主成分分析的计算步骤

合集下载

主成分分析步骤

主成分分析步骤

主成分分析步骤1.了解数据:首先,在进行主成分分析之前,我们需要对研究的全部数据进行充分了解和分析,了解数据内包含的变量和观测范围,包括变量的类型和样本量(数据表覆盖的观测次数)。

在确定了数据内容及相关参数之后,可以进行下一步工作。

2.准备数据:主成分分析需要对数据进行统计处理,以去除数据间的相关性。

我们需要使用描述统计和回归分析来检验数据与主成分之间的相关性,并量化这种相关性。

3.标准化数据:一旦数据集准备完毕,就要将每个变量标准化--具体地说,就是计算每个变量的平均值和标准差,并将每个变量减去其平均值,然后除以其标准差,使每个变量平均为0,标准差为1,构成标准化数据集。

4.分解协方差矩阵:在执行主成分分析之前,要求将数据集的所有变量的协方差矩阵进行分解,把它分解成各个主成分的特征值和特征向量。

特征向量是由基本主成分变量组成的一整组变量,特征值是这些变量之间的协方差。

5.计算对角化矩阵:对分解后的协方差矩阵进行对角化处理,得到最后的对角化矩阵。

该矩阵可用于显示主成分的方差分布和重要性。

6.计算新的特征向量:利用得到的对角化矩阵,可以计算出一组新的特征向量,被称为新主成分变量,即原始变量的映射。

7.提取主成分:对新生成的特征向量按照特征值的大小进行排序,以便确定我们可以提取出来的主成分的数量。

从新特征向量中抽取出较大特征值对应的特征向量,这些特征向量往往与原始变量之间存在较强的相关性。

8.数据转换:拥有了新生成的特征向量之后,就可以对数据集中的变量进行转换,即从原始变量转换成主成分变量。

完成这个转换后,可以利用统计分析法来探究新变量与数据集中其他变量之间的相关性,从而获得研究结果。

主成分分析方程怎么写

主成分分析方程怎么写

主成分分析方程怎么写假设我们有一个包含N个样本和D个特征的数据矩阵X,可以表示为X=[x1, x2, ..., xD],其中每个样本xi都是一个D维的向量。

我们的目标是将这个高维数据转换为一个低维表示,以方便后续的分析和可视化。

首先,我们需要对数据进行中心化处理,即将每个特征减去其在整个数据集上的平均值。

这可以通过以下公式来实现:X' = X - mean(X)接下来,我们计算数据的协方差矩阵C,其定义如下:C=(1/N)*X'*X'^T其中,X'^T表示X'的转置,N表示样本的数量。

协方差矩阵是一个对称正定矩阵,其元素c_ij表示第i个特征与第j个特征之间的协方差。

然后,我们对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。

假设特征值为λ_1,λ_2,...,λD,对应的特征向量为v_1,v_2,...,vD。

特征值表示协方差矩阵在对应特征向量方向上的方差,特征向量表示数据在该方向上的投影。

特征值和特征向量满足以下关系:C*v_i=λ_i*v_i(i=1,2,...,D)最后,我们选择前K个最大的特征值对应的特征向量,组成一个投影矩阵W。

这些特征向量构成了数据的主成分,对应于协方差矩阵C的最大方差方向。

我们可以将原始数据矩阵X投影到低维空间,得到降维后的数据矩阵Y。

Y=X'*W其中,Y的维度为N*K,每一行对应一个样本在K个主成分上的投影。

由于我们选择的是方差最大的特征向量,因此Y的每个特征都具有最大的方差。

总结一下,主成分分析的数学公式为:1. 中心化处理:X' = X - mean(X)2.计算协方差矩阵:C=(1/N)*X'*X'^T3.特征值分解:C*v_i=λ_i*v_i(i=1,2,...,D)4.选择前K个最大的特征值:W=[v_1,v_2,...,vK]5.数据投影:Y=X'*W。

主成分分析法的步骤和原理[技巧]

主成分分析法的步骤和原理[技巧]

主成分分析法的步骤和原理[技巧](一)主成分分析法的基本思想主成分分析(Principal Component Analysis)是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,[2]且所含的信息互不重叠。

