不同钻井参数

不同钻井参数
不同钻井参数

不同钻井参数、不同磨损期PDC钻头岩屑分析识别

不同钻井参数、不同磨损期PDC钻头

岩屑分析识别

西南石油局录井工程处黄勇

摘要:随着钻井工艺水平的不断提高, PDC钻头受到广泛地应用,PDC钻头在提高钻井速度、降低钻井成本、增加经济效益的同时,却由于钻屑细小而给岩屑录井、钻时卡层等带来诸多困难。笔者根据在川西气田十余口井PDC钻头钻井的岩屑录井经验,总结出根据不同钻井参数条件下的PDC钻头使用期法来识别细小真实岩屑,从而提高PDC钻头钻进中的地层剖面恢复符合率。

关键词:岩屑;录井;PDC钻头;提高;符合率

一、PDC钻头特点及造屑机理

1、PDC钻头的主要特点:PDC全称为Polycrystalline Diamond Compact(聚晶金刚合金片),这类钻头是油气钻井中针对中软地层而开发的新型钻头。近几年, PDC钻头被越来越广泛地应用,PDC钻头的优越性显而易见,与传统的牙轮钻头相比,PDC钻头有着明显的优势:钻井速度快,可以提高机械钻速,降低钻井成本;使用寿命长,减少起下钻次数,降低工人劳动强度,辅助时间少;适应地层广。适合川西气田特殊地质特征,低钻压剪切均匀破碎,有利于防斜;安全系数大。没有掉牙轮风险,事故发生概率较小。不过PD

C钻头存在一些缺点:钻头成本高,要求井底干净,禁止井下有金属落物;对井壁进行修复的功能不如牙轮钻头;PDC钻头所钻的岩屑细小,虽便于泥浆携带,保持井底干净,但给岩屑录井工作带来很大困难。

2、PDC钻头造屑机理

PDC钻头破碎岩石的方式主要是剪切作用。从岩石破碎强度可知,岩石抗剪切强度远低于岩石的抗压强度(为抗压强度的0.09-0.15倍),PDC钻头正是利用岩石的这一特征实现其高速钻进。PDC钻头在扭矩力的作用下,复合片刮切岩石时生成的岩屑会沿着金刚石表面上移,直至与复合片脱离,通过岩石在切削齿边缘处的破碎,钻头的切削能量得到高效释放。然而,在很多情况下,岩屑所承受的压力过大使其紧贴切削齿表面,从而生产阻碍岩屑移动的摩擦力。这种摩擦力往往可以积累到相当高的程度,以至于会造成岩屑在切削齿边缘的堆积。这种现象一旦发生,井底岩石的运移就不再是直接依靠切削齿的边缘,而是通过切削齿表面积累的岩屑自身来完成。这种现象在钻头后期表现的尤为突出。

二、PDC钻头使用对岩屑录井质量的影响

高转速、低钻压、高排量PDC钻头的使用提高了钻井的速度、降低了钻井的成本、明显增加了钻井的经济效益,但与此同时却给地质录井中工作带来诸多困难,PDC钻头钻出的岩屑极其细小,给地质资料的录取质量带来了较大的影响。钻井地质录井主要工作之一是通过岩屑建立岩性剖面、划分地层,钻井岩屑细小,无疑是对岩性剖面的恢复带来极大的影响。

首先:岩屑取、洗样的难度加大。由于所钻岩屑细小,

甚至部分岩屑呈粉沫状,在钻井液中较少通过震动筛

从钻井液中分离出来,导致捞取到的岩屑数量较少。

其次:加大了岩屑观察、描述、分层定名、百分比估计的难度。由于岩屑细小,有的甚至为粉末状,给正确的岩屑描述观察、挑样、定名等判定带来了很大的难度,严重影响岩性剖面符合率。另外砂、泥岩钻时区别不大(特别是浅层),因此钻时在剖面恢复的过程中的作用明显较牙轮钻头的钻时要小。

再次:捞砂时间与钻进时间搭配不合理。在川西浅层中软地层,PDC钻头钻时较快,1500m以前平均钻时1~4 min / m,快的时候不足1 min钻进一米,而采集、清洗一包岩屑样一般需要5-10min左右,即使按照4m的采样间距也无法跟上钻头,如果是勘探井或油气显示加密段,当采样间距缩小时,采样就更无法跟上钻头进尺,从而造成采样困难,砂样的质量及代表性变差。

PDC钻头钻出的岩屑极其细小,给地质剖面的恢复带来了较大的影响。如何识别不同磨损时期、不同钻井参数条件下PDC钻头的岩屑,保证岩屑录井的质量,笔者就多年来在川西孝泉、新场等构造现场录井工作中所遇到的情况及采取的处理方法来浅谈解决细小岩屑录井

的问题,以供大家探讨。

三、不同钻井参数、不同磨损期PDC钻头岩屑的分析识别。

根据川孝169从式井组、川孝452井、川孝464井等十余口的岩屑来看,钻头使用的时期不同,钻头本身磨损程度肯定不同,在相同钻井参数下钻进返出的岩屑大小不同。同样,钻头磨损程度一定,而

钻井参数不同,所钻岩屑大小也肯定不同。因此在对岩屑代表性进行判定时,地质工作者必须将PDC钻头使用的时期及钻井参数相结合来综合考虑问题。

一)、使用早期的PDC钻头在不同钻井参数下的岩屑分析识别

1、高转速、低钻压、高排量:这种钻井参数组合在川西使用较多,特别是对新PDC钻头,其钻井速度较快,掉块少。钻进所得岩屑,粒径最大3-4mm,一般在1-2 mm之间,最小达0.5-1.0mm,使用1-2 -5mm四层选样筛选样,以1mm筛层岩屑(大小1-2mm)代表性最好,2mm筛层岩屑(大小2-5mm)代表性次之。如果钻压增大,钻头牙齿吃入地层的深度大,破碎得到的岩屑颗粒将略有增大,以2-3 mm左右的岩屑代表性最好。

2、高转速、低钻压、低排量:在这种钻井参数条件下使用磨损程度小的PDC钻头钻进,钻速相对较慢,掉块多,转盘负荷较大。由于泥浆对地层岩屑的冲刷破碎力小,钻头破碎的岩屑未被进一步破碎,因此所钻岩屑颗粒较大,但是由于排量低,岩屑上返不及时,井筒内岩屑多,部分岩屑又受钻头及高速旋转钻杆的剧烈搅拌造成重复性碾磨而变小,最终导致岩屑情况复杂,观察发现所得岩屑总体新鲜感降低,粒径最大4-5mm,一般在2-3mm之间,最小为1-2mm。以2m m筛层岩屑(大小2-3mm)代表性最好。

3、低转速、低钻压、高排量:这种钻井参数组合很少见,在这种条件下使用磨损程度小的PDC钻头钻进,钻速较慢。钻盘转速低,钻头对已破碎的岩屑未造成重复性碾磨,并且岩屑上返过程中也未受

钻杆高速旋转的剧烈搅拌,从而使返出的岩屑颗粒相对较大。粒径最大4-6mm,一般在2-4 mm之间,最小达1.0mm,以2mm筛层岩屑(大小2-4mm)代表性最好,1mm筛层岩屑(大小1-2mm)代表性略次。

