系统可靠性模型建立

合集下载

系统可靠性设计中的可靠性建模案例分享(Ⅱ)

系统可靠性设计中的可靠性建模案例分享(Ⅱ)

在现代科技领域中,系统可靠性设计是一个至关重要的课题。

无论是航空航天、汽车制造、电子产品还是工业自动化,系统的可靠性都是其核心竞争力之一。

而可靠性建模作为评估和改进系统可靠性的重要手段,对于各个领域的工程师们来说至关重要。

本文将通过几个实际案例分享系统可靠性设计中的可靠性建模应用,希望对读者有所启发和帮助。

案例一:航空发动机可靠性建模航空发动机作为飞机的动力源,其稳定可靠的性能直接关系到航空安全。

在航空发动机的可靠性建模中,经常会采用基于失效模式的可靠性分析方法。

首先,工程师们会对发动机的结构和工作原理进行深入理解,分析各种可能的失效模式及其可能导致的后果。

然后,通过统计学方法和可靠性理论,建立发动机失效模式的概率模型,进而评估发动机在特定工况下的可靠性水平,并提出相应的改进方案。

案例二:汽车ABS系统可靠性建模汽车ABS(防抱死制动系统)作为一项关乎车辆行驶安全的重要技术,其可靠性问题一直备受关注。

在对ABS系统的可靠性建模中,工程师们通常会采用故障树分析(FTA)的方法。

他们会对ABS系统的各个组成部分进行细致的分解,找出各个部分之间的逻辑关系,分析可能的故障模式及其概率。

通过故障树分析,工程师们能够清晰地了解ABS系统的可靠性瓶颈,有针对性地进行改进和优化。

案例三:电子产品可靠性建模随着电子产品在日常生活中的广泛应用,其可靠性问题也备受关注。

在电子产品的可靠性建模中,工程师们通常会采用加速寿命试验和可靠性增长模型等方法。

通过对电子产品的寿命特性进行全面的实验分析,建立起其失效概率随时间的变化规律。

同时,还可以通过对电子产品的工作环境和使用条件进行分析,建立相应的可靠性增长模型,预测产品在实际使用中的可靠性表现。

综上所述,系统可靠性设计中的可靠性建模是一个复杂而又关键的问题。

不同领域的工程师们在建模过程中会采用不同的方法和工具,但其核心目标都是希望通过建模分析,找出系统可能存在的风险和瓶颈,并提出相应的改进方案。

可靠性模型汇总

可靠性模型汇总

环境控 制系统
超高频 通信 雷达 甚高频 通信
武器控 制系统
大气数 据系统 备用 罗盘 固定 增稳
武器
机体
起落架
图3-5 F/A-18任务可靠性框图
2019/1/18 13
可靠性逻辑关系
K
双开关系统原理图
K1 K1 K2 K2
K
2
1
(a) 电路导通
(b)电路断开
双开关系统可靠性框图
2019/1/18 14
2019/产品的可靠性所建立的可靠性方 框图和数学模型。
方框:产品或功能 逻辑关系:功能布局 连线:系统功能流程的方向 无向的连线意味着是双向的。 节点(节点可以在需要时才加以标注) 输入节点:系统功能流程的起点 输出节点:系统功能流程的终点 中间节点
建立系统任务可靠性模型的程序
建模步骤 (1)确定任务和功能 (2)确定工作模式 (3)规定性能参数及范围 1、规定产 (4)确定物理界限与功能接口 品定义 (5)确定故障判据
功能分析 故障定义
时间及环境条件 (6)确定寿命剖面及任务剖面 分析 2.建立可靠 (7)明确建模任务并确定限制条件 性框图 (8)建立系统可靠性框图 3.确定数学 (9)确定未列入模型的单元 模型 (10)系统可靠性数学模型
不可修系统可靠性模型
虚单元 不含桥联的复杂系统任务可靠性模型 含桥联的复杂系统任务可靠性模型
建模实例:某卫星过渡轨道、同步及准同步轨道任务可靠性 系统任务可靠性建模的注意事项
2019/1/18
3
系统、单元——产品
系统
由相互作用和相互依赖的若干单元结合成的具有 特定功能的有机整体。 “系统”、“单元” 相对概念 可以是按产品层次划分:零部件、组件、 设备、分系统、系统、装备中任何相对的 两层 “系统”包含“单元”,其层次高于“单元”

基于FMEA的系统可靠性模型的构建

基于FMEA的系统可靠性模型的构建
Vo. No2 , e tmbe 01 . 1 7, .5 S pe r2 1
基于 F A 的系统可靠性模型 的构建 ME
贺 琳.强 慧 肖 华
( 南华 大 学 数 理 学 院 , 湖南 衡 阳 4 10 ) 2 0 1
摘 要 : 了能 对 安 全 系统 进 行 可 靠性 评 估 , 用 F A 定 性 分 析 安 全 系统 潜 在 的 各 种 故 障 模 式 、 因和 影 响 因 素 , 建 立 系统 的故 为 采 ME 原 并 障 树 模 型 . 解 系统 所 要 求的 可 靠 性 指 标 。 求
m o e,c u e n f e c s b i h utt e mo e ft e sft se t ac lt h y tm eibl d x s d s a s sa d il n e , u d t e f l r d l ae s tm o c u ae t es s nu l a e o h y y l e rl it i e e. a i n y

