流体力学课件--

合集下载

流体力学基本原理PPT课件

流体力学基本原理PPT课件
优点:结构简单、阻力小、使用方便,尤其适用于测量气体管道内的流速。 缺点:不能直接测出平均速度,且压差计读数小,常须放大才能读得准确。
二、孔板流量计 孔板流量计.swf p1
1、结构和原理
两种取压方式:
(1) 角接法 取压口在法兰上;
(2) 径接法
1
上游取压口在距孔板1倍 管径处,下游取压口在距 孔板1/2倍管径处。
2000<Re<4000时,可能是滞流,也可能是湍流,与外 界条件有关。——过渡区
圆管内滞流与湍流的比较
本质区别 速度分布 平均速度 剪应力
滞流 分层流动
u
umax
1
r2 R2
um
1 2
umax
du dy
湍流
质点的脉动
1
u
umax
1
r R
n
(n
7)
um 0.82umax (n 7)
2、压强的表示方法
1)绝对压强(绝压): 流体体系的真实压强称为绝对压强。 2)表压 强(表压): 压力上读取的压强值称为表压。
3)真空度: 真空表的读数
绝对压强、真空度、表压强的关系为
表压
实测压力
绝对压
真空度 绝压(余压)
大气压 实测压力
绝对零压
表压=绝对压-大气压 真空度=大气压 - 绝对压
2、静力学方程的讨论
达到允许的最大高度,容器内液面
愈低,压差计读数R越大。
'
R
远距离控制液位的方法:
B
压缩氮气自管口 经调节阀通入,调 节气体的流量使气 流速度极小,只要 在鼓泡观察室内看 出有气泡缓慢逸出 即可。
R
Ah
压差计读数R的大小,反映出贮罐内液面的高度 。

流体力学课件(全)

流体力学课件(全)
X 1 p 0 x
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。

流体力学课件PPT课件

流体力学课件PPT课件

注意:恒定流中流线与迹线重合
第27页/共90页
四、流管、流束、元流、总流、过流断面
1.流管
在流场中通过任意不与流线重合的封闭曲线上各 点作流线而构成的管状面。
第28页/共90页
2.流束
流管内所有流线的总和。流束可大可小,视流管 封闭曲线而定。
•元流:流管封闭曲线无限小,故元流又称微元流束。 •总流:流管封闭曲线取在流场边界上,总流即为许
x
y方向:
my
(uy ) dxdydz
y
z方向:
mz
(uz ) dxdydz
z
据质量守恒定律:
第39页/共90页
单位时间内流进、流出控制体的流体质量差之总和
等于控制体内流体因密度发生变化所引起的质量增
量 即
mx
my
mz
t
dxdydz
将 mx、my、mz 代入上式,化简得:
(ux ) (u y ) (uz ) 0
第54页/共90页
1.伯努利方程的物理意义
• z mgz : 单位重量流体所具有的位能。 mg

p
mg
p
/
mg
:
单位重量流体所具有的压能。
•z p :
单位重量流体所具有的势能。

u2 2g
1 2
mu
2
/
mg
:
单位重量流体所具有的动能。
第55页/共90页
• z p u2 : 单位重量流体所具有的机械能。
第8页/共90页
§3-1 描述流体运动的方法
一、拉格朗日方法
1.方法概要
着眼于流体各质点的运动情况,研究各质点 的运动历程,并通过综合所有被研究流体质点的 运动情况来获得整个流体运动的规律。

流体力学-流体静力学PPT课件-

流体力学-流体静力学PPT课件-
三.流体静压强分布图
1.绘制液体静压强分布图的知识点
流体静力学基本方程; 平衡流体中的应力特征(大小性、方向性)。
2.液体静压强分布图的绘制方法
(1)根据水静力学基本方程,计算出受压面上各点压强的大小,用一定 长度比例的箭头线表示各点的压强,箭头线必须垂直并指向作用面;
(2)对于不可压缩液体,重度γ为常量,p与h呈线性关系,当受压面为平 面时,只需用直线连接箭头线的尾部,即可得到压强分布图;而当受压面 为曲面时,由于曲面上各点的法向不同,因此需用曲线连接箭头线的尾部。
z1
p1
z2
p2
(2-11) (2-12)

