1)
定理3.1 对于离散平稳信源,有以下几个结论:
(1)条件熵 H (X N | X1X 2 X N1) 随N的增加是递减的;
(2)N给定时平均符号熵大于等于条件熵,即
s1
si p(s j
| si )
s q
m
状态空间由所有状态及状态间的状态转移概率组成。通过引
入状态转移概率,可以将对马尔可夫信源的研究转化为对马 尔可夫链的研究。

信源熵公式

信源熵公式

信源熵公式
信源熵是信息论中的一个重要概念,它是用来度量消息的丰富性和
复杂性的一种度量方法。

它的概念源于 Shannon 在 1948 年出版的文章Information Theory。

一、信源熵是什么
信源熵(即 Shannon 熵)是指数据量的复杂性程度的度量,即信息量
在消息中不确定性的度量。

它可以帮助我们测量消息中内容丰富程度,以及消息是否具有冗余性。

通俗来说,信源熵是一种度量消息中有多
少信息和无规律性的度量方法。

二、信源熵的计算公式
信源熵的计算公式是: H(p) = -∑p(i)logp(i) 。

其中,H(p)是具有信息量
p的信息源的熵,p(i)是每一种信息量的概率。

它很好地反映了消息的复杂性,但它不能用来衡量消息的可靠性,因
此不能按照 Shannon 熵来评估消息的独特性。

三、信源熵的应用
信源熵有很多应用,最重要的是在信号处理、声音分析、密码学、数
据库设计和模式分析等领域有广泛的应用。

例如在压缩文件时,可以
使用信源熵来确定哪些数据需要进行压缩处理,从而减小数据的量。

另外,信源熵也可以用来度量信号的复杂性,比如机器学习算法中的模型复杂度因子,可以使用信源熵来衡量模型的复杂度。

四、总结
信源熵是由 Shannon 在 1948 年提出的一种度量方法,它可以度量消息的复杂性和冗余性,可以帮助我们评估消息的信息量。

它被广泛应用于信号处理、声音分析、密码学、数据库设计和模式分析等领域,可以用来度量信号的复杂性,以及机器学习算法中的模型复杂度因子。

2信源与信息熵2

2信源与信息熵2
i 1 j 1 n m
• 联合自信息量
I ( xi y j ) log2 p( xi y j )
• 条件自信息量和联合自信息量同样满足非负 性和单调递减性。 • 关系
I ( xi y j ) log2 p( xi ) p( y j / xi ) I ( xi ) I ( y j / xi ) log2 p( y j ) p( xi / y j ) I ( y j ) I ( xi / y j )
信源熵与自信息量的关系1:定性
• 信源熵用以表征信源的平均不确定性:一个 信源,无论是否输出符号,由于具有特定的 概率统计特性,因此具有特定的熵值。 • 信息量则只有当信源输出的符号被接收者收 到后才有意义。平均自信息量是能够消除信 源不确定性时所需信息的量度,即收到一个 信源符号,全部解除了这个符号的不确定性。 或者说获得这样大的信息量后,信源不确定 性就被消除了。
• 平均自信息量:表示信源中发出每个符号平均所能 提供的信息量。它只与信源中各个符号出现的概率 有关,可以用来表示信源输出信息的总体量度。 • 信源X的平均不确定度:表示总体平均意义上的信 源符号的不确定度(不管是否发出)。数值上等于平 均自信息量。 • 这个平均自信息量的表达式和统计物理学中热熵的 表达式很相似。在统计物理学中,热熵是一个物理 系统杂乱性(无序性)的度量。这在概念上也有相似 之处。所以,可以把信源X的平均不确定度称为 “信源熵”。
例2-5/6
• 例2-5(P19):
• 例2-6(P19): • 由于符号间通常存在关联性,实际信息量往 往远远小于理论值。
例2-7
• 例2-7(P19):二元信源的信息熵。
• 自信息量是针对无条件概率计算的,可以在 数学上进行简单的推广:将无条件概率换为 条件概率或联合概率。

信息论基础与编码课后题答案(第三章)

信息论基础与编码课后题答案(第三章)

