北京理工大学数学专业解析几何期末试题(MTH17014-H0171006)
北京理工大学2022-2022学年第二学期(工科)数学分析B期末试题(A卷)
(工科)数学分析B 期末试题(A 卷)一. 解以下各题〔每题6分〕1. .设)ln(),,(22z y x z y x u y ++=, 求zu y u x u ∂∂∂∂∂∂,,及全微分)2,1,(e du . 2. 求曲线32,,t z t y t x =-==的与平面0193=-++z y x 平行的切线方程.3. 将⎰⎰+=x x dy yx dx I 222101化为极坐标系下的累次积分, 并计算I 的值. 4. 判断级数∑∞=12tan 1n n n 和∑∞=-+-1)1()1(n n n n 的敛散性.二. 解以下各题〔每题7分〕1. 设函数)(u f 具有二阶连续导数, 且)sin (y e f z x =满足方程 z e yz x z x 22222=∂∂+∂∂, 求)(u f 的表达式. 2.计算第一类曲面积分⎰⎰∑=zdS I , 其中∑为锥面22y x z +=在柱体x y x 222≤+内的局部.3. 设)(x S 函数⎩⎨⎧≤<≤<-=ππx x x x f 002)(2的以π2为周期的傅里叶级数展开式的和函数, 求)3(),2(),6(),6(ππS S S S -的值.4. 计算曲线积分⎰-+=Ldz z xdy dx y I 222, 其中L 是平面2=+z x 与柱面122=+y x 的交线, 假设从z 轴正向往负向看去, L 取逆时针方向.三. (8分〕把函数)3(1)(-=x x x f 展成1-x 的幂级数, 并指出收敛域. 四. 〔8分〕设V 是由曲面z z y x 2222=++围成的立体, 其上任一点处的密度与该点到原点的距离成正比(比例系数为)k , (1)求V 的质量; (2) 求V 的质心坐标.五.〔8分〕证明曲面m xyz =0(≠m 为常数)上任一点的切平面在各坐标轴上的截距之积为常数.六.〔8分〕求幂级数∑∞=---121)12()1(n n n x n n 的收敛区间及和函数. 七. (8分)计算曲面积分,)]([])([333⎰⎰∑-+++=dxdy yz zf z dzdx y yz yf dydz x I 其中函数f 有连续的导函数, ∑为上半球面221y x z --=的上侧.八. (8分) 设函数)(y f 在+∞<<∞-y 内有连续的导函数, 且y ∀, 0)(≥y f ,1)1(=f , 对右半平面}0,),{(>+∞<<∞-x y y x 内任意一条封闭曲线Γ, 都有0)(2=+-⎰Γy f x xdy ydx , 求)(y f 的表达式.。
北京理工大学2015学年第二学期《工科数学分析》期末考试卷及参考答案
4
九. (9 分) 把 f (x) = x ln(2 + x) 展成 x + 1的幂级数, 并指出收敛域. 十. (9 分) 证明 (2x cos y − y2 sin x)dx + (2 y cos x − x2 sin y)dy = 0 是全微分方程, 并求其通解.
5
∫∫ 十一. (9 分) 计算积分 I = S
……………….(7 分)
∑ = −(x + 1) + ∞ (−1)n ( 1 + 1 )(x + 1)n
n=2
n n −1
………….(8 分)
收敛域为 − 2 < x ≤ 0
……………….(9 分)
十.
∂Y = −2 y sin x − 2xsin y = ∂X
∂x
∂y
故所给方程是全微分方程
……………….(2 分)
= 1 − sin1
……………….(8 分)
三.
fx′ = 2x(2 + y2 )
f y′ = 2x2 y + ln y + 1
令 fx′ = 0
f y′ = 0
得x=0 y=1 e
……………….(2 分) ……………….(3 分)
fx′′2 = 2(2 + y2 )
fx′′y = 4xy
f y′′2
dy − dx xz dy
dz = dx + xy
1 dz
z dx dz =
0
dx dx
将点 P 代入得
1 + 3 +
dy
dx dy
− +
dz = dx 3 dz
dz dx =0
北京理工大学数学专业概率论期末试题(07000221)
2008级《概率论》期末试题A 卷一、从1到30的整数中,不放回地任取3个数,求所取的3个数之和能被3整除的概率。
二、设袋中有9个红球和6个白球,不放回地任取两次,每次取两个球。
(1)求第二次取出的两个球都是白球的概率;(2)已知第二次取出的两个球都是白球,求第一次恰好取出一个红球和一个白球的概率。
三、设随机变量X 的密度函数为()2,1Af x x R x =∈+。
(1)求A 的值;(2)求21Y X =+的密度函数;(3)求概率()2P X X >。
四、设二维随机变量(X,Y )在区域(){},|02G x y x y =<<<上服从均匀分布。
(1)写出X ,Y 的联合密度函数(),f x y ;(2)求X,Y 的边际密度函数()(),X Y f x f y ,并判断X,Y 是否独立; (3)求概率()1P X Y +<。
五、设随机变量X 的密度函数为(),00,0x e x f x x λλ-⎧>=⎨≤⎩,求,ED 。
六、设随机变量X 服从参数为1的指数分布,Y 服从正态分布()22,3N ,且X,Y 相互独立。
(1)求()2E X Y -;(2)设,3U XY V X ==,求()cov ,U V 。
七、设随机变量X 的分布律为()1,0,1,,1P X k k n n===⋅⋅⋅-,Y 服从[]0,1上的均匀分布,且X,Y 相互独立。
令Z=X+Y ,利用特征函数法证明Z 服从[]0,n 上的均匀分布。
八、设某种电子元件的寿命服从指数分布,其平均寿命为400小时。
现购买100只这种电子元件,假设它们的寿命相互独立,求这些电子元件的寿命总和在32000小时至48000小时之间的概率。
(1)用切比雪夫不等式计算;(2)用中心极限定理计算。
2010级《概率论》期末试题A 卷一、(10分)从1到9这9个数中,有放回地取3次,每次取一个,求所取的3个数之积能被10整除的概率。
北京理工大学《高等数学》历年期末考试试题及答案解析(精编版)
x = (t − 1)et 八. 设曲线 C 的方程为 y = 1 − t4
求
dy dx
,
d2y dx2
及曲线
C
在参数
t
=
0
对应点处
–2/48–
第 1 部分 北京理工大学试题集
的曲率半径.