p2 p1 (z1 z2 )
对于液体,如图所示,若液面压强为p0,则由式(2-12) 可知液体内任一点的静压强为
p p0 (z0 z) p0 h
(2-13)
式(2-13)为不可压缩静止液体的压强计算公式,通常亦称 为水静力学基本方程。该式表明:
故得欧拉平衡微分方程综合式(即全微分形式)
dp ( f xdx f ydy f z dz)
上式称为流体平衡微分方程的综合式。
而 dW f xdx f y dy f z dz
又 故有
dW W dx W dy W dz
x
y
z
W
fx
x
fy
W y
W f z z
(2-5) (2-6)
•方向性: 流体静压强p垂直指向受压面
证明:采用反证法, 其要点如下: 1 因平衡流体不能承受切应力,即 τ=0,故p垂直受压面;
2 因流体几乎不能承受拉应力,故 p指向受压面。
•大小性:平衡流体中任一点的静压强大小与其作用面的方位无关

流体力学基础讲解PPT课件

流体力学基础讲解PPT课件
措施。
05
流体流动的湍流与噪声
湍流的定义与特性
湍流定义
湍流是一种高度复杂的三维非稳态、带旋转的不规则流动。 在湍流中,流体的各种物理参数,如速度、压力、温度等都 随时间与空间发生随机的变化。
湍流特性
湍流具有随机性、不规则性、非线性和非稳定性等特性。在 湍流中,流体的速度、方向和压力等都随时间和空间发生变 化,形成复杂的涡旋结构。
环境流体流动与环境保护
要点一
环境流体流动
环境中的流体流动对环境保护具有重要影响。例如,大气 中的气流会影响污染物的扩散和迁移,水流会影响水体中 的污染物迁移和沉积等。
要点二
环境保护
通过对环境中的流体流动进行研究和模拟,可以更好地了 解污染物扩散和迁移规律,为环境保护提供科学依据。同 时,通过合理规划和设计流体流动系统,可以有效降低污 染物对环境的影响,保护生态环境。
04
流体流动的能量转换
能量的定义与分类
总结词
能量是物体做功的能力,可以分为机械能、热能、电能等。在流体力学中,主要关注的是机械能中的 动能和势能。
详细描述
能量是物体做功的能力,它有多种表现形式,如机械能、热能、电能等。在流体力学中,我们主要关 注的是机械能,它包括动能和势能两种形式。动能是流体运动所具有的能量,与流体的速度和质量有 关;势能则是由于流体所处位置而具有的能量。
流体流动噪声
流体流动过程中产生的噪声主要包括 机械噪声和流体动力噪声。机械噪声 主要由机械振动和摩擦引起,而流体 动力噪声主要由湍流和流体动力振动 引起。
噪声控制
为了减小流体流动产生的噪声,研究 者们提出了各种噪声控制方法,如改 变管道结构、添加消音器和改变流体 动力特性等。这些方法可以有效降低 流体流动产生的噪声。

流体力学(共64张PPT)

流体力学(共64张PPT)

1) 柏努利方程式说明理想流体在管内做稳定流动,没有
外功参加时,任意截面上单位质量流体的总机械能即动能、
位能、静压能之和为一常数,用E表示。
即:1kg理想流体在各截面上的总机械能相等,但各种形式的机
械能却不一定相等,可以相互转换。
2) 对于实际流体,在管路内流动时,应满足:上游截面处的总机械能大于下游截面
p g 1z12 u 1 g 2W g ep g 2z22 u g 2 2g hf
JJ
kgm/s2
m N
流体输送机械对每牛顿流体所做的功

HeW ge,
Hf ghf
p g 1z12 u 1 g 2H ep g 2z22 ug 2 2 H f
静压头
位压头
动压头 泵的扬程( 有效压头) 总压头
处的总机械能。
22
3)g式中z各、项 的2u 2物、理 意p 义处于g 某Z 个1 截u 2 1 面2上的p 1流 W 体e本 身g Z 所2具u 有2 22 的 能p 量2 ; hf
We和Σhf: 流体流动过程中所获得或消耗的能量〔能量损失〕;
We:输送设备对单位质量流体所做的有效功;
Ne:单位时间输送设备对流体所做的有效功,即有效功率;
u2 2
u22 2
u12 2
p v p 2 v 2 p 1 v 1
Ug Z 2 u2 pQ eW e
——稳定流动过程的总能量衡算式 18
UgZ 2 u2pQ eW e
2、流动系统的机械能衡算式——柏努利方程
1) 流动系统的机械能衡算式〔消去△U和Qe 〕
UQ'e vv12pdv热力学第一定律
26
五、柏努利方程应用
三种衡算基准

