简单的三角函数变换总结

合集下载

简单的三角恒等变换

简单的三角恒等变换

π 【答案】 (1)2 (2)[-2,2]
思考题 4
3
(2013· 昆明诊断 ) 已知 f(x) = sin4x + cos4x +
3 2sin xcosx-sinxcosx-4,求 f(x)的最小正周期.
【解析】 1 3 -2sin2 x-4
∵f(x)=(sin2x+cos2x)2-2sin2xcos2x+sin2xsin2x
3π 1 若tan(α+ )=2011,则 +tan2α=________. 4 cos2α 3π 解析:∵tan(α+ )=2011, 4 tanα-1 ∴ =2011. 1+tanα
2 2 sin α + cos α 1 2tanα ∵ +tan2α= 2 + cos2α cos α-sin2α 1-tan2α
倍角公式
3-sin70° [例1] =( 2-cos210° 1 A. 2 C.2
) 2 B. 2 D. 3 2
分析:观察角可以发现70° 与20° 互余,20° 是10° 的二 倍,故可用诱导公式和倍角公式(或降幂)化简.
3-cos20° 3-2cos210° -1 解析:原式= = =2. 2 2 2-cos 10° 2-cos 10° 答案:C
【答案】 略
求值、化简、证明是三角函数中最常见的题型,其解题一 般思路为“五遇六想”即:遇切割,想化弦;遇多元,想消元; 遇差异,想联系;遇高次,想降次;遇特角,想求值;想消元, 引辅角.“五遇六想”作为解题经验的总结和概括,操作简便, 十分有效.其中蕴含了一个变换思想(找差异,抓联系,促进转 化),两种数学思想(转化思想和方程思想);三个追求目标(化为 特殊角的三角函数值,使之出现相消项或相约项),三种变换方 法(切割化弦法,消元降次法,辅助元素法).

(三角函数)常用结论归纳

(三角函数)常用结论归纳

三角函数常用结论总结1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。

按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。

射线的起始位置称为始边,终止位置称为终边。

2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。

如果角的终边在坐标轴上,就认为这个角不属于任何象限。

3. 终边相同的角的表示:(1)α终边与θ终边相同(α的终边在θ终边所在射线上)⇔2()k k αθπ=+∈Z ,注意:相等的角的终边一定相同,终边相同的角不一定相等.如与角 1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。

(答:25-;536π-)(2)α终边与θ终边共线(α的终边在θ终边所在直线上)⇔()k k αθπ=+∈Z .(3)α终边与θ终边关于x 轴对称⇔2()k k αθπ=-+∈Z . (4)α终边与θ终边关于y 轴对称⇔2()k k απθπ=-+∈Z . (5)α终边与θ终边关于原点对称⇔2()k k απθπ=++∈Z .(6)α终边在x 轴上的角可表示为:,k k Z απ=∈;α终边在y 轴上的角可表示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2k k Z πα=∈.如α的终边与6π的终边关于直线x y =对称,则α=____________。

(答:Z k k ∈+,32ππ)4、α与2α的终边关系:由“两等分各象限、一二三四”确定.如若α是第二象限角,则2α是第_____象限角(答:一、三) 5.弧长公式:||l R α=,扇形面积公式:211||22S lR R α==,1弧度(1rad)57.3≈. 如已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。

(答:22cm )6、任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin ,cos y x r r αα==,()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec rxα=()0x ≠,()csc 0ry yα=≠。

三角函数恒等变换知识点总结

三角函数恒等变换知识点总结

三角函数 三角恒等变换知识点总结一、角的概念和弧度制:(1)在直角坐标系内讨论角:角的顶点在原点,始边在x 轴的正半轴上,角的终边在第几象限,就说过角是第几象限的角。

