全等三角形证明sss课件.ppt

合集下载

人教版初二数学上册三角形全等的判定定理(sss)ppt课件

人教版初二数学上册三角形全等的判定定理(sss)ppt课件
“×”) • (1 )两个等边三角形全等. × ( ) • (2 √)三角形具有稳定性. ( ) • (3 √)一边相等的两个等边三角形全等. ( ) • (4)各有两边长为5cm和3cm的两个等腰 三角形全等 . × ( ) • (5)各有两边长为6cm和3cDC
C
D
• 前面我们学过,全等三角形的三条对应边
相等。那么三条对应边相等的三角形会是 全等三角形么?
探索新知
• 如图在△ABC和△DEF中,如果AB=DE, BC=EF,
AC=DF,那么△ABC和△DEF全等吗?
A D
B
C
E
F
• 如果能够说明∠A=∠D,就可以利用SAS定理得
出△ABC和△DEF全等.

说一说
• 思考教材P81“说一说”中的问题.
例题解答
• 例1、如图,已知AB=CD,AD=BC. • 求证:∠B=∠D. D • ∵AB=CD • AD=BC • 又AC=CA(公共边) A B • ∴△ABC≌△CDA(SSS) • ∴ ∠B=∠D(全等三角形对应角相等)
C
• 1、判断题. (正确的打“√”,错误的打
知识小结
• SAS:两边和它们的夹角对应相等…… • ASA:两角和它们的夹边对应相等…… • AAS:两角和其中一角的对边对应相等…… • SSS :三边对应相等…… • 课后思考,三个对应角相等的三角形也一
定全等么。
• •
再见谢谢
• 2、如图,A、B、D、F在同一直线上,AD=BF, • • • • • • •
AC=FE,BC=DE,试判定∠A与∠F相等吗?为什 么? ∵A,B,D,F在一条直线上 C 又AD=BF 所以AB=FD 又AC=FE D F A B BC=DE ∴△ABC≌△FDE(SSS) ∴ ∠A=∠F(全等三角形对应角相等) E

人教版《三角形全等的判定》PPT全文课件

人教版《三角形全等的判定》PPT全文课件
知识回顾
问题探究
课堂小结
随堂检测
活动2
0
探究一:探索三角形全等的条件
建立模型,探索发现
只给定一条边相等:
只给定一个角相等:
3cm
3cm
3cm
30°
30°
30°
满足一个条件相等时,两个三角形不一定全等.
知识回顾
问题探究
课堂小结
随堂检测
活动3
0
探究一:探索三角形全等的条件
问题:两个三角形满足六个条件中的两个条件,两个三角形全等吗?两个条件有几种情况?
证明:连接AC,
【解题过程】
如图, 在四边形ABCD中, AB=AD, CB=CD, 求证:∠B=∠D.
∴∠B=∠D.(全等三角形对应角相等)
【思路点拨】先连接AC, 由于AB=AD, CB=CD, AC=AC, 利用SSS可证△ABC≌△ADC, 于是∠B=∠D. 要求学生从“形”思维到“质”的思维飞跃, 实现将“文字语言”, “图形语言”转化为“符号语言”.

∵BC=DE, ∴BC+CD=DE+CD. 即BD=CE.
【数学思想】 数形结合思想,分类讨论思想.
∴ ∠ADB=∠FEC,AD=EF (全等三角形对应角相等) ∴AD∥EF(同位角相等,两直线平行)
在△ABD和△FCE中
∴△ABD≌△FCE (SSS).
知识回顾
问题探究
课堂小结
随堂检测
例4
0
探究三:利用三角形全等的判定“SSS”解决问题
△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,请问AD⊥BC吗?请说明理由.
在△ABD和△ADC中,
∴△ABD≌△ACD (SSS).

【数学课件】三角形全等的判定(SSS)

【数学课件】三角形全等的判定(SSS)