采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。

(二)主成分分析法代数模型假设用p个变量来描述研究对象,分别用X,X…X来表示,这p个变量12p t构成的p维随机向量为X=(X,X…X)。

设随机向量X的均值为μ,协方差矩12p阵为Σ。

假设 X 是以 n 个标量随机变量组成的列向量,并且μk 是其第k个元素的期望值,即,μk= E(xk),协方差矩阵然后被定义为:Σ=E{(X-E[X])(X-E[X])}=(如图对X进行线性变化,考虑原始变量的线性组合:Z1=μ11X1+μ12X2+…μ1pXpZ2=μ21X1+μ22X2+…μ2pXp…… …… ……Zp=μp1X1+μp2X2+…μppXp主成分是不相关的线性组合Z,Z……Z,并且Z是X1,X2…Xp的线性组12p1 合中方差最大者,Z是与Z不相关的线性组合中方差最大者,…,Zp是与Z,211Z ……Z都不相关的线性组合中方差最大者。

2p-1(三)主成分分析法基本步骤第一步:设估计样本数为n,选取的财务指标数为p,则由估计样本的原始数据可得矩阵X=(x),其中x表示第i家上市公司的第j项财务指标数据。

ijm×pij 第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。

第三步:根据标准化数据矩阵建立协方差矩阵R,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。

(完整版)主成分分析法的步骤和原理

(完整版)主成分分析法的步骤和原理

(一)主成分分析法的基本思想主成分分析(Principal Component Analysis )是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。

[2]采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。

(二)主成分分析法代数模型假设用p 个变量来描述研究对象,分别用X 1,X 2…X p 来表示,这p 个变量构成的p 维随机向量为X=(X 1,X 2…X p )t 。

设随机向量X 的均值为μ,协方差矩阵为Σ。

对X 进行线性变化,考虑原始变量的线性组合: Z 1=μ11X 1+μ12X 2+…μ1p X pZ 2=μ21X 1+μ22X 2+…μ2p X p…… …… ……Z p =μp1X 1+μp2X 2+…μpp X p主成分是不相关的线性组合Z 1,Z 2……Z p ,并且Z 1是X 1,X 2…X p 的线性组合中方差最大者,Z 2是与Z 1不相关的线性组合中方差最大者,…,Z p 是与Z 1,Z 2 ……Z p-1都不相关的线性组合中方差最大者。

(三)主成分分析法基本步骤第一步:设估计样本数为n ,选取的财务指标数为p ,则由估计样本的原始数据可得矩阵X=(x ij )m ×p ,其中x ij 表示第i 家上市公司的第j 项财务指标数据。

第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。

第三步:根据标准化数据矩阵建立协方差矩阵R ,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。

其中,R ij (i ,j=1,2,…,p )为原始变量X i 与X j 的相关系数。

主成分分析(PCA)详解(附带详细公式推导)

主成分分析(PCA)详解(附带详细公式推导)