九. 设 f ′(x).
f (x)
=
1 x
−
ex
1 −
1,
x
<
0
1
−
1 c2os x
x
,
, x
x= >0
等于
mg k
.
∫1
十一. 设 f (x) 在 [0, 1] 上连续, 在 (0, 1) 内可导, 且满足 f (1) = 2 2 xe1−x f (x)dx, 证明:
0
至少存在一点 ξ, 使得 f ′(ξ) = (1 − ξ−1) f (ξ).
1.2 2011 级秋季学期期末试卷
一. 填空题
1. 极限 lim
x→0
x
− ln(1 x2
+
x)
=
2. 设 y
=
x2 + ln x, 则
dx dy
=
dy =
∫∞
3. 广义积分
e
dx x ln2
x
=
4.
微分方程
y′′
=
1
1 + x2
的通解为
; lim
1
∫
x
(1
+
sin
2t)
1 t
dt
=
.
x→0 x 0
√ ; 设 f 可导,y = f (tan x) + 1 − x2, 则
【数学】北京理工大学数学专业数学析试题MTHMTH
【关键字】数学课程编号:MTH17042 北京理工大学2014-2015学年第一学期2014.11.32013级数学专业数学分析Ⅲ阶段测验(一)试题1.设是中的调和函数,S是中任意的分片光滑闭曲面。
求证:,其中和分别表示函数和沿S 外法线方向的方向导数。
2.叙述正项级数敛散性的比较判别法和D’Alembert比值判别法,并利用前者证明后者。
3.判断下列级数的敛散性:(1)(2)(3)(4)(5)4.设。
又设广义极限存在。
求证:当(含)时,级数收敛;当(含)时,级数发散。
5.研究级数的敛散性,包括绝对收敛性和条件收敛性,其中是实参数。
6.设收敛,其中R>0,求证:对一切,绝对收敛。
7.设,且有极限。
求证:数列收敛,且。
8.设存在,又设绝对收敛。
求证:。
课程编号:MTH17042 北京理工大学2014-2015学年第一学期2014.112013级数学专业数学分析Ⅲ期中试卷一、(15分)(1)设数项级数与均绝对收敛,问:是否一定收敛?为什么?如果收敛,绝对收敛,那么是否一定收敛?为什么?(2)设,绝对收敛,又设的n次部分和序列有界,求证:收敛。
2、(10分)设单调递减,且;又设是任意固定的正整数,求证:收敛当且仅当收敛。
三、(15分)设对每一个自然数n,函数在数集E内有定义,(1)用肯定语气叙述函数项级数在数集E内不满足一致收敛的Cauchy准则的严格含义;(2)设存在数列和,满足,都有,且数项级数与均收敛,试利用一致收敛的Cauchy准则证明函数项级数在数集E内一致收敛。
四、(10分)设,求证:收敛。
五、(15分)研究函数项级数的敛散性,包括绝对收敛和条件收敛,并证明:(1)函数项级数的和函数在其收敛域内连续;(2)函数项级数在其收敛域内不一致收敛。
六、(10分)设。
(1)求证:函数序列在中内闭一致收敛;(2)用两种方法证明在内不一致收敛。
七、(15分)(1)求幂级数的收敛域及和函数;(2)求函数的Maclaurin级数展开式并确定收敛区间。
北京理工大学2010-2011学年第二学期工科数学分析期末试题(A卷)
课程编号:MTH17004, MTH17006北京理工大学2010-2011学年第二学期工科数学分析期末试题(A 卷)班级_______________ 学号_________________ 姓名__________________(本试卷共6页, 十一个大题,试卷后面空白纸撕下作草稿纸)一. 填空题(每小题2分, 共10分)1. 已知3||=a ,26||=b ,72||=⨯b a,且a 与b 的夹角是钝角,则=⋅b a ______。
2. 设x yz ye y x u z ln 2++=,则=)1,1,1()grad (div u ______________。
3. 已知向量c b a,,不共面,但向量c a c b b a +++λ,,2共面,则=λ _________。
4. 设L 是曲线1,,3===z t y t x 上从)1,0,0(A 到)1,8,2(B 的一段,若将⎰++=Lzdz ydy dx x I 2化成第一类曲线积分,则有=I _________________________。
5. 变量替换x y v x u ==,可将微分方程z yzy x z x =∂∂+∂∂化成 ________________________。
二. (9分) 交换积分次序并计算⎰⎰=yyxdx xe dy I 1。
三. (9分) 求函数y y y x y x f -+=2221),(的极值和极值点。
四. (9分)设方程523=+-y xz z 确定函数),(y x z z =,求yx z∂∂∂2。
五. (9分) 在曲面xy z =上求一点,使曲面在此点处的切平面垂直于直线13211zy x =-=+,并写出切平面方程。
六. (8分) 证明方程0ln 1=+-xdy x dx yx y y 是全微分方程,并求出通解。
七. (10分) 求幂级数∑∞=-+11)1(n n x n n 的收敛域及和函数。
北京理工大学数学专业数学分析Ⅰ试题(MTH17001H0171001)
北京理工大学数学专业数学分析Ⅰ试题(MTH17001H0171001)2022级数学专业数学分析Ⅰ第一次阶段测验1.(10分)设某0。
试写出十个与某等价且尽可能不同的无穷小量。
2.(15分)设某n2inn112,n1,2,(1)求证:对任意自然数n,某n(2)用N语言证明lim某nn11;2n1,并研究数列某n中是否有最大数和最小数。
23.(15分)用语言叙述某0时函数f收敛和发散的严格含义,并用两种方法证明某0时函数f某co1发散。
某某a某b0,求常数a,b的值;并给出a,b的几何意4.(10分)已知lim某某1某义。
1某co某5.(10分)研究函数f某在某0点极限的存在性。
某6.(15分)证明定理:设yfu,u某构成复合函数yf某u1某某某的极若lim某,limfuA,其中A是实常数,则当某时,函数f限存在,且limf某limfu某u7.(15分)(1)叙述limf某的严格含义;某(2)叙述f在,内取得最大值的严格含义;(3)设f在,内连续,且limf某求证:f在,内必取得最大值。
某8.(10分)设n,bn0,且成立极限limnnbn1p0。
bn1求证:数列bn收敛,且limbn0。
n2022级数学专业数学分析Ⅰ第一次阶段测验1.(10分)设某0。
试写出十个与某等价且尽可能不同的无穷小量。
2.(15分)设某n2inn211,n1,2,,用N语言证明lim某nn1,并研究2数列某n中是否有最大数和最小数。
3.(15分)设f某11co。
按定义证明:f在某0点的任意邻域内无界,但某0时某某f不是无穷大量。
4.(10分)已知lim某义。
某a某b0,求常数a,b的值;并给出a,b的几何意某1某5.(15分)某0是函数f某1某co某的哪种类型的间断点?说明理由。