3-1 设有一离散无记忆信源,其概率空间为12()0.60.4X x x P x ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,信源发出符号通过一干扰信道,接收符号为12{,}Y y y =,信道传递矩阵为51661344P ⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,求: (1) 信源X 中事件1x 和2x 分别含有的自信息量;(2) 收到消息j y (j =1,2)后,获得的关于i x (i =1,2)的信息量; (3) 信源X 和信宿Y 的信息熵;(4) 信道疑义度(/)H X Y 和噪声熵(/)H Y X ; (5) 接收到消息Y 后获得的平均互信息量(;)I X Y 。

解:(1)12()0.737,() 1.322I x bit I x bit ==(2)11(;)0.474I x y bit =,12(;) 1.263I x y bit =-,21(;) 1.263I x y bit =-,22(;)0.907I x y bit =(3)()(0.6,0.4)0.971/H X H bit symbol ==()(0.6,0.4)0.971/H Y H bit symbol ==(4)()(0.5,0.1,0.1,0.3) 1.685/H XY H bit symbol ==(/) 1.6850.9710.714/H X Y bit symbol =-= (/)0.714/H Y X bit symbol =(5)(;)0.9710.7140.257/I X Y bit symbol =-=3-2 设有扰离散信道的输入端是以等概率出现的A 、B 、C 、D 四个字母。

该信道的正确传输概率为0.5,错误传输概率平均分布在其他三个字母上。

验证在该信道上每个字母传输的平均信息量为0.21比特。

证明:信道传输矩阵为:11112666111162661111662611116662P ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,信源信宿概率分布为:1111()(){,,,}4444P X P Y ==, H(Y/X)=1.79(bit/符号),I(X;Y)=H(Y)- H(Y/X)=2-1.79=0.21(bit/符号)3-3 已知信源X 包含两种消息:12,x x ,且12()() 1/2P x P x ==,信道是有扰的,信宿收到的消息集合Y 包含12,y y 。

信息论实验报告(实验一、信源与信息熵的计算)

信息论实验报告(实验一、信源与信息熵的计算)

学生实验报告
院别电子信息学院课程名称信息论语编码实验
班级实验名称实验一、信源与信息熵的计算姓名实验时间
学号指导教师
成绩
报告内容
一、实验目的和任务
1、理解自信息、互信息、熵等概念;
2、熟悉 MATLAB程序设计;
3、掌握通过计算机实验计算离散信源的信息量及熵的计算方法;
4、对给定信源分别计算出信源熵、条件熵、联合熵、交互熵;
二、实验原理介绍
三、实验设备介绍
1、计算机
2、编程软件MATLAB6.5以上
四、实验内容和步骤
H X H Y H X Y H Y X H XY I X Y 分别求出如下图所示离散信道的(),(),(|),(|),(),(;)
1、面出程序设计的流程图。

2、写出在调试过程中出现的问题。

3、对实验的结果进行分析。

五、实验数据记录
六、实验结论与心得
通过本次实验,加强了对matlab程序的学习,进一步提高了我的编程能力。

信源及信源熵课件

信源及信源熵课件
编码是将信息从一种 形式或格式转换为另 一种形式的过程。
编码的方式和格式取 决于应用场景和需求 。
编码的目的是为了便 于信息的存储、传输 和处理。
信源编码的原理
信源编码是对信源输出的符号或数据 进行压缩编码,以减少存储空间和传 输带宽。
信源编码的目标是在保证信息无损的 前提下,尽可能地减小编码后的数据 量。
差分编码
02
通过消除信号中的冗余信息,降低信号的复杂性,提高信号传
输的效率和可靠性。
深度学习在信源编码中的应用
03
利用深度学习算法对信源进行自动编码,提高编码的自适应性
和智能化水平。
信源熵的新应用
信息隐藏
利用信源熵将秘密信息隐 藏在普通数据中,实现隐 蔽通信和数据保护。
数据加密
通过改变数据熵值,增加 数据破解的难度,保护数 据的机密性和完整性。
LZ77编码
基于字典的压缩算法,通过查找已输出的字符串在字典中的匹配项, 替换为较短的指针,实现数据压缩。
BWT编码
将信源输出按字节进行排序并连接成一个字符序列,通过游程编码和 差分编码等技术实现数据压缩。
04
信源的应用
在通信系统中的应用
信源编码
通过将信源输出的消息转换为二进制 或其它形式的数字信号,实现数字通 信,提高通信系统的传输效率和可靠 性。
信源编码的原理基于信息论和概率统 计的知识,通过对信源输出的概率分 布进行分析,采用适当的编码方式实 现数据压缩。
常见信源编码方式
Huffman编码
基于信源符号出现概率的编码方式,通过为出现概率高的符号分配较 短的码字,实现数据压缩。
算术编码
将信源输出区间划分为若干个子区间,每个子区间对应一个符号,通 过小数形式的码字表示输出区间的范围,实现高压缩比。