4、低转速、低钻压、低排量:尚未遇到在这种钻井参数条件下使用磨损程度小的PDC钻头钻进的情况。

二)、进入晚期的PDC钻头在不同钻井参数下的岩屑分析识别

1、高转速、低钻压、高排量:在这种钻井参数组合下使用磨损程度较高的PDC钻头钻进所得岩屑,钻速变的很慢,岩屑变的很细,粒径最大2-3mm,一般在0.5-1 mm之间或呈粉末状。此时岩屑很细,筛样要特别注意,筛样时要前后对比岩屑,看暗色岩屑(泥岩)与浅色岩屑(砂岩)的增减量,使用1-2-5mm四层选样筛选样,如浅色岩屑(砂岩)增加,则漏过1mm筛层的粉末状岩屑代表性最好;如暗色岩屑(泥岩)增加,则漏过1mm筛层岩屑(大小0.5-1mm)代表性最好,1mm筛层岩屑(大小1-2mm)代表性次之,2 mm筛层以上岩屑代表性就非常差了。

2、高转速、高钻压、高排量:在川西,井队当PDC钻头使用到晚期后,由于钻头昂贵,为节约钻头成本,一般都要加大钻井参数,特别是加大钻压继续维持钻进,因此这种钻井参数组合使用较多。此时使用磨损程度高的PDC钻头钻进,钻速仍然很慢。井下岩屑由于所承受的压力过大而使其紧贴切削齿表面,从而生产阻碍岩屑移动的摩擦力。这种摩擦力往往可以积累到相当高的程度,以至于会造成岩屑

在切削齿边缘的堆积。井底岩石的运移就不再是直接依靠切削齿的边缘,而是通过切削齿表面积累的岩屑自身来完成,如果排量减小,这种现象将更加严重。此时,钻井所产生的岩屑就像木工所推出的刨花,岩屑呈卷曲状,粒径最大3-5mm(个别甚至更大),一般在1-3 mm

之间,最小达0.5-1.0mm。通过多口井观察,这种情况下在棕色泥岩段形成的是浅灰棕色的卷曲状岩屑,在灰、浅(绿)灰色砂岩段形成的是浅灰色的卷曲状岩屑,两者含钙质均较重,加酸起泡程度远强于泥岩与砂岩。多口井选样送至研究院化验分析均解释为介屑灰岩,然而众所周知在川西沙溪庙组以上地层并无介屑灰岩存在,从而反过来验证此种岩屑主要为机械原因所成。

3、低转速、低钻压、高排量:在这种钻井参数条件下使用高磨损程度PDC钻头钻进,钻速非常慢,井队基本都会起钻换钻头。

4、低转速、低钻压、低排量:商未遇到在这种钻井参数条件下使用高磨损程度的PDC钻头钻进的情况。

综上所述,在川西孝泉、新场等构造的中软地层,PDC钻头在钻井过程中形成的岩屑与PDC钻头的磨损程度及钻井参数的使用有密

切关系。不同的钻井参数、不同的钻头磨损程度对岩屑的大小、形状有着重要影响,作为地质工作者在使用PDC钻头岩屑录井过程中应综合考虑影响岩屑成因的各种因素,有效分析识别具有代表性的岩屑,以提高岩屑真实性及地层剖面的符合率。

钻井各种计算公式

钻头水利参数计算公式: 1、 钻头压降:d c Q P e b 42 2 827ρ= (MPa ) 2、 冲击力:V F Q j 02.1ρ= (N) 3、 喷射速度:d V e Q 201273= (m/s) 4、 钻头水功率:d c Q N e b 42 3 05.809ρ= (KW ) 5、 比水功率:D N N b 21273井 比 = (W/mm 2) 6、 上返速度:D D V Q 2 2 1273杆 井 返= - (m/s ) 式中:ρ-钻井液密度 g/cm 3 Q -排量 l/s c -流量系数,无因次,取0.95~0.98 d e -喷嘴当量直径 mm d d d d e 2 n 2 22 1+?++= d n :每个喷嘴直径 mm D 井、D 杆 -井眼直径、钻杆直径 mm 全角变化率计算公式: ()()?? ? ???+?+ ?= -?-?225sin 2 2 2 b a b a b a L K ab ab ?? 式中:a ? b ? -A 、B 两点井斜角;a ? b ? -A 、B 两点方位角

套管强度校核: 抗拉:安全系数 m =1.80(油层);1.60~1.80(技套) 抗拉安全系数=套管最小抗拉强度/下部套管重量 ≥1.80 抗挤:安全系数:1.125 10 ν泥挤 H P = 查套管抗挤强度P c ' P c '/P 挤 ≥1.125 按双轴应力校核: H n P cc ρ10= 式中:P cc -拉力为T b 时的抗拉强度(kg/cm 2) ρ -钻井液密度(g/cm 3) H -计算点深度(m ) 其中:?? ? ? ?--= T T K P P b b c cc K 2 2 3 T b :套管轴向拉力(即悬挂套管重量) kg P c :无轴向拉力时套管抗挤强度 kg/cm 2 K :计算系数 kg σs A K 2= A :套管截面积 mm 2 σs :套管平均屈服极限 kg/mm 2 不同套管σs 如下: J 55:45.7 N 80:63.5 P 110:87.9

优化钻井

5优化钻井技术 5.1 优化钻井的基本概念 优化钻井是科学钻井的重要标志之一,它是应用最优化理论和技术寻求使钻井速度最快,钻井成本最低的钻井参数和技术措施。对一口井全过程进行最优化处理,称为全局最优化。对一口井的某一过程进行最优化处理,称为局部最优化。对钻井过程的某些参数进行最优化处理,称为优选参数钻井。优选参数钻井是应用优化理论分析影响钻井速度的因素,建立钻速方程,钻头磨损方程,钻井成本方程(目标函数)。在此基础上确定相应的约束条件,用最优化方法确定达到最优化目标的解向量,即最优化钻井参数和技术措施。 5.2优化钻井的发展 优化钻井是在喷射钻井和平衡钻井的基础上发展起来的。(1)50年代以前,国外就有人研究钻压、转速、水力因素、泥浆性能等对钻速的影响。当时采用高钻压、低转速、大排量钻进,未取得明显效果; (2)50-70年代,优化钻进技术发展很快,出现了各种钻进模式。包括Sper和Moore的数学模型,古宁汉和Woods的钻头磨损方程,Woods和Gall的二元钻速方程,Young模式方程,Bourgyne 的多元钻速方程等。 (1)我国起步较晚,”6.5“期间进行了科技攻关。油科院与辽河油田合作用阿莫柯模式进行了研究和试验,石油大学与中原油田合作,用扬格模式进行试验研究,西南石油学院与胜利油田