某1某6.(10分)证明定理:设yfu,u某构成复合函数yf若lim某,limfuA,其中A是实常数,则函数f某00u某某在某0点的左极限存在,且limf某limfu某00u7.(15分)(1)叙述limf某的严格含义;某(2)叙述f在,内取得最大值的严格含义;(3)设f在,内连续,且limf某求证:f在,内必取得最大值。
北京理工大学数学专业解析几何期末试题(MTH17014-H0171006)
课程编号:MTH17014 理工大学2011-2012学年第一学期2011级本科生解析几何期末试题A 卷--------------,班级------------,学号--------------,一,单选题(30分)1,已知空间三点A,B,C,下面哪个条件能确定A,B,C 四点共面( ) (a),空间任意一点O,三点满足.OA OB OC =+ (b),空间任意一点O,三点满足11.22OA OB OC =+ (c),空间任意一点O,三点满足0.OA OB OC ++= (d),空间任意一点O,三点满足110.23OA OB OC ++=2, 已知三向量,,,αβγ满足下面哪个条件说明这三向量共面( ) (a), ()0αβγ⋅=, (b), 0.αββγγα⨯+⨯+⨯=, (c), ()0αβγ⨯⨯=, (d), ()()αβγβγα⨯•=⨯•.3,在一仿射坐标系中,平面:2430x y z π+++=,点A(1,-2,-1)和点B(2,-1,3).则下面说确的是( )(a)点A 和点B 在平面π的两侧; (b)点A 和点B 在平面π的同侧; (c)线段AB 平行于平面π; (d)线段AB 垂直于平面π.4, 在仿射坐标系中,已知直线2103260x z x y ++=⎧⎨+-=⎩和直线2102140x y z x z +--=⎧⎨+-=⎩,则下面(a)两直线平行; (b)两直线相交; (c)两直线异面; (d)两直线重合.5, 在仿射坐标系中,已知平面10x y z ++-=和直线20210x y z x y z +-=⎧⎨-+-=⎩,则下面说确的是( )(a)直线和平面平行; (b)直线和平面相交; (c)直线在平面上; (d)直线和平面垂直.6,在平面仿射坐标中,直线1111222200A x B y C z D A x B y C z D +++=⎧⎨+++=⎩与y 轴相交,则( )(a)11220C D C D =,(b)11220A D A D =,(c)11220B D B D =,(d)11220A B A B =7,在空间直角坐标系下,方程2223230xy z xy yz +-++=的图形是( )(a),椭球面;(b),单叶双曲面;(c),双叶双曲面;(d),锥面。
北京理工大学2015工科数学分析期末试题(答案)
课程编号:MTH17003 北京理工大学2015-2016学年第一学期工科数学分析期末试题(A 卷)评分标准一. 填空题(每小题4分, 共20分) 1、1-; 2、23、24π4、2y x π=-5、11(,())x f x ,(0,(0))f二、解: (1)当1x ≠时,222222(1)22()1(1)x x xf x x x +-⋅'=++ 2222212(1)1|1|(1)x x x x -=+⋅+-+ ………………(2分) 当1x >时,2222212(1)()011(1)x f x x x x -'=+⋅=+-+, ………………(3分) 当01x <<时,22222212(1)4()11(1)1x f x x x x x -'=+⋅=+-++, ………………(4分) 又 (1)0f +'=,214(1)lim 21x f x--→'==+,所以(1)f '不存在。
………………(6分) (2)由(1)知,当1≥x 时,()0f x '=,所以()f x 恒等于常数,………………(7分)又2(1)2arctan1arcsin11f =++π=, 所以当1≥x 时,22()2arctan arcsin =1xf x x xπ=++。
………………(8分)三. 解:当10x -≤<时,1()()xF x f t dt -=⎰1(1)xt dt -=+⎰21(1)2x =+, ……………(2分)当01x ≤≤时,1()()x F x f t dt -=⎰01()()xf t dt f t dt -=+⎰⎰10(1)xt dt tdt -=++⎰⎰2122x =+ ………………(6分)即 221(1)102()10122x x F x x x ⎧+-≤<⎪⎪=⎨⎪+≤≤⎪⎩,又01lim ()lim ()2x x F x F x +-→→==,故()F x 在[1,1]-上连续。
北京理工大学数学专业离散数学期末试题
(完整word版)北京理工大学数学专业离散数学期末试题(MTH17068,MTH17175)亲爱的读者:本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。
下面是本文详细内容。
最后最您生活愉快 ~O(∩_∩)O ~课程编号:MTH17068 北京理工大学2012-2013学年第一学期2011级离散数学试题A 卷一、选择题(本大题共10小题,每小题2分,共20分)1.下列不是命题的是A.7能被3整除B.5是素数当且仅当太阳从西边升起C.x+7<0D.北京理工大学位于北京市西城区2.设p :王平努力学习,q :王平取得好成绩。
命题“除非王平努力学习,否则他不能取得好成绩”的符号化形式为A.p q →B.p q ⌝→C.q p →D.q p ⌝→3.下列4个推理定律中正确的是A.A A B ⇒∨(附加律)B.()A B A B ∨∧⌝⇒(析取三段论)C.()A B A B →∧⇒(假言推理)D.()A B B A →∧⌝⇒(拒取式) 4.设解释I 如下:个体域{}()()()()1,2,1,12,20,1,22,11D F F F F =====。
在此解释下,下列各式真值为1的是A.(),x yF x y ∀∃B.(),x yF x y ∃∀C.(),x yF x y ∀∀D.(),x yF x y ⌝∃∃ 5.下列4个命题为真的是 A.Φ∈Φ B.{}a Φ∈ C.{}{}Φ∈ΦD.Φ⊆Φ6.设{},,A a b c =上的二元关系{},,,,,R a a b b a c =<><><>,则关系R 的对称闭包()s R 为A.A R IB.RC.{},R c a <>D.A R I7.设{},,A a b c =,则下列是A 的划分的是A.{}{}{},,b c cB.{}{}{},,,a b a cC.{}{},,a b cD.{}{}{},,a b c8.下列编码是前缀码的是A.{1,11,101}B.{1,001,0011}C.{1,01,001,000}D.{0,00,000}9.下列图既是Euler 图又是Hamilton 图的是 A.9K B.10K C.2,3KD.3,3K10.下列图一定是平面图的是A.5KB.,,9,22G V E V E =<>==C.3,3KD.,,10,8G V E V E =<>==二、填空题(本大题共10小题,每小题2分,共20分)1.若对命题P 赋值1,对命题Q 赋值0,则命题P Q ↔的真值为_______________。