如 何 用 符 号 语 言 来 表 达 呢
A
D
B
C
E
F
在△ABC与△DEF中 AB=DE AC=DF BC=EF ∴△ABC≌△DEF(SSS)
思考:你能 用“边边边” 解释三角形 具有稳定性 吗?
例1 已知:如图,AB=AD,BC=CD, 求证:△ABC≌ △ADC
A B D
证明:在△ABC和△ADC中 AB=AD (已知) BC=CD (已知) AC = AC (公共边)
失 败
(2)一个角 (1)两边 4cm
6cm 4cm 6cm
2.给定两个条件: (2)一边一角
30º 6cm
失 败
30º 6cm
(3)两角
30º 20º 30º 20º
俗话说:失败是成功之母! 我们继续探究: 千万别泄气哦! 探究二
(1)三边 给定三个条件: (2)两边一角 (3)一边两角 (4)三角 [动手画一画]
画出一个三角形,使它的三边长分别为3cm、 4cm、6cm , 把你画的三角形与小组内画的进 行比较,它们一定全等吗?
画法: 1.画线段AB=3㎝; 2.分别以A、B为圆心,4㎝和6㎝长为半径画弧,两 弧交于点C; 3. 连接线段AC、BC.
结论:三边对应相等的两个三角形全等. 可ቤተ መጻሕፍቲ ባይዱ写为”边边边”或SSS
课堂小测
2.如图,已知 AB DC,AC DB .求证: △ABC≌△DCB.
A
D
O B C
1.课本P15习题11.2的第1、2题(一号本)
能力提升题:
课本16页第9题(一号本)
1、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之毁灭。——卢梭 2、教育人就是要形成人的性格。——欧文 3、自我教育需要有非常重要而强有力的促进因素——自尊心、自我尊重感、上进心。——苏霍姆林斯基 4、追求理想是一个人进行自我教育的最初的动力,而没有自我教育就不能想象会有完美的精神生活。我认为,教会学生自己教育自己,这是一种 最高级的技巧和艺术。——苏霍姆林斯基 5、没有时间教育儿子——就意味着没有时间做人。——(前苏联)苏霍姆林斯基 6、教育不是注满一桶水,而且点燃一把火。——叶芝 7、教育技巧的全部奥秘也就在于如何爱护儿童。——苏霍姆林斯基 8、教育的根是苦的,但其果实是甜的。——亚里士多德 9、教育的目的,是替年轻人的终生自修作准备。——R.M.H. 10、教育的目的在于能让青年人毕生进行自我教育。——哈钦斯 11、教育的实质正是在于克服自己身上的动物本能和发展人所特有的全部本性。——(前苏联)苏霍姆林斯基 12、教育的唯一工作与全部工作可以总结在这一概念之中——道德。——赫尔巴特 13、教育儿童通过周围世界的美,人的关系的美而看到的精神的高尚、善良和诚实,并在此基础上在自己身上确立美的品质。——苏霍姆林斯基 14、教育不在于使人知其所未知,而在于按其所未行而行。——园斯金 15、教育工作中的百分之一的废品,就会使国家遭受严重的损失。——马卡连柯 16、教育技巧的全部诀窍就在于抓住儿童的这种上进心,这种道德上的自勉。要是儿童自己不求上进,不知自勉,任何教育者就都不能在他的身 上培养出好的品质。可是只有在集体和教师首先看到儿童优点的那些地方,儿童才会产生上进心。——苏霍姆林斯基 17、教育能开拓人的智力。——贺拉斯 18、作为一个父亲,最大的乐趣就在于:在其有生之年,能够根据自己走过的路来启发教育子女。——蒙田 19、教育上的水是什么就是情,就是爱。教育没有了情爱,就成了无水的池,任你四方形也罢、圆形也罢,总逃不出一个空虚。班主任广博的爱 心就是流淌在班级之池中的水,时刻滋润着学生的心田。——夏丐尊 20、教育不能创造什么,但它能启发儿童创造力以从事于创造工作。——陶行知

全等三角形的判定SSS-获奖课件-PPT

全等三角形的判定SSS-获奖课件-PPT

7
大家学习辛苦了,还是要坚持
继续保持安静
8
(两角)
③如果三角形的两个内角分别是30°,45°时
30◦ 45◦
30◦
45◦
结论:两个角对应相等的两个三角形不一定全等.
9
思考1:我们通 过探究1探究2
得到的结论
思考2:如果给出三个 条件画三角形,你能说 出:哪几种可能的情况?
• 结论:只给出 1.三边
求证: ∠ A =∠ D
AD
B E
CF
16
练习3
已知: 如图,AB = DC ,AD = BC . 求证: ∠ A =∠ C
证明: 连结 BD
A
D
在△BAD 和△DCB中
AB = CD (已知)
AD = CB (已知) B
C
BD = DB (公共边)
∴ △BAD ≌ △DCB( SSS )
∴ ∠ A =∠ C (全等三角形的对应角相等)
18
全等三角形的判定SSS 获奖课件

1 什么叫全等三角形?