个 F A是 针 对 系 统 内的 所 有 部 件 的 。系 统 的 覆 盖 范 围 必 须 确定 。对 于 控 制 系 统 和 安全 系统 , 个 范 围通 常 包 括 过 程 通 道 、 ME 这
传 感 器 、 制 器 、 行 器 以 及 阀 门 。系 统 级别 的 F A 是 一 个 重 要 的 定 性 分 析 过 程 。在 这 个 步 骤 中所 获得 信 息 的准 确 性 会 影 响模 型 控 执 ME 的 建 立 以 及 由 此 模 型 所 获 的 安 全性 和 可靠 性 指 标 。 考虑这样一个安全系统 , 有一个压力开关 , 它 两个 单板 控 制 器 , 个 阀 门 所 构 成 。 当生 产 过 程 正 常 时 , 力 很 低 , 压 力 开 关 是 一 压 且 闭合 的( 激励 状 态 )控 制 器 使 输 出处 于激 励 状 态 , 门是 关 闭 的 。 , 阀 当压 力越 限 时 , 关 打 开 ( 激 励 状 态 ) 控 制 器读 取压 力 开关 的 状 开 非 。

可靠性基本概念、参数体系及模型建立

可靠性基本概念、参数体系及模型建立

可靠性基本概念
寿命剖面与任务剖面
寿命剖面:产品从制造到寿命终结或退出使用这段时间内所经历 的全部事件和环境的时序描述
关键因素:事件、事件顺序、持续时间、环境和工作方式 包含一个或多个任务剖面,分为后勤和使用两个阶段 产品指标论证时就应提出
任务剖面:产品在规定任务这段时间内所经历的事件和环境的 时序描述
20
可靠性模型建立
基本可靠性模型和任务可靠性模型
正确区分系统原理图、功能框图、功能流程图和可靠性框图 正确建立系统基本可靠性模型和任务可靠性模型
基本可靠性模型:估计产品及其组成单元可能发生的故障引起的维修及保障 要求,全串联模型 任务可靠性模型:估计产品在执行任务过程中完成规定功能的概率,描述完 成任务过程中产品各单元的预定作用并度量工作有效性
可靠性建模方法
可靠性框图、网络可靠性模型 故障树模型、事件树模型 马尔科夫模型、Petri网模型、GO图模型 19
可靠性模型建立
可靠性框图模型
定义:为预计或估算产品的可靠性而建立的可靠性方框图和数学 模型 组成:代表产品或功能的方框、逻辑关系和连线、节点组成
节点:分为输入节点、输出节点和中间节点 输入节点:系统功能流程的起点 输出节点:系统功能流程的终点 连线:有向、无向,反映系统功能流程的方向,无向意即双向
n
RS = e
−λt
(1 +
RD λ t )
28
可靠性模型建立
典型可靠性模型
桥联系统:可靠性模型逻辑描述中出现了电路中桥式结构逻辑关 系,其数学模型较为复杂,不能建立通用的表达式 网络模型:从抽象的角度看,网络就是一个图,由一些节点及连 接节点的弧组成,应用图论理论进行分析
29
可靠性模型建立

系统可靠性模型

系统可靠性模型

第二节 布尔代数,容斥原理和不交型 算法简介
► 二 容斥原理 ► 容斥原理是集合数学中的一个命题。从生
活中的实例可以知道,容斥原理算法,通俗 地说,就是一种加加减减,逐项逼近问题的 正确解答的算法。
► 为方便解决这类问题,我们介绍下容斥原 理公式
第二节 布尔代数,容斥原理和不交型 算法简介
► 1 集合相容和不相容 ► 若集合A与集合B有公共元素,则称为A与B
参照书中实例2-1,2-2
第二节 布尔代数,容斥原理和不交型 算法简介
► 三,不交型算法 ► 1 不交型布尔代数及其运算规则 ► 对于一般情况(若有n个变量)的不交并计
算公式如下:
► 同上述的集合代数及布尔代数一样,不交 型布尔代数也有以下规律及定理
第二节 布尔代数,容斥原理和不交型 算法简介

► 学习书中例子2-3
第四节 并联系统的可靠性模型
► 一个系统由n个单元A1,A2,…An组成,如 果只要有一个单元工作,系统就能工作,或 者说只有当所有单元都失效时,系统猜失效, 我们称为并联系统。
► 由于公式较多,所以希望认真看看书本内容 以及例子2-4
第五节 混联系统的可靠性模型
► 1 串并联系统(附加单元系统)
第八节 一般网络的可靠性模型
► 五 不交最小路集法 ► 不交最小路法,即是首先枚举任意网络的
所有最小路集,列出系统工作的最小路集表 达式,利用概率论和布尔代数有关公式求系 统的可靠度。 ► 见书中例2-11
第三章 可靠性预计和分配
► 第一节 可靠性预计概述 ► 第二节 元器件失效率的预计 ► 第三节 系统的可靠性预计 ► 第四节 可靠性分配
第四节 可靠性分配
► 一 串联系统的可靠性分配 ► 1 等分配法 ► 2 利用预计值的分配法 ► 3 阿林斯分配法 ► 4 代数分配法 ► 5 “努力最小算法”分配法

