20可变增益放大器的设计
可变增益放大器
电子设计竞赛题目:可变增益放大器学院:自动化工程学院班级:08级自动化二班学号:200840604055姓名:杨嘉伟时间:2010年11月16日设计任务一、题目设计制作一个增益可变的交流放大器。
二、要求1.基本部分(1)放大器增益可在0.5倍、1倍、2倍、3倍四档间巡回切换,切换频率为1Hz;(2)可以随机对当前增益进行保持,保持时间为5s,保持完后继续巡回状态;(3)对指定的任意一种增益进行选择和保持(保持时间为5s),保持完后返回巡回状态;(4)通过数码管显示当前放大电路的放大倍数,用0、1、2、3分别表示0.5、1、2、3倍;2.发挥部分(1)对于不同的输入信号自动变换增益:a.输入信号峰值为0—1V,增益为3;b.输入信号峰值为1—2V,增益为2;c.输入信号峰值为2—3V,增益为1;d.输入信号峰值为3V以上,增益为0.5;(2)通过数码管显示当前放大电路的放大倍数,用0、1、2、3分别表示0.5、1、2、3倍。
基础部分一、设计方案及组成框图分析设计要求,确定大致思路如下:①这个电路可以采用反相比例放大器实现对输入信号进行放大。
A u=-R f/R 控制反相比例放大电路的反馈电阻实现放大器增益的变换, 即控制R f的阻值。
输出信号经过反相跟随器,使输入信号与放大信号同相。
②想实现R f的自动变换,需的使用模拟开关进行控制。
而要想实现电路的自动切换,需要使用多谐振荡器输出脉冲进行控制。
③要想对一种增益进行选择和保持,需要用一个单稳态触发器来实现电路这一功能。
④想随机和任意地对一种增益选择和保持,需要用到触发式单刀双掷开关以及逻辑与、逻辑或构成逻辑电路对其进行控制。
⑤最后该电路主要部分,则通过计数器计数来控制模拟开关。
另外想实现显示这一功能,需的加一个译码器驱动数码管,实现增益档位的显示。
如上所示流程图:由555组成的多谐振荡电路产生频率为1Hz的振荡波形,由555组成的单稳态实现对增益保持5秒的功能。
面向IMT-A应用的可变增益放大器(PGA)设计与实现的开题报告
面向IMT-A应用的可变增益放大器(PGA)设计与实现的开题报告一、课题背景及研究意义随着科学技术的不断发展和进步,无线通信技术已经日趋成熟和普及。
对于不同的无线通信系统,要求的信号处理能力和功率范围不尽相同,而可变增益放大器 (PGA) 适用于广泛的应用领域,如调制、解调、滤波、直通/混频、低噪声前置放大器、射频/中频驱动、参考振荡器等。
因此,PGA 设计与实现的研究意义重大。
目前,PGA 已经成为一种重要的射频模块,尤其适用于全频带,多模式和多标准无线电覆盖。
在国际移动通信标准(IMT)标准下的应用包括2G,3G,LTE和WiMAX等,可变增益放大器的性能也将影响这些无线通信系统的性能和质量。
二、研究现状及存在问题对于可变增益放大器的设计,主要研究方向包括传输线,GM-C配置,基于OTA的结构,双差分放大器,以及相合策略等。
然而,针对 IMT-A 应用,这些传统设计方式仍存在一定的问题,如性能不稳定、复杂的布局、难以实现拓扑,以及低功率等问题。
因此,需在现有研究的基础上,考虑到移动用户的使用场景和环境,探索更优秀的 IMT-A 应用 PGA 技术,提高PGA 的性能并提高系统的整体性能,为无线通信系统的普及和发展提供帮助。
三、研究内容和研究方法(一)研究内容本论文将侧重于 IMT-A 应用场景下 PGA 的设计与实现,主要研究内容包括以下三点:(1)可变增益放大器的设计及其性能分析。
(2)设计低功耗的PGA电路拓扑,并提出改进方案。
(3)利用Cadence软件进行虚拟设计,验证PGA电路的可行性及其性能。
(二)研究方法通过文献阅读、Circuit simulation等方法,实现对PGA电路设计的深入研究,并进行重要性能参数的定量分析。
此外,利用 Cadence 软件平台进行仿真实现及其相关性能测试,进一步验证所设计的PGA电路的可行性和实用性。
四、预期结果和成果应用价值本论文的预期结果包括:(1)提出针对 IMT-A 应用场景下的 PGA 电路设计方案。
导航通信系统中频可变增益放大器设计
A s at hs ae peetapor m begi a le(G bt c:T ippr rs s rg m al a i rP A)f P/ al ul oe6 H , r n a n mpf i o G S G iodam d(M zF r le I
sr H ) 1 ea pie a ocna su co Co s p r s n Wi M C0 1p cn l y ti qt z . h m l r s ot n nt no D fe s pe i . t S I .8 r t hoo ,hs ( i l f i f i f ftu so h o e g
一
I N
%U T+
UT .
