均值不等式的应用
均值不等式及其应用详解
解:设DQ长为y(m),则
x 4 xy 200
2
A
M
N
B
故:
200 x y 4x
2
E
F
(2)解: x 0
s 4200x 210 4xy 80 2 y 400000 2 38000 4000 x x2
2
2
400000 S 38000 4000 x x2
分析二、 挖掘隐含条件
∵3x+1-3x=1为定值,且0<x<1 则1-3x>0; 3 1 可用均值不等式法 ∵0<x< ,∴1-3x>0 3 1 1 3 x 1 3 x 1 2 ∴y=x(1-3x)= 3x(1-3x)≤ ( ) 3 12 当且仅当 3x=1-3x 即x=1 时 y
3
2
x 4000 当且仅当 200吨时,每吨的平均成本最低
不等式定理及其重要变形:
(定理) a b 2ab(a, b R)
2 2
ab ab (推论) 2
( a, b R )
ab
ab 2 ( ) 2
1 例1、已知:0<x< ,求函数y=x(1-3x)的最大值 3 分析一、 原函数式可化为:y=-3x2+x, 利用二次函数求某一区间的最值
y 2x 3 x y 3 2 2
当且仅当
y 2 x 即: y 2 x 时取“=”号 x y
即此时
1 y 2x x 而 2 2 2 x y 1 2 y 2 2
ymin 3 2 2
本题小结: 用均值不等式求最值时,要注意检验最值存在的 充要条件,特别地,如果多次运用均值不等式求
最值,则要考虑多次“≥”(或者“≤”)中取
均值不等式在初中数学中的应用
均值不等式在初中数学中的应用均值不等式是中学数学中解决多个量之间关系的重要工具,它比较容易被初中生所接受,也可以用于解决复杂的问题。
均值不等式是一组不等式,它的形式为:$ n \le \overline{x} \le p $其中,$\overline{x}$代表某组数的平均数,n、p是这组数的最小值和最大值。
在初中数学中,均值不等式可以用来用于解决一些问题,如:1. 假设学校有30个学生,其中每个学生的考试成绩都在0~100分之间,求学校学生平均考试成绩最少应该多少分?通过均值不等式可以得出:只要最低分数少于平均成绩,其他分数就可以比平均成绩高一些。
由于这里最低分数是0分,根据均值不等式,我们可以得出学校学生平均考试成绩最少要得30分。
2. 假设有一个班级有30个学生,他们的体重范围都在50kg~80kg 之间,求这个班级学生的平均体重?同样的,由于这组数据的最低值是50kg,所以根据均值不等式,我们可以得出这个班级学生的平均体重至少是50kg。
即:$ 50 \le \overline{x} \le 80 $,故$ \overline{x} = 65 kg $。
此外,均值不等式还可以用来解决某些组合问题,如:假设把一组数据分成两组,每组数据平均值相等,这组数据最少有多少个?由均值不等式可知:一组数据的最大值一定大于两组数据的平均值,最小值一定小于两组数据的平均值,结合最少有的要求,我们可以得出,这组数据最少有4个,且满足以下条件:$ n + p + q = 2 \overline{x} \\n \le \overline{x} \le p \\p \le \overline{x} \le q $从上面可以看出,均值不等式是一种重要的数学工具,在初中数学中也可以被广泛运用,它可以帮助我们更好、更准确地解决复杂问题,让初中生更好地理解数学知识,进而深化学习。
均值不等式在生活中的应用
均值不等式在生活中的应用
平均值不等式是一种重要的数学不等式,它的应用非常广泛,在生活中也有着重要的作用。
首先,平均值不等式可以用来分析一组数据的分布情况,它可以用来确定一组数据的中位数、众数、最大值和最小值等。
例如,在一组数据中,如果我们知道其中的平均值和方差,那么我们就可以用平均值不等式来确定这组数据的中位数、众数、最大值和最小值。
其次,平均值不等式可以用来分析一个系统的稳定性。
例如,在一个系统中,如果我们知道其中的平均值和方差,那么我们就可以用平均值不等式来分析这个系统的稳定性,从而判断这个系统是否稳定。
此外,平均值不等式还可以用来分析一个系统的可靠性。
例如,在一个系统中,如果我们知道其中的平均值和方差,那么我们就可以用平均值不等式来分析这个系统的可靠性,从而判断这个系统是否可靠。
最后,平均值不等式还可以用来分析一个系统的效率。
例如,在一个系统中,如果我们知道其中的平均值和方差,那么我们就可以用平均值不等式来分析这个系统的效率,从而判断这个系统的效率是否达到预期的要求。
总之,平均值不等式在生活中有着重要的作用,它可以用来分析一组数据的分布情况,也可以用来分析一个系统的稳定性、可靠性和效率等。
均值不等式应用
均值不等式应用在实际应用中,均值不等式有一些常用的技巧,可以帮助我们更方便地应用和理解它们。
1.对称性:均值不等式对于多个变量的情况,通常具有对称性。
这意味着可以通过交换变量的位置来得到等价的不等式。
例如,对于实数$a,b,c$,有$\sqrt{\frac{a^2+b^2}{2}} \geq \frac{a+b}{2}$ 和$\sqrt{\frac{b^2+c^2}{2}} \geq \frac{b+c}{2}$,可以通过交换$a$和$c$得到$\sqrt{\frac{a^2+c^2}{2}} \geq \frac{a+c}{2}$。
利用这个对称性,可以在一些情况下简化不等式的推导过程。
2.递增性:均值不等式通常对于多个变量的情况是递增的。
这意味着如果变量的取值不变,但其中一个变量增加了,那么均值不等式的左边将比右边更大。
例如,对于实数$a,b$,有$\sqrt{ab} \leq \frac{a+b}{2}$,如果将$b$增加为$b+c$,则有$\sqrt{a(b+c)} \leq \frac{a+b+c}{2}$。
利用这个递增性,可以在一些情况下通过增加变量的值来简化不等式的推导过程。
3.平方技巧:当不等式中涉及到平方时,可以通过对不等式同时两边取平方来简化推导过程。
例如,对于实数$a,b$,有$\sqrt{a^2b^2} \leq\frac{a^2+b^2}{2}$,两边同时平方得到$a^2b^2 \leq\frac{(a^2+b^2)^2}{4}$,再进行化简推导。
需要注意的是,平方技巧可能会引入额外的解,因此在使用此方法时需要注意检查这些额外的解是否符合原始问题的要求。
4.归纳思想:对于具有多个变量的复杂不等式问题,可以利用归纳思想逐步推导出目标不等式。
具体来说,可以先考虑两个变量的情况,再逐步增加变量的个数,通过观察和推导相应的不等式,逐步得到目标不等式的结论。
这种思想在解决一些较为复杂的均值不等式问题时非常有帮助。
均值不等式及其应用
利用均值不等式求最值
1.若a,b∈R+且ab=s(s为常数)则
(当且仅当a=b时取等号)
2.若a+b=p,a,b∈R+,则
(当且仅当a=b时取等号)
求最值要注意三点: ⑴正数 ⑵定值 ⑶检验等号是否成立
总结:利用均值不等式求最值需注意的问题 ①各数(或式)均为正; ②和或积为定值; ③等号能否成立. 即“一正、二定、三相等” 这三个条件缺一不可.