主成分分析(PCA)详解(附带详细公式推导)1.假设有一个m维的数据集X,其中每个数据点有n个样本。

需要将其降维到k维,且k<m。

2. 首先需进行数据的中心化,即对每个维度的数据减去该维度的均值,即X' = X - mean(X)。

3.然后计算协方差矩阵C=(1/n)*X'*X'^T,其中X'^T表示X'的转置。

4.对协方差矩阵C进行特征值分解,得到特征值和对应的特征向量。

5.接下来,将特征值按从大到小的顺序排列,选取前k个最大的特征值及其对应的特征向量。

6. 最后,将选取的k个特征向量组成一个投影矩阵W =[e1,e2,...,ek],其中ei表示第i个特征向量。

7.对中心化的数据集进行降维,Y=W*X',其中Y即为降维后的数据。

上述推导过程中,协方差矩阵C的特征值代表了数据的方差,特征向量则代表了数据的主成分。

选取最大的k个特征值和对应的特征向量,即实现了数据的降维。

PCA的应用包括但不限于以下几个方面:1.数据可视化:PCA能够将高维度的数据映射到二维或三维空间,从而方便数据的可视化展示。

2.数据预处理:PCA能够降低数据的维度,从而减少噪声和冗余信息,提升后续模型的精度和效率。

3.特征提取:PCA能够提取数据中最重要的特征,从而辅助后续建模和特征工程。

4.噪声过滤:PCA能够降低数据的维度,从而过滤掉一些无关的噪声信息。

需要注意的是,PCA只能应用于线性数据,并且假设数据的方差和协方差是固定的。

同时,PCA对于数据中非线性关系的捕捉能力较弱,因此在处理非线性数据时,需考虑使用其他非线性降维方法,如核主成分分析(Kernel PCA)等。

综上所述,PCA是一种常用的多变量数据降维技术,在数据分析和机器学习领域有着广泛的应用。

通过线性变换,PCA将高维度的数据投影到低维空间中,从而减少数据的维度,并保留了数据中的主要信息。

(完整word版)主成分分析的计算步骤

(完整word版)主成分分析的计算步骤

主成分分析的计算步骤样本观测数据矩阵为:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=np n n p p x x x x x x x x x X 212222111211 第一步:对原始数据进行标准化处理)var(*j jij ij x x x x -= ),,2,1;,,2,1(p j n i ==其中 ∑==ni ij j x n x 11 21)(11)var(j ni ij j x x n x --=∑= ),,2,1(p j =第二步:计算样本相关系数矩阵⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=pp p p p p r r r r r r r r r R 212222111211 为方便,假定原始数据标准化后仍用X 表示,则经标准化处理后的数据的相关系数为:tj nt ti ij x x n r ∑=-=111 ),,2,1,(p j i =第三步:用雅克比方法求相关系数矩阵R 的特征值(p λλλ 21,)和相应的特征向量()p i a a a a ip i i i 2,1,,,21==。

第四步:选择重要的主成分,并写出主成分表达式主成分分析可以得到p 个主成分,但是,由于各个主成分的方差是递减的,包含的信息量也是递减的,所以实际分析时,一般不是选取p 个主成分,而是根据各个主成分累计贡献率的大小选取前k 个主成分,这里贡献率就是指某个主成分的方差占全部方差的比重,实际也就是某个特征值占全部特征值合计的比重。

即贡献率=∑=p i ii1λλ 贡献率越大,说明该主成分所包含的原始变量的信息越强。

主成分个数k 的选取,主要根据主成分的累积贡献率来决定,即一般要求累计贡献率达到85%以上,这样才能保证综合变量能包括原始变量的绝大多数信息。

另外,在实际应用中,选择了重要的主成分后,还要注意主成分实际含义解释。

主成分分析中一个很关键的问题是如何给主成分赋予新的意义,给出合理的解释。

一般而言,这个解释是根据主成分表达式的系数结合定性分析来进行的。

主成分分析综合得分计算公式

主成分分析综合得分计算公式

主成分分析综合得分计算公式
主成分分析综合得分计算公式为:Vi=xi/(x1+x2+........),主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标(即主成分),其中每个主成分都能够反映原始变量的大部分信息,且所含信息互不重复。