信源及信源熵

信源及信源熵

i

xi
的函数,
I (xi ) xi
9
2.2.1 自信息量
b. 自信息量的单位的确定 • 在信息论中常用的对数底是2,信息量的单位为比特(bit); • 若取自然对数,则信息量的单位为奈特(nat); • 若以10为对数底,则信息量的单位为笛特(det)。
这三个信息量单位之间的转换关系如下: 1 nat=log2e l.433 bit, l det=log210 3.322 bit
10
2.2.1 自信息量
几个例子
i.
一个以等概率出现的二进制码元(0,1)所包含的自信息量为:
I(0)= I(1)= - log2 (1/2)=log22=1 bit
ii. 若是一个m位的二进制数,因为该数的每一位可从0, 1两个数字中任取一个,因此有2m个等 概率的可能组合。所以I= -log2(1/2m)=m bit,就是需要m比特的信息来指明这样的二进制数。
i 1
6
第二节 离散信源熵和互信息
问题: • 什么叫不确定度? • 什么叫自信息量? • 什么叫平均不确定度? • 什么叫信源熵? • 什么叫平均自信息量? • 什么叫条件熵? • 什么叫联合熵? • 联合熵、条件熵和熵的关系是什么?
7
第二节 离散信源熵和互信息 • 什么叫后验概率? • 什么叫互信息量? • 什么叫平均互信息量? • 什么叫疑义度? • 什么叫噪声熵(或散布度)? • 数据处理定理是如何描述的? • 熵的性质有哪些?
信源及信源熵
第一节 信源的描述和分类
1. 连续信源 连续信源是指发出在时间和幅度上都是连续分布的连续消息(模拟消息)的信源,如语言 、图像、图形等都是连续消息。
2. 离散信源 离散信源是指发出在时间和幅度上都是离散分布的离散消息的信源,如文字、数字、数据 等符号都是离散消息。

信息论离散信源的熵

信息论离散信源的熵
j 1
(i 1,2,...n)
2020/3/20
26
⑵转移矩阵描述
矩阵[P]称为转移矩阵或信道矩阵;表示为:
y1
y2
x1 p(y1/x1) p(y2/x1)…
… [P]= x2 p(y1/x2) p(y2/x2)
……


xn p(y1/xn) p(y2/xn) …

ym p(ym/x1) p(ym/x2) … p(ym/xn)
⑵离散信源空间:
信源的符号(状态)随机地取值于一个离散
集 合 [X]= ( x1,x2,…xn ) 中 , 一 个 离 散 信 源
可以用一个离散随机变量的概率空间表示。
[P]=(p1,p2,…pn) 这种表示称为离散无记忆信源的信源空间。
信源空间必为一个完备空间, n
即其概率和为1。
pi 1
i1
i 1
n
n
pi log pi [ pi 1]
i 1
i 1
2020/3/20
13
Hmax(X)=H(1/n, 1/n,……,1/n)=logn
这个结果称为离散信源得最大熵定理。它 表明,在所有符号数相同,而概率分布不 同的离散信源中,当先验概率相等时得到 的熵最大。最大熵的值取决于符号状态数 ,状态数越多,熵越大。
当X,Y独立时,有p(x,y)=p(x)p(y)。
m
m
p( xi ) p( xi , y j ) p( y j ) p( xi / y j )
j 1
j 1
n
n
p( y j ) p( xi , y j ) p( xi ) p( y j / xi )
i1
i1
nm