a b a,b是正数, 2 ≥ ab
(当且仅当a=b时取“=”)
这里,
a + 2 b
称为两个正数的算数平均数
a b 称为两个正数的几何平均数
3.均值不等式的变形:
ì ï a + b ? 2 ab (a 0,b > 0) 当积为定值时,和有最小值 ï ï ï 2 í 骣 a + b ï ÷ ç 当和为定值时,积有最大值 ab N (a,b R) ÷ ï ç ÷ ç ï 桫 2 ï î
考试说明
均值不等式是每年高考的热点, 但严格限制在两个上,对于文科主 要考察命题的判断,以及求最值等 问题。
1.理解并掌握均值不等式及其变形. 2.会用均值不等式求最值问题和解决简单的实际问题.
知识梳理ห้องสมุดไป่ตู้
1.重要不等式:
a,b∈R,a2 +b2≥2ab
(当且仅当a=b时取“=”)
2.均值不等式:
均值不等式的总结与应用
均值不等式总结及应用1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤ (当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x+≥ (当且仅当1x =时取“=”) 若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”)4.若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2)2(222b a ba +≤+(当且仅当b a =时取“=”) 说明:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值围、证明不等式、解决实际问题方面有广泛的应用应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x 2 ≥23x 2·12x 2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2;当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)【解题技巧】技巧一:凑项 例 已知54x <,求函数14245y x x =-+-的最大值。
均值不等式推广的应用举例
均值不等式推广的应用举例以均值不等式推广的应用举例:1. 优化生产过程:假设某公司有多个工厂,每个工厂的产量不同。
为了提高整体产量,可以将生产任务分配给产量较低的工厂,以提高整体平均产量。
2. 管理团队的绩效评估:假设一个公司有多个部门,每个部门的绩效不同。
为了提高整体绩效,可以将资源和项目分配给绩效较低的部门,以提高整体平均绩效。
3. 资源分配:假设一个国家有多个地区,每个地区的发展水平不同。
为了促进整体发展,可以将资源和投资分配给相对较落后的地区,以提高整体平均水平。
4. 教育资源的分配:假设一个城市有多所学校,每所学校的教育质量不同。
为了提高整体教育水平,可以将更多的教育资源分配给教育质量较差的学校,以提高整体平均水平。
5. 投资组合优化:在投资组合中,不同的资产具有不同的收益和风险水平。
为了降低整体风险,可以将资金分配给风险较低的资产,以提高整体平均风险水平。
6. 健康管理:假设一个社区中有多个家庭,每个家庭的健康状况不同。
为了改善整体健康水平,可以将医疗资源和健康服务优先提供给健康状况较差的家庭,以提高整体平均健康水平。
7. 环境保护:假设一个地区有多个工业企业,每个企业的环境影响不同。
为了改善整体环境质量,可以加强对环境影响较大的企业的监管和管理,以提高整体平均环境质量。
8. 城市规划:在城市规划中,不同的地区具有不同的功能和发展潜力。
为了实现整体均衡发展,可以将资源和投资分配给发展潜力较大的地区,以提高整体平均发展水平。
9. 食品安全:假设一个国家有多个农田,每个农田的农产品质量不同。
为了保障整体食品安全,可以加强对农产品质量较低的农田的监管和管理,以提高整体平均食品质量。
10. 社会福利分配:假设一个社会有多个群体,每个群体的福利水平不同。
为了实现整体社会公平,可以将福利资源分配给福利水平较低的群体,以提高整体平均福利水平。
以上是以均值不等式推广的应用举例,通过合理的资源分配和管理,可以提高整体水平,实现更好的平衡和发展。
均值不等式的应用(新版教材)
均值不等式的应用类型 用均值不等式证明不等式 ┃┃典例剖析__■1.无附加条件的不等式的证明典例1 已知a ,b ,c >0,求证:a 2b +b 2c +c 2a≥a +b +c .思路探究:由条件中a ,b ,c >0及待证不等式的结构特征知,先用均值不等式证a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c ,再进行证明即可. 解析:∵a ,b ,c >0,∴利用均值不等式可得a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,∴a 2b +b 2c +c 2a +a +b +c ≥2a +2b +2c ,故a 2b +b 2c +c 2a ≥a +b +c ,当且仅当a =b =c 时,等号成立.归纳提升:利用均值不等式证明不等式的注意点: (1)多次使用均值不等式时,要注意等号能否成立.(2)累加法是不等式证明中的一种常用方法,证明不等式时注意使用.(3)对不能直接使用均值不等式的证明可重新组合,达到使用均值不等式的条件. 2.有附加条件的不等式的证明典例2 已知a >0,b >0,a +b =1,求证:(1+1a )(1+1b)≥9.思路探究:本题的关键是把分子的“1”换成a +b ,由均值不等式即可证明. 解析:方法一:因为a >0,b >0,a +b =1, 所以1+1a =1+a +b a =2+ba .同理1+1b =2+ab.故(1+1a )(1+1b )=(2+b a )(2+a b )=5+2(b a +ab )≥5+4=9.所以(1+1a )(1+1b )≥9,当且仅当a =b =12时取等号.