公式就是用数学符号表示各个量之间的一定关系(如定律或定理)的式子。

具有普遍性,适合于同类关系的所有问题。

在数理逻辑中,公式是表达命题的形式语法对象,除了这个命题可能依赖于这个公式的自由变量的值之外。

代谢组学数据处理方法_主成分分析

代谢组学数据处理方法_主成分分析

代谢组学数据处理方法_主成分分析主成分分析的基本原理是寻找数据的主要变化方向,即主成分。

主成分是样本点在高维空间中的映射,其具有最大的方差。

通过将数据映射到主成分上,可以减少数据的维度,并捕捉到数据主要的变化模式。

主成分分析的结果可以用于数据的可视化和进一步的统计分析。

主成分分析的步骤如下:1.数据预处理:包括数据清洗、归一化和去除异常值等,以确保数据的准确性和可靠性。

2.计算协方差矩阵:协方差矩阵反映了不同变量之间的相关性。

通过计算协方差矩阵,可以获得变量之间相关性的度量。

3.计算特征值和特征向量:通过对协方差矩阵进行特征值分解,可以得到特征值和对应的特征向量。

特征值表示对应特征向量的重要程度,特征向量表示主成分的方向。

4.选择主成分:按照特征值的大小选择前k个主成分,其中k为需要降低的维度。

通常选择前几个特征值之和占总特征值之和的90%以上作为阈值。

5.计算得分:通过将数据映射到选择的主成分上,计算每个样本在主成分上的得分。

得分表示样本在主成分上的投影位置。

6.数据可视化:将数据样本的得分绘制在二维或三维图中,可以直观地展示数据在主成分上的分布情况。

7.解释主成分:通过分析主成分的特征向量,可以解释主要的变异模式和相关因素。

主成分分析在代谢组学数据处理中的应用广泛。

首先,主成分分析可以降低数据的维度,减少变量的数量,从而减少数据的复杂性。

其次,主成分分析可以挖掘数据中的主要信息和变化模式,有助于发现组间和组内的差异。

此外,主成分分析还可以用于数据的可视化,将高维数据映射到二维或三维图中,更直观地观察和解读数据。

总结起来,主成分分析是代谢组学数据处理中常用的方法之一,通过降维和可视化,可以更好地理解和解释复杂的代谢组学数据。

主成分分析步骤

主成分分析步骤

主成分分析步骤实验步骤:1.将原数据进行标准化处理,此处以标准差标准化为例,用spss的步骤:工具栏中的分析—描述统计—描述—添加所有变量,并将“将标准化得分另存为变量”勾住—得到标准差和均值如下表一:工具栏中的转换—计算变量—输入数字表达式:(变量—均值)/标准差—依次导入变量,且输入对应的目标变量得到标准化后的数字2.计算相关系数矩阵工具栏分析—降维—因子分析—导入所有变量—在描述中将系数勾上得到相关系数矩阵表二:t1 t2 t3 t4 t5 t6 t7相关t1 1.000 .338 -.192 -.051 .194 -.409 -.041 t2 .338 1.000 .221 .345 .093 -.075 -.033 t3 -.192 .221 1.000 -.011 -.061 .294 .230 t4 -.051 .345 -.011 1.000 .529 -.453 .531 t5 .194 .093 -.061 .529 1.000 -.558 .762 t6 -.409 -.075 .294 -.453 -.558 1.000 -.280 t7 -.041 -.033 .230 .531 .762 -.280 1.000 t8 -.378 -.204 .022 .412 .433 -.111 .508 t9 -.418 -.210 .055 .105 .015 .307 .332相关矩阵t8 t9相关t1 -.378 -.418t2 -.204 -.210t3 .022 .055t4 .412 .105t5 .433 .015t6 -.111 .307t7 .508 .332t8 1.000 .419t9 .419 1.0003.计算特征值及对应的特征向量工具栏分析—降维—因子分析—导入变量—在描述中勾“原始分析结果”“系数”—在抽取中,方法:主成分;分析:相关性矩阵;输出:未旋转的因子解;抽取:因子的固定数量:4—在得分中勾上“显示因子得分系数矩阵”表三:公因子方差初始提取t1 1.000 .719t2 1.000 .914t3 1.000 .907t4 1.000 .863t5 1.000 .864t6 1.000 .785t7 1.000 .891t8 1.000 .719t9 1.000 .631提取方法:主成份分析。

(完整版)主成分分析法的原理应用及计算步骤..

(完整版)主成分分析法的原理应用及计算步骤..

(完整版)主成分分析法的原理应⽤及计算步骤..⼀、概述在处理信息时,当两个变量之间有⼀定相关关系时,可以解释为这两个变量反映此课题的信息有⼀定的重叠,例如,⾼校科研状况评价中的⽴项课题数与项⽬经费、经费⽀出等之间会存在较⾼的相关性;学⽣综合评价研究中的专业基础课成绩与专业课成绩、获奖学⾦次数等之间也会存在较⾼的相关性。

⽽变量之间信息的⾼度重叠和⾼度相关会给统计⽅法的应⽤带来许多障碍。

为了解决这些问题,最简单和最直接的解决⽅案是削减变量的个数,但这必然⼜会导致信息丢失和信息不完整等问题的产⽣。

为此,⼈们希望探索⼀种更为有效的解决⽅法,它既能⼤⼤减少参与数据建模的变量个数,同时也不会造成信息的⼤量丢失。

主成分分析正式这样⼀种能够有效降低变量维数,并已得到⼴泛应⽤的分析⽅法。

主成分分析以最少的信息丢失为前提,将众多的原有变量综合成较少⼏个综合指标,通常综合指标(主成分)有以下⼏个特点:↓主成分个数远远少于原有变量的个数原有变量综合成少数⼏个因⼦之后,因⼦将可以替代原有变量参与数据建模,这将⼤⼤减少分析过程中的计算⼯作量。

↓主成分能够反映原有变量的绝⼤部分信息因⼦并不是原有变量的简单取舍,⽽是原有变量重组后的结果,因此不会造成原有变量信息的⼤量丢失,并能够代表原有变量的绝⼤部分信息。

↓主成分之间应该互不相关通过主成分分析得出的新的综合指标(主成分)之间互不相关,因⼦参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应⽤带来的诸多问题。