北京理工大学数学专业数值计算方法Ⅰ期末试题2013级B卷,2015级A卷(MTH17170)
北京理工大学2014-2015学年第二学期2013级数值代数与数值分析期末试题B 卷一、(1031.953=有5位有效数字,试求方程233204x x -+=的两个根,使它们至少有4位有效数字。
二、(10分)已知矩阵100024024A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,求A 的1-范数,∞-范数,F-范数,2-范数。
三、(15分)用LU 分解求解方程组12321374321261513x x x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,要求写出LU 矩阵。
四、(15分)用迭代公式()1,0,1,k k k x x Ax b k α+=+-=求解方程组12323121x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,求α的范围使迭代收敛。
五、(10分)用插值多项式理论证明:00n ni k k i x k x i i k ==≠⎛⎫- ⎪= ⎪- ⎪⎝⎭∑∏。
六、(10分)已知下面的数据表,写出用最小二乘法求形如2y a bx =+的经验公式的正则方程组。
七、(15分)已知方程1552sin 0x x -+=在03x =附近有根,试构造一种收敛的迭代格式,并说明理由。
八、(3次的插值多项式,建立导数型插值误差公式,并证明。
注:本课程自2014级起改为大二上学期必修和大三上学期选修两部分,名称分别为数值计算方法Ⅰ和数值计算方法Ⅱ。
北京理工大学2016-2017学年第一学期2015级数值计算方法Ⅰ期末试题A 卷一、(1030.952=有5位有效数字,试求方程233104x x -+=的两个根,使它们至少有4位有效数字。
二、(10分)已知矩阵100024024A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,求A 的1-范数,2-范数,1-条件数,2-条件数。
三、(15分)用LU 分解求解方程组123212124312261526x x x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,要求写出LU 矩阵。
北京理工大学数学专业数理统计期末试题(07000233)
课程编号:07000233 北京理工大学2011-2012学年第二学期2010级数理统计期末试题A 卷一、设总体()20,X N σ ,12,,,m n X X X +⋅⋅⋅是抽自总体X 的简单随机样本,求常数c 使得随机变量2221222212mm m m n X X X Y c X X X +++++⋅⋅⋅+=⋅++⋅⋅⋅+服从F 分布,指出分布的自由度并证明。
二、设总体()2,X N μσ ,其中220σσ=为已知常数,R μ∈为未知参数。
12,,,nX X X ⋅⋅⋅是抽自总体X 的简单随机样本,12,,,n x x x ⋅⋅⋅为相应的样本观测值。
1.求参数μ的矩估计;2.求参数μ和2EX 的极大似然估计;3.证明1n i i i X X α='=∑,其中11ni i α==∑和11ni i X X n ==∑都是μ的无偏估计;4.比较两个无偏估计X '和X 的有效性并解释结果。
三、设总体X 服从泊松分布()P λ,123,,X X X 是抽自总体X 的简单随机样本,设假设检验问题011:3;:3H H λλ==的否定域为(){}123,,0.5D X X XX =≤。
1.求该检验问题犯第一类错误的概率;2.求该检验问题犯第二类错误的概率和在1H 下的功效函数。
四、设总体X 的概率密度函数为()32,0,20,0xx e x f x x θθθ-⎧>⎪=⎨⎪≤⎩,其中0θ>为未知参数,12,,,n X X X ⋅⋅⋅是抽自总体X 的简单随机样本。
1.验证样本分布族是指数族,并写出其自然形式(标准形式);2.证明()1nii T X X==∑是充分完全(完备)统计量,并求()ET X ;3.利用充分完全统计量法和Cramer-Rao 不等式方法证明113n i i X n =∑是1θ的一致最小方差无偏估计。
五、设12,,,n X X X ⋅⋅⋅是从总体X 抽取的简单随机样本,且X 的密度函数为()()12,2,0,2xx f x x θθθθ-+⎧>⎪=⎨≤⎪⎩,其中0θ>为未知参数。
北京理工大学数学专业最优化方法期末试题级A卷级B卷MTH
课程编号:MTH17171北京理工大学2014-2015学年第二学期2013级最优化方法期末试题A 卷一、(10分)设()f x 是凸集nS R ⊆上的凸函数,对12,x x S ∈,实数[]0,1α∉,令()121z x x ααα=+-,若z S α∈,证明()()()121f z f x x ααα≥+-。
二、(10分)设数列{}k x 的通项为:22121,2,0,1,!ii i x x x i i +===L , 证明:(1){}k x 收敛于*0x =; (2)令1,0,1,k k k xx d k +=+=L ,则*lim1k kk x x d →∞-=;(3){}k x 不是超线性收敛于*x 的。
三、(10分)求解整数规划问题:1212121212min ..14951631,0,,z x x s t x x x x x x x x =-++≤-+≤≥∈Z。
(图解法,割平面法,分枝定界法均可)四、(10分)设f 连续可微有下界,且f ∇Lipschitz 连续,即:存在常数0L > ,使得,n x y R ∀∈,()()f x f y L x y ∇-∇≤-,设{}k x 由Wolfe-Powell 型搜索产生,k d 为下降方向,()()cos T k k k kkf xdf x dθ∇=-∇⋅,证明:(1)()220cos kk k f x θ∞=∇<∞∑;(2)若0δ∃>,使得k ∀,cos k θδ≥,则()lim 0k k f x→∞∇=。
五、(10分)设f 连续可微,序列{}k x 由最速下降法解()min f x ,并做精确搜索产生,证明:0,1,k ∀=L ,()()10Tk k f xf x +∇∇=。
六、(10分)已知线性规划:1234123412341234max 2347..23482673,,,0z x x x x s t x x x x x x x x x x x x =++++--=-+-=-≥。
北京理工大学2011-2012学年第一学期工科数学分析期末试题
e4 1 4
二.