方法二:(1+1a )(1+1b )=1+1a +1b +1ab =1+a +b ab +1ab =1+2ab ,因为a ,b 为正数,所以ab ≤(a +b 2)2=14,所以1ab ≥4,2ab≥8.因此(1+1a )(1+1b )≥1+8=9,当且仅当a =b =12时等号成立.归纳提升:利用均值不等式证明不等式的两种题型(1)无附加条件的不等式的证明.其解题思路:观察待证不等式的结构形式,若不能直接使用均值不等式,则结合左、右两边的结构特征,进行拆项、变形、配凑等,使之达到使用均值不等式的条件.(2)有附加条件的不等式的证明.观察已知条件与待证不等式之间的关系,恰当地使用已知条件,条件的巧妙代换是一种较为重要的变形. ┃┃对点训练__■1.已知x >0,y >0,z >0,求证:(y x +z x )(x y +z y )(x z +yz )≥8.证明:∵x >0,y >0,z >0, ∴y x +z x ≥2yz x >0,x y +z y ≥2xz y >0, x z +y z ≥2xy z>0, 当且仅当x =y =z 时,以上三式等号同时成立. ∴(y x +z x )(x y +z y )(x z +y z )≥8yz ·xz ·xy xyz =8, 当且仅当x =y =z 时等号成立. 类型 利用均值不等式解决实际问题 ┃┃典例剖析__■典例3 如图所示,动物园要围成相同的长方形虎笼四间,一面可利用原来的墙,其他各面用钢筋网围成.(1)现有36 m 长的钢筋网,则每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大? (2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小?思路探究:设每间虎笼长为x m ,宽为y m ,则问题(1)是在4x +6y =36的前提下求xy 的最大值;而问题(2)是在xy =24的前提下求4x +6y 的最小值,因此可用均值不等式来解决. 解析:设每间虎笼长为x m ,宽为y m ,每间虎笼的面积为S m 2. (1)由条件知4x +6y =36,即2x +3y =18,S =xy . 方法一:由2x +3y ≥22x ·3y =26xy , 得26xy ≤18,解得xy ≤272,S ≤272,当且仅当2x =3y 时,等号成立. 由⎩⎪⎨⎪⎧2x +3y =18,2x =3y ,解得⎩⎪⎨⎪⎧x =92,y =3.故每间虎笼长为92 m ,宽为3 m 时,可使每间虎笼面积最大.方法二:由2x +3y =18,得x =9-32y .∵x >0,∴0<y <6,S =xy =(9-32y )y =32(6-y )·y .∵0<y <6,∴6-y >0. ∴S ≤32·[(6-y )+y 2]2=272.当且仅当6-y =y ,即y =3时,等号成立,此时x =4.5,故每间虎笼长为4.5 m ,宽为3 m 时,可使每间虎笼面积最大. (2)由条件知S =xy =24.设钢筋网总长为l m ,则l =4x +6y . 方法一:∵2x +3y ≥22x ·3y =26xy =24,∴l =4x +6y =2(2x +3y )≥48,当且仅2x =3y 时等号成立.由⎩⎪⎨⎪⎧ 2x =3y ,xy =24,解得⎩⎪⎨⎪⎧x =6,y =4.故每间虎笼长为6 m ,宽为4 m 时,可使钢筋网总长最小. 方法二:由xy =24,得x =24y. ∴l =4x +6y =96y +6y =6(16y+y )≥6×216y·y =48.当且仅当16y =y ,即y =4时,等号成立,此时x =6.故每间虎笼长为6 m ,宽为4 m 时,可使钢筋网总长最小. 归纳提升:求实际问题中最值的一般思路 1.读懂题意,设出变量,列出函数关系式. 2.把实际问题转化为求函数的最大值或最小值问题.3.在定义域内,求函数的最大值或最小值时,一般先考虑用均值不等式,当用均值不等式求最值的条件不具备时,再考虑利用第三章要学习的函数的单调性求解. 4.正确地写出答案. ┃┃对点训练__■2.某公司计划建一面长为a 米的玻璃幕墙,先等距安装x 根立柱,然后在相邻的立柱之间安装一块与立柱等高的同种规格的玻璃.一根立柱的造价为6 400元,一块长为m 米的玻璃造价为(50m +100m 2)元.假设所有立柱的粗细都忽略不计,且不考虑其他因素,记总造价为y 元(总造价=立柱造价+玻璃造价). (1)求y 关于x 的函数关系式;(2)当a =56时,怎样设计能使总造价最低? 解析:(1)依题意可知a m =x -1,所以m =ax -1,y =6 400x +⎣⎢⎡⎦⎥⎤50a x -1+100⎝ ⎛⎭⎪⎫a x -12(x -1) =6 400x +50a +100a 2x -1(x ∈N ,且x ≥2).(2)y =6 400x +50a +100a 2x -1=100⎣⎢⎡⎦⎥⎤64(x -1)+a 2x -1+50a +6 400. ∵x ∈N ,且x ≥2,∴x -1>0. ∴y ≥20064(x -1)·a 2x -1+50a +6 400=1 650a +6 400,当且仅当64(x -1)=a 2x -1,即x =a8+1时,等号成立.又∵a =56,∴当x =8时,y min =98 800.所以,安装8根立柱时,总造价最低. 易混易错警示 忽略等号成立的条件┃┃典例剖析__■典例4 求函数y =x (1-x ),x ∈[23,1)的最大值.错因探究:由23≤x <1,易知1-x >0,从而错解为y =x (1-x )≤[x +(1-x )2]2=14.而x =1-x 在x =12时才能取“=”,但23≤x <1,因而不等式取不到等号,从而最大值为14是错误的. 解析:y =x (1-x )=-x 2+x =-(x -12)2+14,当x =23时,y max =23×(1-23)=29.误区警示:利用均值不等式求最值时,等号必须取得到才能求出最值,若题设条件中的限制条件使等号不能成立,则要转换到另一种形式解答. 