I N
个 问题就是 射频 前端 的输 出会 含 一定 的直流 失 调 量 , 不采 用一 定 的抑 制机 制 , 些直流 成分将 同 若 这
一
图 1 可 变 增 益 放 大 器基 本 结 构
样 被放 大从 而使后 面 的滤波器 饱 和 , 因此 , 中频可 变 增 益放 大器还 需要 抑制 直流失 调 。整个接 收机 系统
反 馈 结构保证 了高线性度 需 求。在最 高增益模 式下 ,通 带波纹 小 于 02 B,输入 噪 声 小 于 1n / .d 5V sr H ) q t( z ,该放 大器同时含有直流失调抑制功能。采用 S I .8 m工艺,18 M C0 1 .V电源电压 , 功
耗 为 9 W。该接 收机 系统 已成功 流片 。 m
pga可编程增益放大器原理
pga可编程增益放大器原理1.引言1.1 概述可编程增益放大器(Programmable Gain Amplifier,PGA)是一种用于信号处理和调节的电路器件。
它是一种特殊的增益放大器,可以通过改变放大倍数来调整信号的幅度。
在很多应用中,信号的幅度常常需要进行调节,以满足系统对信号灵敏度和动态范围的要求。
传统的解决方法是使用固定增益的放大器,但这种方法在应对不同幅度的信号时存在一定的局限性。
与传统的固定增益放大器不同,PGA具有可编程的增益调节功能。
通过改变输入和输出之间的放大倍数,PGA能够根据实际需求灵活地调整信号的幅度,从而更好地适应不同的应用场景。
可编程增益放大器通常由放大电路和数字控制系统组成。
放大电路负责对信号进行放大处理,而数字控制系统通过用户界面或者计算机接口等方式,向放大电路发送控制信号,以调整放大倍数。
这种数字控制的特性使得PGA更加灵活可靠,并且可以实现更为精确的增益调节。
在实际应用中,PGA广泛用于各种需要信号调节的领域,如通信系统、音频处理、医疗设备等。
它可以用于增强信号弱化后的信号,调节信号的动态范围,提高系统的灵敏度和精度,同时还可以减少噪声和失真的影响。
本文将详细介绍可编程增益放大器的基本原理和工作原理,并对其应用前景进行展望。
通过深入了解PGA的原理和特点,读者能够更好地了解和应用可编程增益放大器,为相关领域的研究和开发提供一定的参考和指导。
1.2 文章结构文章结构部分的内容可以包括以下内容:文章结构部分主要介绍了整篇文章的组织和结构。
通过明确阐述文章的组织框架和各个章节的内容安排,读者可以更好地理解整篇文章的逻辑脉络。
文章结构部分应包括以下内容:首先,介绍整篇文章的目的和意义。
可以说明可编程增益放大器在电子领域的重要性和应用前景,引发读者的兴趣。
然后,明确文章的章节安排。
可以简要介绍每个章节的主要内容和要点,以及各个章节之间的逻辑关系。
接着,说明各个章节的篇幅安排。
自制wi-fi信号放大器-无线路由器增益天线
易拉罐自制wi-fi信号放大器-无线路由器增益天线无线路由器增益天线网络覆盖范围小、无线信号不稳定,经常出现断线现象,你只能提着笔记本电脑在一个狭小的区域移动,不断改变无线路由、无线AP的位置……在使用无线网络的时候,你肯定会遇到或即将遇到这些令人不爽的问题。
解决这些问题,除了减少遮挡物、减少同频段设备的干扰外,最有效的方法就是更换高增益的天线了,用天线加强无线网络的传输效果、覆盖范围。
然而,购买无线增益天线需要掏出不少银子,可能花费上百元甚至上千元的费用。
不想花钱又要提高信号覆盖范围,是否能找到鱼与熊掌兼得的办法?对于DIY用户来说,这个问题非常简单、也非常有趣,因为在我们日常生活仲很多日用品、甚至废弃物都可以作为制作无线天线的材料,人人都可动手制作性能出色的无线天线,下面我们就来为大家摘录一些网友们自己制作天线的文章,希望对大家会有所帮助。
奶粉罐天线一、选型先上网收集天线资料,看到很多国外的天线DIYER做出来的WIFI天线真是五花八门!有螺旋天线、有八木天线、有菱形天线、有栅网天线、还有罐头天线......让人看得眼花缭乱。
经过再三筛选,最终把制作目标锁定在罐头天线上。
选择它为DIY对象主要是因为这种天线取材方便、效率高!十分适合初学者制作。
二、制作圆筒天线之所以取材方便,是由于人人家里必定有铁罐、金属筒之类的东西。
笔者就是随便拿了一个奶粉罐制作的。
在参照外国爱好者制作WIFI天线的同时,笔者加入了自己的想法:很多爱好者都喜欢在圆筒加装N座或BNC座,然后在馈线的连接处做对应的N头或BNC头,用于连接。
但笔者觉得虽然该方法对使用十分方便,但同时也对信号造成了损耗(估计1-2DBI),尤其在2.4G的频段更加明显!因此,mr7决定把屏蔽网直接焊在圆筒上(焊接前先把外壳打磨光滑),而作为振子的芯线则保留其原来的泡沫绝缘。
这样一来把损耗减到最低。
有点专线专用的味道了!建议大家最好在焊接前找根直径稍比馈线粗一点的小铜管和热缩套管,先把铜管套在馈线上,然后跟屏蔽网一起焊牢在金属圆筒的外壳上,然后用热风筒把热缩套管来回吹多次,把馈线固定在铜管上,这样一来可以很好的减低由于调节天线时给馈线和振子带来的影响!馈线笔者是选用双屏蔽的RG-58电缆,接头是SMA母头,用于接在WIFI的AP上面。