第三章 系统可靠性模型

第三章 系统可靠性模型
令事件A为系统处于正常工作状态;事件 Ai(i=1,2…n)为单元处于正常的工作状态
对于串联系统:A=A1 A2 ... An
求系统可靠度:P(A) P(A1 ) P(A 2 ) ... P(A n ) P(A i )
i 1 n
即系统可靠度与单元可靠度的关系为:
R S (t) P(A) R1 (t) R 2 (t) ... R n (t) R i (t)
3. R12345678 t R12345 t R67 t R8 t
如何计算 ( ) , s ? s t
Rs t s t Rs t
s Rs t dt
0

2.串并联系统模型
特征:图2-7所示串—并联系统是由n个(列)子系统
i 1 n
4. 特例( 1):假定各单元寿命服从指数分布,n 个单元失效
都属于偶然失效。令单元失效率为 (常数),单元可靠度为 i Ri (t ) e it .则:
n it n n it 系统可靠度RS (t ) e e i1 (令s i )
i 1
2.当阀1与阀2处于闭合状态时,不能截 流为系统失效,其中包括阀门泄露。
4.系统逻辑模型分类
分类依据:单元在系统中所处的状态及其对系统 的影响。
3.2 串联系统的可靠性模型
1.模型:一个系统由N个单元逻辑串联组成。
2.特点:任意一个单元失效则整个系统失效;
只有N个单元均正常工作系统才正常工作。
3.怎样求串联系统的可靠度
e
t


t 2
t
n 3时,可以自行推导
2 e t
6.推导n个相同单元并联情况

chapter_3_系统可靠性模型建立_Lee

chapter_3_系统可靠性模型建立_Lee

o 产品可以指任何层次。
10/16/2009 电子科技大学机械电子工程学院 yflee@ 4
U
ES TC
模型
o 原理图 n 反映了系统及其组成单元之间的物理上的连接与 组合关系 o 功能框图、功能流程图 n 反映了系统及其组成单元之间的功能关系 o 系统的原理图、功能框图和功能流程图是建立系统可 靠性模型的基础
功能分析 故障定义
时间及环境条件 分析 2.建立可靠 (7)明确建模任务并确定限制条件 性框图 (8)建立系统可靠性框图 (6)确定寿命剖面及任务剖面 3.确定数学 (9)确定未列入模型的单元 模型 (10)系统可靠性数学模型
10/16/2009 电子科技大学机械电子工程学院 yflee@ 15
10/16/2009
U
ES TC
电子科技大学机械电子工程学院 yflee@
9
任务可靠性模型
p 任务可靠性模型
n 用以估计产品在执行任务过程中完成规定功能的概 率(在规定任务剖面中完成规定任务功能的能 力),描述完成任务过程中产品各单元的预定作 用,用以度量工作有效性的一种可靠性模型。 p 系统中储备单元越多,则其任务可靠性越高。
U
ES TC
系统功能分析
o 对系统的构成、原理、功能、接口等各方面深 入的分析是建立正确的系统任务可靠性模型的 前导。 o 前导工作的主要任务就是进行系统的功能分析
n n n n 功能的分解与分类 功能框图与功能流程图 时间分析 任务定义及故障判据
10/16/2009
U
ES TC
电子科技大学机械电子工程学院 yflee@
雷达
武器控 制系统
ES TC
塔康 系统 惯性 导航
武器