学科核心素养 与不等式有关的恒成立问题 ┃┃典例剖析__■不等式恒成立问题的实质是已知不等式的解集求不等式中参数的取值范围.对于求不等式成立时参数的范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.常见求解策略是将不等式恒成立问题转化为求最值问题,即 y ≥m 恒成立⇔y min ≥m ; y ≤m 恒成立⇔y max ≤m .但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.典例5 已知函数y =-1a +2x ,若y +2x ≥0在(0,+∞)上恒成立,则实数a 的取值范围是__(-∞,0)∪[14,+∞)__.解析:∵y +2x ≥0在(0,+∞)上恒成立, 即-1a +2x +2x ≥0在(0,+∞)上恒成立,∴1a ≤2(x +1x )在(0,+∞)上恒成立. 当a <0时,不等式恒成立;当a >0时,∵2(x +1x )≥4,当且仅当x =1时,等号成立,∴0<1a ≤4,解得a ≥14.∴a <0或a ≥14.课堂检测·固双基1.若实数a ,b 满足ab >0,则a 2+4b 2+1ab 的最小值为( C )A .8B .6C .4D .2解析:直接利用关系式的恒等变换和均值不等式求出结果.实数a ,b 满足ab >0,则a 2+4b 2+1ab ≥4ab +1ab ≥4,当且仅当a =2b ,且ab =12时,等号成立,故选C . 2.若a >0,b >0,且a +b =4,则下列不等式恒成立的是( D ) A .1ab ≤14B .1a +1b ≤1C .ab ≥2D .a 2+b 2≥8解析:4=a +b ≥2ab (当且仅当a =b 时,等号成立),即ab ≤2,ab ≤4,1ab ≥14,A ,C 不成立;1a +1b =a +b ab =4ab≥1,B 不成立;a 2+b 2=(a +b )2-2ab =16-2ab ≥8.3.若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是__25_m 2__. 解析:设矩形的一边为x m , 则另一边为12×(20-2x )=(10-x )m ,所以y =x (10-x )≤[x +(10-x )2]2=25,当且仅当x =10-x ,即x =5时,y max =25 m 2. 4.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为__32__.解析:由x >a ,知x -a >0,则2x +2x -a =2(x -a )+2x -a +2a ≥22(x -a )·2x -a+2a =4+2a ,由题意可知4+2a ≥7,解得a ≥32,即实数a 的最小值为32.A 级 基础巩固一、单选题(每小题5分,共25分)1.若0<x <12,则y =x 1-4x 2的最大值为( C )A .1B .12C .14D .18解析:因为0<x <12,所以1-4x 2>0,所以x1-4x 2=12×2x ×1-4x 2≤12×4x 2+1-4x 22=14,当且仅当2x =1-4x 2即x =24时等号成立,故选C . 2.当x >1时,不等式x +1x -1≥a 恒成立,则实数a 的取值范围是( D )A .(-∞,2]B .[2,+∞)C .[3,+∞)D .(-∞,3]解析:由于x >1,所以x -1>0,1x -1>0,于是x +1x -1=x -1+1x -1+1≥2+1=3,当1x -1=x -1即x =2时等号成立, 即x +1x -1的最小值为3,要使不等式恒成立,应有a ≤3,故选D .3.(2019·江苏南京师大附中高二期中)函数y =x 2+2x +2x +1 (x >-1)的图像的最低点的坐标是( D ) A .(1,2) B .(1,-2) C .(1,1)D .(0,2)解析:∵x >-1,∴x +1>0.∴y =(x +1)2+1x +1=(x +1)+1x +1≥2,当且仅当x +1=1x +1,即x =0时等号成立,即当x =0时,该函数取得最小值2.所以该函数图像最低点的坐标为(0,2). 4.若对所有正数x ,y ,不等式x +y ≤a x 2+y 2都成立,则a 的最小值是( A ) A .2 B .2 C .22D .8解析:因为x >0,y >0, 所以x +y =x 2+y 2+2xy ≤2x 2+2y 2=2·x 2+y 2, 当且仅当x =y 时等号成立, 所以使得x +y ≤ax 2+y 2对所有正数x ,y 恒成立的a 的最小值是 2.故选A .5.若点A (-2,-1)在直线mx +ny +1=0上,其中m ,n 均大于0,则1m +2n 的最小值为( C )A .2B .4C .8D .16解析:因为点A 在直线mx +ny +1=0上, 所以-2m -n +1=0,即2m +n =1.因为m >0,n >0,所以1m +2n =2m +n m +4m +2n n =2+n m +4mn +2≥4+2·n m ·4mn=8,当且仅当m =14,n =12时取等号.故选C .二、填空题(每小题5分,共15分)6.已知x ≥52,则y =x 2-4x +52x -4的最小值是__1__.解析:f (x )=(x -2)2+12x -4=x -22+12x -4=2x -44+12x -4≥22x -44·12x -4=1. 当且仅当2x -44=12x -4,即x =3时取“=”.7.(2019·辽宁本溪高级中学高二期中)若两个正实数x ,y 满足1x +4y =1,且不等式x +y4<m 2-3m 有解,则实数m 的取值范围是__(-∞,-1)∪(4,+∞)__.解析:∵不等式x +y 4<m 2-3m 有解,∴(x +y 4)min <m 2-3m .