流体力学ppt课件-流体动力学

流体力学ppt课件-流体动力学

g
g
2g
水头

z
p
g
v2
2g
总水头, hw 水头损失
第二节 热力学第一定律——能量方程
水头线的绘制
总水头线
hw
对于理想流体,总水
1
v12 2g
2
v22 2g
头线是沿程不变的,
测压管水头线
p2
为一水平直线,对于
g
实际流体,总水头沿 程降低,但测压管水
p1 g
头线沿程有可能降低、
z2
不变或者升高。
z1
v2 A2 e2
u22 2
gz2
p2
v1A1 e1
u12 2
gz1
p1
微元流管即为流线,如果不 可压缩理想流体与外界无热 交换,热力学能为常数,则
u2 gz p 常数
2
这个方程是伯努利于1738年首先提出来的,命名为伯努利 方程。伯努利方程的物理意义是沿流线机械能守恒。
第二节 热力学第一定律——能量方程
皮托在1773年用一根弯成直角的玻璃管,测量了法国塞纳河 的流速。原理如图所示,在液体管道某截面装一个测压管和 一个两端开口弯成直角的玻璃管(皮托管),皮托管一端正 对来流,一端垂直向上,此时皮托管内液柱比测压管内液柱 高h,这是因为流体流到皮托管入口A点受到阻滞,速度降为 零,流体的动能变化为压强势能,形成驻点A,A处的压强称 为总压,与A位于同一流线且在A上游的B点未受测压管的影 响,其压强与A点测压管测得的压强相等,称为静压。
第四章 流体动力学
基本内容
• 雷诺输运公式 • 能量方程 • 动量方程 • 流体力学方程应用
第一节 雷诺输运方程
• 前面解决了流体运动的表示方法,但要在流 体上应用物理定律还有困难.

流体力学基本知识PPT优秀课件

流体力学基本知识PPT优秀课件
第一章 流体力学基本知识
第一节 流体的主要物理性质 第二节 流体静压强及其分布规律 第三节 流体运动的基本知识 第四节 流动阻力和水头损失 第五节 孔口、管嘴出流及两相流体简介
2021/6/3
1
第一节 流体的主要物理性质
一、密度和容重 密度:对于均质流体,单位体积的质量称为
流体的密度。 容重:对于均质流体,单位体积的 重量称为
等压面:流体中压强相等的各点所组成 的面为等压面。
2021/6/3
10
压强的度量基准:
(1)绝对压强:是以完全真空为零点计算的 压强,用PA表示。
(2)相对压强:是以大气压强为零点计算的 压强,用P表示。
相对压强与绝对压强的关系为: P=PA-Pa (1-9)
2021/6/3
11
第三节 流体运动的基本知识
水力学基本方程式。式中γ和p0都是常数。
方程表示静水压强与水深成正比的直线分布 规律。方程式还表明,作用于液面上的表面 压强p0是等值地传递到静止液体中每一点上。 方程也适用于静止气体压强的计算,只是式 中的气体容重很小,因此,在高差h不大的 情况下,可忽略项,则p=p0。例如研究气 体作用在锅炉壁上的静压强时,可以认为气 体空间各点的静压强相等。
表面压强为: p=△p/△ω (1-6)
点压强为: lim p=dp/dω ( Pa) 点压强就是静压强
2021/6/3
7
流体静压强的两个特征:
(1)流体静压强的方向必定沿着作用面的 内法线方向。
(2)任意点的流体静压强只有一个值,它 不因作用面方位的改变而改变。
2021/6/3
8
二、流体静压强的分布规律
一、流体运动的基本概念
(一)压力流与无压流 1.压力流:流体在压差作用下流动时,流体 整个周围都和固体壁相接触,没有自由表 面。 2.无压流:液体在重力作用下流动时,液体 的部分周界与固体壁相接触,部分周界与 气体接触,形成自由表面。