软件系统的可靠性建模与评估研究

软件系统的可靠性建模与评估研究

软件系统的可靠性建模与评估研究在当今信息时代,各种软件系统已经成为人们生活和工作的重要组成部分。

然而,由于软件的复杂性和不断更新升级,软件系统发生故障并不罕见,给用户带来了不便和损失。

因此,研究软件系统的可靠性建模与评估具有十分重要的现实意义。

软件系统的可靠性建模是指在考虑到各种软件故障可能性的情况下,对软件系统进行数学或物理模型的建立,以便评估其故障率、维修率、失效模式等相关指标。

软件系统的可靠性评估则是根据实际测试数据或模拟数据,对模型进行参数估计和验证,从而得出软件系统的可靠性指标。

软件系统的可靠性建模和评估具有较高的难度和复杂性,需要考虑多个因素的影响。

以下是几个影响可靠性建模和评估的因素:1. 软件规模:软件规模越大,复杂度越高,可靠性建模和评估的难度也越大。

2. 软件结构:软件系统的结构对可靠性评估有显著影响。

如模块化结构和分层结构的软件系统往往较容易进行可靠性评估。

3. 软件复杂度:软件系统的复杂度包括代码结构复杂度和数据结构复杂度。

复杂的代码结构和数据结构往往会导致可靠性评估的困难。

4. 软件环境:软件运行的环境对可靠性评估也有较大影响。

例如,对于嵌入式软件系统而言,其环境会影响模型参数估计和预测的可靠性。

为了更好地进行软件系统的可靠性建模和评估,研究人员提出了各种方法和技术。

以下是几种常见的方法:1. 随机过程模型:随机过程模型是常用的可靠性建模方法,通过数学建模描述软件系统发生故障的过程,结合测试数据进行参数估计和预测。

2. 基于模型检测的方法:基于模型检测的方法通过对软件系统模型的形式化描述,检测其是否满足特定的性质。

该方法最大的优点是可以发现系统的死锁和冗余等缺陷。

3. 蒙特卡罗方法:蒙特卡罗方法通过随机模拟软件系统的运行过程,估计其可靠性指标。

该方法精度较高,但计算量较大。

除了上述方法外,还有多种方法可供选择,例如贝叶斯网络、神经网络、支持向量机等,研究人员可以根据实际情况选择最合适的方法。

UPS供电系统可靠性仿真模型的构建与分析

UPS供电系统可靠性仿真模型的构建与分析

UPS供电系统可靠性仿真模型的构建与分析1. 引言UPS供电系统(Uninterruptible Power Supply,以下简称UPS)作为一种保证电力持续供应的设备,在现代社会中扮演着重要的角色。

为了提高UPS供电系统的可靠性,构建可靠性仿真模型并进行分析是一种有效的方法。

本文将介绍UPS供电系统可靠性仿真模型的构建与分析方法,并提供一些实用的案例分析。

2. 可靠性仿真模型的构建2.1 系统可靠性分析方法选择在构建UPS供电系统可靠性仿真模型之前,首先需要选择合适的系统可靠性分析方法。

常用的方法包括故障树分析(FTA)、事件树分析(ETA)和可靠性模型。

2.2 故障树分析(FTA)故障树分析是一种用于系统可靠性分析的常用方法,通过构建故障树图来分析系统的故障模式和原因,为系统的可靠性评估提供依据。

在UPS供电系统中,常见的故障模式包括输入电源故障、电池故障和逆变故障等。

2.3 事件树分析(ETA)事件树分析是一种用于系统可靠性分析的方法,通过构建事件树图来建立系统的故障序列,并分析系统达到指定状态的可能性。

在UPS供电系统中,典型的事件包括输入电源故障导致的UPS工作、逆变故障导致的UPS无法提供持续电力等。

2.4 可靠性模型可靠性模型是一种用于系统可靠性分析的方法,通过建立系统的数学模型来评估系统的可靠性。

常用的可靠性模型包括可靠性块图、Markov模型和Monte Carlo 模拟等。

2.5 仿真模型的构建根据选择的可靠性分析方法,开始构建UPS供电系统的可靠性仿真模型。

首先,确定系统的各个组成部分,包括输入电源、电池组和逆变器等。

然后,建立各个组成部分之间的关系、故障模式和参数。

最后,利用合适的仿真工具进行仿真分析,得到系统的可靠性评估结果。

3. 可靠性仿真模型的分析3.1 可靠性评估指标在进行可靠性仿真模型分析之前,需要确定可靠性评估指标,常用的指标包括可用性、平均失效间隔时间(MTBF)和平均修复时间(MTTR)等。

可靠性模型Reliability Model

可靠性模型Reliability Model
通过自上而下的功能分解过程,可以得到系统功能
的层次结构
功能的逐层分解可以细分到可以获得明确的技术 要求的最低层次(如部件)为止。
进行系统功能分解可以使系统的功能层次更加清晰, 同时也产生了许多低层次功能的接口问题。
对系统功能的层次性以及功能接口的分析,是建立 可靠性模型的重要一步。
2020/7/4
17
功能的分解
系统
1
2
4
3
1.1
1.2
2.1
2.2
1.4
1.3
4.1
4.2
2.4
2.3
3.1
3.2
4.4
4.3
3.4
3.3
图3-6 功能分解示意图
2020/7/4
18
功能的分类
在系统功能分解的基础上,可以按照给定的任务,对系 统的功能进行整理。
按重 要程 度分
按用 户要 求分
分类 基本功能
辅助功能
可靠性模型
Reliability Model
北京航空航天大学工程系统工程系
2020/7/4
1
系统可靠性模型建立-1
可靠性模型有关术语及定义 基本可靠性模型-任务可靠性模型 建立系统任务可靠性模型的程序 系统功能分析 典型的可靠性模型
2020/7/4
2
系统可靠性模型建立-2
不可修系统可靠性模型
2020/7/4
15
系统功能分析
对系统的构成、原理、功能、接口等各方面深 入的分析是建立正确的系统任务可靠性模型的 前导。
前导工作的主要任务就是进行系统的功能分析
功能的分解与分类 功能框图与功能流程图 时间分析 任务定义及故障判据
2020/7/4

可靠性建模分析

可靠性建模分析

目录系统可靠性建模分析 (2)摘要 (2)关键词 (2)1.可靠性框图 (2)2.典型的可靠性模型 (3)2.1串联模型 (3)2.2并联模型 (4)2.3旁联模型 (4)2.4r/n(G)模型 (5)2.5复杂系统/桥联模型 (6)图1:自行车的基本可靠性与任务可靠性框图 (3)图2:典型可靠性模型 (3)图3:串联可靠性框图 (4)图4:并联可靠性框图 (4)图5:旁联可靠性框图 (5)图6:r/n(G)系统可靠性框图 (5)图7:桥联系统示例原理图及可靠性框图 (6)图8:复杂系统实例 (7)表1:复杂系统完全列举 (7)系统可靠性建模分析[摘要] 为了设计、分析和评价一个系统的可靠性和维修性特征,就必须明系统和它所有的子系统、组件和部件的关系。