∵x >0,y >0,且1x +4y =1,∴x +y4=(x+y 4)(1x +4y )=4x y +y4x+2≥24x y ·y 4x +2=4,当且仅当4x y =y4x,即x =2,y =8时取等号,∴(x +y4)min =4,∴m 2-3m >4,即(m +1)(m -4)>0,解得m <-1或m >4,故实数m 的取值范围是(-∞,-1)∪(4,+∞).8.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是__[9,+∞)__;a +b 的取值范围是__[6,+∞)__.解析:①∵正数a ,b 满足ab =a +b +3, ∴ab =a +b +3≥2ab +3, 即(ab )2-2ab -3≥0,解得ab ≥3,即ab ≥9,当且仅当a =b =3时取等号. ∴ab ∈[9,+∞).②∵正数a ,b 满足ab =a +b +3,∴a +b +3=ab ≤(a +b2)2,即(a +b )2-4(a +b )-12≥0,解得a +b ≥6, 当且仅当a =b =3时取等号,∴a +b ∈[6,+∞). 三、解答题(共20分)9.(6分)(2019·湖北华中师大一附中高二检测)已知a ,b ,c 为不全相等的正实数,且abc =1.求证:a +b +c <1a 2+1b 2+1c2.解析:因为a ,b ,c 都是正实数,且abc =1, 所以1a 2+1b 2≥2ab =2c ,1b 2+1c 2≥2bc =2a , 1a 2+1c 2≥2ac=2b , 以上三个不等式相加,得2(1a 2+1b 2+1c 2)≥2(a +b +c ),即1a 2+1b 2+1c 2≥a +b +c . 因为a ,b ,c 不全相等,所以上述三个不等式中的“=”不都同时成立. 所以a +b +c <1a 2+1b 2+1c2.10.(7分)a >b >c ,n ∈N 且1a -b +1b -c ≥na -c ,求n 的最大值.解析:∵a >b >c ,∴a -b >0,b -c >0,a -c >0. ∵1a -b +1b -c ≥n a -c , ∴n ≤a -c a -b +a -c b -c .∵a -c =(a -b )+(b -c ),∴n ≤(a -b )+(b -c )a -b +(a -b )+(b -c )b -c ,∴n ≤b -ca -b +a -bb -c +2.∵b -c a -b +a -b b -c≥2(b -c a -b )·(a -b b -c)=2(2b =a +c 时取等号). ∴n ≤4.∴n 的最大值是4.11.(7分)已知a ,b ,c 都是正实数,且a +b +c =1, 求证:(1-a )(1-b )(1-c )≥8abc . 解析:∵a +b +c =1,∴(1-a )(1-b )(1-c )=(b +c )(a +c )(a +b ). 又a ,b ,c 都是正实数,∴a +b 2≥ab >0,b +c 2≥bc >0,a +c 2≥ac >0. ∴(a +b )(b +c )(a +c )8≥abc .∴(1-a )(1-b )(1-c )≥8abc , 当且仅当a =b =c =13时,等号成立.B 级 素养提升一、单选题(每小题5分,共10分)1.某工厂第一年产量为A ,第二年的增长率为a ,第三年的增长率为b ,这两年的平均增长率为x ,则( B ) A .x =a +b2B .x ≤a +b2C .x >a +b 2D .x ≥a +b2解析:由条件知A (1+a )(1+b )=A (1+x )2, 所以(1+x )2=(1+a )(1+b )≤[(1+a )+(1+b )2]2,所以1+x ≤1+a +b 2,故x ≤a +b2.2.已知正实数m ,n 满足m +n =1,且使1m +16n 取得最小值.若y =5m ,x =4n 是方程y =x α的解,则α=( C ) A .-1 B .12C .2D .3解析:1m +16n =(1m +16n )(m +n )=1+16m n +n m +16=17+16m n +nm ≥17+216m n ·nm=25. 当且仅当16m n =n m ,又m +n =1,即m =15,n =45时,上式取等号,即1m +16n 取得最小值时,m =15,n =45,所以y =25,x =5,25=5α. 得α=2.二、多选题(每小题5分,共10分)3.设a >0,b >0,下列不等式恒成立的是( ABC )A .a 2+1>aB .(a +1a )(b +1b )≥4C .(a +b )(1a +1b)≥4 D .a 2+9>6a解析:由于a 2+1-a =(a -12)2+34>0, ∴a 2+1>a ,故A 恒成立;由于a +1a ≥2,b +1b≥2, ∴(a +1a )(b +1b)≥4,当且仅当a =b =1时,等号成立,故B 恒成立; 由于a +b ≥2ab ,1a +1b ≥21ab , ∴(a +b )(1a +1b)≥4,当且仅当a =b 时,等号成立,故C 恒成立; 当a =3时,a 2+9=6a ,故D 不恒成立;故选ABC .4.设a ,b ∈R ,且a ≠b ,a +b =2,则必有( BD )A .ab >1B .ab <1C .a 2+b 22<1 D .a 2+b 22>1 解析:因为ab ≤(a +b 2)2,a ≠b ,所以ab <1, 又1=(a +b )24=a 2+b 2+2ab 4<a 2+b 22, 所以a 2+b 22>1,所以ab <1<a 2+b 22. 三、填空题(每小题5分,共10分)5.如图有一张单栏的竖向张贴的海报,它的印刷面积为72 dm 2(图中阴影部分),上下空白各宽2 dm ,左右空白各宽1 dm ,则四周空白部分面积的最小值是__56__dm 2.解析:设阴影部分的高为x dm ,则宽为72xdm ,四周空白部分的面积是y dm 2. 由题意,得y =(x +4)(72x +2)-72=8+2(x +144x)≥8+2×2x ·144x=56(dm 2). 当且仅当x =144x,即x =12 dm 时等号成立. 6.设a +b =2,b >0,则12|a |+|a |b取最小值时a 的值为__-2__. 