合作,用修正的多元钻速方程进行了研究和试验,取得了一定成效 5.3 影响钻井速度的因素及钻井模式方程 影响钻井速度的主要因素有: 钻压、 转速、 水力因素、泥浆性能、井底压差、钻头型号、喷嘴组合、地层可钻性、地层埋藏深度、设备条件和操作水平。上述因素又可分为相互独立和相互关联因素。水力因素、泥浆性能、井底压差、喷嘴组合、操作水平是相互独立因素,不进入钻速方程。而钻压、转速、地层特性、钻头类型是相互关联因素,这些因素要进入钻速方程。 5.3.1 相对独立因素对钻速的影响 (1)泥浆性能对钻速的影响 泥浆性能主要是泥浆密度、塑性粘度、固含、固相颗粒分散度及剪切稀释作用对钻速的影响。 * 泥浆密度对钻速影响极大,在同样的钻井条件下,密度增加0.1钻井速度降低1倍; * 固相含量对钻井速度有明显影响。固含增加钻井速度降低; * 固相颗粒分散度对钻井速度影响也很明显。固相颗粒越分散,对钻速影响越大; * 塑性粘度对钻速的影响也很大,特别是水眼粘度影响更大。所谓水眼粘度是指泥浆通过喷嘴时的表观粘度。即: dr dv s p /0τημ+= (1) 由于在喷嘴出口的速梯很大,所以s p ημ=。因此,水眼粘度实际上是高速梯下的塑性粘度。而塑性粘度与固含有关,特别

钻井设计

钻井工程设计指导 前言 一、钻井设备 二、井身结构设计 三、钻具组合设计 四、钻井液设计 五、钻井参数 六、油气井压力控制 七、固井设计 前言 钻井是石油、天然气勘探与开发的主要手段。钻井工程质量的优劣和钻井速度的快慢,直接关系到钻井成本的高低,油田勘探开发的综合经济效益及石油工业发展速度。 钻井程设计是钻井施工作业必须遵循的原则,是组织钻井生产和技术协作的基础,搞好单井预算和决算的唯一依据。钻井设计的科学性,先进性关系到一口井作业的成败和效益。科学钻井水平的提高,在一定程度上依靠钻井设计水平的提高。 搞好钻井工程设计也是提高技术管理和加强企业管理水平的一项重要措施,是钻井生产实现科学化管理的前提。 钻井工程设计应包括以下方面的内容: 1.地面井位的选择及钻井设备的确定; 2.井身结构的确定; 3.钻柱设计与下部钻具的组合; 4.钻井参数设计; 5.钻井液设计;

6.油气井压力控制; 7.固井设计; 一钻井设备 (一) 钻进设备的选择 钻井设备可以按设计及分类细分为若干部件系统。这些系统可分为: 1.动力系统; 2.起升系统; 3.井架及井架底座; 4.转盘; 5.循环系统; 6.压力控制系统。 这些系统是选择钻井设备的基础。钻井设备的选择主要依据钻机类型,地表条件及钻井设计所确定的最大载荷而定。 (二) 钻井设备选择实例 表1-1是大庆地区45110钻井队芳深三井的钻进设备记录。

二井身结构设计 (一) 井身结构确定的原则 1.能有效的保护油气层,使不同压力梯度的油气层不受泥浆污染损害。 2.应避免漏、喷、塌卡等情况发生,为全井顺利钻进创造条件,使钻井周期最短。 3.钻下部高压地层时所用的较高密度泥浆产生的液柱压力,不致压裂上一层管鞋处薄弱的露地层。 4.下套管过程中,井内泥浆液柱压力之间的压差,不致产生压差卡套管事故。 (二) 井身结构设计步骤 1.根据地区特点和井的自身条件,确定在保证工程需要的条件下应下几层套管,做出井身结构设计图。 2.确定套管尺及相应钻头尺寸。 3.确定各层套管的下入深度。 (三) 套管下入深度的确定方法 1.确定各套管下入深度初选点H ni

钻井钻具扣型知识

扣型是工具中最常见的部分,也是比较难区分的一部分。扣型对于工具师或是监督是很重要的,一个工具师如果不了解扣型,要料、准备到指挥作业都是行不通的,要出大问题的。这一周主要是学习认识各种常见扣型,包括油管扣型,冲管扣型,筛管盲管扣型,密封单元连接扣形,钻杆扣型等。 1、常见油管扣型(Tubing Joint) 油管常用扣型分为三种分别是EU、NU和NewVam。这三种扣型在工具车间都能找到,其中EU和NU单独从扣的外观上很难区分,都是三角扣型,但是从整个管柱就能很容易区分,那就是EU表示外加厚NU表示没有外加厚。New Vam实际是一种梯形扣(扣截面呈矩形),也是不带外加厚的,所以也很容易区分。下面将用示意图详细介绍三种扣型。1)EU(External upset)外加厚 EU扣是一种外加厚油管扣型。在车间货架上认识变扣接头过程中还会发现三种和EU 有关的biano标识。其中EUE(External Upset End)表示外加厚端,EUP(External Upset Pin)表示外加厚公扣,EUB(External Upset Box)表示外加厚母扣。除了用pin和box表示公扣母扣外,其他表示公扣有1. external thread 2. male 3. male thread。母扣有1. female thread 2. internal thread 3. box 4. box thread。 图1-1 EU扣型 2)NU(Non-upset)没有外加厚 NU表示是没有外加厚的油管接头。除了没有外加厚外和EU一般还有一种区别就是NU一般每英寸10扣,EU一般每英寸8扣。其中NUE表示非加厚端或者说端部非加厚。同样E表示End。[以上说法来源《石油大典》。] 图1-2 NU扣型 3)New VAM 这种扣型特点是扣截面基本为矩形,螺距间隔相等,锥度不大,没有外加厚。在车间的生产滑套套筒端部见到。 图1-3 New VAM扣型 2.钻杆常用扣型总结 钻杆扣一般常见为REG和IF扣,其他如FH等在工具车间没有找到。根据师傅经验REG扣和IF扣一般分别是5扣/in和4扣/in,但是大于4-1/2”即使是4扣/in也是REG扣,也就是说大于4-1/2”一般都是REG扣,小于4-1/2”IF扣较多。 1)REG(API Regular Thread)API标准里的正规扣型 正规型钻杆接头采用的螺纹。该型螺纹曾用于连接内加厚钻杆,形成钻杆接头内径小于钻杆加厚端内径,而钻杆加厚端内径又小于钻杆管体内径的通径。[见于95-96页《油气田井下作业修井工程》聂海光王新河等,石油工业出版社2002年2月北京第一版] REG扣和IF扣摸起来,手感不一样。REG扣细腻一些,IF扣粗糙一些,原因就是单位长度的扣密度不同。图1-4是REG扣的剖面示意图,图1-5为实物图。 图1-4 REG扣型 图1-5 REG扣型实物图 2)IF(API Internal Flush)API标准里的内平扣型 内平型钻杆接头采用的螺纹。该型螺纹用于连接外加厚或外内加厚钻杆,形成钻杆接头内径,钻杆加厚端内径与钻杆管体内径相等或相近的通径。[见于95-96页《油气田井下作业修井工程》聂海光王新河等,石油工业出版社2002年2月北京第一版]。图1-6是IF 扣的剖面示意图。 图1-6 IF扣型接头示意图 3)FH(API Full Hole)API标准里的贯眼扣型