1 1 x2 3x 2
2
lim
x 0
x arcsin x e
x3
1
lim
x 0
x arcsin x x3
…………………
1 lim
x 0
……………………
1 ( x 2 ) 1 x 1 lim lim 2 2 2 x0 x0 3x 1 x 3x 2 1 x 2 1 6
0 x 4 x
3 ( x, y )
y
dW xgy 2 dx gx (3 W gx (3
0 4
4 0
9 g (16 x 8 x 2 x 3 )dx 16
3 2 x) dx 4
3 2 x) dx ……………(4 分) 4
……பைடு நூலகம்…………..(6 分)
12g 12000g (J)
令 f ( x) 0 得 x
2 2 f ( x) 在 (0, ) , ( , ) , ( , ) 内单调 3 3 3 3
f ( 0) a 0 f ( ) a 0 f( 2 3 3 ) a 0 3 16
3
x
2 3
3 3 f( ) a 3 16
…………………..(7 分)
10
2 (1
3 e) 5
x 0
………………….(11 分) …………………….(2 分)
十.
令xt u
x 0
g ( x t )dt g (u )du
9
f ( x) 2 x 2 g (u )du
0
x
f ( x) 4 x g ( x)
北京理工大学数学专业数学分析Ⅰ试题(MTH17001,H0171001)
2010级数学专业数学分析Ⅰ第一次阶段测验1.(10分)设0x →。
试写出十个与x 等价且尽可能不同的无穷小量。
2.(15分)设1,2,n x n == 。
(1)求证:对任意自然数n ,112n x n-<; (2)用N ε-语言证明1lim 2n n x →∞=,并研究数列{}n x 中是否有最大数和最小数。
3.(15分)用εδ-语言叙述0x →时函数f 收敛和发散的严格含义,并用两种方法证明0x →时函数()1cosf x x=发散。
4.(10分)已知lim 0x ax b →+∞⎛⎫--=⎪⎪⎭,求常数,a b 的值;并给出,a b 的几何意义。
5.(10分)研究函数()11cos xx x f x x ⎛⎫+-= ⎪ ⎪⎝⎭在0x =点极限的存在性。
6.(15分)证明定理:设()(),y f u u x ϕ==构成复合函数()()y fx ϕ=。
若()()lim ,lim x u x f u A ϕ→+∞→∞=∞=,其中A 是实常数,则当x →+∞时,函数()()f x ϕ的极限存在,且()()()lim lim x u f x f u ϕ→+∞→∞=。
7.(15分)(1)叙述()lim x f x →∞=-∞的严格含义;(2)叙述f 在(),-∞+∞内取得最大值的严格含义;(3)设f 在(),-∞+∞内连续,且()lim x f x →∞=-∞。
求证:f 在(),-∞+∞内必取得最大值。
8.(10分)设,0n n b ∀>,且成立极限1lim 10n n n b n p b →∞+⎛⎫-=>⎪⎝⎭。
求证:数列{}n b 收敛,且lim 0n n b →∞=。
2011级数学专业数学分析Ⅰ第一次阶段测验1.(10分)设0x →。
试写出十个与x 等价且尽可能不同的无穷小量。
2.(15分)设1,2,n x n == ,用N ε-语言证明1lim 2n n x →∞=,并研究数列{}n x 中是否有最大数和最小数。
北京理工大学2013-2014学年第一学期《数学分析》期末测试卷(A卷)(附参考答案)
课程编号:MTH17003 北京理工大学2013-2014学年第一学期工科数学分析期末试题(A 卷)班级_______________ 学号_________________ 姓名__________________(本试卷共6页, 十一个大题. 解答题必须有解题过程. 试卷后面空白纸撕下做草稿纸. 试卷不得拆散.)一. 填空题(每小题2分, 共10分)1. 设)(x p 是多项式, 且,2)(lim 23=-∞→x x x p x ,3)(lim 0=→xx p x ,则=)(x p ____________________.2. 曲线θρcos 1-=在4πθ=处的切线斜率等于__________________.3. 已知点)3,1(为曲线23bx ax y +=的拐点, 则_,__________=a .______________=b4. 设⎰⋅+-=102)(arctan 1)(dt t f x x x f , 则=)(x f _________________________________.5. 质量为m 的降落伞从跳伞塔下落, 所受空气阻力与速度成正比(比例系数为0>k ), 则降落伞的位移)(t y 所满足的微分方程为___________________________________. 二. (8分) 求极限 .1)1ln(lim2tan 0--+→xx ex x三. (8分) 设e xy e y=-确定函数)(x y y =, 求22,dxyd dx dy .四. (9分) 设⎰+∞∞→=⎪⎭⎫⎝⎛-+082lim dx e x a x a x x xx ),0(≠a 求常数a 的值.五. (9分) 求微分方程4yx ydx dy +=的通解.六. (9分) 已知x x a x f 3sin 31cos )(-=在3π=x 处取得极值, 求a 的值, 并判断)3(πf 是极大值还是极小值.七. (9分) 求曲线x y =2与直线2-=x y 所围成平面图形的面积A, 以及此平面图形绕y 轴旋转一周所得旋转体的体积V .八. (9分) 求不定积分.11⎰+dx xxx九. (9分) 一圆锥形贮水池, 深3m, 直径4m, 池中盛满了水, 如果将水抽空, 求所作的功. (要求画出带有坐标系的图形)十. (12分) 设0)()()(0=-++⎰-xx dt t f x t e x f , 其中)(x f 是连续函数, 求)(x f 的表达式.十一. (8分) 设)(x f 在]1,0[上非负连续, 试证存在)1,0(∈ξ, 使得区间]1,[ξ上以)(ξf 为高的矩形面积等于区间],0[ξ上以)(x f y =为曲边的曲边梯形的面积.(2013-2014)工科数学分析第一学期期末试题(A 卷)解答(2014.1)一.1. x x x 3223++2.12+3. ,23- 294. x x arctan 2ln 2412+-+-ππ5. dt dyk mg dt y d m -=22二. 原式 x x x x 20tan )1ln(lim-+=→20)1ln(lim xx x x -+=→ ……………..