信息论基础第3章

信息论基础第3章


则该信源称为离散平稳信源。 对于平稳信源来说,其条件概率也与时间起点 无关。
12
3.3 离散平稳信源

(m+1)维离散平稳信源

如果离散平稳信源某时刻发出什么符号只与 前面发出的m个符号有关联,而与更早些时 刻发出的符号无关联,则该信源称为(m+1) 维离散平稳信源。
P (x i +m | x 1 x i +m-1 ) = P (x i +m | x i x i +m-1 )
信息论基础
第3章 离散信源和熵
通信与信息工程学院 雷维嘉
本章内容

3.1 3.2 3.3 3.4 3.5
离散信源的分类 离散信源的N次扩展信源 离散平稳信源 马尔可夫信源 信源的相关性和剩余度
2
3.1 离散信源的分类


按照离散信源输出的是一个消息符号还是消息 符号序列,可分为单符号离散信源和多符号离 散信源。 按输出符号之间依赖关系分类,多符号离散信 源可分为无记忆信源和有记忆信源。 按照信源输出的符号序列的统计特性是否随时 间变化,多符号离散信源可分为平稳信源和非 平稳信源。
P (x 1 = 1) = 1/ 2, P (x 1 = 2) = 1/ 4, P (x 1 = 3) = 1/ 4
信源输出符号只与前一个符号有关,其条件概率 P (xl +1 | xl ) (l = 1,2, )具有时间推移不变性,如下表 所示。试问该信源是否为二维离散平稳信源?
xl xl+1 1 2 3
3.2 离散信源的N次扩展信源
6

N次扩展信源的数学模型

设单符号离散信源的数学模型为
é X ù é a ù a a 1 2 q ê ú=ê ú êP (x )ú êP (a ) P (a ) P (a )ú 1 2 q ú êë úû êë û

西电邓家先版信息论与编码第3章课后习题解答

西电邓家先版信息论与编码第3章课后习题解答

3.1 设信源⎥⎦⎤⎢⎣⎡)(x P X =⎥⎦⎤⎢⎣⎡4.06.021x x 通过一干扰信道,接收符号Y=[]21y y ,信道传递概率如图3.33所示。

求:(1) 信源X 中事件x1,和x2分别含有的自信息。

(2) 收到消息yj(j=1,2)后,获得的关于xi(i=1,2)的信息量。

(3) 信源X 和信源Y 的信息熵。

(4) 信道疑义度H (X|Y )和噪声熵H (Y|X )。

(5) 接收到消息Y 后获得的平均互信息。

解:(1)由定义得:I (X1)= -log0.6=0.74bitI (X2)= -log0.4=1.32bit(2)P (y1)= 0.6×5/6+0.4×3/4=0.8 P (y2)= 0.6×1/6+0.4×1/4=0.2I (xi ;xj )= I (xi )-I (xi|yj )=log[P (xi|yj )/p (xi )]= log[P (yj|xi )/p (yj )]则 I (x1;y1)= log[P (y1|x1)/p (y1)]=log5/6/0.8=0.059bit I (x1;y2)= log[P (y2|x2)/p (y2)]=log1/6/0.2=-0.263bit I (x2;y1)= log[P (y1|x2)/p (y1)]=log3/4/0.8=-0.093bit I (x2;y2)= log[P (y2|x2)/p (y2)]=log1/4/0.2=0.322bit(3)由定义显然 H (X )=0.97095bit/符号H (Y )=0.72193bit/符号(4)H (Y|X )=∑P (xy )log[1/P (y|x )]=2211i j ==∑∑p (xi )P (yj|xi )log[1/P (yj|xi )]=0.6·5/6·log6/5+0.6·1/6·log6+0.4·3/4·log4/3+0.4·1/4·log4 =0.7145bit/符号H (X|Y )= H (X )+H (Y|X )-H (Y )=0.9635bit/符号(5) I (X ;Y )= H (X )-H (X|Y )=0.00745 bit/符号图3.1 二元信道1/63/41/45/6x 1y 1y 2x 23.2设8个等概率分布的消息通过传递概率为p 的BSC 进行传送。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• (1)求信源熵 • (2)求由m个“0”和(100-m)个“1”构成
的某一特定序列自信息量的表达式
• (3)计算由100个符号构成的符号序列的熵
• 3.3.2离散平稳有记忆信源 • 熵函数的链规则:
X x1,x2,,xN ,其中每个随机变量之间存在统计依赖关系。 H ( X ) H ( X1X 2 X N ) H ( X1) H ( X 2 X1) H ( X 3 X1X 2 ) H (X N X1X 2 X N1)
i
j
则称其具有遍历性,w
为平稳分布
j
• 遍历的马尔可夫信源熵率: • (1)齐次的马尔可夫信源:视作平稳的信源来处理 • 遍历的马尔可夫信源都是齐次的 • 遍历的马尔可夫信源:视作平稳的信源来处理 • (2) m阶马尔可夫信源: 只与最近的m个符号有关.
H