不同钻井参数

不同钻井参数、不同磨损期PDC钻头岩屑分析识别 不同钻井参数、不同磨损期PDC钻头 岩屑分析识别 西南石油局录井工程处黄勇 摘要:随着钻井工艺水平的不断提高, PDC钻头受到广泛地应用,PDC钻头在提高钻井速度、降低钻井成本、增加经济效益的同时,却由于钻屑细小而给岩屑录井、钻时卡层等带来诸多困难。笔者根据在川西气田十余口井PDC钻头钻井的岩屑录井经验,总结出根据不同钻井参数条件下的PDC钻头使用期法来识别细小真实岩屑,从而提高PDC钻头钻进中的地层剖面恢复符合率。 关键词:岩屑;录井;PDC钻头;提高;符合率 一、PDC钻头特点及造屑机理 1、PDC钻头的主要特点:PDC全称为Polycrystalline Diamond Compact(聚晶金刚合金片),这类钻头是油气钻井中针对中软地层而开发的新型钻头。近几年, PDC钻头被越来越广泛地应用,PDC钻头的优越性显而易见,与传统的牙轮钻头相比,PDC钻头有着明显的优势:钻井速度快,可以提高机械钻速,降低钻井成本;使用寿命长,减少起下钻次数,降低工人劳动强度,辅助时间少;适应地层广。适合川西气田特殊地质特征,低钻压剪切均匀破碎,有利于防斜;安全系数大。没有掉牙轮风险,事故发生概率较小。不过PD

C钻头存在一些缺点:钻头成本高,要求井底干净,禁止井下有金属落物;对井壁进行修复的功能不如牙轮钻头;PDC钻头所钻的岩屑细小,虽便于泥浆携带,保持井底干净,但给岩屑录井工作带来很大困难。 2、PDC钻头造屑机理 PDC钻头破碎岩石的方式主要是剪切作用。从岩石破碎强度可知,岩石抗剪切强度远低于岩石的抗压强度(为抗压强度的0.09-0.15倍),PDC钻头正是利用岩石的这一特征实现其高速钻进。PDC钻头在扭矩力的作用下,复合片刮切岩石时生成的岩屑会沿着金刚石表面上移,直至与复合片脱离,通过岩石在切削齿边缘处的破碎,钻头的切削能量得到高效释放。然而,在很多情况下,岩屑所承受的压力过大使其紧贴切削齿表面,从而生产阻碍岩屑移动的摩擦力。这种摩擦力往往可以积累到相当高的程度,以至于会造成岩屑在切削齿边缘的堆积。这种现象一旦发生,井底岩石的运移就不再是直接依靠切削齿的边缘,而是通过切削齿表面积累的岩屑自身来完成。这种现象在钻头后期表现的尤为突出。 二、PDC钻头使用对岩屑录井质量的影响 高转速、低钻压、高排量PDC钻头的使用提高了钻井的速度、降低了钻井的成本、明显增加了钻井的经济效益,但与此同时却给地质录井中工作带来诸多困难,PDC钻头钻出的岩屑极其细小,给地质资料的录取质量带来了较大的影响。钻井地质录井主要工作之一是通过岩屑建立岩性剖面、划分地层,钻井岩屑细小,无疑是对岩性剖面的恢复带来极大的影响。 首先:岩屑取、洗样的难度加大。由于所钻岩屑细小, 甚至部分岩屑呈粉沫状,在钻井液中较少通过震动筛 从钻井液中分离出来,导致捞取到的岩屑数量较少。

定向井钻井参数设计

定向井钻井参数设计 刘嘉 中石油胜利石油工程有限公司钻井技术公司 摘要:科技的发展,人口的剧增,造成了对能源的巨度消耗。这迫使人类去寻找更多的能源来满足这样的消耗,而石油便是其中之一。在脚下的土地中,蕴含着大量的石油能源需要去勘探,这边需要有先进的开采技术,若是因开采方式的不当而造成对能源的大量浪费,便是得不偿失了。 一、定向井钻井技术概述 定向井技术是当今世界石油勘探开发领域最先进的技术之一,也是如今使用的越来越频繁的技术。采用定向井技术开采石油,不仅可以在地下环境条件的严格限制下经济而有效的开发石油资源,在大幅度提高油气产量的同时,又不会对自然环境造成污染,是一项具有显著的经济效益的技术手段。 1.定向井:定向钻井是使井眼沿盂县设计的井眼轴线(井眼轨迹)钻达预定目标的钻井过程。 2.定向井的分类:按照井型的不同,可将定向井分为常规定向井(即最大井斜角在60°以内的定向井)、大斜度定向井(最大井斜角在60°到90°之间,也成为大斜度井)、水平井(最大井斜角保持在90°左右的定向井)、分支井、联通井。 二、定向井的设备介绍 1.泥浆马达:以泥浆作为动力的一种螺杆状的井下动力钻具,主要由旁通阀总成、马达总成、万向轴总成、驱动轴总成和放掉总成等部分组成。 2.扶正器:在钻井过程中起支点作用,通过改变其在下部钻具中的位置可以改变钻具的受力状态,从而达到控制井眼轨迹的目的。 3.非磁钻铤:在钻具组合中使用非磁钻铤可以有效的放置由于钻具本身所带来的磁干扰,减少测量过程中的误差,使测量结果真实、有效。 4.浮阀:一个用来防止泥浆倒流损害井下工具及防止钻头水眼被堵的工具。 5.定向接头:为定向仪器提供稳定性的工具,便于准确了解马达等井眼下工具的方向,从而能够为下不作业的顺利进行提供保障。 三、定向井参数设计:

钻井工程课程设计报告

东北石油大学华瑞学院课程设计 年月日

东北石油大学课程设计任务书 课程 题目 专业学号 主要容、基本要求、主要参考资料等: 1、设计主要容: 根据已有的基础数据,利用所学的专业知识,完成一口井的钻井工程相关参数的计算,最终确定出钻井、完井技术措施。主要包括井身结构、钻具组合、钻井液、钻井参数设计和完井设计。 2、设计要求: 要求学生选择一口井的基础数据,在教师的指导下独立地完成设计任务,最终以设计报告的形式完成专题设计,设计报告的具体容如下: (1)井身结构设计;(2)套管强度设计;(3)钻柱设计;(4)钻井液设计;(5)钻井水力参数设计;(6)注水泥设计;(7)设计结果;(8)参考文献; 设计报告采用统一格式打印,要求图表清晰、语言流畅、书写规、论据充分、说服力强,达到工程设计的基本要求。 3、主要参考资料: 王常斌等,《石油工程设计》,东北石油大学校自编教材 涛平等,《石油工程》,石油工业,2000 《钻井手册(甲方)》编写组,《钻井手册》,石油工程,1990 完成期限

指导教师 专业负责人 年月日

前言 钻井工程设计是石油工程的一个重要部分,是确保油气钻井工程顺利实施和质量控制的重要保证,是钻井施工作业必须遵循的原则,是组织钻井生产和技术协作的基础,是搞好单井预算和决算的唯一依据。钻井设计的科学性、先进性关系到一口井作业的成败和效益。科学钻井水平的提高,在一定程度上依靠钻井设计水平的提高。 设计应在充分分析有关地质和工程资料的基础上,遵循国家及当地政府有关法律、法规和要求,按照安全、快速、优质和高效的原则进行,并且必须以保证实施地质任务为前提。主要目的层段的设计必须体现有利于发现与保护油气层,非目的层段的设计主要考虑满足钻井工程施工作业和降低成本的需要。 本设计的主要容包括:1、井身结构设计及井身质量要求:原则是能有效地保护油气层,使不同地层压力梯度的油气层不受钻井液污染损坏;应避免漏、喷、塌、卡等复杂情况发生,为全井顺利钻进创造条件,使钻井周期最短;钻下部高压地层时所用的较高密度钻井液产生的液柱压力,不致压裂上一层管鞋处薄弱的裸露地层;下套管过程中,井钻井液柱压力之间的压差不致产生压差卡套管等严重事故以及强度的校核。2、套管强度设计;3、钻柱设计:给钻头加压时下部钻柱是否会压弯,选用足够的钻铤以防钻杆受压变形;4、钻井液体系;5、水力参数设计;6,注水泥设计,钻井施工进度计划等几个方面的基本设计容。