(2分) x x x 2111lim 0--+=→ ……………..(6分) )1(21lim0x x --=→ ……………..(7分)21-= ……………..(8分)三. 0=--dx dy x y dx dy e y……………..(3分) x e ydx dy y-= ……………..(4分) 222)()1()(x e dx dy e y x e dx dy dx y d y y y ----⋅= ……………..(6分) 2)()1()(x e x e y e y x e x e y y yyy y -----⋅-= ……………..(7分) 32)(22x e e y ye xy y yy --+-= ……………..(8分)四. x x a x a x ⎪⎭⎫⎝⎛-+∞→2lim a x axa a x x a x a --∞→-+=33])31[(lim ……………..(2分) a e 3= ……………..(3分)⎰+∞08dx ex x ⎰+∞-=08dx xe x ⎰+∞--=08xxde ……………..(4分) ⎰+∞-∞+-+-=088dx e xe x x ……………..(6分)880=-=+∞-xe ……………..(8分)83=a e 2ln =a ……………..(9分)五.31y x y dy dx += 31y x ydy dx =- ……………..(2分) )(131⎰⎰+⎰=---dy ey C ex dyy dyy……………..(4分))(ln 3ln ⎰-+=dy e y C e y y ……………..(6分) )1(3⎰+=dy yy C y ……………..(8分) 431y Cy += ……………..(9分) 六. x x a x f 3cos sin )(--=' ……………..(3分)由 0123)3(=+-='a f π 得 32=a ……………..(5分)x x a x f 3s i n 3c o s )(+-='' ……………..(7分)因为031)3(<-=''πf 故 )3(πf 是极大值 ……………..(9分)七.抛物线与直线的交点为)2,4(),1,1(- ……………..(1分)⎰--+=212])2[(dy y y A ……………..(3分)29)322(2132=-+=-y y y ……………..(5分)⎰--+=2142])2([dy y y V ππ ……………..(7分)ππ572]51)2(31[2153=-+=-y y ……………..(9分)八. 令 x x t +=1 即 112-=t x ……………..(2分) ⎰--=dt t t I 1222……………..(3分)⎰-+-=dt t )111(22 ……………..(4分) ⎰+--+-=dt t t )1211211(2 ……………..(6分)C t t t +--++-=1ln 1ln 2 ……………..(8分) C xx xx xx +-+-++++-=11ln11ln12 ……………..(9分)九. dx x gx dx x gx dx y g x dW 222)3(94)31(4-=-⋅=⋅=πμπμπμ ……..(3分)⎰-=302)3(94dx x gx w πμ ……………..(5分)⎰+-=3032)69(94dx x x x g πμ30432)41229(94x x x g +-=πμ ……………..(8分)g g ππμ30003==(J) ……………..(9分)十. ⎰⎰-+-=-xxx dt t tf dt t f x e x f 0)()()( ……………..(1分)⎰+='-xx dt t f e x f 0)()( ……………..(2分))()(x f e x f x +-=''- x e x f x f --=-'')()( ……………..(3分) 1)0(-=f 1)0(='f ……………..(5分) 012=-r 1±=r ……………..(6分) x x e C e C x f -+=21)( ……………..(7分)设 xA x e x f -=)(* ……………..(8分)代入微分方程得 1=A x xe x f -=1)(* ……………..(9分)通解为 xx x xe e C e C x f --++=21)(21 ……………..(10分) 由初值得 411-=C 432-=Cx x x xe e e x f --+--=214341)( ……………..(12分)十一. 令 ⎰-=tdx x f t t F 0)()1()( ……………..(2分)则)(t F 在]1,0[连续, 在)1,0(可导, 又 0)1()0(==F F由罗尔定理, )1,0(∈∃ξ, 使 0)(='ξF ……………..(6分)0)()1()(0=-+⎰ξξξf dx x f ……………..(7分)即 ⎰=-ξξξ0)()()1(dx x f f 得证 ……………..(8分)。
北京理工大学数学专业模糊数学期末试题(MTH17077)汇编
课程编号:MTH17077 北京理工大学2013-2014学年第二学期2011级模糊数学期末试题(本卷推断为2011级试题)一、(15分)设论域为实数集,(),A B F ∈,()(),011,122,12,3,230,0,x x x x A x x x B x x x ≤≤-≤≤⎧⎧⎪⎪=-≤≤=-≤≤⎨⎨⎪⎪⎩⎩其它其它,(1)写出0.60.7,A A ∙;(2)求,c AB A 的隶属函数;(3)求A 与B 的内积,外积,格贴近度。
二、(10分)设H 是实数集R 上的集合套,已知()(),0,1H λλ⎡=∈⎣,令()[]0,1A H λλλ∈=。
(1)求ker ,A SuppA ;(2)求A 的隶属函数()A x 。
三、(10分)设余三角范式S 的表达式为(),S a b a b ab =+-,求与S 对偶的三角范式T 的表达式(),T a b 。
四、(15分)已知{}123456,,,,,X x x x x x x =,R 是X 上的模糊关系。
110.70.40.60.60.610.60.40.60.60.70.710.40.60.60.60.60.610.60.60.610.60.410.60.60.70.60.40.61R ⎛⎫⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭, (1)判断R 是否是模糊拟序矩阵,说明理由;(2)依据R 对X 进行分类(要求写出对应各阈值λ的分类以及类间偏序关系)。
五、(10分)设{}{}1231234,,,,,,X x x x Y y y y y ==,R 是X 到Y 的模糊关系,0.70.510.90.20.40.60.810.20.60R ⎛⎫⎪= ⎪ ⎪⎝⎭。