若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。

(2)①与α角终边相同的角的集合:},2|{},360|{0Z k k Z k k ∈+=∈+=απββαββ或与α角终边在同一条直线上的角的集合: ; 与α角终边关于x 轴对称的角的集合: ; 与α角终边关于y 轴对称的角的集合: ; 与α角终边关于x y =轴对称的角的集合: ;②一些特殊角集合的表示:终边在坐标轴上角的集合: ;终边在一、三象限的平分线上角的集合: ; 终边在二、四象限的平分线上角的集合: ; 终边在四个象限的平分线上角的集合: ;(3)区间角的表示:①象限角:第一象限角: ;第三象限角: ; 第一、三象限角: ;②写出图中所表示的区间角:(4)正确理解角:要正确理解“oo90~0间的角”= ;“第一象限的角”= ;“锐角”= ; “小于o90的角”= ; (5)由α的终边所在的象限,通过 来判断2α所在的象限。

来判断3α所在的象限(6)弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;任一已知角α的弧度数的绝对值rl =||α,其中l 为以角α作为圆心角时所对圆弧的长,xyOxyOr 为圆的半径。

注意钟表指针所转过的角是负角。

(7)弧长公式: ;半径公式: ;扇形面积公式: ;二、任意角的三角函数:(1)任意角的三角函数定义:以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则=αsin ;=αcos ;=αtan ;=αcot ;=αsec ;=αcsc ;如:角α的终边上一点)3,(a a -,则=+ααsin 2cos 。

注意r>0 (2)在图中画出角α的正弦线、余弦线、正切线;比较)2,0(π∈x ,x sin ,x tan ,x 的大小关系: 。

三角函数转换公式大全总结

三角函数转换公式大全总结

三角函数转换公式大全总结三角函数是数学中常见的一类函数,由于其定义在一个单位圆上,可以用来描述很多自然现象和物理现象。

在数学中,经常会使用一些三角函数的转换公式来简化计算和推导。

下面是常见的一些三角函数转换公式总结。

1.正、余函数的关系:sin(x) = cos(x - π/2)cos(x) = sin(x + π/2)这两个公式很容易理解,就是将正弦函数和余弦函数互换角度就可以得到。

2.平方和差公式:sin(x ± y) = sin(x)cos(y) ± cos(x)sin(y)cos(x ± y) = cos(x)cos(y) ∓ sin(x)sin(y)这两个公式可以用来计算两个三角函数之间的和差关系。

通过平方和差公式,可以将两个三角函数之和或之差转化为两个三角函数之积。

3.和差化积公式:sin(x) + sin(y) = 2sin((x + y)/2)cos((x - y)/2)sin(x) - sin(y) = 2cos((x + y)/2)sin((x - y)/2)cos(x) + cos(y) = 2cos((x + y)/2)cos((x - y)/2)cos(x) - cos(y) = -2sin((x + y)/2)sin((x - y)/2)这四个公式可以用来将两个三角函数的和或差表示为两个三角函数的积。

4.倍角公式:sin(2x) = 2sin(x)cos(x)cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x) tan(2x) = 2tan(x)/(1 - tan^2(x))这些公式可以用来计算两倍角度的三角函数值,可以用于简化计算和推导。

5.半角公式:sin(x/2) = ±√((1 - cos(x))/2)cos(x/2) = ±√((1 + cos(x))/2)tan(x/2) = ±√((1 - cos(x))/(1 + cos(x)))这些公式可以用来计算半角的三角函数值,同样可以用于简化计算和推导。