2 全等三角形的边角关系:
知识回顾:
2
3
探究活动1: 只有一个相等条件时
1.只有一条边相等时;
3㎝
3㎝
2.只有一个角相等;
3cm
结论:只有一 条边或一个 角对应相等 的两个三角 形不一定全 等.
45◦
45◦
45◦
4
如果给出两个条件画三角形, 你能说出有哪几种可能的情况?
的 顺
12
例题巩固,加油!
例题1
如图, △ABC 是钢架,AB = AC ,AD是
连结点A与BC中点D的支架.
求证: △ABD ≌ △ACD

17.4 直角三角形全等的判定课件(共18张PPT)

17.4 直角三角形全等的判定课件(共18张PPT)
复习引入
1.全等三角形的性质:
对应角相等,对应边相等.
2.判别两个三角形全等的方法:
SSS SAS ASA AAS
知识点1 直角三角形全等的判定定理
新知探究
我们已经知道,三边对应相等的两个三角形全等.由勾股定理可知,两边对应相等的两个直角三角形,其第三边一定相等.从而,这两个直角三角形一定全等.因此,斜边和一条直角边对应相等的两个直角三角形全等.
同学们再见!
授课老师:
时间:2024年9月15日
知识点2 角平分线性质定理的逆定理
角平分线性质定理的逆定理:到角的两边距离相等的点在这个角的平分线上.
归纳:
随堂练习
1.判断下列命题的真假,并说说你的理由.(1)两个锐角分别相等的两个直角三角形全等;(2)斜边及一锐角分别相等的两个直角三角形全等;(3)两条直角边分别相等的两个直角三角形全等;(4)一条直角边相等且另一条直角边上的中线也相等的两个直角三角形全等.
2.如图,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是E,F. 求证:CE=DF.
证明:∵ AC⊥BC,AD⊥BD,∴∠ ACB= ∠ BDA=90°.在Rt △ ABC 和Rt △ BAD 中,AB=BA,BC=AD,∴ Rt △ ABC ≌ Rt △ BAD(HL).∴∠ CBE= ∠ DAF.∵ CE⊥AB,DF⊥AB,∴∠ CEB=∠ DFA=90°.
在△ BCE 和△ ADF 中, ∠ CEB= ∠ DFA, ∠ CBE= ∠ DAF, BC=AD,∴△ BCE ≌△ ADF(AAS). ∴ CE=DF.
归纳小结
直角三角形全等的判定定理:
斜边和直角边对应相等的两个直角三角形全等.
角平分线性质定理的逆定理:到角的两边距离相等的点在这个角的平分线上.

人教版八年级数学上册课件:12.2三角形全等的判定(SSS和SAS)(共28张PPT)

人教版八年级数学上册课件:12.2三角形全等的判定(SSS和SAS)(共28张PPT)
⑴先确定实际问题应用哪些几何知识解决. ⑵根据实际抽象出几何图形. ⑶结合图形和题意写出已知,求证. ⑷经过分析,找出证明途径. ⑸写出证明过程.
谢谢!
3. ∠ADB= ∠AEC
二、例题:
A
D
E
变式:已知:如图,AB⊥AC,AD⊥AE,AB=AC,AD=AE. 求证: ⑴ △DAC≌△EAB
B
1. BE=DC 2. ∠B= ∠ C 3. ∠ D= ∠ E 4. BE⊥CD
D
A
C
F M
E
探究2
我们知道,两边和它们的 夹角分别相等的两个三角形全 等。由“两边及其中一边的对角 分别相等”的条件能判定两个三 角形全等吗?为什么?
习 (1) AC=DC=∠ABD.
答案:
(1)全等
(2)全等
1. 边角边的内容是什么?
2. 边角边的作用:
(证明两个三角形全等,也可间接证明线段,角相等)
3. 怎样找已知条件:
[一是已知中给出的,二是图形中隐含的(如:公共边 、公共角、对顶角、邻补角,外 角、平角等)]
A
B
C
D

1. 如图,已知AB和CD相交于点O, OA=OB, OC=O
固 练
说明 △ OAD与

△ OBC全等的理由。
解:在△OAD 和△OBC中
C
2
O
1
A
D
B
OA = OB(已知), ∠1 =∠2(对顶角相等), OD = OC (已知),
∴△OAD≌△OBC (SAS)。
巩 固 练
2. 如图所示, 根据题目条件,判断下面的三角形是否全 等.
求证: △ABD≌△ACE.
证明:∵∠BAC=∠DAE(已知),