↓主成分具有命名解释性总之,主成分分析法是研究如何以最少的信息丢失将众多原有变量浓缩成少数⼏个因⼦,如何使因⼦具有⼀定的命名解释性的多元统计分析⽅法。

⼆、基本原理主成分分析是数学上对数据降维的⼀种⽅法。

其基本思想是设法将原来众多的具有⼀定相关性的指标X1,X2,…,XP (⽐如p 个指标),重新组合成⼀组较少个数的互不相关的综合指标Fm 来代替原来指标。

那么综合指标应该如何去提取,使其既能最⼤程度的反映原变量Xp 所代表的信息,⼜能保证新指标之间保持相互⽆关(信息不重叠)。

主成分分析计算方法和步骤

主成分分析计算方法和步骤

主成分分析计算方法与步骤:在对某一事物或现象进行实证研究时,为了充分反映被研究对象个体之间得差异, 研究者往往要考虑增加测量指标,这样就会增加研究问题得负载程度。

但由于各指标都就是对同一问题得反映,会造成信息得重叠,引起变量之间得共线性,因此,在多指标得数据分析中,如何压缩指标个数、压缩后得指标能否充分反映个体之间得差异,成为研究者关心得问题。

而主成分分析法可以很好地解决这一问题。

主成分分析得应用目得可以简单地归结为: 数据得压缩、数据得解释。

它常被用来寻找与判断某种事物或现象得综合指标,并且对综合指标所包含得信息给予适当得解释, 从而更加深刻地揭示事物得内在规律。

主成分分析得基本步骤分为: ①对原始指标进行标准化,以消除变量在数量极或量纲上得影响;②根据标准化后得数据矩阵求出相关系数矩阵 R; ③求出 R 矩阵得特征根与特征向量; ④确定主成分,结合专业知识对各主成分所蕴含得信息给予适当得解释;⑤合成主成分,得到综合评价值。

结合数据进行分析本题分析得就是全国各个省市高校绩效评价,利用全国2014年得相关统计数据(见附录),从相关得指标数据我们无法直接评价我国各省市得高等教育绩效,而通过表5-6得相关系数矩阵,可以瞧到许多得变量之间得相关性很高。

如:招生人数与教职工人数之间具有较强得相关性,教育投入经费与招生人数也具有较强得相关性,教工人数与本科院校数之间得相关系数最高,到达了0、963,而各组成成分之间得相关性都很高,这也充分说明了主成分分析得必要性。

表5-6 相关系数矩阵本科院校数招生人数教育经费投入相关性师生比0、279 0、329 0、252重点高校数0、345 0、204 0、310教工人数0、963 0、954 0、896本科院校数1、000 0、938 0、881招生人数0、938 1、000 0、893表5-7给出得就是各主成分得方差贡献率与累计贡献率,我们选取主成分得标准有两个:第一,特征根大于1,因为,如果特征根小于1,说明该主成分得解释力度太弱,还比不上直接引入一个原始变量得平均解释力度大;第二,方差贡献率大于85%,如果这两个标准不能同时符合要求,则往往就是因为选择得指标不合理或者样本容量太小,应继续调整。

主成分分析计算方法和步骤

主成分分析计算方法和步骤

主成分分析计算方法和步骤:在对某一事物或现象进行实证研究时,为了充分反映被研究对象个体之间的差异, 研究者往往要考虑增加测量指标,这样就会增加研究问题的负载程度。

但由于各指标都是对同一问题的反映,会造成信息的重叠,引起变量之间的共线性,因此,在多指标的数据分析中,如何压缩指标个数、压缩后的指标能否充分反映个体之间的差异,成为研究者关心的问题。

而主成分分析法可以很好地解决这一问题。

主成分分析的应用目的可以简单地归结为: 数据的压缩、数据的解释。

它常被用来寻找和判断某种事物或现象的综合指标,并且对综合指标所包含的信息给予适当的解释, 从而更加深刻地揭示事物的内在规律。

主成分分析的基本步骤分为: ①对原始指标进行标准化,以消除变量在数量极或量纲上的影响;②根据标准化后的数据矩阵求出相关系数矩阵 R; ③求出 R 矩阵的特征根和特征向量; ④确定主成分,结合专业知识对各主成分所蕴含的信息给予适当的解释;⑤合成主成分,得到综合评价值。

结合数据进行分析本题分析的是全国各个省市高校绩效评价,利用全国2014年的相关统计数据(见附录),从相关的指标数据我们无法直接评价我国各省市的高等教育绩效,而通过表5-6的相关系数矩阵,可以看到许多的变量之间的相关性很高。

如:招生人数与教职工人数之间具有较强的相关性,教育投入经费和招生人数也具有较强的相关性,教工人数与本科院校数之间的相关系数最高,到达了0.963,而各组成成分之间的相关性都很高,这也充分说明了主成分分析的必要性。