lim
N
H
(
X
N
X1X 2 X N 1)
件不断增加,平均符号熵
及HN (条X) 件熵
• H ( X N X1X 2 X3 X N1) 均随之减少。
• 当 N 时 HN (X)=H ( X N X1X 2 X N1)
• 即为熵率,它表示信源输出的符合序列中,平均 每个符号所携带的信息熵。
• 求熵率的两种途径:
• 1.极限平均符号熵 • 2.极限条件熵
4
)
0
0.5
0
0 0.5 0
0.5 0 0.2
0.5 0
=(w 1
0.8
w2
w3
w4 )
0.2w1 0.5w 2
+0.5w3 =w2 +0.2w4 =w3
lim lim 现在令N ,则有H (X )
H ( X N X1X 2 X N 1)
H N (X)
N
N
lim 即H (X )
H ( X N X1X 2 X N 1) H ( X )
N
lim 因此有H (X )
H ( X N X1X 2 X N 1)
N
• 由于信源输出序列前后符号之间的统计依赖关系, 随着序列长度N的增加,也就是随着统计约束条
lim
N
H
(
X
N
X N M X N M 1 X N 1)(马尔可夫性)
=H ( X m+1 X1X 2 X m )(平稳性)
=H ( X m+1)
m阶马尔可夫信源的极限熵H
等于条件熵H