很多情况下这种关系可以通过系统逻辑和数学模型来实现,这些模型显示了所有部件、子系统和整个系统函数关系。

系统的可靠性是它的部件或系统最底层结构单元可靠性的函数。

一个系统的可靠性模型由可靠性框图或原因——后果图表、对所有系统和设备故障和维修的分布定义、以及对备件或维修策略的表述等联合组成。

所有的可靠性分析和优化都是在系统概念数据模型的基础上进行的。

[关键词]可靠性框图,串联,并联,表决,复杂系统,可靠度系统是由相互作用和相互依赖的若干个单元结合成的具有特定功能的有机整体。

对于系统管理者而言,系统完成预期任务可靠性以及对系统维修特征等因素的分析是必不可少的。

这时就需要借助于系统逻辑及数学模型德理论进行评价分析。

本文就是基于可靠性框图(RBD)理论对系统可靠性建立常见的数学分析模型,并结合一些实际例子予以解释说明。

1.可靠性框图可靠性框图(RBD)是用一种图形的方式显示了系统所有成功或故障的组合,因此系统的可靠性框图显示了系统、子系统和部件的逻辑关系。

目前跟据建模目的可分为基本可靠性模型和任务可靠性模型,并用RBD表示出来。

基本可靠性模型是用以估计产品及其组成单元可能发生的故障引起的维修以及保障要求的可靠性模型。

可靠性模型

可靠性模型

2020/7/11
26
典型可靠性模型分类
典型可靠性模型
非储备模型
有储备模型
工作储备模型
非工作储备模型
串联模型 并联模型 表决模型 桥联模型 旁联模型
2020/7/11
27
假设
(a)系统及其组成单元只有故障与正常两种状态,不存 在第三种状态;
(b)用框图中一个方框表示的单元或功能发生故障就会 造成整个系统的故障(有替代工作方式的除外);
2020/7/11
15
系统功能分析
对系统的构成、原理、功能、接口等各方面深 入的分析是建立正确的系统任务可靠性模型的 前导。
前导工作的主要任务就是进行系统的功能分析
功能的分解与分类 功能框图与功能流程图 时间分析 任务定义及故障判据
2020/7/11
16
功能的分解与分类
功能的分解
系统往往是多任务与多功能的 一个系统及功能是由许多分系统级功能实现的
可靠性框图 网络可靠性模型 故障树模型 事件树模型 马尔可夫模型 Petri网模型 GO图模型
2020/7/11
6
可靠性框图
为预计或估算产品的可靠性所建立的可靠性方 框图和数学模型。
方框:产品或功能 逻辑关系:功能布局 连线:系统功能流程的方向
无向的连线意味着是双向的。 节点(节点可以在需要时才加以标注)
17
功能的分解
系统
1
2
4
3
1.1
1.2
2.1
2.2
1.4
1.3
2.4
2.3
4.1
4.2
3.1
3.2
4.4
4.3
3.4
3.3
图 3-6 功 能 分 解 示 意 图

第三讲 系统的可靠性

第三讲  系统的可靠性
2 2 t Rs (t ) e 3t C3 e (1 e t ) 3e 2t 2e 3t
第三讲 系统的可靠性
将t=104h 代入上式,可得: R(104h)=3e-2 10-5 104-2e-3 10-5 104=0.9746 4、旁联系统的可靠性 旁联系统也叫待机系统,系统由n个单元组成,其中只有一个单元在工作, 其余n-1个作备用。当工作单元失效时,通过失效检测装置及转换装置, 另一单元立即开始工作,单元逐个顶替工作,直到全部单元失效为止。 可靠性框图为:
第三讲 系统的可靠性
第三讲 系统的可靠性
当单元的失效寿命为指数分布时,并假设每个单元的失效率都相同, 则并联系统的可靠度为:
Rs (t ) 1 (1 e t ) n
(3-9)
Hale Waihona Puke 式中 为单元的失效率 , n为单元数。 并联系统的平均寿命为:
MTTF

0
1 1 1 1 n 1 Rs (t )dt 2 n i 1 i
Rx P( x, n) Cnx p x q n x Cnx R x (1 R) n x
n中取k,即大于k时均是可靠的,
i Rs (k , n) Cn [ R(t )]i [1 R(t )]n i i k n
(3-13)
第三讲 系统的可靠性
若各单元的寿命均服从指数分布,即R(t)=e- t, 为各单元的失效率, 则系统可靠度Rs(t)为:
第三讲 系统的可靠性
三、冗余系统的可靠性 1、并联系统的可靠性 如果组成系统的所有单元都失效,整个系统才会失效,该系统为并联系统。这 种系统只要有一个单元不失效,整个系统就不会失效。逻辑图为:
1