自动增益控制放大器的设计与实现
自动增益控制放大器的设计与实现程望斌1, 杨陈明1, 江 武1, 贺利苗2, 佘凯华1, 龙 杰1(1. 湖南理工学院 信息与通信工程学院, 湖南 岳阳 414006; 2. 湖南理工学院 经济与管理学院, 湖南 岳阳 414006) 摘 要: 为实现稳定输出, 需对放大器系统的增益进行自动控制. 本文提出了自动增益控制放大系统的总体设计方案, 并对主要功能模块进行了方案比较与论证, 重点对硬件系统和软件系统进行了详细设计, 最后对系统进行了完整测试, 并对检测结果进行了分析. 结果表明: 系统稳定可靠、操控方便, 具有较好的人机交互性能.关键词: 自动增益控制; MSP430单片机; 直流放大; PGA2310中图分类号: TN432 文献标识码: A 文章编号: 1672-5298(2015)02-0048-05Design and Realization of Automatic Gain Control AmplifierCHENG Wang-bin 1, YANG Chen-ming 1, JIANG Wu 1, HE Li-miao 2,SHE Kai-hua 1, LONG Jie 1(1. College of Information and Communication Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China;2. College of Economics and Management, Hunan Institute of Science and Technology, Yueyang 414006, China) Abstract : To achieve the stable output, amplifier system needs to be automatically regulated. This paper presents the automatic gain control amplifier system overall design, compares and demonstrates the main function module scheme. The hardware system and software system is emphasis designed in detail. Finally system is completely tested, and the testing results are analyzed. The results show that the system has good man-machine interactive performance and also the system is stable and reliable, in addition, and it is easy to control.Key words : automatic gain control; MSP430 microcomputer; Dc amplifier; PGA2310引言随着电子信息技术的迅速发展, 信号传输与增益控制技术广泛应用于军事、工业等行业, 具有较好的研发价值. 自动增益控制, 可以使系统的输出信号保持在一定范围内, 因此在信号传输领域得到广泛应用. 本文设计的数字式自动增益控制放大器, 是利用线性放大和压缩放大的有效组合对输出信号进行调整[1]: 当输入信号较弱时, 线性放大电路工作, 保证输出信号的强度; 当输入信号强度达到一定程度时, 启动压缩放大线路, 使输出幅度降低, 衰减输入信号, 从而实现放大器的自动增益控制.1 系统总体设计方案系统共分为三大部分: 第一部分为稳幅功能模块, 采用−95.5dB~31.5dB 程控放大, 通过NE5532跟随器, 实现稳幅功能. 比如对幅值在10mV~1V 的输入信号, 可使输入信号有效值稳定在353.5mV 左右, 且在其频率带宽范围内, 保证其幅频曲线稳定, 以及后级的功率放大电路稳定. 第二部分为峰值检波模块, 其采用AD637进行真有效值峰值检波. 第三部分为功率放大器, 采用运放NE5532, 在满功率带宽为100KHz 且幅值达到10V 时, 其压摆率为9V/us, 能够满足要求, 并且能支持±20V 供电. 再利用场效应管实现其输出电流的扩流, 就能使功率到达10W. 通过单片机MSP430G2553控制既实现了放大器电压增益Av 可自动调节并显示, 又降低了整个系统的成本. 因而系统效率高, 成本低, 可靠性和稳定性较强.输入信号经过电压跟随器, 将输入信号送给PGA2310自动调节增益AGC 模块, 通过控制器MSP430G2553对其进行控制. 而AD637真有效值检波模块是对PGA2310的输出信号进行峰值检波, 并收稿日期: 2015-04-05作者简介: 程望斌(1979− ), 男, 湖北崇阳人, 硕士, 湖南理工学院信息与通信工程学院副教授. 