最常用钻井液计算公式

钻井液有关计算公式 一、加重:W= Y(Y-Y)/Y)-谡 W :需要加重1方泥浆的数量(吨) Y:加重料密度 Y:泥浆加重前密度 Y:泥浆加重后密度 二、降比重:V= (丫原-丫稀)丫水/ 丫稀-丫水 V:水量(方) 丫原:泥浆原比重 丫稀:稀释后比重 丫水:水的比重 三、配1方泥浆所需土量:W= 丫土(丫泥-丫水)/丫土-丫水 丫水:水的比重 丫泥:泥浆的比重 丫土:土的比重 四、配1方泥浆所需水量:V=1-W 土/丫土 丫土:土的比重 W 土:土的用量 五、井眼容积:V=1/4 U D2H D :井眼直径(m) H :井深(m) 六、环空上返速度:V 返= 1 2.7Q/D 2-d2 Q: 排量(l/S ) D: 井眼直径(cm) d: 钻具直径(cm) 七、循环周时间:T=V/60Q=T井内+T地面 T: 循环一周时间(分钟) V: 泥浆循环体积(升) Q: 排量(升/秒)

八、岩屑产出量:W= T D2* Z/4

W:产出量(立方米/小时) Z:钻时(机械钻速)(米 /小时) D:井眼直径(米) 九、粒度范围 粗 中粗 中细 细 超细 胶体 粘土级颗粒 砂粒级颗粒 粒度》2000卩 粒度2000- 250卩 粒度250-74卩 粒度74-44卩 粒度44- 2 粒度W 2 1 粒度w 2 1 粒度》74 1 十、API 筛网规格: 目数 20 30 40 50 60 80 100 120 十一、除砂器有关数据 除砂器:尺寸(6-12 〃) 处理量( 除砂器:尺寸(2-5 〃) 处理量( 28-115立方米/小时) 范围(除74 1以上) 6-17立方米/小时) 范围(除44 1以上) O I ” O n -=1.195 *(‘600 - -00) T c =1.512*( ... 6可00 -「600 ) 2 孔径 (1 ) 838 541 381 279 234 178 140 十二、极限剪切粘度 十三、卡森动切力:

泥浆泵动力端参数优化及设计

泥浆泵动力端参数优化及结构设计一.前言 泥浆泵是石油钻机的三大部件之一,是钻井液循环系统的关键设备。钻井时钻井泵在高压下向井底输送高粘度、大密度和高含沙量的液体,以便冷却钻头,携带出岩屑,并作为井底动力钻具的动力液,辅助钻头钻进。在各种形式的泵中,往复式柱塞泵由于具有能在高压下输送高粘度、大比重、高含沙量和流量相对较小的液体的特性,因而在钻井作业中得到了广泛的应用。 钻井泥浆泵的使用大约已有100多年了。早期泥浆泵的功能仅在于循环泥浆、冷却井底、携带岩屑等。1940年代末,随着喷射式钻井和井下动力钻具钻井的出现,扩 大了泥浆泵的功能与使用范围。近些年来,随着深井和超深井的开采逐渐增多,对钻井泥浆泵的功率与压力提出了更高的要求。泥浆泵早期的典型结构是双缸双作用泵,这种泵传动效率低、流量和压力波动大、体积大、重量重,不能满足恶劣的钻井工况,尤其是海洋钻井的需要。所以1960年代,比较先进的三缸单作用泥浆泵得到了应用。三缸泵的优点在于体积小、重量轻、效率高、压力波动小。经过40年来的不断改进与完善,三缸单作用泵已经比较成熟,使用效果显著。现在,随着石油开采技术的不断革新和钻井要求的日益提高,又出现了一些新型的泥浆泵。 二.泥浆泵概述 泥浆泵是在钻井过程中,将泥浆加压后携带出井底的岩屑和供给井底动力钻具的动力,向井底输送和循环钻井液的往复泵。泥浆泵的主要作用是利用钻井冲洗液(统称泥浆)使井筒内外的循环,冲洗井底,冷却钻头,并把岩屑携带到地面。在采用井下水力钻具(如涡轮钻具或螺杆钻具)时,

利用冲洗液传递能量,推动井下水力钻具旋转。采用喷射式钻头,由钻头水眼喷射出高速冲洗液,有利于破碎岩层,提高钻井速度。为了实现高压喷射钻井,对钻井泥浆泵提出了更高的要求,使用好、保养好泥浆泵的各部分,延长各个易损件的工作寿命,保证泥浆泵优良的技术状况,也是很重要的。由于石油矿场上使用往复泵的条件十分恶劣,提高其易损件(泵阀,活塞和缸套)的工作寿命,成为泥浆泵设计、制造和使用中迫切需要解决的问题。近几年,为了加快钻井速度,降低钻井成本,延长钻头使用寿命,国内外在泥浆泵的理论和试验研究、设计制造和选择使用等方面做了许多工作,对钻井泵进行了多次改型换代,各种新型钻井泵也不断研制成功。但其基本结构均未摆脱曲柄连杆机构的传统方式,在结构上没有根本变化,因而现有的钻井泥浆泵不能完全满足钻井作业的需要,因而必须寻求具有更好工作性能和合理结构的钻井泵以满足石油勘探开发使用的要求。 随着改革开放的深入及中国加入世贸组织,我国石油钻井队伍“充分利用国内外两种资源、两个市场”,实施走出去的战略,进入国际钻井市场,为了满足参与国际市场的需要,中石油、中石化都在不断加大钻井设备的投入,同时加快老钻井机的更新改造和新型轻便钻井机研制步伐,随着国际市场对钻井泵的需求增大,使得钻井泵的供求矛盾更加突出,各类型钻井泵的缺口每年达200台左右。 现如今国内外钻井泥浆泵主要存在5方面的问题,即,钻井泵质量大,制约钻机的移运性,难以适应现代轻便钻机的要求;冲程短,冲次高,钻井泵在不合适的冲次范围内工作,致使液力端寿命短;泵压偏低,不能完全满足现代钻井工艺的需要;结构不合理,部分强度冗余,部分刚度不足,可靠性低,难以满足钻井机高可靠性要求;缸套寿命短,难以满足钻机高效率要求。因此,合理降低泵的冲次,适当增加泵的冲程长度,既满足钻井过程中的排量要求,又能确保泵的自吸性能,充分发挥了泵的功效,成为今后钻井泵的设计方向。