全等三角形的判定PPT课件共34张

全等三角形的判定PPT课件共34张
24
2024/1/30
06
判定全等三角形的注意事项
25
准确理解全等三角形的定义和性质
2024/1/30
全等三角形的定义
两个三角形如果三边及三角分别对应 相等,则称这两个三角形全等。
全等三角形的性质
全等三角形的对应边相等,对应角相 等;全等三角形的周长、面积相等; 全等三角形的对应边上的中线、高线 、角平分线分别相等。
结论
三边分别相等的两个三角 形全等,简称“SSS”。
16
SAS判定法的证明
已知条件
两边和它们的夹角分别相 等的两个三角形。
2024/1/30
证明过程
将其中一个三角形旋转至 与另一个三角形两边重合 ,由于夹角相等,因此两 个三角形全等。
结论
两边和它们的夹角分别相 等的两个三角形全等,简 称“SAS”。
示例
若三角形ABC和三角形DEF中,∠A=∠D,∠B=∠E ,BC=EF,则三角形ABC全等于三角形DEF。
2024/1/30
14
2024/1/30
04
判定方法的证明与推导
15
SSS判定法的证明
01
02
03
已知条件
三边分别相等的两个三角 形。
2024/1/30
证明过程
通过平移或旋转其中一个 三角形,使得两个三角形 的三边分别重合,从而证 明两个三角形全等。
2024/1/30
在计算三角形面积时,如果知道两个三角形全等,那么可以直接得出它们的面积相 等。
9
2024/1/30
03
全等三角形的判定方法
10
边边边判定法(SSS)
定义
三边分别相等的两个三角形全等 。

三角形全等的判定ppt课件

三角形全等的判定ppt课件
追问1:这个尺规作图的方法利用了上节课中的哪个知识点?
追问2:根据前面的操作,你能探究到什么结论?
例1. 如图,有一池塘,要测池塘两端A、B的距离,可先在平 Nhomakorabea上取一个可以
直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,
使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?
如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两
个木桩上,两个木桩离旗杆底部的距离相等吗?
解:BD=CD
在Rt△ABD 和 Rt△ACD 中,
AB=AC
AD=AD

∴Rt△ABD≌Rt△ACD(HL)
∴ BD=CD
例1.如图,AC⊥BC,BD⊥AD,AC =BD.求证:BC =AD.
(1)
AD = BC
( HL );
(2)
AC = BD
( HL );
(3) ∠DAB = ∠CBA
( AAS );
(4) ∠DBA = ∠CAB
( AAS ).
D
A
C
B
对于两个直角三角形,除了直角相等的条件,还要满足几个条件,这两个三
特殊方法
角形就全等了?
HL定理
SSS




SAS
AAS
AAS
直角三角形全等
问题:三角分别相等的两个三角形全等吗?
追问:证明两个三角形全等的方法有哪些?
评价3.如图,AB⊥BC,AD⊥DC,垂足分别为B,D,∠1=∠2.
求证:AB=AD.
∵AB⊥BC,AD⊥DC,
∴∠B=∠D=90°,
在△ABC和△ADC中,

三角形全等的判定(SSS)课件(共22张PPT) 人教版初中数学八年级上册

三角形全等的判定(SSS)课件(共22张PPT)  人教版初中数学八年级上册

证明: ∵BB ′=CC ′ ∴BC=B ′C ′ 在△ABC和△A ′B ′C ′中
AB=A ′B ′ AC=A ′C ′
BC=B ′C ′ ∴ △ABC≌△ A ′B ′C ′ (SSS) ∴ ∠A=∠A ′
3. A O
D
C B
E
如图,已知线段AB,CD相交于点O, AD,CB的延长线交于点E,OA=OC, EA=EC,请说明∠A=∠C
分析:根据条件OA=OC,EA=EC。OA,EA和
OC,EC恰好分别是△AOE和△COE的两条
边,故可以构成两个三角形,利用全等
三角形解决
A
O
C
证明:
D
B
E
连接OE,在△AOE和△COE中
AO=CO
OE=OE
EA=EC ∴ △ AOE ≌△ COE (SSS) ∴ ∠A=∠C
第四部分 课程小结
☺ 三边分别相等的两个三角形 全等
探究1 答:不一定全等 • 当满足一个条件时
一条边相等
一个角相等
探究1 • 当满足两个条件时
一个角和一条边相等
3cm 4cm
3cm 4cm
两条边相等
30°
60°
30°
60°
两个角相等
探究2
☺ 先任意画出一个△ABC.再画一个 △A′B′C′,使A′B′=AB, B′C′=BC, C′A′=CA,把画好的 △A′B′C′减下来,放在△ABC 上,它们全等吗?
A
A′
B
B′
C
C′
答: △ABC≌△A′B′C′
思考
探究1
上述六个条件中,有些条件是相关的. 能否在上述六个条件中选择一部分条件, 简捷地判定两个三角形全等呢?