主要研究方向: 光电子技术、学科竞赛第28卷 第2期 湖南理工学院学报(自然科学版) Vol.28No.22015年6月 Journal of Hunan Institute of Science and Technology (Natural Sciences) Jun. 2015第2期 程望斌, 等: 自动增益控制放大器的设计与实现 49将检测的真有效值反馈给单片机从而达到环路控制的目的[2]. 为了设计的更人性化, 特增加了显示模块, 能够显示AGC 放大器当前增益的分贝值. 功率放大部分是对AGC 模块的输出信号进行功率放大, 驱动10Ω的负载. 系统总体设计框图如图1所示.2 方案论证与选择(1) AGC 电路方案论证与选择方案一: 典型的是采用场效应管或三极管控制增益. 主要利用场效应管的可变电阻区(或三极管等效为压控电阻)实现增益控制[3].方案二: 采用TI 公司VCA810压控放大芯片, 用两级VCA810级联实现−40dB~40dB 的程控放大. VCA810具有低失调电压, 一级放大倍数最大范围−40dB~40dB, 且外围电路简单, 但由于单级放大倍数过大易引起自激, 故采用两级级联放大.方案三: 采用TI 公司PGA2310数字程控放大芯片, 单级放大倍数的最大范围−95.5dB~31.5dB, 并且内部含有两个相互独立的通道, 其构成的外围电路简单, 易操控, 精确度较高.方案比较: 方案一采用大量分立元件, 电路复杂, 稳定性差, 调试较繁琐, 且精度不够. 方案二需要两级级联, 实现效果较好, 但由于MSP430G2553内部没有DA, 需要外加DA 芯片控制, 搭建电路较复杂. 方案三能够直接由单片机控制, 电路简单, 容易实现.(2) 峰值检波电路方案论证与选择方案一: 基本的峰值检波电路是由二极管电路和电压跟随器组成的, 此电路能够检测的信号频率范围宽, 但受二极管导通压降等因素的影响, 检波精度差.方案二: 真有效值检波电路采用ADI 公司的AD637,该芯片真有效值rms V V =输出为信号的真有效值电压.方案比较: 方案一电路简单, 容易调试, 受器件的影响使得测量精度失准. 方案二采用集成芯片实现峰值检波, 外围电路搭建容易, 并且抗噪声性能好、精度高.(3) 功率放大方案论证与选择方案一: 由多个高速缓冲器BUF634并联实现扩流输出, 提升放大器带负载能力[4]. 方案二: 用分立元件构成末级放大电路, 利用集成运放和MOSFET 扩流来实现放大.方案比较: 方案一效果好但成本较高; 方案二虽然实现较为麻烦, 但是成本低廉, 效果较好. 故采用方案二.图1 系统总体设计框图50 湖南理工学院学报(自然科学版) 第28卷3 系统硬件设计3.1 PGA2310构成的程控AGC 电路程控AGC 电路如图2所示. 为提高信号的稳定性, 信号经信号输入端口至NE5532运放构成跟随缓冲电路. 将此信号输入至PGA2310 Vin-L 引脚, 其正负电源引脚各加入10uf 和0.1uf 的电容滤波, 然后PGA2310输出信号通过NE5532跟随器输入至AD637构成的真有效值检波电路, 最后MSP430单片机AD 采集检波后的直流信号. 设定当输入直流或交流时, 如果检波输出信号大于353mV 或小于353mV , 单片机自动检测并且调节PGA2310增益, 使PGA2310输出直流电压信号时幅值稳定在0.5V 左右, 输出交流信号时峰值稳定在1V 左右.3.2 AD637真有效值检波电路PGA2310程控输出信号输入至AD637 Vin 管脚, 当输入为0时, 调节RP2滑动变阻器使检波输出也为0; 当有输入信号时, 调节RP1滑动变阻器使输出信号为输入信号有效值, 得到正确的检波直流信号. 检波电路图如图3所示.图2 程控AGC 电路图图3 AD637真有效值检波电路图第2期 程望斌, 等: 自动增益控制放大器的设计与实现 51 3.3 功率放大为实现较好的功率放大要求, 后级需要驱动10Ω负载, 由于普通运放不能提供驱动负载所需功率, 所以必须进行功率放大以提供所需功率并且将信号放大2倍. 我们采用如图4所示运放加MOS管电路, 具有带负载能力强等优点.4 系统软件设计本系统软件设计部分基于MSP430单片机平台, 主要完成增益控制、AD采集、预置信息液晶显示和按键控制[5], 系统以友好的人机界面展现给用户. 系统设计流程图如图5所示.在图5中, 我们采用条件判断语句控制AGC模块的增益, 并且还添加了一些容错措施, 以达到AGC 放大器在频带内稳定输出的目的, 为后级的功率放大电路的稳定提供了保证.5 系统测试及结果分析5.1 测试仪器TDS1012双踪示波器、SU3080数字函数信号发生器、直流稳压电源、万用表等.图4 功率放大电路图图5 系统设计流程图52 湖南理工学院学报(自然科学版) 第28卷5.2 直流信号放大测试测试方法: 幅度可变的直流电压信号(0.01V/0.1V/1V)至测试输入端, 然后用双踪示波器测测试输出信号. 测试结果见表1.输入信号(mv) 输出信号理论值(mv) 输出信号测试值(mv) 相对误差(%)<0.01 10.00 9.89 1.1% 0.1 10.00 9.90 1% 1 10.00 10.02 0.2%测试条件: 输入直流电压信号(0.01V/0.1V/1V)分别由滑动变阻器分压得到. 