系统可靠性模型建立

系统可靠性模型建立

2024/10/12
可靠性设计
21
功能的分解
系统
1
2
4
3
1.1
1.2
2.1
2.2
1.4
1.3
2.4
2.3
4.1
4.2
3.1
3.2
4.4
4.3
3.4
3.3
图3-6 功能分解示意图
2024/10/12
可靠性设计
22
功能的分类
在系统功能分解的基础上,可以按照给定的任务, 对系统的功能进行分类整理。
分类
25
某空间飞行器整个飞行任务 在最高层次以及下级层次中的功能流程
第一层 飞行任务
上升和射 入轨道
10
转到运行 轨道
20
控制和部 署
30
执行任务 操作
40

转到空间运 输系统轨道
60
回收空间 飞行器
70
再入和 着陆
80
应急操作
50
第二层 40执行任务操作
转到运行轨 道30参考
提供电力 41
提供姿态 稳定
一般地,建立系统的基本可靠性模型时,任务定 义为:系统在运行过程中不产生非计划的维修及 保障需求。故障判据为:任何导致维修及保障需 求的非人为事件,都是故障事件。
对于多任务、多功能的系统建立任务可靠性模型 时,必须先明确所分析的任务是什么。对于任务 的完成来说,涉及到系统的哪些功能,其中哪些 功能是必要的,哪些功能是不必要的,以此而形 成系统的故障判据。影响系统完成全部必要功能 的所有软、硬件故障都计为故障事件。
大气数 据系统
固定 增稳
机体
起落架
自检
图3-4 F/A-18基本可靠性框图

可靠性模型_图文

可靠性模型_图文
(c)就故障概率来说,用不同方框表示的不同功能或单 元其故障概率是相互独立的。
(d)系统的所有输入在规定极限之内,即不考虑由于输 入错误而引起系统故障的情况;
(e)当软件可靠性没有纳入系统可靠性模型时,应假设 整个软件是完全可靠的;
(f)当人员可靠性没有纳入系统可靠性模型时,应假设 人员是完全可靠的,而且人员与系统之间没有相互作 用问题。
*
28
典型可靠性模型
串联模型 并联模型 表决模型(r/n(G)模型) 非工作贮备模型(旁联模型) 桥联模型
*
29
串联模型
定义
组成系统的所有单元中任一单元的故障都会导致整 个系统故障的称为串联系统。 串联系统是最常用和最简单的模型之一。 串联系统的逻辑图如下图所示:
时间特性是可靠性分析中不可缺少的一个要素
*
23
时间分析-2
复杂系统一般具有两方面的特点:
(1)系统具有多功能,各功能的执行时机是有时序的 ,各功能的执行时间长短不一
(2)在系统工作的过程中,系统的结构是可以随时间 而变化
需要进行时间分析
确定时间基准 通过与该时间基准对应,可以得到系统功能流程图
*
44
2/3(G)表决模型
其可靠性数学模型为(表决器可靠度为1,组成单元的故障率均为 常值λ ):
*
45
表决系统特例
若表决器的可靠度为1:
当r=1时,1/n(G)即为并联系统, 当r=n时,n/n(G)即为串联系统:
系统的MTBCFS比并联系统小,比串联系统大 。
*
46
非工作贮备模型(旁联、冷贮备)
进行系统功能分解可以使系统的功能层次更加清晰 ,同时也产生了许多低层次功能的接口问题。

HPC系统可靠性建模与仿真

HPC系统可靠性建模与仿真

HPC 系统可靠性建模与仿真第一部分引言:介绍HPC 系统的重要性及其可靠性问题。

(2)第二部分HPC 系统模型:描述HPC 系统的结构和工作原理。

(4)第三部分可靠性建模方法:阐述各种可靠性建模技术 (7)第四部分仿真工具选择:比较并选择适合HPC 系统可靠性的仿真工具。

(10)第五部分参数设定:详细说明如何设定仿真参数以提高模型准确性。

(13)第六部分结果分析:解释仿真结果 (16)第七部分改进措施:提出提高HPC 系统可靠性的建议和改进措施。

(18)第八部分结论:总结研究的主要发现和贡献。

(21)第一部分引言:介绍HPC 系统的重要性及其可靠性问题。

引言高性能计算(High Performance Computing,HPC)系统是现代科学、工程和商业领域中不可或缺的一部分。

它们在解决复杂问题、推动创新和提高生产力方面发挥着关键作用。

然而,HPC 系统的复杂性和规模也带来了新的挑战,其中最重要的是可靠性问题。

本文将介绍 HPC 系统的重要性及其可靠性问题,并探讨如何通过建模和仿真来解决这些问题。

HPC 系统的重要性HPC 系统的重要性主要体现在以下几个方面:1.提高科学研究的效率和精度:HPC 系统能够处理大量的数据和复杂的计算任务,从而提高科学研究的效率和精度。