第6章钻井液设计

第8章钻井液设计 本章主要介绍了新疆地区常用的钻井液体系,结合A1-4井及探井资料,设计了A区块井组所使用的钻井液体系、计算了所需钻井液用量,提出了钻井液材料计划等。 8.1 钻井液体系设计 钻探的目的是获取油气,保护地层是第一位的任务,因此,搞好钻井液设计,首先必须以地层类型特性为依据,以保护地层为前提,才能达到设计的目的。 新疆地区常用钻井液体系简介[16]: (1)不分散聚合物钻井液体系:不分散聚合物钻井液体系指的是具有絮凝及包被作用的有机高分子聚合物机理的水基钻井液。该体系的特点是:具有很强的抑制性;具有强的携沙功能;有利于提高钻速;有利于近平衡钻井;可减少对油气层的伤害。 (2)分散性聚合物体系(即聚合物磺化体系):聚合物磺化体系是指以磺化机理及少量聚合物作用机理为主配置而成的水基钻井液。该体系的特点是:具有良好的高温稳定性,使用于深井及超深井;具有一定的防塌能力;具有良好的保护油层能力;可形成致密的高质量泥饼,护壁能力强。 (3)钾基(抑制性)钻井液体系:该体系是以聚合物的钾,铵盐及氯化钾为主处理剂配制而成的防塌钻井液。它主要是用来对付含水敏性粘土矿物的易坍塌地层。该体系特点:对水敏性泥岩,页岩具有较好的防塌效果;抑制泥页岩造浆能力较强;对储层中的粘土矿物具有稳定作用;分散型钾基钻井液有较高的固相容限度。 (4)饱和盐水钻井液体系:该体系是一种体系中所含NaCl达到饱和程度的钻井液,是专门针对钻岩盐层而设计的一种具有较强的抑制能力,抗污染能力及防塌能力的钻井液。该体系特点:具有较强的抑制性,由于粘土在其中不宜水化膨胀和分散,故具有较强的控制地层泥页岩造浆的能力;具有较强的抗污染能力,由于它已被NaCl所饱和,故对无机盐的敏感性较低,可以抗较高的盐污染,性能变化小;具有较强的防塌能力,尤其再辅以KCL对含水敏性粘土矿物的页岩具有较强抑制水化剥落作用;可制止盐岩井段溶解成大肚子井眼。由于钻井液中氯化钠已达饱和,故钻遇盐岩时就会减少溶解,以免形成大井眼;缺点是腐蚀性较强。 (5)正电胶钻井液体系是一种以带正电的混合层状金属氢氧化物晶体胶粒(MMH或MSF)为主处理剂的新型钻井液体该体系的特点:具有独特的流变性;有利于提高钻井速度;对页岩具有较强的抑制性;具有良好的悬浮稳定性;有较

关于石油钻井技术及水里参数设计

毕业设计(论文) 题目深水无隔水管钻井关键技术及水力参数设计方法研究 学院石油与天然气工程学院 专业班级石油工程2012-02 学生姓名王雪威学号2012440329 指导教师郭晓乐职称教授 评阅教师职称 2016年5 月18 日

学生毕业设计(论文)原创性声明 本人以信誉声明:所呈交的毕业设计(论文)是在导师的指导下进行的设计(研究)工作及取得的成果,设计(论文)中引用他(她)人的文献、数据、图件、资料均已明确标注出,论文中的结论和结果为本人独立完成,不包含他人成果及为获得重庆科技学院或其它教育机构的学位或证书而使用其材料。与我一同工作的同志对本设计(研究)所做的任何贡献均已在论文中作了明确的说明并表示了谢意。 毕业设计(论文)作者(签字): 2016年5 月18 日

摘要 随着石油资源一步步的被开发,勘探新的石油资源就迫在眉睫。而随着石油勘探技术不断的发展,世界范围内油气资源开发也逐渐向深水进军。而深水钻井环境恶劣,其中有会出现不少的问题,易造成严重的钻井事故。 在深水环境中进行钻井作业会有相当多的挑战,为了解除这些困难,国外经过一系列研究,开发出了无隔水管钻井液回收钻井技术(RMR),该技术摒弃了传统的隔水管,利用相对较小的回流管线将钻井液和钻屑从海底泵送回钻井平台。深水无隔水管钻井技术主要解决海洋钻井中地层破裂压力与坍塌压力之间余量较小的问题,采用海底泵举升系统将钻井液和岩屑通过返回管线泵送回海面钻井船,实时调速来调节流量,以满足保持海底钻井液举升泵入口压力恒定的要求。由于RMR技术是最新发展的技术,目前尚无合适的水力学计算理论和方法。因此,有必要结合无隔水管钻井液回收钻井技术特点,建立相应的水力参数计算模型,为深水钻井设计提供指导。 本文探讨研究了无隔水管钻井技术,结合了我国的实际情况进行了分析,以及对其所涉及的一系列参数的计算方法。 关键词无隔水管钻井关键技术水力参数

泥浆泵动力端参数优化及设计——文献综述

毕业设计 文献综述 题目3NB-1300泥浆泵 动力端参数优化及结构设计专业机械设计制造及其自动化班级机械设计制造2班 学生隆林凡 指导教师胡启国 重庆交通大学 2011年

一.前言 泥浆泵是石油钻机的三大部件之一,是钻井液循环系统的关键设备。钻井时钻井泵在高压下向井底输送高粘度、大密度和高含沙量的液体,以便冷却钻头,携带出岩屑,并作为井底动力钻具的动力液,辅助钻头钻进。在各种形式的泵中,往复式柱塞泵由于具有能在高压下输送高粘度、大比重、高含沙量和流量相对较小的液体的特性,因而在钻井作业中得到了广泛的应用。 钻井泥浆泵的使用大约已有100多年了。早期泥浆泵的功能仅在于循环泥浆、冷却井底、携带岩屑等。1940年代末,随着喷射式钻井和井下动力钻具钻井的出现,扩大了泥浆泵的功能与使用范围。近些年来,随着深井和超深井的开采逐渐增多,对钻井泥浆泵的功率与压力提出了更高的要求。泥浆泵早期的典型结构是双缸双作用泵,这种泵传动效率低、流量和压力波动大、体积大、重量重,不能满足恶劣的钻井工况,尤其是海洋钻井的需要。所以1960年代,比较先进的三缸单作用泥浆泵得到了应用。三缸泵的优点在于体积小、重量轻、效率高、压力波动小。经过40年来的不断改进与完善,三缸单作用泵已经比较成熟,使用效果显著。现在,随着石油开采技术的不断革新和钻井要求的日益提高,又出现了一些新型的泥浆泵。 二.泥浆泵概述 泥浆泵是在钻井过程中,将泥浆加压后携带出井底的岩屑和供给井底动力钻具的动力,向井底输送和循环钻井液的往复泵。泥浆泵的主要作用是利用钻井冲洗液(统称泥浆)使井筒内外的循环,冲洗井底,冷却钻头,并把岩屑携带到地面。在采用井下水力钻具(如涡轮钻具或螺杆钻具)时,利用冲洗液传递能量,推动井下水力钻具旋转。采用喷射式钻头,由钻头水眼喷射出高速冲洗液,有利于破碎岩层,提高钻井速度。为了实现高压喷射钻井,对钻井泥浆泵提出了更高的要求,使用好、保养好泥浆泵的各部分,延长各个易损件的工作寿命,保证泥浆泵优良的技术状况,也是很重要的。由于石油矿场上使用往复泵的条件十分恶劣,提高其易损件(泵阀,活塞和缸套)的工作寿命,成为泥浆泵设计、制造和使用中迫切需要解决的问题。近几年,为了加快钻井速度,降低钻井成本,延长钻头使用寿命,国内外在泥浆泵的理论和试验研究、设计制造和选择使用等方面做了许多工作,对钻井泵进行了多次改型换代,各种新型钻井泵也不断研制成功。但其基本结构均未摆脱曲柄连杆机构的传统方式,在结构上没有根本变化,因而现有的钻井泥浆泵不能完全满足钻井作业的需要,因而必