5.3 交流信号放大测试测试方法:(1) 从函数发生器输入频率为10KHz 且幅值可变的交流电压信号(0.01V/0.1V/1V)至测试输入端, 然后用双踪示波器测试输出信号. 测试结果见表2.输入信号(mV) 输出信号理论值(mV) 输出信号测试值(mV) 相对误差(%) <0.01 10.00 9.88 1.2% 0.01 10.00 9.94 0.6% 1 10.00 10.03 0.3%(2) 从函数发生器输入信号幅值为1V 且频率可变的交流电压信号至测试输入端, 然后用双踪示波器测试输出信号. 测试结果见表3.输入信号(Hz) 输出信号理论值(mV) 输出信号测试值(mV) 相对误差(%)1 10.00 9.88 1.2% 10 10.00 9.86 1.4% 1000 10.00 9.89 1.1% 10K 10.00 9.92 0.8% 100K 10.00 9.91 0.9% 200K 10.00 9.89 1.1%5.4 测试结果分析由测试数据可知, 放大器增益控制, 交直流放大, 带宽和带负载能力等指标都达到了要求. 在测量输入信号幅值低于10mV 时, 由于输入信号幅度过小、噪声的掩盖和仪器磨损等原因, 所以此项测试结果有误差.6 总结本文设计的系统实际输入信号有效值达到5mV , 在现有的仪器条件下, 信号幅度输出小时噪声大, 导致输出波形噪声较大. 放大器在驱动 10Ω负载时, 通频带带宽超过 100KHz, 带内失真小, 但功率放大器对扩流MOSFET 需配对, 否则容易产生交越失真. 如果对功率放大电路进行改善, 就能拓宽带宽[6] , 增大信号载体的容量.参考文献[1] 陈亮名, 杨 昆. 基于宽带高增益的放大器设计[J]. 电子设计工程, 2014, 22(15): 146~148 [2] 赖小强, 李双田. 数字闭环自动增益控制系统设计与实现[J]. 网络新媒体技术, 2013, 2(3): 40~44 [3] 李怀良, 庹先国, 朱丽丽, 等. 中低频宽动态范围AGC 放大器设计[J]. 电测与仪表, 2013, 50(566): 96~99 [4] 于国义, 张 乐, 崔先慧, 等. 用于CMOS 图像传感器的AGC 放大器设计[J]. 中国科技, 2013, 8(1): 10~13 [5] 李晓宇, 宫 平, 李杉杉, 等. 自增益电路在激光测距中的应用[J]. 电子设计工程, 2014, 22(18): 77~78, 83 [6] 陈铖颖, 黑 勇, 戴 澜, 等. 面向助听器应用的低功耗自动增益控制环路[J]. 微电子学, 2013, 43(4): 464~467表1 直流信号放大测试结果表2 交流信号放大测试结果(信号频率为10KHz)表3 交流信号放大测试结果(信号幅值为1V)。
增益可控射频放大器设计方案
增益可控射频放大器设计方案
要设计一个增益可控的射频放大器,可以采用以下方案:
1.选择合适的放大器架构:常见的射频放大器架构有共集、共基和共射极。
其中,共基架构通常具有较高的输入和输出阻抗匹配,适用于宽频段的应用;共射架构具有较高的增益和较低的噪声,适用于功率放大器设计。
2.选择合适的放大器器件:根据设计要求选择合适的射频晶体管或场效应管。
通常情况下,选择具有较高的增益、较低的噪声系数和适当的功率容量的器件。
3.匹配网络设计:使用合适的匹配网络来实现输入输出的阻抗匹配。
匹配网络可以提高电路的功率传输效率,减小反射损耗,并实现最优的功率增益。
4.增益控制电路设计:可以采用可变电容、电阻、电感等元件来实现增益的可调控。
通过调整这些元件的参数来控制放大器的增益。
5.稳定性分析和设计:进行稳定性分析,确保放大器在工作范围内保持稳定。
可以采取稳定性增强措施,如添加稳定性网络或者改进反馈电路。
6.射频线路设计:布局射频线路时,要尽量避免回授、干扰和串扰。
采用合适的屏蔽和分离技术,以减小射频线路的损耗和干扰。
7.仿真和测试:使用射频模拟软件进行电路仿真,验证设计的性能,并进行测试调整和优化。
以上是一般的增益可控射频放大器设计方案,具体的设计流程和细节还需要根据具体的应用环境和要求来调整。
宽带CMOS可变增益放大器的设计
Fi 2 Co mon- a e s r c u e g. m g t tu t r Fi 3 Si als m i g v ra e ga n s r t r g. gn —um n a ibl i t uc u e
郭 峰 李智群 陈东东 李海松 王志功
( 南 大学 射 频 与 光 电集 成 电路 研 究 所 ,南 京 东 209 ) 10 6
摘 要 :采 用 T MC 0 1 S . 8 m RFCMOS工 艺 设 计 实 现 了一 种 对 数 增 益 线 性 控 制 型 的 宽 带 可 变 增 益 放 大 器 . 电路 采
维普资讯
第2卷 8
第 1 N O. 2 1 28 1
De c., 00 2 7
20 0 7年 1 2月