例如,在气候建模、药物研发、天文学等领域,HPC 系统已经成为必不可少的工具。

2.推动工业创新:HPC 系统能够模拟和优化各种工业过程,从而推动工业创新。

例如,在汽车设计、航空航天、石油和天然气等领域,HPC系统已经成为提高产品性能和降低成本的关键工具。

3.支持大数据分析:HPC 系统能够处理和分析大量的数据,从而支持大数据分析。

例如,在金融、医疗、社交网络等领域,HPC 系统已经成为处理和分析大数据的关键工具。

然而,HPC 系统的复杂性和规模也带来了新的挑战,其中最重要的是可靠性问题。

HPC 系统的可靠性问题主要体现在以下几个方面:1.系统故障:由于 HPC 系统的复杂性和规模,系统故障是常见的问题。

4可靠性模型

4可靠性模型
n
Rs (t) Ri (t) i 1
2019/7/6
Reliability Model
14
并联模型
并联模型 – 组成系统的所有单元都发生故障时,系统才发生故 障称为并联系统。并联系统是最简单的冗余系统。 – 并联系统的逻辑图如图所示:
1 2

n 并联系统可靠性框图
2019/7/6
Reliability Model
e1 2 t

11 1
TBCFs 0 Rs (t)dt 1 2 1 2
2019/7/6
Reliability Model
17
并联模型
由式上式可见,尽管单元故障率都是常数,但并联系 统的故障率不再是常数。
λ
λ1
λ
λ 1=λ 2
λ
λ2
λ s(t) λ 2
n
RS (t) 1 1 Ri (t) i 1
当系统各单元的寿命分布为指数分布时,对于最常用 的两单元并联系统,有
Rs (t) e1t e2t e(12 )t
s (t)

e1t 1

e2t 2

e1t e2t
1 2 e12 t
注意事项 – 描述个单元之间的可靠性逻辑关系
2019/7/6
Reliability Model
5
F18基本可靠性模型
发动机 1
通用液 压系统
发动机 2
燃油系 统
右 发电机
左 发电机
应急燃 油系统
液压泵 1
电力分 配网
环境控 制系统
液压泵 2
应急电 力系统
液压飞 控系统
超高频 通信

《系统可靠性模型》课件

《系统可靠性模型》课件

复杂系统模型
总结词
多个子系统的组合
详细描述
复杂系统通常由多个子系统组成,各子系统之间存在相互依 赖和相互作用的关系。复杂系统的可靠性模型需要考虑子系 统之间的相互关系和依赖性,以及整个系统的运行特性和性 能指标。
03 系统可靠性模型的建立与 评估
建立可靠性模型的方法
功能流程法
01
通过分析系统各组成部分的功能及相互关系,构建系统的逻辑
05 系统可靠性模型的发展趋 势与挑战
系统可靠性模型的发展趋势
复杂系统可靠性建模
随着技术的发展,系统越来越复杂,需要更 高级的建模方法来描述系统的可靠性和故障 模式。
数据驱动的可靠性建模
利用大数据和机器学习技术,通过数据分析和模式 识别来建立更准确的可靠性模型。
动态可靠性建模
考虑系统在运行过程中的变化和不确定性, 建立能够反映系统动态行为的可靠性模型。
模型。
概率法
02
基于概率论,对系统各组成部分的可靠性进行数学描述,进而
推导出整个系统的可靠性。
模拟法
03
利用计算机模拟技术,对系统的工作过程进行模拟,以评估系
统的可靠性。
可靠性模型的参数估计
数据收集
收集系统各组成部分的历史故障数据,以及相关环境 因素数据。
参数估计
利用统计方法,对可靠性模型的参数进行估计,如平 均故障间隔时间、故障率等。
混联系统模型
总结词
结合串联和并联的特点
详细描述
混联系统同时具有串联和并联的特点,其可靠性模型需要考虑不同单元之间的相互关系和依赖性。混联系统通常 比较复杂,需要根据具体情况进行建模和分析。
储备系统模型
总结词
冗余设计提高可靠性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/5/22
可靠性设计
11
基本可靠性模型
基本可靠性模型
用以估计产品及其组成单元发生故障所引起的 维修及保障要求的可靠性模型。
全串联模型,即使存在冗余单元,都按串联处理。 故储备单元越多,系统的基本可靠性(无故障持续 时间和概率)越低。 度量使用费用。任一单元发生故障,都会引起维修 和保障要求。
模n 式
e e it
it
i 1
图3- 35行程开关i 1可靠性框图i 1
2020/5/22
可靠性设计
8
RBD和原理图的关系
原理图表示系统中各部分之间的物理关系, 而RBD表示系统中各部分之间的功能关系, 即用简明扼要的直观方法表现能使系统完 成任务的各种串—并—旁联方框的组合。 虽然根据原理图也可以绘制出可靠性逻辑 图,但并不能将它们二者等同起来。
2020/5/22
可靠性设计
9
RBD和原理图的关系
建立RBD时绝不能从结构和原理上判定系 统类型,而应从功能上研究系统类型。
下图所示的流体系统,从结构上看是由管道及 其上安装的两个阀门串联组成。为确定系统类 型,一定要分析系统的功能及其失效模式。
2个串联阀系统示意图
2020/5/22
可靠性设计
10
2020/5/22
可靠性设计
6
可靠性框图
系统可靠性(方)框图(Reliability Block Diagrams,简写RBD)
方框:产品或功能 逻辑关系:功能布局 连线:系统功能流程的方向
无向的连线意味着是双向的。
节点(节点可以在需要时才加以标注)
输入节点:系统功能流程的起点 输出节点:系统功能流程的终点 中间节点
2020/5/22
可靠性设计
14
F/A-18基本可靠性模型
发动机 1
发动机 2
燃油系 统
应急燃 油系统
液压泵 1
液压泵 2
液压飞 控系统
备用手 动系统
通用液 压系统