m+1
表示已知前面m个符号的条件下,输出下一个符号的平均不确定性。
Hm+1 =H ( X m+1 X1X 2 X m )
• 如何计算熵率??? • 复杂
• 马尔可夫性:某时刻发出的符号仅与在此之前的有限 个符号有关,而与更早些时候发出的符号无关。
• 马尔可夫信源是一类相对简单的有记忆信源,信源在 某一时刻发出某一符号的概率除与该符号有关外,只 与此前发出的有限个符号有关。
• M阶马尔可夫信源只与前面发出的m个符号有关
• 3.3.3马尔可夫信源 • M阶 • 信源有q个可能的输出符号。 • 信源发出一个符号,状态发生改变。 • 信源输出符号不确定性问题变成信源状态转换的
问题。
p(sj / si ) Pr(SL1 sj / SL si )
举例
3.4设一个二元一阶马尔可夫信源,信源符号集为 X {0,1}, 信源输出符号的条件概率为 p(0|0)=0.25,p(0|1)=0.5,p(1|0)=0.75,p(1|1)=0.5 求状态转移概率
• (2)N给定时平均符号熵大于等于条件熵
HN ( X ) H ( X N / X1X 2 X N1)
证明: NHN ( X ) H ( X1X 2 X N ) H ( X1) H ( X 2 X1) H ( X3 X1X 2 ) H ( X N X1X 2 X N1) H ( X N ) H ( X N X N1) H ( X N X1X 2 X N1) NH ( X N X1X 2 X N1)(条件熵小于等于无条件熵)
可得到(N+M )HN+M (X) (N-1)HN-1(X)+(M+1)H( X N X1X 2 X 3 X N 1 )
或H
N+M
(X)
(N-1)H N+M
N-1
(X)+
(M+1) N+M
H(
X
N
X1X 2 X 3 X N 1 )
固定N,并令M ,则得H ( X ) H ( X N X1X 2 X N 1) H N (X)
i
ij
举例3.6
已知此信源是遍历的,设状态的平稳分布为 W=(w1 w2 w3 w4 ), 其中w1=p(s1) w2 =p(s2) w3 =p(s3) w4 =p(s4) 根据马尔可夫遍历性的充要条件:
0.8 0.2 0 0
0.8w1+0.5w3 =w1
WPW=W=1,得(w 1
w2
w3
w
举例
• 3.2 • 设有一离散无记忆信源X,其概率空间为
X P(X)
=
x1 1 2
x2 1 4
x3
1
4
• 求该信源的熵率及其二次扩展信源(信源每次 输出两个符号)的熵
举例3.2
• 有一无记忆信源的符号集为{0,1},已知信源 的概率空间为
X P(X)
=
0 1 4
0 3 4
• 离散平稳信源:对于离散随机变量序列, X1,X2,. . .在任意两个不同时刻i和j,信 源发出的消息序列的概率分布完全相同。
即对于任意时刻的
N
0,1,2,,X i X i1
X iN 和X
jX
j1
X
具有相同的概率分布,也就是
jN
P(Xi )=P(X j)
P(XiXi+1)=P(X jX j+1)
H=Nlim
1 N
H (X1X2
XN
)= lim N
H(XN
X1X 2 X N 1)
• 3.1证明
lim 1
n 2 H ( X n X n1 / X1 X n2 ) H
• 马尔可夫性:
• 平稳信源输出的符号序列中,符号之间的 相关性可以追溯到最初的一个符号
• 举例
• 一篇文章的最后一句话可以一直追溯到开 篇第一句话。
X P( X
)
x1 1 4
x2 4 9
x3
11
36
输出符号序列中,只有前后两个符号有记忆,条件概率给出,
求熵率,并比较
H
(
X
2
/
X1
),
1 2
H
(
X1
X
2
),
H
(
X
)的大小
1 H(X2 / X1) 2 H(X1X2) H(X )
• 3.5二次扩展信源的熵为 H ( X 2 ) ,而一阶马尔科夫 信源的熵为 H (X2/X1) ,试比较两者的大小,并说明 原因。
• 1阶马尔可夫信源只与前面一个符号有关
• m阶马尔可夫信源,熵率:
H

lim
N
H
(
X
N
X1X 2 X N 1)
lim
N
H
(
X
N
X N m X N m1 X N 1)
H ( X m1 X1X 2 X m )
H ( X m1 X1X 2 X m ) 通常记作Hm1
举例
• 3.3信源X的信源模型为
=H[ p(xi m+1 | x xi1 i2 xim )]
H[ p(xi m+1 | si )]
qm q
p(si )p(xi m+1 | si ) log p(xi m+1 | si )
i1 im+1
p(si )H (X | si )
p(si )p(s j | si ) log p(s j | si )
P(XiXi+1 Xi+N )=P(X jX j+1 X j+N )
各维联合概率分布均与时间起点无关的信源称为离散平稳信源。 特点:统计特性不随时间推移而变化
• 条件概率
P(Xi+1|Xi )=P(X j+1|X j)
P(Xi+N|XiXi+1 Xi+N-1)=P(X j+N|X jX j+1 X j+N-1)
根据熵的非负性及H1( X ),可推出
0 H N ( X ) H N1( X ) H1( X )
说明此数列单调有界,极限
lim
N
H
(
X
)必存在,且为0和H1
(
X
)之间的某一有限值。
H
(
X
)
lim
N
H
(
X
N
X1X 2 X N 1)
我们取
(N+M )HN+M (X)=H ( X1X 2 X N 1)+H ( X N X1X 2 X N 1) + H ( X N M X1X 2 X N 1X N X ) N M 1 反复利用H ( X N 1 X1X 2 X N ) H ( X N X1X 2 X 3 X N 1) 条件越多熵值越小
• 无记忆信源:随机变量统计独立
3.2离散单符号信源
• 特点:消息两两不相容,信源每次输 出其中的一个消息。
• 离散单符号信源的平均不确定性: • 用熵来描述
• 例3.1
举例
相关文档
最新文档