流体力学ppt课件

流体力学ppt课件

粗糙区是指,当层
流底层的厚度 小于粗 k s 糙度高峰 k s 时。
δ (a )
而将界于“光滑 k s
δ
区”和“完全粗糙区”
(b )
之间的称为“过渡粗
糙区”。 如图8.13
ks
δ
(b) 所示。
(c ) 图 8.13 紊 流 的 三 个 阻 力 区
8.4.4 计算 的方法与公式
1.当量粗糙
工业管道的粗糙以尼古拉兹实验采用的人工粗糙 为度量标准进行计算,即提出了当量粗糙的概念。常 用工业管道的当量粗糙见表8.2,在以上计算湍流的
除了流速的对数分布式外,尼古拉兹根据实验结 果,提出指数分布经验公式
其中
u
y
n
umax R
u max —管轴中心处最大流速; R——圆管半径; n——指数,随雷诺数变化,见表8.1。
8.3.4 层流底层与湍流核心
圆管中的湍流,可以分成三个区域:层流底层(粘 性底层)、湍流核心及过渡层。(如图8.10)
4
查表1.3,t 20C时水的运动粘度 1.011 10 6m 2/s
流动雷诺数
R eV d1 1 .6 .0 5 1 3 1 0 1 .0 0 7 6 5122626
d
ks
图8.11 人 工 粗 糙
ks d
1 30
1 6 1 .2
1 120
1 252 1 504
1 1014
图 8.12 尼 古 拉 兹 图
借助于量纲分析法,可得到雷诺数和相对粗糙 度是沿程摩阻因数的两个影响要素,即
f
Re,
ks d
2.沿程摩阻因数 的变化特性
(1)对于流动状态是层流(Re<2300), 和相对粗

流体力学课件

流体力学课件
减阻与控制
探讨减小阻力、提高升力和控制流动分离的方法和技术,如主动流 动控制、被动流动控制等。
04
管流与明渠流
Chapter
管流特性及分类
管流定义
流体在管道中的流动,受管道壁限制,具有特定流速和流向。
分类
根据流速和流体性质可分为层流和湍流;根据管道形状可分为圆 管流和非圆管流。
管流特性
流速分布不均,压力损失大,易产生涡旋和二次流等。
03
流体动力学
Chapter
理想流体动力学基础
理想流体模型
无粘性、不可压缩的流体模型,忽略粘性和热传 导等效应。
伯努利方程
描述理想流体在重力场中的势能、动能和压力能 之间的关系。
动量定理
分析流体运动时的动量变化和受力情况,推导流 体动力学基本方程。
粘性流体动力学基础
粘性流体模型
01
考虑流体的粘性和内摩擦效应,更符合实际流体。
明渠流特性及分类
明渠流定义
01
流体在开放渠道中的流动,无管道壁限制,自由Βιβλιοθήκη 面受重力作用。分类
02 根据流体性质和流动形态可分为缓流、急流、临界流
和过渡流等。
明渠流特性
03
自由表面波动大,流速分布不均,易受边界条件影响
,产生水面跃动和波动等现象。
管流与明渠流计算方法
管流计算方法
包括解析法、数值法和实验法等。其中,解析法适 用于简单管道流动;数值法适用于复杂管道流动; 实验法通过实测数据进行验证和修正。
流线法、矢量法和张量法等 。
计算流体力学软件
Fluent、CFX和Star-CCM+ 等。
06
多相流及其应用
Chapter

《流体力学》课件

《流体力学》课件

流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。

古时中国有大禹治水疏通江河的传说;秦朝李冰父子带领劳动人民修建的都江堰,至今还在发挥着作用;大约与此同时,古罗马人建成了大规模的供水管道系统等等。

流体力学的萌芽:距今约2200年前,希腊学者阿基米德写的“论浮体”一文,他对静止时的液体力学性质作了第一次科学总结。

建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。

此后千余年间,流体力学没有重大发展。

15世纪,意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题;17世纪,帕斯卡阐明了静止流体中压力的概念。

但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。

流体力学的主要发展:17世纪,力学奠基人牛顿(英)在名著《自然哲学的数学原理》(1687年)中讨论了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。