三角形全等的判定ppt课件

三角形全等的判定ppt课件
∴△ABC≌△A1B1C1(AAS)
5.HL(H.L.) 在Rt△ABC与Rt△A1B1C1中,
AB=A1B1(已知)
BC=B1C1(已证) ∴△ABC≌△A1B1C1(HL)
例题精讲
例:已知:如图,点A,C,B,D在同一条直线上,
AC=BD,AM=CN,BM=DN 求证:AM∥CN,BM∥DN.
拓展延伸
8.如图所示,AB=AC,EB=EC,AE的延长线交BC于D,且D
为BC边的中点,那么图中的全等三角形有哪几对?并选
择一对进行证明
△ABD≌△ACD
证明:∵D为BC边的中点
A
∴BD=CD
在△ABD和△ACD中
E
AB=AC
BD=CD
AD=AD
B
D
C
∴ △ABD≌△ACD(SSS)
拓展延伸
8.如图所示,AB=AC,EB=EC,AE的延长线交BC于D,且D
证明:∵AC=BD ∴AC+CB=BD+BC 即AB=CD
M
N
在△AMB和△CND中 AM=CN
BM=DN
A
C
B
D
AB=CD
∴ △AMB≌△CND(SSS)
∴∠A=∠NCD,∠MBA=∠D ∴AM∥CN,BM∥DN
例:如图,A,E,C,F在同一条直线上,AB=FD,BC=DE,
AE=FC
求证:△ABC≌△FDE.
(2)全等三角形对应角相等
PART II 全等三角形的判定 1.SSS(S.S.S.) 在△ABC与△A1B1C1中,
AB=A1B1(已知) BC=B1C1(已知) AC=A1C1(已证)
∴△ABC≌△A1B1C1(SSS)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2) 教学难点:学生在理解公理的基础上运用公理进行
突破策略:
三角形全等的证明。
通过例题演练使学生掌握“边边边”公理的应用
通过练习使学生熟练掌握“边边边”公理
返 回
教法
1、教法:
根据创新教育、主体教育以及建构主义的数学教育观,为了 激发学生的主体意识,面向全体学生, 使学生在获取知识的同时, 各方面的能力得到进一步的培养,本节课采用自主探究,讲练结 合的教学方法。遵循“先学后导,先练后讲”的原则,让学生在 寻求解决问题方法的尝试过程中获得自信和体验成功,以激发学 习兴趣。具体操作主要由教师提供资源,创设情景,引导学生主 动参与,自主进行问题的探究学习。其中“创设情景,提出问题” 是前提,“自主探究,教师点拨”是核心,“质疑反思,深化提高”是
设计说明
通过教师的作图演示, 使学生把定理与直观图 象结合起来,加深对定 理的理解,渗透数形结 合分析问题的数学思想 方法。培养学生识图、画
图的观察能力、联想能力 和动手能力,感悟探索问 题、解决问题的方法。
教学设计
例1
如图,ABC是一个钢架,AB=AC, AD是连结点A与BC中点D的支架。求 证:AD⊥BC
2、升华教。具:
学生自制的三角形模型
作图的圆规和三角板