(1)求R 在X 中的投影X R ,R 在3x 处的截影3x R ;(2)设R T 为R 诱导的模糊变换,{}23,A x x =,求()R T A 。
六、(15分)设论域为实数集R ,已知()()()2,,,x f x x A F A x e x -=∈=∈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京理工大学数学专业解析几何期末试题(MTH17014-H0171006)课程编号:MTH17014 北京理工大学2011-2012学年第一学期2011级本科生解析几何期末试题A 卷姓名--------------,班级------------,学号--------------,题目一 二三四五六总分得分一,单选题(30分)1,已知空间三点A,B,C,下面哪个条件能确定A,B,C 四点共面( ) (a),空间任意一点O,三点满足 (b),空间任意一点O,三点满足(c),空间任意一点O,三点满足(d),空间任意一点O,三点满足2, 已知三向量满足下面哪个条件说明这三向量共面( )(a), , (b),, (c), , (d), .3,在一仿射坐标系中,平面,点A(1,-2,-1)和点B(2,-1,3).则下面说法正确的是( )(a)点A 和点B 在平面π的两侧; (b)点A 和点B 在平面π的同侧;(c)线段AB 平行于平面π; (d)线段AB 垂直于平面π.4, 在仿射坐标系中,已知直线和直线,则下面说法正确的是( ).OA OB OC =+ 11.22OA OB OC =+0.OA OB OC ++= 110.23OA OB OC ++=,,,αβγ()0αβγ⋅=0.αββγγα⨯+⨯+⨯=()0αβγ⨯⨯=()()αβγβγα⨯∙=⨯∙:2430x y z π+++=2103260x z x y ++=⎧⎨+-=⎩2102140x y z x z +--=⎧⎨+-=⎩(a)两直线平行; (b)两直线相交; (c)两直线异面; (d)两直线重合.5, 在仿射坐标系中,已知平面和直线,则下面说法正确的是( )(a)直线和平面平行; (b)直线和平面相交; (c)直线在平面上; (d)直线和平面垂直.6,在平面仿射坐标中,直线与轴相交,则( )(a),(b),(c),(d)7,在空间直角坐标系下,方程的图形是( )(a),椭球面;(b),单叶双曲面;(c),双叶双曲面;(d),锥面。
8,在空间直角坐标系中,曲面的方程是, 则曲面是( )(a)椭球面, (b)双曲抛物面, (c)椭球抛物面, (d)双曲柱面.9,已知平面上两个三角形△ABC 和△DEF,存在几个不同的仿射变换将三角形△ABC 映射为三角形△DEF( )(a), 1个, (b), 3个, (c), 6个, (d), 无穷多个.10, 设是平面上两个旋转变换,则不可能是( )(a)平移变换, (b)反射变换, (c)中心对称, (d)恒同变换.二, 填空题(30分)1,在一空间直角坐标系中,四面体的顶点A,B,C,D 的坐标依次为(1,0,1), (-1,1,5), (-1,-3,-3), (0,3,4), 则四面体的体积是 .2,在仿射坐标系中,给定一平面和一直线方程分别是,则过点(0,1,-1)与平面π平行,且与直线共面的直线方程是3,在空间直角坐标系中,给定二次曲面10x y z ++-=20210x y z x y z +-=⎧⎨-+-=⎩1111222200A x B y C z D A x B y C z D +++=⎧⎨+++=⎩y 11220C D C D =11220A D A D =11220B D B D =11220A B A B =2223230x y z xy yz +-++=22442218x xy y x y z ++-++=12,γγ12γγ 与32230:320:210x y z x y z l x y z π-++=⎧-+-=⎨+++=⎩l 222:(1)(2)(1)10x y z Γ-+-+--=和平面方程,则二次曲面上点到π的点的最大距离是 .4,在空间直角坐标系中,曲线绕轴旋转的旋转面方程是 .5,在空间直角坐标系中, 已知马鞍面,则在马鞍面上过点(4,3,0)的直线是 .6,在空间给定不同面的四点A,B,C,D,则坐标系到坐标系的点坐标变换公式是 .7,在平面仿射坐标系中,二次曲线的中心是 .8,在平面直角坐标系中,给定曲线,则它的对称轴方程是 9,在平面仿射坐标系中, 二次曲线过原点的切线方程是 .10,在空间直角坐标系中,二次曲面Г关于三个坐标平面都对称,并且已知它上面有两条曲线是和,则Г的方程是 .三,在空间空间直角坐标系中,已知曲线,求经过此曲线的圆柱面方程.:20y z π+=Γ22(3)10x y z ⎧-+=⎨=⎩x 222169x y z -=[;,,]I A AB AC AD [;,,]I B BC BD BA 2234462120xxy y x y ++++-=22695880x xy y x y y -+--+=225720xxy y x y ++-+=22143y x z ⎧+=⎪⎨⎪=⎩221282x y z ⎧+=⎪⎨⎪=-⎩222100x y z ⎧+-=⎨=⎩四,在平面仿射坐标系中,二次曲线过点(3,-3), (3,-7), 且以两直线和为一对共轭直径. 求二次曲线方程.五,在空间直角坐标系中,求与两个球面与都相切的圆锥面方程.六,在平面π的仿射坐标系中,给出下面六点的坐标 和二次曲线,仿射变换满足, 求二次曲线在仿射变换下的像的方程.Γ10x y -=60x y ++=22216x y z ++=222(6)4x y z +-+=(1,0),(0,1),(3,1),A B C ---'''(1,1),(1,3),(2,4)A B C --2:310x xy y Γ-++=:f ππ→'''(),(),().f A A f B B f C C ===Γ()f Γ课程编号:MTH17014 北京理工大学2011-2012学年第一学期2011级本科生解析几何期末试题B 卷姓名--------------,班级------------,学号--------------,题目一 二三四五六总分得分一,单选题(30分)1,已知平面三点A,B,C,下面哪个条件能确定A,B,三点共线( ) (a),平面任意一点O,三点满足 (b),平面任意一点O,三点满足(c),平面任意一点O,三点满足(d),空间任意一点O,三点满足2, 已知非零向量,满足,下面等式成立的是( )(a), 对于任意向量,(b), 对于任意向量, (c), 对于任意向量, (d), 存在向量,.3,在一仿射坐标系中,平面,点A(1,-2,-1)和点B(2,-1,3).则下面说法正确的是( )(a)点A 和点B 在平面π的两侧; (b)点A 和点B 在平面π的同侧;(c)线段AB 平行于平面π; (d)线段AB 垂直于平面π.OA OB OC=+ 1344OA OB OC =+0.OA OB OC ++= 130.44OA OB OC ++=,αβ0αβ⨯=有,(,,)0γαγβ=有,()0γαγβ⨯⨯=有,()0γαγβ⨯⨯=使得,(,,)0γαγβ≠:2430x y z π+++=4, 在仿射坐标系中,已知直线和直线,则下面说法正确的是( )(a)两直线平行; (b)两直线相交; (c)两直线异面; (d)两直线重合.5,在空间直角坐标系下,方程的图形是( )(a),椭球面;(b),单叶双曲面;(c),双叶双曲面;(d),锥面。
