复变函数测试题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 复
数与复变函数
一、 选择题 1.当i
i z -+=11时,5075100z z z ++的值等于( )
(A )z z z z 222≥- (B )z z z z 222=-
(C )z z z z 222≤- (D )不能比较大小
5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( )
(A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转3
π,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( )
(A )2 (B )i 31+ (C )i -3 (D )i +3
i
(A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周
(C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周
11.下列方程所表示的曲线中,不是圆周的为( )
(A )22
1=+-z z (B )433=--+z z
(C ))1(11<=--a az
a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( )
(A )i 44-- (B )i 44+ (C )i 44- (D )i 44+-
0)Im()Im(z z -)
1
1.设)
2)(3()3)(2)(1(i i i i i z ++--+=,则=z 2.设)2)(32(i i z +--=,则=z arg
3.设4
3)arg(,5π=-=i z z ,则=z
4.复数22)
3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为 5.以方程i z 1576-=的根的对应点为顶点的多边形的面积为 6.不等式522<++-z z 所表示的区域是曲线 的内部
六、对于映射1(21z
z +=ω,求出圆周4=z 的像. 七、试证1.)0(022
1≠≥z z z 的充要条件为2121z z z z +=+; 2.
)),,2,1,,,0(021n j k j k z z z j =≠≠≥的充要条件为
n n z z z z z z +++=+++ 2121.
八、若0)(lim 0≠=→A z f x x ,则存在0>δ,使得当δ<-<00z z 时有A z f 2
1)(>. 九、设iy x z +=,试证y x z y
x +≤≤+2.
1(C )不可导的 (D )既不解析也不可导
2.函数)(z f 在点z 可导是)(z f 在点z 解析的( )
(A )充分不必要条件 (B )必要不充分条件
(C )充分必要条件 (D )既非充分条件也非必要条件
3.下列命题中,正确的是( )
(A )设y x ,为实数,则1)cos(≤+iy x
(B )若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导
(C )若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析
456 数a (A )0 (B )1 (C )2 (D )2-
7.如果)(z f '在单位圆1 (A )0 (B )1 (C )1- (D )任意常数 8.设函数)(z f 在区域D 内有定义,则下列命题中,正确的是 (A )若)(z f 在D 内是一常数,则)(z f 在D 内是一常数 (B )若))(Re(z f 在D 内是一常数,则)(z f 在D 内是一常数 (C )若)(z f 与)(z f 在D 内解析,则)(z f 在D 内是一常数 (D )若)(arg z f 在D 内是一常数,则)(z f 在D 内是一常数 9(A ))(z f 在复平面上处处解析 (B ))(z f 以π2为周期 (C )2 )(iz iz e e z f --= (D ))(z f 是无界的 13.设α为任意实数,则α1( ) (A )无定义 (B )等于1 (C )是复数,其实部等于1 (D )是复数,其模等于1 14.下列数中,为实数的是( ) (A )3)1(i - (B )i cos (C )i ln (D )i e 23π - 12 34.设2233)(y ix y x z f ++=,则=+-')2 323(i f 5.若解析函数iv u z f +=)(的实部22y x u -=,那么=)(z f 6.函数)Re()Im()(z z z z f -=仅在点=z 处可导 7.设z i z z f )1(5 1)(5+-=,则方程0)(='z f 的所有根为 8.复数i i 的模为 9.=-)}43Im{ln(i 10.方程01=--z e 的全部解为 三 若记(z w 12. 七、已知22y x v u -=-,试确定解析函数iv u z f +=)(. 八、设s 和n 为平面向量,将s 按逆时针方向旋转2 π即得n .如果iv u z f +=)(为解析函数,则有s v n u n v s u ∂∂-=∂∂∂∂=∂∂,(s ∂∂与n ∂∂分别表示沿s ,n 的方向导数).