他针对粘性流体运动时的内摩擦力也提出了牛顿粘性定律。

使流体力学开始成为力学中的一个独立分支。

但是,牛顿还没有建立起流体动力学的理论基础,他提出的许多力学模型和结论同实际情形还有较大的差别。

之后,皮托(法)发明了测量流速的皮托管;达朗贝尔(法)对运动中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间的平方关系;瑞士的欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利(瑞士)从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。

欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。

《流体力学基础知识》课件

《流体力学基础知识》课件
流体粘性
流体抵抗剪切力的性质,粘性大小与流体的种类和温度有关。
流动模型
根据流体的粘性和流动特性,建立各种流动模型,如层流、湍流等。
06
流体力学在工程中的应用
流体输送与管道设计
总结词
流体输送与管道设计是流体力学在工程 中的重要应用之一,主要涉及流体在管 道中的流动规律和设计原则。
VS
详细描述
在工业生产和城市供水中,需要利用流体 力学的原理进行管道设计和流体输送,以 实现高效、低能耗的流体传输。管道设计 需要考虑流体的流速、压力、粘度等参数 ,以及管道的材质、直径、长度等因素, 以确保流体输送的稳定性和可靠性。
流体力学的发展历程
要点一
总结词
流体力学的发展历程及重要事件
要点二
详细描述
流体力学的发展历程可以追溯到古代,但直到17世纪才真 正开始形成独立的学科。在17世纪到20世纪期间,许多科 学家和工程师为流体力学的发展做出了重要贡献,如伯努 利、欧拉、斯托克斯等。随着科技的发展,流体力学在理 论和实践方面都取得了巨大的进步,为人类社会的进步和 发展做出了重要贡献。
3
流体流动的连续性原理
在流场中任取一元流管,流进和流出该元流的流 量相等。
流体流动的能量传递与转换
压力能传递
流体在流动过程中,压力能可以传递给其他流体 或转化为其他形式的能量。
动能转换
流体的动能可以转换为其他形式的能量,如压能 、热能等。
热能传递
流体在流动过程中,可以与周围介质进行热能交 换,实现热量的传递。
流体流动的阻力与损失
摩擦阻力
流体在管道中流动时,由于流体的粘性和管壁的粗糙度,会产生 摩擦阻力。
局部阻力
流体在通过管道中的阀门、弯头等局部构件时,会产生局部阻力。

《流体力学》课件-(第1章 绪论)

《流体力学》课件-(第1章 绪论)

流体力学
流体
强调水是主要研究对象 比较偏重于工程应用 土建类专业常用
力学
宏观力学分支 遵循三大守恒原 理
水力学

力学
§1.1.1 流体力学的任务和研究对象
二、研究对象 流体 指具有流动性的物体,包括气体和 液体二大类。
流动性
•即 任 一 微 小 剪
切力都能使流体 发生连续的变形

流体的共性特征
基本特征:具有明显的流动性;气体的流动性大于液体。 流体只能承受压力,不能承受拉力,在即使是很小剪切力
二. 表面力 是指作用在所研究的流体表面上的力,它是相邻流 体之间或固体壁面与流体之间相互作用的结果。 它的大小与流体的表面积成正比; 方向可分解为切向和法向。
• 设 面 积 为 ΔA 的 流 体
nFLeabharlann 面元,法向为 n ,指 向表面力受体外侧, 所受表面力为 ΔF ,则 应力
F f n lim A0 A
第一阶段:古典流体力学阶段 奠基人是瑞士数学家伯努利(Bernoulli,D.)和他的 亲密朋友欧拉(Euler,L.)。1738年,伯努利推导出了著 名的伯努利方程,欧拉于1755年建立了理想流体运动微分 方 程 , 以 后 纳 维 (Navier,C .H.) 和 斯 托 克 斯 (Stokes , G.G.)建立了粘性流体运动微分方程。拉格朗日 (Lagrange)、拉普拉斯(Laplace)和高斯(Gosse)等人, 将欧拉和伯努利所开创的新兴的流体动力学推向完美的分 析高度。
第1章 绪论 第2章 流体静力学 第3章 一元流体动力学理论基础 第4章 流动阻力与能量损失 第5章 孔口、管嘴出流和有压管流 第6章 量纲分析与相似原理
第一章 绪论

第一章 流体力学基础ppt课件(共105张PPT)

第一章 流体力学基础ppt课件(共105张PPT)