钻井工程石油工程课程设计答案

远程教育学院石油工程专业 《钻井工程》课程设计 任务书 中国石油大学(北京) 远程教育学院 2012年5月

目录 一、地质设计摘要 二、井身结构设计 三、固井工程设计 四、钻柱设计 五、钻井设备选择 六、钻井液设计 七、钻进参数设计 八、下部钻具组合设计 九、油气井控制 十、各次开钻或分井段施工重点要求 十一、地层压力监测要求 十二、地层漏失试验 十三、油气层保护 十四、完井井口装置 十五、环保要求 十六、钻井进度计划 十七、成本预算

XX油区XX凹陷一口直井生产井的钻井与完井设计。 设计内容:(其中打“√”部分必须设计,其他部分可选做或不做) 一、地质设计摘要(√); 根据《xx井钻井地质设计》,本井设计井深米,预测压力系数为0.95~0.98,属于正常压力体系。主要目的层为。因此本井设计表套封固第四系、第三系泰康组,一开直接采用高密度钻井液钻进,将可能存在的浅层气压稳;若一开确实钻遇浅层气,则在固井水泥浆中加入防气窜剂,保证固井质量。 二、井身结构设计(√); 井身结构设计 设计系数 抽吸压力系数:0.04g/cm3 激动压力系数:0.04 g/cm3 地层破裂安全增值:0.03 g/cm3 井涌条件允许值:0.05 g/cm3 正常压力压差卡钻临界值:12~15MPa 异常压力压差卡钻临界值:15~20MPa

一、地质概况 表A-1 井别探井井号A5 设计井深目的层 J Q 井位 坐标 地面海拔m 50 纵( )m 4275165 横(y)m 20416485 测线位置504和45地震测线交点 地理位置XX省XX市东500m 构造位置XX凹陷 钻探目的了解XX构造 J Q含油气情况,扩大勘探区域,增加后备油气源 完钻原则进入 J Q150m完钻 完井方法先期裸眼 层位代号底界深度,m 分层厚度,m 主要岩性描述故障提示 A 280 砾岩层夹砂土,未胶结渗漏 B 600 320 上部砾岩,砂质砾岩,中下部含砾砂岩渗漏 C 1050 450 中上部含砺砂岩、夹泥岩和粉砂质泥岩; 下部砺状砂岩,含砺砂岩、泥岩、粉砂质泥 岩不等厚互层 防塌 D 1600 泥岩、砂质泥岩、砺状砂岩、含砺砂岩不等 厚互层,泥质粉砂岩 防漏 防斜 E 1900 300 砂质泥岩、泥质粉砂岩、夹砺状砂岩、含砺 砂岩 防斜 防漏 F3 2650 750 泥岩、粉砂质泥岩、泥质粉砂岩防斜 F2J2900 250 泥岩夹钙质砂岩,夹碳质条带煤线,中部泥 岩夹煤层、下部泥岩、粉砂岩、泥质粉砂岩 防斜、塌、卡 F2K 3150 250 泥岩为主,泥质粉砂岩,中粗砂岩,砂砾岩间互 F1 3500 350 泥岩、泥质砂岩、下部灰褐色泥岩防漏、喷、卡 Q J 3650 (未穿) 150 深灰,浅灰色灰岩为主,间夹褐,砖红色泥 岩 防漏、喷、卡

钻井常用由壬知识总结(有图有真相)

钻井常用由壬知识小结 在石油钻井中,由壬是常用的管线连接部件,能够准确设别由壬型号是一名现场作业者 必备的技能之一,作者在作业时也遇到了困惑,于是便收集资料整理学习,总结归纳如下, 如有谬误,敬请指正。 一、关于共同标准 厂家共同的申明是材料符合ASME (American Society of Mechanical Engineers 美国机械工程师协会)、AISI (American Iron and Steel Institute 美国钢铁学会)或者ASTM (American Society of Testing Materials 美国材料与试验协会)的标准。各个厂 家各种型号由壬有自己的一套标准。 二、关于公头与母头 在现场作业中常常把带有螺母的那一段称为母头,而不带螺母的那一头称为公头,其实恰恰相反,按照厂家产品目录正确叫法如下图所示公头 螺母 橡胶密封垫 母头 三、关于颜色 国内外厂家基本上都使用颜色区别不同型号。下图为某厂家钻井常用由壬的颜色与型号 对应图。

四、关于数字 大部分网络上以及国内某厂家主页上是这样解释的:三位数的,第一位表示工作压力, 后两位表示由壬接触面的型式和接触面密封的形式;四位数的,前两位表示工作压力,后两位数则表示接触面的型式和接触面密封的形式:00--锥度面、金属接触密封;02-- 锥度面,橡胶垫密封;03 —进口由壬密封在公头上,国产由壬作者见过是在母头锥度面开“O”圈 槽,“O”圈密封。但是作者在看到国外某厂家由壬时,发现他们的酸性气体专用由壬的代 号并不是这样表示的,如figure1002 由壬额定冷工作压力为7500psi (1 至4 英寸型号),并非10000psi 。截图如下:

钻井现场常用数据

钻井现场常用数据 1、井底压力 P m=9.8×10-3ρm H 其中:P m—井底压力 MP a ρm—钻井液密度 g/cm3 H—液柱垂直深度 m 2、钻具中性截面的位置 L n=P b/(Q a* K b) 其中:L n—中性截面距井底的高度 m P b—钻压 N Q a—钻铤在空气中的每米重量 N/m K b—浮力系数 3、钻柱出现一次弯曲的临界压力 钻柱 钻具直径(mm) 临界钻压P1(KN) 外径内径 钻铤 Φ203.2 Φ100 72.0 Φ75 80.0 Φ177.8 Φ80 52.0 Φ75 55.0 Φ70 55.0 Φ158.8 Φ57.15 41.1 钻杆Φ127.0 8.83 Φ88.9 4.80 4、卡点计算 L1=K*△L/△P [K=21*F] 其中:△L—平均伸长 cm △P—平均拉力 t F—管体截面积 cm2