发电机 发电机
电力分 配网
环境控 制系统
应急电 力系统
超高频 通信
甚高频 通信
雷达
武器控 制系统
武器
塔康 系统
惯性 导航
备用 罗盘
5. 建模实例:某卫星过渡轨道、同步及准
同步轨道任务可靠性
6. 系统任务可靠性建模的注意事项
2020/5/22
可靠性设计
1
1. 可靠性模型概述
系统、单元和产品
系统
系统是由相互作用和相互依赖的若干单元结合 成的具有特定功能的有机整体。
“系统”、“单元”
相对概念——可以是按产品层次划分:零部件、组件、 设备、分系统、系统、装备中任何相对的两层 “系统”包含“单元”,其层次高于“单元”
内容提要-1
1. 可靠性模型概述
1.1 术语及定义 1.2 基本可靠性模型-任务可靠性模型 1.3 建模的程序
2. 系统功能分析 3. 典型的可靠性模型
2020/5/22
可靠性设计
0
内容提要-2
4. 不可修系统可靠性模型
4.1 虚单元 4.2 不含桥联的复杂系统任务可靠性模型 4.3 含桥联的复杂系统任务可靠性模型
产品可以指任何层次,也可视为系统或单 元。
2020/5/22
可靠性设计
3
描述系统的模型
原理图
反映了系统及其组成单元之间的物理上的连接 与组合关系。
功能框图、功能流程图
反映了系统及其组成单元之间的功能关系。
系统的原理图、功能框图和功能流程图是 建立系统可靠性模型的基础。 可靠性模型描述了系统及其组成单元之间 的故障逻辑关系。
2020/5/22
可靠性设计
13
基本可靠性模型-任务可靠性模型
在进行设计时,根据要求同时建立基本可靠性及 任务可靠性模型的目的在于,需要在人力、物力、 费用和任务之间进行权衡。 设计者的责任就是要在不同的设计方案中利用基 本可靠性及任务可靠性模型进行权衡,在一定的 条件下得到最合理的设计方案。 为正确地建立系统的任务可靠性模型,必须对系 统的构成、原理、功能、接口等各方面有深入的 理解。
RBD和原理图的关系
第一种情况,若单元1,2功能是相互独立的,只有每个 单元都实现自己的功能(开启),系统才能实现液体流 通的功能,若其中有一个单元功能失效,则系统功能就 失效,液体就被截流。 第二种情况,单元1,2功能至少有一个功能正常,系统 就能实现截流功能。只有当所有的单元功能都失效,系 统功能才失效。
大气数 据系统
固定 增稳
机体
起落架
自检
图3-4 F/A-18基本可靠性框图
2020/5/22
可靠性设计
15
F/A-18任务可靠性模型
发动机 1
发动机 2
燃油系 统
应急燃 油系统
液压泵 1
液压泵 2
液压飞 控系统
备用手 动系统
通用液 压系统
右 发电机
左 发电机
电力分 配网
应急电 力系统
环境控 制系统
2020/5/22
可靠性设计
12
任务可靠性模型
任务可靠性模型
用以估计产品在执行任务过程中完成规定功能 的概率(在规定任务剖面中完成规定任务功能 的能力),描述完成任务过程中产品各单元的 预定作用,用以度量工作有效性的一种可靠性 模型。
系统中储备单元越多,则其任务可靠性越高。
注意事项
模型描述的是各单元之间的可靠性逻辑关系。
2020/5/22
可靠性设计
4
可靠性模型概念
建立系统可靠性模型的目的和用途在于定 量分配、估算和评估系统的可靠性。
根据系统特点,有多种可靠性建模方法 :
可靠性框图 网络可靠性模型 故障树模型 事件树模型 马尔可夫模型 Petri网模型 GO图模型
2020/5/22
可靠性设计
5
可靠性模型概念
可靠性模型建立于系统可靠性(方)框图,即为 预计或估算产品的可靠性所建立的可靠性方框图 和数学模型,也称可靠性逻辑框图及其数学模型。 了解系统中各个部分(或单元)的功能和它们相互 之间的联系以及对整个系统的作用和影响对建立 系统的可靠性数学模型、完成系统的可靠性设计、 分配和预测都具有重要意义。借助于可靠性框图 可以精确地表示出各个功能单元在系统中的作用 和相互之间的关系。
超高频 通信
甚高频 通信
雷达
武器控 制系统
武器
塔康 系统
惯性 导航
备用 罗盘
大气数 据系统
2020/5/22
可靠性设计
7
可靠性模型示例
可靠性框图
(收音机)1
1
1 天线
2
2 高频 放大
3
3
4
4
混频
振荡
5
5 中频 放大
6
2
6
7
检波
7 低频 放大
8
8 放音
9
9 电源
10
3
图3-2 收音机可靠性框图
1
2
3
4
4
可靠性(闭a数合)故学提障前模型
(b)不能 闭合故障
n
模式
பைடு நூலகம்
Rs (t)
n
Ri (t )
相关文档
最新文档