表5-6 相关系数矩阵本科院校数招生人数教育经费投入相关性师生比0.279 0.329 0.252重点高校数0.345 0.204 0.310教工人数0.963 0.954 0.896本科院校数 1.000 0.938 0.881招生人数0.938 1.000 0.893教育经费投0.881 0.893 1.000入师生比重点高校数教工人数相关性师生比 1.000 -0.218 0.208重点高校数-0.218 1.000 0.433教工人数0.208 0.433 1.000本科院校数0.279 0.345 0.963招生人数0.329 0.204 0.954教育经费投0.252 0.310 0.896入(元)表5-7给出的是各主成分的方差贡献率和累计贡献率,我们选取主成分的标准有两个:第一,特征根大于1,因为,如果特征根小于1,说明该主成分的解释力度太弱,还比不上直接引入一个原始变量的平均解释力度大;第二,方差贡献率大于85%,如果这两个标准不能同时符合要求,则往往是因为选择的指标不合理或者样本容量太小,应继续调整。

主成分分析计算方法和步骤

主成分分析计算方法和步骤

主成分分析计算方法与步骤:在对某一事物或现象进行实证研究时,为了充分反映被研究对象个体之间的差异, 研究者往往要考虑增加测量指标,这样就会增加研究问题的负载程度。

但由于各指标都就是对同一问题的反映,会造成信息的重叠,引起变量之间的共线性,因此,在多指标的数据分析中,如何压缩指标个数、压缩后的指标能否充分反映个体之间的差异,成为研究者关心的问题。

而主成分分析法可以很好地解决这一问题。

主成分分析的应用目的可以简单地归结为: 数据的压缩、数据的解释。

它常被用来寻找与判断某种事物或现象的综合指标,并且对综合指标所包含的信息给予适当的解释, 从而更加深刻地揭示事物的内在规律。

主成分分析的基本步骤分为: ①对原始指标进行标准化,以消除变量在数量极或量纲上的影响;②根据标准化后的数据矩阵求出相关系数矩阵 R; ③求出 R 矩阵的特征根与特征向量; ④确定主成分,结合专业知识对各主成分所蕴含的信息给予适当的解释;⑤合成主成分,得到综合评价值。

结合数据进行分析本题分析的就是全国各个省市高校绩效评价,利用全国2014年的相关统计数据(见附录),从相关的指标数据我们无法直接评价我国各省市的高等教育绩效,而通过表5-6的相关系数矩阵,可以瞧到许多的变量之间的相关性很高。

如:招生人数与教职工人数之间具有较强的相关性,教育投入经费与招生人数也具有较强的相关性,教工人数与本科院校数之间的相关系数最高,到达了0、963,而各组成成分之间的相关性都很高,这也充分说明了主成分分析的必要性。

表5-6 相关系数矩阵本科院校数招生人数教育经费投入相关性师生比0、279 0、329 0、252重点高校数0、345 0、204 0、310教工人数0、963 0、954 0、896本科院校数1、000 0、938 0、881招生人数0、938 1、000 0、893教育经费投0、881 0、893 1、000入师生比重点高校数教工人数相关性师生比1、000 -0、218 0、208重点高校数-0、218 1、000 0、433教工人数0、208 0、433 1、000本科院校数0、279 0、345 0、963招生人数0、329 0、204 0、954教育经费投0、252 0、310 0、896入(元)表5-7给出的就是各主成分的方差贡献率与累计贡献率,我们选取主成分的标准有两个:第一,特征根大于1,因为,如果特征根小于1,说明该主成分的解释力度太弱,还比不上直接引入一个原始变量的平均解释力度大;第二,方差贡献率大于85%,如果这两个标准不能同时符合要求,则往往就是因为选择的指标不合理或者样本容量太小,应继续调整。