各种常用管具K植表: 直径mm 壁厚mm 截面积cm2K值内容积L/m 钻杆Φ127 9.19 34.03 715 9.27 Φ88.9 9.35 23.36 491 3.87 Φ73 9.19 18.44 387 2.34 套管Φ244.5 10.03 74.02 1554 38.5 11.05 81.04 1702 38.84 11.99 87.65 1841 38.17 Φ177.8 8.05 42.93 902 20.53 9.19 48.73 1023 19.96 10.36 54.45 1143 19.38 11.51 60.08 1262 18.82 Φ139.7 7.72 31.93 671 12.14 9.17 37.53 788 11.57 10.54 42.81 899 11.04 5、钻杆允许扭转圈数 N=K * H 其中:N—允许扭转圈数, 圈;H—卡点深度,m;K—扭转系数,圈/米; 各种钻杆K值:(API.E级) Φ127mm K=0.00551 Φ89mm K=0.00787 Φ73mm K=0.00957 6、泥浆循环一周时间 T=(V井-V柱)/60*Q 其中:T一循环一周所需时间min;V井一井眼容量,L;V柱一管柱体积,L; Q一泥浆排量L/s 7、泥浆上返速度 V返=12.7*Q/( D井2- D柱2) 其中:V返一泥浆上返速度m/s;Q一泥浆排量L/s;D井一井径cm;D柱一钻柱外径cm;

钻井技术参数

第二节Drilling Parameters 钻井技术参数 1.负荷:load. 2.扭矩:torque. 3.扭转: twist. 4.转盘转速:rotary speed,RPM. 5.钻压:WOB, weight on the bit , weight, drilling well. 6.机械钻速:ROP, rate of penetration , drilling rate, the rate of drilling.平均机械钻速: average ROP. 7.泵排量:pump flow capacity, flow rate. 8.加仑/分钟:GPM. 9.泵冲数:strokes per minute,SPM. 10.钻井周期:drilling period. 11.井眼尺寸:hole size, well size. 12.井距: well space. 13.垂直井深:vertical depth. 14.垂直井深:vertical depth. 15.总垂直深度:total vertical depth,TVD. 16.最大井斜角:maximum hole inclination. 17.应力:stress. 18.压力:pressure. 19.压力等级:pressure grade.

20.压力降:pressure drop. 21.压力梯度:pressure gradient. 22.回压:back pressure. 23.大气压:atmosphere. 24.压差:differential pressure. 25.静液柱压力:static fluid column pressure. 26.地层压力:formation pressure. 27.坍塌压力: collapse pressure. 28.破裂压力:fracture pressure. 29.平衡压力:equilibrium pressure. 30.钻具(柱)压力: drilling string pressure. 31.地层压力预测:formation pressure prediction. 32.地层快速预测:the formation fast prediction. 33.参数、变量:variables,parameters. 34.参数计算:parameters calculation. 35.几何参数:geometric parameters. 36.参数分析:parameter analysis. 37.动态参数:dynamic data. 38.静态参数:static data. 39.摩擦:friction. 40.摩擦损失:friction losses, friction drop.

钻井工程常用术语

钻井工程常用名词术语 钻井总论 钻井drilling 钻井方法drilling method 顿钻钻井cable drilling 杆式顿钻rod tool drilling 绳式顿钻cable tool drilling 轻便钻井portable drilling 直井straight hole 深井deep well 超深井super deep well 地热井geothermal well 热采井thermal production well 工程井engineering rejection well 工程报废井abandoned well 弃井abandoned well 钻井设计well design 钻井质量drilling quality 岩石的物理机械性质physical-mechanical properties of rock 矿物的微硬度micro-hardness of rook 肖氏岩石硬度Shores hardness 史氏岩石硬度Shi's hardness 矿物的弹性模量elastic modulus of mineral 岩石的弹性模量elastic modulus of rock 矿物的泊松比Poissons ratio mineral 岩石的泊松比Poissons ratio rock 矿物的切变模量shear modulus of mineral 岩石的切变模量shear modulus of rock 矿物和岩石的体积压缩模量bulk compressibility mineral and rock 岩石的体积压缩系数coefficient of bulk compressibility mineral and rock 岩石的抗拉伸强度tensile strength of rock

钻井多参数监测系统的设计

钻井多参数监测系统的设计吕治忠,等钻井多参数监测系统的设计 DesignofMulti—parameterMonitoringSystemfor WellDrilling 吕%忠1互踣威2李考常3 (西南石油大学机电工程学院1,四川成都610500; 川庆钻探工程有限公司长庆钻井总公司2。陕西榆林717500;川庆钻探工程有限公司测井公司3,重庆400000)摘要:针对钻井过程环境复杂、测试参数多、现场布线复杂等问题,利用CAN总线集成性高、扩展性强的特点。设计了一种专门应用于钻井作业的多参数监测系统。现场应用中只需将各传感器和设备终端通信线并联在总线上,利用系统监测程序即可实时地对钻井过程进行监控。采用CAN总线多参数监测系统实现了钻井智能化和网络化,提高了信号传输的可靠性和安全性,为钻井参数和工况的异地实时网络化监测提供了方便。 关键词:钻井参数多参数监测系统CAN总线传感器监测软件软件界面 中图分类号:TP274+.2文献标志码:A Abstract:Facingtheproblemsinwelldrillingprocess。e.g.complicatedprocessenvironment。varioustestparameters,andexcessivecablinginthefield,byadoptingthefeaturesofCANbusincludinghighlyintegrativeandexpandable,adedicatedmulti-parametermonitoringsystemforwelldrillingprocesshasbeendesigned.Inpracticalapplication-real-timemonitoringfortheprocesscallbeimplementedonlybyconnectingthesen80l*anddevicestothebusinparallel-andusingsystematicmonitoringprogram.WiththeCAN-basedmulti?parametermonitoringsys-tern。thewelldrillingprocessbecomesnetworkedandmoreintelligent-andthereliabilityandsecurityofsignaltransmissionarealsoenhanced.Itbringsconvenienceforreal-timenetworkedmonitoringparametersandoperationstatusofdrillingwelloff-site. Keywords:DrillingparametersMulti—parametermonitoringsystemCANbusSensorMonitoringsoftwareSoftwareinterface 0引言 钻井多参数监测系统的基本功能是连续测量和记录钻井过程中大钩悬重、钻压、井深等重要参数的变化情况。钻井工程中只有通过对钻井参数进行实时监测和综合分析,才能详细了解当前工作状态,即时对钻井参数做出调整…。采用参数监测系统一方面有利于提高钻井的安全性、钻井作业的自动化程度以及钻井效率;另一方面有利于实现井场信息的网络通信,推广各种专家系统,提高油气藏早期评价能力,使整个钻井过程科学化、实时化旧。』。 传统的现场通信技术,如RS一422、RS一485和RS-232串121等,由于信息集成能力弱、可靠性低、系统维护维修工作量大等缺点,直接影响钻井生产¨。41。CAN总线具有多主、实时、高可靠性、低成本等优点,更适用于在条件恶劣的工业现场进行实时数据的传输‘3‘5】。 石油天然气装备教育部重点实验室基金资助项目(编号:s1跏8); 四川省石油天然气装备研究重点实验室基金资助项目(编号:200501)。 修改稿收到日期:2009一08—28。 第一作者吕治忠.男。1970年生。1995年毕业于西南石油学院机械系.获学士学位,讲师;主要从事石油机电产品方面的研究。 《自动化仪表》第3l卷第5期2010年5月1系统架构 利用CAN总线技术,将所有传感器、司钻监视终端、后台服务器作为CAN总线的节点,从而解决了现场设备通信连接困难的问题。钻井多参数监测系统结构如图1所示。 图1系统结构图 Fig.1Structureofthesystem 31 万方数据

相关文档
最新文档