CH I ES J U RN A L N E O OF EM I S CON D U CTO R S
宽带 C MOS可 变 增 益 放 大 器 的 设 计 *
*东 南 大 学 射 光 所 与 安 宇 科 技 合 作 项 目 t通 信 作 者 malg oe g 9n rp s a tm E i ̄u fn 9 c @ i.i .o n
宽控制可变增益放大器(VGA)电路的设计
’h sg fVGA e ti r ui l e De in o ’ Elc rcCic t
D o un n ng Y yu
( i h u S i tc g n e i g Vo a i n lC l e e Gu z o Gu y n 5 0 0 ) Gu z o c — e h En i e r n c t a o l g , i h u, i a g, 5 0 8 o
压 U 。左端 为输入 电压 , 根据 输 人 电压 Vi 变 的 化, 加在 & 的两端 电压 VR相应 变化 , c 于是 , 电阻 上 的电流 :
k 一 = = =
1 2 线性好 、 . 控制 电压 范围广 的 电压 控制 电阻电路 可变增益 由电压控 制 电阻来实 现 。
t o e it n e t e o to lc rc c r e to o t g u p t th s t e me iso i h l e r r lr ss a c ,h n c n r lee t i u r n r v la e o t u .I a h rt f h g i a i a n —
输入信 号搭配 的偏 电压 1 5 . V。 图 2的 电路考 虑 为
无失 真工作作 为必 要 条件 , 了 不产 生 由于 场效 应 为 管 的失 真 , T 由 构 成 的源 极 跟 随器 必 须 正 常工 作 。
此时 , 因为电压控 制电阻 R 上流过 的最 大电流 为 I 。
下面对 实 现 低 失 真 , 控 制 电 压 范 围 的 VG 宽 A 的 电路加 以叙述 。
( 1
2 取 出 电 流 电路
电流取 出电路[ , 图 2左侧 是 差 动 电路 , 此 】见 ] 在 电路 中使用单端 输入 和输 出 , 因此 , T 一处设 置与 在 。
一种可变增益控制放大器
口 T AN Hn I o
( cet cAlnao hn h i O ,Ld( ห้องสมุดไป่ตู้C o p n ) S a g a 2 0 3 ,C ia S i i t t f ag a C . t aCS O C m a y ,h n hi 0 2 3 hn ) nf i a S
bog tow r .S vrl e e i s sdi t c e e aV r beG i C nrl V C ru h f ad eea n w d v e e n h sh m , a a l a o t ( G )A pie n s r c u e i n o m l r d i i f a t
A b t a t Fisl a l ss a o a io ft t o swh e r s d t o r lt e g i n lp ft e s r c : rty, nay i nd c mp rs n o he me h d ih a e u e o c nto h an a d so e o h a lfe o mp i rf rCAT dit bu in n t r y t m r p e e t d i hs p p r Th n, a n w o rl s h me i i V sr t ewo k s se a e r s n e n t i a e . i o e e c nto c e s
维普资讯
《 中国有线 电视 )0 7 1 ) ) 0 ( 8 2
CHI NA GI DI TAL CABL E I T v
③
文 章 编 号 :0 7— 0 2 20 )8—10 0 10 7 2 (0 7 1 70— 3
可变增益放大器
可变负载 Ic1 可变增益放大器1
输出
Q7 Ic2
输入—— 差分放大器 Q8 , Q9 基极
偏置—— Q6 ,Q7镜像电流源
改变增益方式——放大器偏置电流受 Ic2 控制
前置中放特点:
二极管 Q1,Q2 Q3,Q4 ,Q5 镜像电流源
二极管电流受 I c1 控制
输
入
二极管等效电阻受 Ic1 控制
iD
单端输入方式, 输入阻抗为 Zin 200 。 片内带有平方律检波器 单电源供电2.7V~5.5V。
控制 内部结构:
电压
高 斯内 插 器
gm
gm
输入
0dB -5dB -10dB
200
-45dB
电阻梯形网络
42.5dB
输出缓冲 输出
电阻网络5dB的衰减步进,总衰减为45dB
后置放大器具有42.5dB的固定增益 跨导级取加权平均,实现连续平滑的衰减功能 Gain(dB)= 50 VGAIN 5 (增益增加模式) Gain(dB)= 45 50 VGAIN (增益减小模式)
改变偏置电流 I EE可以线性地控制放大器的增益
放大器的线性性能分析
输出电压为