实验报告一主成分分析

实验报告一主成分分析

实验报告一主成分分析一、实验目的二、实验原理主成分分析的基本原理是寻找能够最大化数据方差的主轴方向,并以此来确定各个主成分的权重。

具体步骤如下:1.去除数据的均值,使数据集的中心为原点。

2.计算数据的协方差矩阵。

3.对协方差矩阵进行特征值分解,得到特征值和特征向量。

4.对特征值从大到小进行排序,选择前k个特征值对应的特征向量作为主成分。

5.将原始数据映射至选取的k个主成分构成的新坐标系中。

三、实验步骤2.对数据集进行预处理,包括去除缺失值、标准化处理等。

3.计算协方差矩阵。

4.对协方差矩阵进行特征值分解,并选择主成分。

5.将原始数据集映射至选取的主成分构成的新坐标系中。

6.可视化处理后的数据集,以便观察降维效果。

四、实验结果及分析经过主成分分析处理后,我们得到了降维后的数据集。

通过对比降维前后的数据,可以观察到数据在新坐标系中的分布情况。

如果降维后的数据集能够较好地保留原始数据的特征和结构,即数据点在新坐标系中的分布比较紧密,那么主成分分析的效果就较好。

五、实验结论通过实验,我们对主成分分析的原理和应用有了更深入的了解。

主成分分析可以有效地降低数据的维度,并保留原始数据的重要特征。

在实际应用中,主成分分析常用于多变量数据的预处理、降维和数据可视化等任务中,具有广泛的应用价值。

六、实验总结本次实验我们学习了主成分分析的基本原理和应用,并进行了实际操作。

实验结果表明主成分分析可以有效地降低数据的维度,保留了原始数据的重要特征,并成功地将数据映射到新的坐标系中。

通过本次实验的学习,我进一步掌握了主成分分析的方法和技巧,并了解了其在数据分析中的重要作用。

在实际应用中,我们可以根据需求选择适当的主成分数目,以达到最佳的降维效果和数据解释性。

主成分分析法的原理应用及计算步骤

主成分分析法的原理应用及计算步骤

一、概述在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。

而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。

为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。

为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。

主成分分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。

主成分分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,通常综合指标(主成分)有以下几个特点:主成分个数远远少于原有变量的个数原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。

主成分能够反映原有变量的绝大部分信息因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。

主成分之间应该互不相关通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。

主成分具有命名解释性总之,主成分分析法是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。

二、基本原理主成分分析是数学上对数据降维的一种方法。

其基本思想是设法将原来众多的具有一定相关性的指标X1,X2,…,XP(比如p个指标),重新组合成一组较少个数的互不相关的综合指标Fm来代替原来指标。

那么综合指标应该如何去提取,使其既能最大程度的反映原变量Xp所代表的信息,又能保证新指标之间保持相互无关(信息不重叠)。

主成分分析法的步骤和原理

主成分分析法的步骤和原理

(一)主成分分析法的基本思想主成分分析(Principal Component Analysis)是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。

[2]采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。

(二)主成分分析法代数模型假设用p个变量来描述研究对象,分别用X1,X2…X p来表示,这p个变量构成的p维随机向量为X=(X1,X2…X p)t。

设随机向量X的均值为μ,协方差矩阵为Σ。

对X进行线性变化,考虑原始变量的线性组合:Z1=μ11X1+μ12X2+…μ1p X pZ2=μ21X1+μ22X2+…μ2p X p………………Z p=μp1X1+μp2X2+…μpp X p主成分是不相关的线性组合Z1,Z2……Z p,并且Z1是X1,X2…X p的线性组合中方差最大者,Z2是与Z1不相关的线性组合中方差最大者,…,Z p是与Z1,Z2……Z p-1都不相关的线性组合中方差最大者。

(三)主成分分析法基本步骤第一步:设估计样本数为n,选取的财务指标数为p,则由估计样本的原始数据可得矩阵X=(x ij)m×p,其中x ij表示第i家上市公司的第j项财务指标数据。

第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。

第三步:根据标准化数据矩阵建立协方差矩阵R ,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。

其中,R ij (i ,j=1,2,…,p )为原始变量X i 与X j 的相关系数。

R 为实对称矩阵(即R ij =R ji ),只需计算其上三角元素或下三角元素即可,其计算公式为:2211)()()()(j kj nk i kj j kj n k i kj ij X X X X X X X X R -=--=-=∑∑ 第四步:根据协方差矩阵R 求出特征值、主成分贡献率和累计方差贡献率,确定主成分个数。