借助计算机在图形处理方面的优势,实现计算机辅助教学。 回
学法
1、学情分析:
初二学生已具备一定的自学能力和动手能力,对全等三角形的判定已经掌 握了三种判定方法,有一定的判断推理能力,感性认识较强,但发散思维、 知识连贯性还不够。
2、学法指导:
(1)课前指导:带着问题预习;动手制作两个三角形模型(要求两个三角形三条对应边相等) 。
行综合运用。
返 回
教学程序
教 学 流 程 图
导入新课 出示学习目标 学生自学课文 教师精讲、作图演练 例题分析 课堂练习 小结 作业布置
教学设计
一、引入新课
复习前面学习的三种三角形全 等的判定,注意边角之间的搭 配关系。
提问:除了这三种判定方法以 外,是否还有其他的判定方法?
设计说明
通过复习前面所学的知识, 引导学生进行发散思维,并 达到温故知新的目的。
从学生的回答中引出本节课的 课题,并板书课题
利用多媒体展示出本节课的学 习目标:(学习目标见教学目标)
明确学习目标、引起思考。
教学设计
学生结合学习目标进行阅读自 学课文内容,初步掌握判定定 理的内容,即: 边边边(SSS)公理:有三边 对应相等的两个三角形全等
设计说明
学生带着问题阅读教材,通 过问题的解决掌握基本内容。 有助于培养学生的观察能力、 自学能力和解决问题的能力。
(证明过程)
提问: 1、如果∠BAC=90°,求∠B、∠C的度数 2、已知AD⊥BC可以得出一些什么性质?
设计说明
要求学生从例1所给的1较简单,不详细讲 解,只用多媒体演示其证明 过程。在讲解的过程中,提 醒学生怎样去找隐藏的条件,
从而培养学生的观察、分 析能力。
教学设计
练习一如图,已知:AC =BD, AB = DC. 求证: ∠B = ∠C.
(2)课堂指导: 要求学生通过阅读自学课文,初步掌握判定定理的内容; 通过学生对模型进行组装、比较,从直观上感性认识两个三 角形全等的条件。 通过作图,进一步理解“边边边”公理,并培养学生识图、画
图 的观察能力和联想能力,感悟探索问题、解决问题的方法。
( 3)课后指导:指导学生通过课外练习对所学的几种三角形全等的判定方法进
教学目标
知识目标:
能正确叙述“边边边”公理,说出三角形的稳定性的依据 是“边边边”公理。
能运用“边边边”公理证明与三角形全等有关的问题。
能力目标:
通过作图和动画演示,使学生逐步领悟数形结合,归纳推 理的数学思想,培养学生识图、画图的观察能力和联想能力, 感悟探索问题、解决问题的方法。
德育目标:
说课人:胡敏仪
说教材 说教法 说学法 说教学程序
课型:新授课 课时安排:2课时
(第一课时)
教材分析
本节课是北师大版七年级几何,第三章第二部分,全 等 三 角 形 的 第 三 个 判 定 公 理 。 是 在 学 习 完 SAS 、 ASA 、 AAS三个判定公理和一个推论的基础上,学习的第四种判 定三角形全等的方法。在初中几何中,三角形全等判定, 占有非常重要的地位,它和圆形的结合在升中考试中被列 为压轴题。本节内容通过作图,使学生明确有三边对应相 等的两个三角形全等的原理并加以应用。
通过提问训练学生的发 散思维
教学设计
设计说明
例2
已知:如图,AB=DC,AD=BC. 求证: ∠A= ∠C.
(证明过程)
从例2中主要是训练学生如何添 加和利用辅助线进行证明。 提问:如果连结AC,是否可以 证明∠A= ∠C?
在例2中,由于不能从已知条 件直接看到两个角所在的三角形, 考虑到有的学生可能会觉得无从 下手,所以,在解题前主要是引 导学生认真观察图形,结合已知 条件思考如何利用现有条件进行 证明,提醒学生要设法使两个角 处在两个全等的三角形里,为此, 只要连结BD即可,(即作出一条 辅助线)。从这个分析过程中, 引导学生进行逆向思维,从而培 养学生的观察、分析、推论及逆 向思维能力。同时说明数学题型 间的转化关系,使学生体验数学 中的艺术美。
通过学生对模型进行组装、比 较,从直观上感性认识两个三
角形全等的条件,即三边对应 相等的三角形全等。
通过学生对模型进行组装、 比较,调动学生的参与意识, 通过直观图形得出结论,渗 透数形结合的数学思想。
教学设计
通过作图,进一步理解“边边 边”公理。
要求学生在自学课文的时候动 手依照课文的作图方法进行作 图,教师在讲解的过程中利用 多媒体进行作图演示(作图演 示过程)
通过对问题的发现、猜想和论证的过程,深化对知识的 理解和方法的掌握,体验发现的快乐,增强创新意识,在一 定的程度上激发学生学习的兴趣,给学生成功的体验。
教学重、难点
(1)教学重点:“边边边”公理及其应用
突破策略: 让学生通过阅读自学本节课内容,初步懂得“边边边”公理的概 念。 引导学生从作图和模型演练中理解掌握“边边边”公理。
相关文档
最新文档