三角函数的计算与恒等变换知识点总结

三角函数的计算与恒等变换知识点总结

三角函数的计算与恒等变换知识点总结三角函数是数学中的重要概念,广泛应用于各个领域的计算中。

掌握三角函数的计算方法和恒等变换是学习数学和解题的基础。

本文将对三角函数的计算方法和常用的恒等变换进行总结,帮助读者更好地理解与应用。

一、初识三角函数三角函数由正弦函数、余弦函数和正切函数三部分组成,分别用sin、cos和tan表示。

在直角三角形中,正弦函数表示斜边与对边之比,余弦函数表示斜边与邻边之比,正切函数表示对边与邻边之比。

以角A为例,正弦函数sin(A) = 对边/斜边,余弦函数cos(A) = 邻边/斜边,正切函数tan(A) = 对边/邻边。

三角函数的计算基于这些比例关系。

二、三角函数的计算1.计算角度关系角度可以用度数或弧度来表示。

其中,360°=2π弧度,180°=π弧度。

常用的角度关系有:a) 角度转弧度:弧度 = 图中角度× π / 180°b) 弧度转角度:角度 = 弧度× 180° / πc) 相反角:sin(-A) = -sin(A),cos(-A) = cos(A),tan(-A) = -tan(A)2.计算特殊角的三角函数值特殊角指180°、90°、60°、45°、30°等特定的角度。

这些角的三角函数值是固定的,掌握它们可以简化计算。

特殊角的三角函数值如下:角度 |0° |30° |45° |60° |90° |180°-------- |-------| ----------|---------------|--------------|----------|---------sin(A) | 0 | 1/2 |1/√2 |√3/2 | 1 | 0cos(A) | 1 |√3/2 |1/√2 |1/2 | 0 | -1tan(A) | 0 |√3/3 | 1 |√3 | ∞ | 03.利用三角函数计算三角形的边长和角度通过已知边长和角度,可以利用三角函数计算未知的边长和角度。

三角函数转换公式

三角函数转换公式

三角函数转换公式1、诱导公式:sin(-α) = -sinα;cos(-α) = cosα;sin(π/2-α) = cosα;cos(π/2-α) = sinα;sin(π/2+α) = cosα;cos(π/2+α) = -sinα;sin(π-α) = sinα;cos(π-α) = -cosα;sin(π+α) = -sinα;cos(π+α) = -cosα;tanA= sinA/cosA;tan(π/2+α)=-cotα;tan(π/2-α)=cotα;tan(π-α)=-tanα;tan(π+α)=tanα2、两角和差公式:sin(A±B) = sinAcos±BcosAsinBcos(A±B) = cosAcosB sinAsinBtan(A±B) = (tanA±tanB)/(1 tanAtanB)cot(A±B) = (cotAcotB 1)/(cotB±cotA)3、倍角公式sin2A=2s inA•cosAcos2A=cosA2-sinA2=1-2sinA2=2cosA2-1tan2A=2tanA/(1-tanA2)=2cotA/(cotA2-1)4、半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))2010年全国硕士研究生入学统一考试数学考试大纲--数学三考试科目:微积分.线性代数.概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分56%线性代数22%概率论与数理统计22%四、试卷题型结构试卷题型结构为:单项选择题选题8小题,每题4分,共32分填空题6小题,每题4分,共24分解答题(包括证明题)9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性.单调性.周期性和奇偶性复合函数.反函数.分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数.反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性.拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton- Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值.最大值和最小值二重积分的概念.基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径.收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解...及的麦克劳林(Maclaurin)展开式.六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型.正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解产生变量、变量和变量的典型模式;了解标准正态分布、分布、分布和分布得上侧分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.。