力〔垂直于作用面,记为 ii〕和两个切向 应力〔又称为剪应力,平行于作用面,记为

ij,i j),例如图中与z轴垂直的面上受
到的应力为 zz〔法向)、 zx和 zy〔切
电 向),它们的矢量和为:


件 τ zzix zjy zkz
返回
前页
后页
主题
西
1.1 概述

交 • 3 作用在流体上的力
大 化
子 课 件
返回
前页
后页
主题
西
1.2.3 静力学原理在压力和压力差测量上的应用


大 思索:若U形压差计安装在倾斜管路中,此时读数 R反
化 映了什么?
工 原
理 p1p2
p2
p1 z2
电 子
(0)gR(z2z1)g z1

R

A A’
返回
前页
后页
主题
西 1.2.3 静力学原理在压力和压力差测量上的应用

交 大

2.压差计
化 • (2〕双液柱压差计
p1
p2
工•
原•

电•
子•


又称微差压差计适用于压差较小的场合。
z1
1
z1
密度接近但不互溶的两种指示
液1和2 , 1略小于 2 ;
R
扩p 大1 室p 内2 径与2 U 管1 内g 径之R 比应大于10 。 2
图 1-8 双 液 柱 压 差 计
返回

交 大

1.压力计
化 • (2〕U形压力计
pa
工 • 设U形管中指示液液面高度差为RA,1 指• 示液

《流体力学》课件

《流体力学》课件

流体力学的应用领域
总结词
流体力学的应用领域与实例
详细描述
流体力学在日常生活、工程技术和科学研究中有广学、石油和天然气工业中的流体输送等。
流体力学的发展历程
总结词
流体力学的发展历程与重要事件
详细描述
流体力学的发展经历了多个阶段,从 早期的水力学研究到近代的流体动力 学和计算流体力学的兴起。历史上, 牛顿、伯努利等科学家对流体力学的 发展做出了重要贡献。
损失计算
根据流体流动的阻力和能量损失,计算流体流动的总损失。
流体流动阻力和能量损失的减小措施
优化管道设计
采用流线型设计,减少流体与 管壁的摩擦。
合理配置局部障碍物
减少不必要的弯头、阀门等, 或优化其设计以减小局部阻力 。
选择合适的管材
选用内壁光滑、摩擦系数小的 管材。
提高流体流速
适当提高流体的流速,可以减 小沿程损失和局部损失。
流体动力学基本方程
连续性方程
表示质量守恒的方程,即单位时间内流出的质量等于单位 时间内流入的质量。
01
动量方程
表示动量守恒的方程,即单位时间内流 出的动量等于单位时间内流入的动量。
02
03
能量方程
表示能量守恒的方程,即单位时间内 流出的能量等于单位时间内流入的能 量。
流体动力学应用实例
航空航天
飞机、火箭、卫星等的设计与制造需要应用 流体动力学知识。
流动方程
描述非牛顿流体的流动规律,包括连续性方程 、动量方程等。
热力学方程
描述非牛顿流体在流动过程中的热力学状态变化。
非牛顿流体的应用实例
食品工业
01
非牛顿流体在食品工业中广泛应用于番茄酱、巧克力、奶昔等
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C.H.5 粘性流体动力学
5.1 应力分析
1.应力
与理想流体一样,考虑粘性后,流体所承受的力也可归结为两类:即质量力与
表面力。我们称单位面积上的表面力为应力,用 方向。一般说来,p n
pn
表示,n
为该面的外法线
pn pnn n
对于理想流体因无摩擦存在,切应力为零,只存在法应力,且总是指向内法线
法向应力: pxx , pyy , pzz 切向应力: pxy , pxz , pyx , pyz , pzx , pzy
z
pxz
y pxy
o
pxxpxx二阶应张量: pxx
pxy
pxz