q vo (i1 i2 )RC IEE RCth 2kT vin
Vin 26mV时,输出与输入间才呈线性关系 RC
Vcc i1 i2
RC
描述放大器非线性失真的主要的指标
增益1dB压缩点 Pin1dB
三阶互调失真比 IM 3
前置
中放
输入
VD 前置中放等效电路
前置中放 VCC
前置 中放
R1 R2
输出
Q1
Q2
Q3
Q4 Q5
可变增益运算放大器设计
可变增益运算放大器设计
可变增益运算放大器是一种能够根据输入信号的大小调整放大倍数的放大器。
它通常由一个可变增益电路和一个运算放大器组成。
以下是一种常见的可变增益运算放大器设计方法:
1. 选择一个合适的运算放大器芯片,如LM741或TL071等。
这些芯片具有高增益和低噪声的特点。
2. 设计一个可变增益电路,可以使用电位器或可变电阻来实现。
这个电路的作用是调整输入信号的放大倍数。
3. 将可变增益电路与运算放大器芯片连接起来。
输入信号通过可变增益电路进入运算放大器,然后经过放大后的信号输出。
4. 调整可变增益电路的参数,以达到所需的放大倍数。
可以通过调节电位器或改变可变电阻的阻值来实现。
5. 进行电路测试和调试,确保放大器的性能符合要求。
可以使用示波器和信号发生器等仪器来检测输入输出信号的波形和幅度。
需要注意的是,可变增益运算放大器设计中需要考虑的因素还包括输入和输出阻
抗、频率响应、稳定性等。
在设计过程中,可以参考相关的电路设计手册和应用笔记,以获得更详细的设计指导。
程控增益放大器的几种通用设计方法6篇
程控增益放大器的几种通用设计方法6篇第1篇示例:程控增益放大器是一种可以根据控制信号来调节放大倍数的放大器,通常用于音频设备或通信设备中。
它在许多应用场景中都发挥着重要作用,比如在音频混音台中对不同信号进行调节、在通信系统中动态地调节信号的增益等。
要设计一个高性能的程控增益放大器,需要考虑多个方面的因素,包括放大器的稳定性、带宽、增益范围、失真和噪声等。
在此,我们将介绍几种通用的设计方法,以帮助工程师们更好地设计程控增益放大器。
一种常见的设计方法是使用可变增益放大器芯片。
这种芯片通常集成了控制电路和放大电路,可以方便地实现程控增益功能。
工程师们只需要按照芯片厂家提供的设计指南进行设计,通常只需要很少的外部元件即可完成设计。
这种设计方法具有成本低、易于实现的优点,适用于一些对性能要求不是很高的场合。
另一种设计方法是使用集成运算放大器和调节电阻网络。
通过调节电阻网络的阻值,可以实现对增益的控制。
这种方法的优点是可以灵活地调整增益范围,同时可以根据需要选择不同的运算放大器以实现更高的性能要求。
但是这种设计方法需要对电路的稳定性和噪声进行较为细致的分析和优化。
还有一种设计方法是使用数字控制的程控增益放大器。
这种设计方法将控制电路部分用数字信号处理的方式实现,可以实现更精确的控制和更复杂的功能。
通常需要搭配数字模拟转换器和微控制器等器件,同时需要编写控制算法。
这种设计方法的特点是可以实现更高的精度和更复杂的控制功能,但是相对复杂度也更高。
除了以上介绍的几种设计方法外,还有一些其他的设计方法,比如使用特殊的调节元件或者非线性元件实现程控增益放大器。
不同的设计方法适用于不同的场合,工程师们可以根据具体的需求和资源选择合适的设计方法。
在实际设计过程中,需要充分考虑电路的稳定性、带宽、失真和噪声等指标,通过合理选择元件、优化电路结构和控制算法等手段来实现设计要求。
还需要进行充分的仿真和测试,确保设计的程控增益放大器能够满足实际应用需求。
可变增益放大器
改进型电路 电路特点:
v o R C (i2 i3 ) IE E R C th 2 k q T v in ( 1 th 2 k q T V c )
VCC
① 信号支路改为差分对
RC
RC
射极加反馈电阻
VO
Q Q2
Q3 Q4
扩大了线性范围
1
② 控制特性——
i5 Q5
VC
i6
Q6
Q6
电压 V c 控制信号电流 i 5 、i 6 Vin
输出电压为
q vo(i1i2)R CR C (IQis)th2kTV c
控制电压 V c 大小可改变增益 VC
Vcc
i1 i2
RC
RC
Q1
Q2
VO
电路优点:输出与信号电流成正比,无失真
(IQ + is)
实际电路
VC
Vcc RC Q1
VO
Q3
RC
信号电压 v i n
Q2
通过 Q 3
信号电流 is
Vin Q 3 的伏安特性有非线性
PIN
PIN二极管
夹有一层 本征半导体
PIN型二极管 特点
R( )
频率很高时(几十MHz以上)失去整流作用 受偏置电压(电流)控制的可变电阻
1K
受偏置电压(电流)控制的开关
600
200
PIN二极管的电阻特性
10
50 100 I正向 A
用PIN二极管构成可变增益放大器
典型电路
C
v in
RR
C
Lc C
典型芯片 AD8367—— 可变衰减器+固定增益放大器
PIN二极管作为衰减器
负反馈电阻一般加在发射极(源极)
可变增益放大器原理
可变增益放大器原理可变增益放大器是一种能够通过调节增益值来放大信号的功放电路。
它在各种电子设备中都得到了广泛的应用,如音频设备、通信设备等。