解析:因为a +b =2, 所以12|a |+|a |b =24|a |+|a |b =a +b 4|a |+|a |b= a 4|a |+b 4|a |+|a |b ≥a 4|a |+2b 4|a |×|a |b =a 4|a |+1, 当且仅当b 4|a |=|a |b时等号成立. 又a +b =2,b >0,所以当b =-2a ,a =-2时,12|a |+|a |b取得最小值. 四、解答题(共10分)7.某厂家拟在2019年举行促销活动,经调查测算,某产品的年销售量(也即该产品的年产量)x 万件与年促销费用m (m ≥0)万元满足x =3-k m +1(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2019年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2019年该产品的利润y 万元表示为年促销费用m 万元的函数.(2)该厂家2019年的促销费用投入多少万元时,厂家的利润最大?解析:(1)由题意知,当m =0时,x =1,∴1=3-k ,即k =2,∴x =3-2m +1,每件产品的销售价格为1.5×8+16x x(元), ∴2019年该产品的利润y =1.5x ·8+16x x -8-16x -m =-[16m +1+(m +1)]+29(m ≥0). (2)∵m ≥0,16m +1+(m +1)≥216=8, ∴y ≤-8+29=21,当且仅当 16m +1=m +1,即m =3时,y max =21.故该厂家2019年的促销费用投入3万元时,厂家的利润最大,最大利润为21万元.。
均值不等式的总结及应用
均值不等式总结及应用1. (1)假设R b a ∈,,则ab b a 222≥+(2)假设R b a ∈,,则222b a ab +≤〔当且仅当b a =时取“=”〕2. (1)假设*,R b a ∈,则ab b a ≥+2(2)假设*,R b a ∈,则ab b a 2≥+〔当且仅当b a =时取“=”〕 (3)假设*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”〕 3.假设0x >,则12x x+≥ (当且仅当1x =时取“=”〕 假设0x <,则12x x+≤- (当且仅当1x =-时取“=”〕 假设0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”〕4.假设0>ab ,则2≥+ab b a (当且仅当b a =时取“=”〕 假设0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”〕 5.假设R b a ∈,,则2)2(222b a ba +≤+〔当且仅当b a =时取“=”〕 说明:〔1〕当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. 〔2〕求最值的条件“一正,二定,三取等”〔3〕均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用应用一:求最值 例1:求以下函数的值域〔1〕y =3x 2+12x 2 〔2〕y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞〕(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -〔- x -1x 〕≤-2x ·1x=-2∴值域为〔-∞,-2]∪[2,+∞〕【解题技巧】技巧一:凑项 例 已知54x <,求函数14245y x x =-+-的最大值。
均值不等式应用技巧
均值不等式应用(技巧)一.均值不等式1、(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2、 (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3、若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或(当且仅当b a =时取“=”) 3、若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4、若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的与的最小值,当两个正数的与为定植时,可以求它们的积的最小值,正所谓“积定与最小,与定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
均值不等式的应用技巧
均值不等式的应用技巧均值不等式:当且仅当a=b时等号成立)是一个重要的不等式。
用“均值不等式”求最值是求最值问题中的一个重要方法,也是高考考查的一项重要内容。
应用该不等式求最值时,要把握不等式成立的三个条件“一正、二定、三相等”。
在此过程中往往需要采用“变系数、凑项、分离、取倒数、平方”等变形技巧构造定值,下面是笔者总结归纳的一些变形方法和技巧。
一、凑系数例1、求函数的最大值。
分析:由于不是常数,所以需将x的系数1变为2,使和为定值。
解:由,知所以:当且仅当:,即时取等号,所以的最大值是二、凑项例2、已知,求函数的最大值。
解:因为,所以,故所以=0当且仅当:,即或时,等号成立,但不合条件,舍去,故当时,。
三、分离例3、求函数的最大值分析:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x+2)的项,再将其分离。
解:因为,所以,所以由及得即当时,。
四、取倒数例4、若,求函数的最大值。
分析:此题形式上无法直接用均值不等式,但通过取倒数则可解:因为,所以故五、平方法例5、求函数的最大值。
解析:注意到的和为定值,所以又,所以当且仅当,即时取等号。
故。