P pyx pyy pyz

pzx
pzy
pzz

2. 应力的性质
1)切应力之间具有对称性,即:
同理可作出y,z面上的表面力 py , pz 在x,y,z方向的投影:
pyx , pyy , pyz ; pzx , pzy , pzz
px pxxi x pxxi pxy j pxzk py pyy j y pyxi pyy j pyzk pz pzzk z pzxi pzy j pzzk
pn pxx pyy pzz
p p(x, y, z,t)
②理想流体的压力就是作用在物体表面上沿内法线方向上的单位面积上的表面应
力,即:
pn npn
对于粘性流体,存在切应力,特性:
①作用于物体表面沿法线方向的表面压力是法向应力 pnn ,而不是粘性流体压力P。 pn pnn n
( pxx pyx pzx )d
x y z
( pxy pyy pzy )d
x y z ( pxz pyz pzz )d
x y z
A
B
E
F
D’
dz
z
D
H dy
y x
C
dx
G
2)质量力:单位质量流体所受质量力:
F Xi Yj Zk
pxy pyx、pxz pzx、pyz pzy
2)某点的应力不仅与该点的位置、作用的时间有关,而且与作用面的方向有关。
即同一点取不同的面,pxx , pyy , pzz 是不同的。但可以证明,任意三个相互垂直
的表面力的法向应力之和相等,即
pxx p yy pzz P1 P2 P3
度与压强而变。 的量纲可据牛顿切应力公式导出
[] [ F / u]
Ah
F L2
/L TL

FT L2

ML T2
T L2

M LT
[ ] [ ] M LT
M L3

L2 T
N·s/m2=牛顿·秒/平方米,动力学粘性系数 ; m2/s= 平方米/秒 ,运动学粘性系数
当温度T=15时,水和空气的年性系数分别为:
1.82 106 (kg.s m2 )
1.13104 (kg.s m2 ) 1.145106 (m2 / s) 1.45105 (m2/s)
5) 粘性流体压力与理想流体压力之间区别 对于理想流体,不存在切向应力。两个特性:
①理想流体压力P的大小与它的作用面无关,即:
三个主应力值之和与作用面的方向无关,因此,仅是作用点的坐标和时间函数。 把主应力的算术平均值定义为粘性流体的压力,即:
1
1
p 3 (P1 P2 P3 ) 3 ( pxx pyy pzz ) f (x, y, z, t)
上式的负号是由于规定法向应力以拉力为正,压力为负.
3)应力张量与变形速度的关系
考虑粘性后,引入6个未知项,为使方程组封闭,在一定的假设下建立应力张量 与变形速度间的关系:
pxx

p
2 3
v 2
u x

p yy


p
2 v 2
3
v y
pzz
p
2 v 2
据牛顿第二定律,便可写出粘性流体的运动方程如下:

d

du dt

d
Z
( pxx x

pyx y

pzx z
② pn 不仅与点的位置、时间有关,而且与作用面的方向有关
pn lpx mpy npz
n (l, m, n)
③定义粘性流体的压力P为三个主应力的算术平均值,即:
p


1 3
(
P1

P2

P3 )

p(x,
y, z,t)
5.2 Naiver-Stokes方程
1. 粘性流体的运动方程
1)表面力:作用于六面体上的表面力在x,y,z方 向的分量为:
方向,即 pn npnn 。而考虑粘性后, n 不再为零。
在直角坐标系中,来研究分别作用于垂直于x, y, z轴各平面上的应力 。
px, py, pz
设 px 为作用于正方向上的表面力(yz平面,左边流体作用于x面上的力),px
在x,y,z方向的投影为: pxx , pxy , pxz
系数。
在水平方向(x方向)以力F拉面积为A的板,板的速度为U,在速度不大和板矩
h都很小的情况下,试验证明下式成立:
F/u
Ah
F u Ah
取极限时有:
p yx


u y
称作牛顿切应力公式或牛顿定律,满足上式牛顿流体;不满足上式非牛顿流体。
粘性系数是反应流体粘性大小的一种度量,它的大小与流体的种类有关,而且随温

pyx

( u y

v ) x
pxz

pzx

( u z

w) x
p yz

pzy

( v z

w) y
对于理想流体, 0, pxx pyy pzz p; pxy pyx pxz pzx pyz pzy 0
4) 关于粘性系数 当 0 时,理想流体;关于 的项是由于考虑了粘性而引起的,称 为粘性
3
w z
pxy

pyx

( u y

v ) x
pxz

pzx

( u z

w) x
p yz

pzy

( v z

w) y
若流体不可压: v 0 ,上式可简化为:
pxx

p

2
u x
pyy

p

2
u y
pzz

p

2
w z
pxy
相关文档
最新文档