6,在平面直角坐标中,方程如果,方程的图形是 ( )(a),椭圆, (b),双曲线, (c),抛物线, (d)两条相交直线.7,直角坐标系下,椭球面与球面相切,并椭球面在球面内,则它们公共点有( )(a),两个;(b),四个;(c),八个;(d),无穷多个.8,下面哪对几何图形在平面仿射变换下不全等( )(a)平面上任意两个梯形, (b)平面上任意两个平行四边形,(c)平面任意两个椭圆, (d)平面上任意两个双曲线.9,已知平面上两个三角形△ABC 和△DEF,存在几个不同的仿射变换将三角形△ABC 映射为三角形△DEF( )(a), 1个, (b), 3个, (c), 6个, (d), 无穷多个.10, 设是平面上两个旋转变换,则不可能是( )(a)平移变换, (b)反射变换, (c)中心对称, (d)恒同变换.二, 填空题(30分)1,在一空间直角坐标系中,四面体的顶点A,B,C,D 的坐标依次为(1,0,1), (-1,1,5), (-1,-3,-3), (0,3,4), 则四面体的体积是 .2203260x y z x y -+=⎧⎨+-=⎩2020x y z x z +-=⎧⎨+=⎩22230x y xy yz xz +++-=2211122212(,)2220F x y a x a xy a y b x b y c =+++++=1112111121122122221222120,0,0a a b a a a a a a b a a b b c+>><(,)0F x y =2222221x y z a b c++=2222x y z R ++=(0)a b c >>>12,γγ12γγ2,在空间直角坐标系中,给平面方程和直线参数方程:,若平面π与直线的垂直,则 , .3,在空间直角坐标系中,给定二次曲面和平面方程,则二次曲面上点到π的点的最大距离是 .4,在空间直角坐标系中,曲线绕轴旋转的旋转面方程是 .5,在空间直角坐标系中, 已知马鞍面,则在马鞍面上过点(4,3,0)的直线是 .6,在空间给定不同面的四点A,B,C,D,则坐标系到坐标系的点坐标变换公式是 .7,在平面仿射坐标系中,二次曲线的中心是 .8,在平面直角坐标系中,给定曲线,则它的对称轴方程是9,在平面仿射坐标系中, 二次曲线过原点的切线方程是 .10,在空间直角坐标系中,二次曲面Г关于三个坐标平面都对称,并且已知它上面有两条曲线是:610ax by z π+++=21:4131x t l y t z t =+⎧⎪=--⎨⎪=+⎩l a =b =222:(1)(2)(1)10x y z Γ-+-+--=:0y z π+=Γ22(1)10x y z ⎧-+=⎨=⎩x 222169x y z -=[;,,]I A AB AC AD [;,,]I B BC BD BA 2232462120xxy y x y ++++-=22695880x xy y x y y -+--+=225720xxy y x y ++-+=和,则Г的方程是 .三,在空间空间直角坐标系中,已知曲线,求经过此曲线的圆柱面方程.四,在平面仿射坐标系中,二次曲线过点(3,-3), (3,-7), 且以两直线和为一对共轭直径. 求二次曲线方程.五,在空间直角坐标系中,求与两个球面与都相切的圆锥面方程.六,在平面π的仿射坐标系中,给出下面六点的坐标 和二次曲线,2214y x z ⎧+=⎪⎨⎪=⎩22128x y z ⎧+=⎪⎨⎪=-⎩224400x y z ⎧+-=⎨=⎩Γ10x y -=40x y ++=2224x y z ++=222(6)9x y z +-+=(1,0),(0,1),(3,1),A B C ---'''(2,1),(1,3),(2,4)A B C --2:2310x xy y Γ+++=仿射变换满足, 求二次曲线在仿射变换下的像的方程.课程编号:MTH17014 北京理工大学2012-2013学年第一学期2012级本科生解析几何期末试题A 卷姓名--------------,班级------------,学号--------------,题目一 二三四五六总分得分一,单选题(30分)1,已知空间五点A,B,C,D,O.满足则下面说法正确的是( )(a), 空间五点A, B, C, D, O 一定在一个平面上.(b), 空间四点A, B, C, D,一定在一个平面上.(c), 空间五点A, B, C, D, O 一定在一个直线上.(d), 空间四点A, B, C, D 一定在一个直线上.2, 已知三向量满足下面哪个条件说明这三向量共面( ) (a), , (b), , (c), , (d), .:f ππ→'''(),(),().f A A f B B f C C ===Γ()f Γ131110.2488OA OB OC OD ++-=,,,αβγ()0αβγ⋅=0.αββγγα⨯+⨯+⨯=()0αβγ⨯⨯=()()αβγβγα⨯∙=⨯∙3,在一仿射坐标系中,平面,点A(1,0,1)和点B(0,0,-3).则下面说法正确的是( )(a)点A 和点B 在平面π的两侧; (b)点A 和点B 在平面π的同侧; (c)线段AB 平行于平面π; (d)线段AB 垂直于平面π.4, 在仿射坐标系中,已知直线和直线,则下面说法正确的是( )(a)两直线平行; (b)两直线相交; (c)两直线异面; (d)两直线重合.5, 在仿射坐标系中,已知平面和直线,则下面说法正确的是( )(a)直线和平面平行; (b)直线和平面相交; (c)直线在平面上; (d)直线和平面垂直.6,在平面直角坐标中,二次曲线是( )(a),椭圆, (b),双曲线, (c),抛物线, (d),一对相交直线.7,在空间直角坐标系下,方程的图形是( )(a),椭球面;(b),单叶双曲面;(c),双叶双曲面;(d),锥面。