评注:本题将解析式两边平方构造出摵臀ㄖ禂,为利用均值不等式创造了条件。
六、整体代换例6、已知,且,求的最小值。
解:不妨将乘以1,而1用代换。
=16当且仅当,且时取等号所以时,的最小值是16。
七、换元例7、求函数的最大值。
解析:变量代换,令,则当t=0时,y=0当时,当且仅当:,即时取等号,此时故。
八、化归转化,例8、设,求的最小值。
解:因为当且仅当,即时取等号所以点评:若与分别利用平均值不等式,再相乘求最值,会出现前后取等号条件不一致。
总之,我们利用均值不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用均值不等式。
高中数学:均值不等式的应用
高中数学:均值不等式的应用均值不等式是高中数学中非常重要的基本定理,应用十分广泛。
一、求最值例1. 已知,则有()A. 最大值B. 最小值C. 最大值1D. 最小值1解析:因为所以,当且仅当时等号成立,故选D。
小结:运用均值不等式是求解函数最值的方法之一,解题的关键是将分式拆成满足均值定理条件的式子,应特别注意不等式成立的条件。
二、求取值范围例2. 如图1,P是抛物线C:上一点,直线l过点P,且与抛物线C交于另一点Q,若直线l不过原点,且与x轴交于点S,与y轴交于点T,试求的取值范围。
图1解:设直线,依题意k≠0,b≠0,则T(0,b),又设P(x1,y1)、Q(y2,y2)由P、Q、T三点共线,得即则即,于是。
分别过P、Q作PP”⊥x轴,QQ”⊥x轴,垂足分别为P”、Q”,则∵,∴的取值范围是(2,)小结:本题的解题关键是根据题设条件将化简,运用均值定理求出最值,进而求出其取值范围。
三、比较大小例3. 已知函数(a>0,且a≠1,),若,判断的大小,并加以证明。
分析:由于,联想到利用基本不等式可知两对数的真数的大小,再由对数函数的单调性,可知大小解:由已知得,(当且仅当时取“=”号)。
当。
即有,(当且仅当时取“=”号);当。
即有(当且仅当时,取“=”号)。
四、解实际应用题例4. 某单位用木料制作如图2所示的框架,框架的下部是边长分别为x,y(单位:m)的矩形,上部是等腰直角三角形,要求框架围成的总面积为8m2,问x,y分别为多少(精确到0.001m)时,用料最省?图2解:由题意得,即。
于是,框架用料长度为。
当时等号成立,此时,,故当x为2.343m,y为2.828m 时,用料最省。
小结:本题是应用问题考查的一道起步试题,解题的关键是先建立数学模型,得到相应的解析式后,再利用均值不等式去求函数的最小值。
▍▍ ▍▍。
均值不等式及其在数学证明中的应用
均值不等式及其在数学证明中的应用均值不等式是数学中一种重要的不等式关系,它在不同领域的数学证明中发挥着重要的作用。
本文将介绍均值不等式的概念和常见形式,并探讨其在数学证明中的应用。
一、均值不等式的概念和常见形式均值不等式是指对于一组数的平均值,其大小关系与这组数的取值有关。
常见的均值不等式有算术平均值不小于几何平均值、几何平均值不小于调和平均值等。
以算术平均值不小于几何平均值为例,对于正实数$a_1,a_2,\dots,a_n$,它们的算术平均值和几何平均值分别为$\frac{a_1+a_2+\dots+a_n}{n}$和$(a_1a_2\dotsa_n)^{\frac{1}{n}}$,则有不等式关系:$$\frac{a_1+a_2+\dots+a_n}{n}\geq(a_1a_2\dots a_n)^{\frac{1}{n}}$$二、均值不等式在数学证明中的应用1. 不等式证明均值不等式在不等式证明中经常被使用。
通过运用均值不等式,可以将一个复杂的不等式问题转化为一个简单的均值不等式问题,从而简化证明过程。
例如,对于正实数$a,b$,要证明$a^2+b^2\geq2ab$,可以通过应用均值不等式来证明。
首先,我们将$a^2$和$b^2$分别表示为$a^2=b\cdot a$和$b^2=a\cdot b$,然后应用几何平均值不小于算术平均值的均值不等式,得到:$$\sqrt{a^2\cdot b^2}\geq\frac{a+b}{2}$$进一步化简得到$a^2+b^2\geq2ab$,即所要证明的不等式。
2. 极值问题均值不等式在极值问题中也有广泛的应用。
通过运用均值不等式,可以确定一个函数的最大值或最小值。
例如,对于正实数$a,b$,要求函数$f(x)=ax^2+bx$的最小值。
我们可以通过应用均值不等式来解决这个问题。
首先,我们将$f(x)$表示为$f(x)=ax^2+bx=ax^2+\frac{b}{2}x+\frac{b}{2}x$,然后应用算术平均值不小于几何平均值的均值不等式,得到:$$\frac{ax^2+\frac{b}{2}x+\frac{b}{2}x}{3}\geq\sqrt[3]{a\left(\frac{b}{2}\right)^ 2x^3}$$进一步化简得到$f(x)\geq3\sqrt[3]{\frac{ab^2}{4}}$,即函数$f(x)$的最小值为$3\sqrt[3]{\frac{ab^2}{4}}$。
均值不等式的实际应用
作答.
答 当该楼房建造 15 层时, 可使楼房每平方米的平均综 合费用最少,最少值为 2 000 元.
例2 (2000全国)如图,为处理含某种杂质的污水,要制造一底宽为2 m的无盖长方体沉淀箱。污水从A孔流入,经沉淀后从B孔流出,设箱 体的长度为a m,高度为b m,已知流出的水中,设杂质的质量分数与 a,b的乘积ab成反比,现有制箱材料60m2,问a,b各为多少时,经沉淀后 流出的水中,该杂质的质量分数最小.
3.4均值不等式的
实际应用
回顾与复习:
ab 如果 a , b R , 那么 ab 2 (当且仅当 a b 时 , 取 " " 号)
均值不等式及其使用注意事项:
1.利用均值不等式求最值结论:积一定,和有最小值;
和一定, 积有最大值。
2. 利用均值不等式求最值的条件:一正,二定,三相等。
因此,当水池的底面是边长为40m的正方形时,水池的总造价最低,最低总造是 297600元.