主成分分析的计算步骤

主成分分析的计算步骤

主成分分析的计算步骤1.数据预处理:首先,对原始数据进行预处理,包括数据清洗、缺失值处理、标准化等。

确保数据的质量以及统一度,以便更好地进行后续计算。

2.计算协方差矩阵:得到预处理后的数据后,计算协方差矩阵。

协方差矩阵可以反映不同变量之间的相关性。

协方差矩阵大小为n×n,其中n 是原始变量的个数。

3.计算特征值和特征向量:通过对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。

特征值是一个标量,表示对应特征向量的重要程度。

特征向量是一个n维列向量,代表主成分的方向。

4.特征值排序:将特征值按照大小降序排列,对应的特征向量也要相应地排序。

一般来说,特征值越大,对应的特征向量表示的主成分的重要性越高。

5.选择主成分数量:根据前面排好序的特征值和特征向量,确定需要选择的主成分数量。

一般可以根据累计贡献率来决定。

累计贡献率是指前k个主成分的特征值之和占总特征值之和的比例,一般要求累计贡献率达到一定的阈值,例如90%以上。

6.构建降维矩阵:根据选择的主成分数量,取对应的特征向量组成一个降维矩阵。

该降维矩阵的大小是n×k,其中n是原始变量的个数,k是选择的主成分数量。

7.数据降维:将原始数据与降维矩阵相乘,得到降维后的数据矩阵。

降维后的数据矩阵的大小是m×k,其中m是样本数量,k是选择的主成分数量。

8.主成分解释:计算降维后的数据矩阵的方差占比和累计方差占比。

方差占比是降维后的数据矩阵的方差占总方差的比例,累计方差占比是指前k个主成分的方差占总方差的比例。

通过方差占比和累计方差占比,可以评估主成分分析的效果和解释程度。

9.主成分得分:将降维后的数据矩阵乘以降维矩阵的转置,得到主成分得分矩阵。

主成分得分矩阵的大小是m×n,其中m是样本数量,n是原始变量的个数。

主成分得分表示每个样本在主成分上的投影值,可以用于后续的机器学习任务和数据可视化。

总结:主成分分析的计算步骤包括数据预处理、计算协方差矩阵、计算特征值和特征向量、特征值排序、选择主成分数量、构建降维矩阵、数据降维、主成分解释、主成分得分。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主成分分析的计算步骤
样本观测数据矩阵为:
⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=np n n p p x x x x x x x x x X 21
2222111211 第一步:对原始数据进行标准化处理
)var(*j j
ij ij x x x x -= ),,2,1;,,2,1(p j n i ==
其中 ∑==n
i ij j x n x 1
1 21
)(11)var(j n
i ij j x x n x --=∑= ),,2,1(p j =
第二步:计算样本相关系数矩阵
⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎣⎡=pp p p p p r r r r r r r r r R 212222111211 为方便,假定原始数据标准化后仍用X 表示,则经标准化处理后的数据的相关系数为:
tj n
t ti ij x x n r ∑=-=1
11 ),,2,1,(p j i =
第三步:用雅克比方法求相关系数矩阵R 的特征值(p λλλ 21,)和相应的特征向量()p i a a a a ip i i i 2,1,,,21==。

第四步:选择重要的主成分,并写出主成分表达式
主成分分析可以得到p 个主成分,但是,由于各个主成分的方差是递减的,包含的信息量也是递减的,所以实际分析时,一般不是选取p 个主成分,而是根据各个主成分累计贡献率的大小选取前k 个主成分,这里贡献率就是指某个主成分的方差占全部方差的比重,
实际也就是某个特征值占全部特征值合计的比重。


贡献率=∑=p i i
i

λ 贡献率越大,说明该主成分所包含的原始变量的信息越强。

主成分个数k 的选取,主要根据主成分的累积贡献率来决定,即一般要求累计贡献率达到85%以上,这样才能保证综合变量能包括原始变量的绝大多数信息。

另外,在实际应用中,选择了重要的主成分后,还要注意主成分实际含义解释。

主成分分析中一个很关键的问题是如何给主成分赋予新的意义,给出合理的解释。

一般而言,这个解释是根据主成分表达式的系数结合定性分析来进行的。

主成分是原来变量的线性组合,在这个线性组合中个变量的系数有大有小,有正有负,有的大小相当,因而不能简单地认为这个主成分是某个原变量的属性的作用,线性组合中各变量系数的绝对值大者表明该主成分主要综合了绝对值大的变量,有几个变量系数大小相当时,应认为这一主成分是这几个变量的总和,这几个变量综合在一起应赋予怎样的实际意义,这要结合具体实际问题和专业,给出恰当的解释,进而才能达到深刻分析的目的。

第五步:计算主成分得分
根据标准化的原始数据,按照各个样品,分别代入主成分表达式,就可以得到各主成分下的各个样品的新数据,即为主成分得分。

具体形式可如下。

⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛nk n n k k F F F F F F F F F 212222111211 第六步:依据主成分得分的数据,则可以进行进一步的统计分析
其中,常见的应用有主成份回归,变量子集合的选择,综合评价等。

相关文档
最新文档