可变增益放大器的原理主要包括信号输入、放大器、控制电路和输出等几个方面。
首先,信号输入是可变增益放大器的基础。
输入信号可以来自于外部的声音、图像等模拟信号源,也可以来自于数字信号处理系统等数字信号源。
输入信号需要经过一定的处理,以使其满足放大器的要求,如进行滤波、增益调整等。
接下来是放大器部分,可变增益放大器常采用放大器芯片来实现。
放大器芯片一般由多个晶体管或场效应管组成,通过对其工作点的调整,可以使电流增益变化,从而实现可变增益放大器的功能。
例如,当放大器芯片处于饱和区时,电流增益较大;当放大器芯片处于截止区时,电流增益较小。
放大器芯片根据输入信号的大小和放大倍数,通过放大信号的幅度来实现在输出端产生一个与输入信号幅度成正比的放大信号。
放大器芯片还可以通过调整其增益来改变输出信号的幅度。
往往可以通过改变偏置电压或者是改变反馈电阻的方式来实现对放大倍数的调节,从而达到改变输出信号幅度的目的。
然后是控制电路,控制电路主要负责调节放大器芯片的工作状态。
通过对控制电路中的电阻、电容等器件进行调整,可以改变放大器芯片的工作状态,进而实现对输出信号增益的调节。
控制电路可以通过外部电位器、旋钮等操作来实现对增益的调节,也可以通过自动控制电路来实现自动调节。
最后是输出部分,输出部分是可变增益放大器的最终输出信号的出口。
输出可以通过连接不同的外部设备来实现,如音箱、扬声器、显示屏等。
通过输出部分可以将被放大的信号传递给外部设备,从而实现信号的再生产、显示或者传输。
总之,可变增益放大器通过调节放大倍数来实现对信号的放大。
它通过信号输入、放大器、控制电路和输出等几个方面相互配合工作,来实现对信号的放大和调节。
可变增益放大器在实际应用中具有很高的灵活性和可调性,能够满足不同信号放大需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DA转换器构成的可编程增益放大器 除法器型可编程增益放大器
可编程仪表放大器
• PGA205
(有电阻型,引脚型,数字型)
模拟开关的基本原理
模拟开关的结构是将n沟道MOSFET与p沟道MOSFET并联,可使信号在两个方向上同等顺畅地通过,因而 也没有严格的输入端与输出端之分。n沟道与p沟道器件之间承载信号电流的多少由输入与输出电压比决 定。两个MOSFET由内部反相与同相放大器控制下导通或断开。这些放大器根据控制信号是CMOS或是 TTL逻辑、以及模拟电源电压是单或是双电源,对数字输入信号进行所需的电平转换。(CD4066没有电 平转换)。
模拟开关的应用
3、音频信号的失真问题
音频信号对失真的要求都比较高,模 拟开关在切换音频信号时由于导通电 阻随信号变化(即非线性)产生了信 号失真。
模拟开关的应用
4、高频或视频的特殊要求:
RON和寄生电容之间的平衡对视频信号非常重要。RON较大的传统模拟开关需要额外增益级来补偿插 入损耗。同时,低RON开关具有较大寄生电容,减小了带宽,降低视频质量。低RON开关需要输入缓冲器, 以维持带宽,但是这会增加元件数量。L、T型开关适合高频开关,有比较高的隔离度,可以利用单刀双 置。
电阻越小、越平坦越好
模拟开关的基本原理
模拟开关CD4051-53特性
通路电阻与电源电压、输入电压的关系
通路电阻与温度、输入电压的关系
模拟开关CD4051-53参数
模拟开关CD4051-53参数
模拟开关CD4051-53参数
模拟开关74HC4051-53特性
模拟开关TS5A3166特性
继电器TQ2-5V的特性
模拟开关的应用
5、采样保持电路
6、信号发生和波形变换和DA转换器
乘积型DA转换器的特点
乘积型DA中电流开关采用MOS开关,允许电流双向流动,所以参考电压 可正可负,输出信号可在四个象限,完全符合乘法的结果。其实,DA转 换器的输出本身就是数据与参考电压的乘积。
DA转换器构成的可编程增益放大器
衰减型可编程增益放大器
Vswr=驻波比
继电器FTR-B3特性
模拟开关的应用
1、电源开关问题 模拟开关有Vdd、Vee、GND(Vss)三个端子,Vdd即时数字电源也是模拟电源,输入控 制信号的高电平一般高于1/2Vdd,低电平为GND。模拟信号的输入范围为Vdd~Vee;单端信 号时Vee可以接地;单电源交流信号要加偏置。注意:4066没有电平转换。 2、通态电阻问题 模拟开关存在导通电阻会对导通信号产生信号,而且导通电阻会随温度、信号幅度变 化,影响的大小和负载电阻的大小有关,负载电阻越大,导通电流越小则压降越小、影响 越小。必要的话开关输入端接驱动,输出端接跟随器;控制放大器增益的时候,模拟开关 接在电流最小的支路。
PGA204: G=1, 10, 100, 1000V/V PGA205: G=1法器
AD633
可变增益放大器的设计
2014.7
提纲
1、模拟开关、继电器、数控电位器、乘积型 DAC的特性 2、运放+外围开关实现可变增益放大器 3、直流可变增益集成放大器 4、低频可变增益集成放大器 5、宽带可变增益集成放大器 6、自动增益控制电路
模拟开关cd4051-4053引脚
模拟开关cd4051-4053结构