变式训练 某单位用 2 160 万元购得一块空地,计划在该空 地上建造一栋至少 10 层,每层 2 000 平方米的楼房.经测 算,如果将楼房建为 x (x≥10)层,则每平方米的平均建 筑费用为 560+48x (单位:元). (1)写出楼房平均综合费用 y 关于建造层数 x 的函数关系 式; (2)该楼房应建造多少层时,可使楼房每平方米的平均综 合费用最少?最少值是多少? (注:平均综合费用=平均建筑费用+平均购地费用,平 购地总费用 均购地费用= ) 建筑总面积
例 1某工厂要建造一个长方体无盖贮水池,其容积为4800m3,深为 3m,如果池底每1m2的造价为150元,池壁每1m2的造价为120元, 问怎样设计水池能使总造价最低,最低总造价是多少元? 4800 解:设水池底面一边的长度为x m,则另一边的长度为 m. 3x
均值不等式在实际生活中的应用
均值不等式在实际生活中的应用
均值不等式是一种数学定理,它是一种统计学中用来计算、衡量和分析数据的有用工具。
它主要用于描述数据之间的变化和相关性,从而有助于我们更好地理解数据。
因此,均值不等式在实际生活中也有多种应用。
例如,在投资业务中,投资人可以利用均值不等式来估算投资风险。
他们可以计算投资项
目的收益率,然后用均值不等式分析投资的可能收益情况,从而决定投资的安全性和可行性。
均值不等式还可以用于消费者心理分析。
研究发现,不同消费者对价格和服务质量之间的
平衡程度不尽相同,但通常会采用“更好的价格,更好的服务”的原则。
在此基础上,市场营销专家可以利用均值不等式对消费者的满意程度作出估计,从而帮助商家更好地把握顾客的需求,以便更好地进行营销活动。
另外,均值不等式还可用于保险行业。
投保人在采用保险前,必须先仔细评估投保风险,
以确定最佳的投保方案。
保险行业专家可以使用均值不等式来计算投保人支付保险费用和最终获得赔偿金额之间的关系,从而帮助投保人做出投保决定。
此外,均值不等式还可以用于贷款业务。
银行和金融机构在发放贷款时,有时需要考虑贷款利息与本金之间的关系,以确定最优的贷款金额。
这时,就可以使用均值不等式来计算贷款利息,从而为贷款发放者提供有用的参考。
总之,均值不等式在实际生活中有着广泛的应用。
它可以帮助我们分析数据,估算投资风险,理解消费者心理,进行保险行业分析,以及计算贷款利息等。
高中数学均值不等式的十一大方法与八大应用(解析版)
均值不等式的“十一大方法与八大应用”目录一、重难点题型方法11.方法一:“定和”与“拼凑定和”方法二:“定积”与“拼凑定积”方法三:“和积化归”方法四:“化1”与“拼凑化1”方法五:“不等式链”方法六:“复杂分式构造”方法七:“换元法”方法八:“消元法”方法九:“平方法”方法十:“连续均值”方法十一:“三元均值”应用一:在常用逻辑用语中的应用应用二:在函数中的应用应用三:在解三角形中的应用应用四:在平面向量中的应用应用五:在数列中的应用应用六:在立体几何中的应用应用七:在直线与圆中的应用应用八:在圆锥曲线中的应用二、针对性巩固练习重难点题型方法方法一:“定和”与“拼凑定和”【典例分析】典例1-1.(2021·陕西省神木中学高二阶段练习)若x>0,y>0,且2x+3y=6,则xy最大值为( )A.9B.6C.3D.32【答案】D【分析】由x>0,y>0,且2x+3y为定值,利用基本不等式求积的最大值.【详解】因为x>0,y>0,且2x+3y=6,所以xy=16×2x⋅3y≤162x+3y22=32,当且仅当2x=3y,即x=32,y=1时,等号成立,即xy的最大值为3 2.故选:D.典例1-2.(2022·湖南·雅礼中学高三阶段练习)已知x>0,y>0,且x+y=7,则1+x2+y的最大值为( )A.36B.25C.16D.9【答案】B【分析】由x+y=7,得x+1+y+2=10,再利用基本不等式即可得解.【详解】解:由x+y=7,得x+1+y+2=10,则1+x2+y≤1+x+2+y22=25,当且仅当1+x=2+y,即x=4,y=3时,取等号,所以1+x2+y的最大值为25.故选:B.【方法技巧总结】1.公式:若a,b∈R*,则a+b≥2ab(当且仅当a=b时取“=”)推论:(1)若a,b∈R,则a2+b2≥2ab(2)a+1a≥2(a>0)(3)ba+ab≥2(a,b>0)2.利用基本不等式求最值时,要注意其必须满足的三个条件:“一正二定三相等”(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,注意多次运用不等式,等号成立条件是否一致.3.技巧:观察积与和哪个是定值,根据“和定积动,积定和动”来求解,不满足形式的可以进行拼凑补形。
均值不等式的应用_数学教育
均值不等式的应用_数学教育
均值不等式是数学中常用的一种不等式关系,通常用于证明其
他数学问题或优化问题的解。
以下是一些常见的均值不等式的应用:
1. 在证明两个数不等式关系时,可以使用均值不等式。
例如,
证明$ (a + b)^2 \\geq 4ab$,可以应用均值不等式得到
$\\frac{(a+b)}{2} \\geq \\sqrt{ab}$,然后平方得到结果。
2. 在优化问题中,可以使用均值不等式来求解最优解。
例如,
求点到平面距离最小值时,可以使用均值不等式得到最优解。
3. 在概率论中,均值不等式是刻画随机变量几何平均值和数学
期望之间的不等关系的工具。
4. 在矩阵理论中,依据谁的均方根较小来确定矩阵的谱半径时,可以使用均值不等式。
总体上讲,均值不等式可以应用于各种数学问题,特别是那些
涉及到优化和不等式的问题。
均值不等式应用技巧
均值不等式应用(技巧)一.均值不等式1.(1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥(当且仅当1x =时取“=”);若0x <,则12x x+≤-(当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或(当且仅当b a =时取“=”) 3.若0>ab ,则2≥+abb a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x ≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧:技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。