【超全】三角变换公式大全打印版

【超全】三角变换公式大全打印版

常用三角不等式 1. 若 x (0,3),贝V sinx x tanx 2. 若 x (0,3),则 1 si nx cosx .2 三角变换知识点总结2. cos(3. tan(二倍角公式1.si n2)cos cos msin sin tan tan)1 mtan tan2sin cos同角三角函数关系 cot11. 倒数关系:sin csc 1, cos sec1, tan sin cos 2. 商数关系:tan ,cotcossin3. 平方关系:・2 2, 2 2/ , 22sin cos 1,1 tan sec , 1 cot csc3. |sinx| | cos x | 1 简单三角方程的解 2. 3. cos2 2cossin 222cos1 1 2si n 22ta n 1 tan 2二倍角的余弦公式()有以下常用变形:tan 2(规律:降序扩角,升幕缩角)21 cos2 2coscos22 sin 221 sin2 (sin cos )sin 2 (sin cos )21. sin sin k (1)k(k Z)2. cos cos 2k (kZ)3. tan tan k(k Z)两角和与差的公式 tan1. sin( )sin cos cos sin21 cos2cos ----------------1 cos2 sin 2sin 21 sin 2sin 2 1 cos2三角函数降幕公式1 . c 1. sin cos sin221.2 1 cos2 2. sin 22 1 cos23. cos 2三倍角公式 1. sin3 3s in 4si n 3 3 2. cos3 4cos 3cos 4si n si n()si n()33 4cos cos( )cos( )3 37. tan —2cos cossin 1 cos1 cos sin3. ta n3半角公式 1. sin 233ta n tan1 3tan2 tan tan (—3注:符号的选择由 一所在的象限确定 2万能公式2ta n1. si n2 ------------- 亍1 tan1 tan2 2. cos 2厂1 tan3. ta n2万能公式形式2ta n 1 tan 22:iSf =tan — ’72. cos —21 cos :2 3. ・2 sin 一1 cos224. 21 coscos2 2 5. 1 cos2sin 2 —2 6. 1 cos2cos 2 -2(I ) (3)2/sm a -i2 1 十T】+ tcin —’ 2 a 1-伽-| jcos a = ------------ - = ------ -1+tan 3^ l+r2lana =2t4和差化积公式1.sin sin 2si ncos22 2.sinsin2cossin22 3.coscos2 coscos224.cos cos 2si nsin2 2了解和差化积公式的推导,有助于我们理解并掌握好公式:1.sin cos -sin( 2 )sin( ) 2. cossin1 si n(2 )sin()3. cos cos -cos( 2)cos( )4.sin sin-cos( 2)cos( )可以把积化和差公式看成是和差化积公式的逆应用 辅助角公式sin sin ------2sincos ----2 2 cos sin 2 a sinbsi na 2b 2 a sinb cos 2 2 a bsin sin ----- 2 sincos ----2 2cos — 2sina 2b 2 sin( )其中辅助角与点(a,b )在同一象限,且ta na两式相加可得公式⑴,两式相减可得公式⑵。

三角函数变换公式大全

三角函数变换公式大全

三角函数变换公式大全
以下列举了常见的三角函数变换公式:
1. 正弦函数变换公式:
- 正弦函数的平移变换:y = a*sin(b(x-c)) + d,其中a为振幅,b为周期变化的倍数,c为水平平移量,d为垂直平移量。

2. 余弦函数变换公式:
- 余弦函数的平移变换:y = a*cos(b(x-c)) + d,其中a为振幅,b为周期变化的倍数,c为水平平移量,d为垂直平移量。

3. 正切函数变换公式:
- 正切函数的平移变换:y = a*tan(b(x-c)) + d,其中a为垂直
拉伸/压缩因子,b为周期变化的倍数,c为水平平移量,d为
垂直平移量。

4. 余切函数变换公式:
- 余切函数的平移变换:y = a*cot(b(x-c)) + d,其中a为垂直
拉伸/压缩因子,b为周期变化的倍数,c为水平平移量,d为
垂直平移量。

5. 正割函数变换公式:
- 正割函数的平移变换:y = a*sec(b(x-c)) + d,其中a为水平
拉伸/压缩因子,b为周期变化的倍数,c为水平平移量,d为
垂直平移量。

6. 余割函数变换公式:
- 余割函数的平移变换:y = a*csc(b(x-c)) + d,其中a为水平拉伸/压缩因子,b为周期变化的倍数,c为水平平移量,d为垂直平移量。

以上是常见的三角函数变换公式,它们可以通过改变振幅、周期、水平平移量和垂直平移量来对原始的三角函数进行变换。

三角函数转换公式大全

三角函数转换公式大全

三角函数转换公式大全三角函数是高中数学中的重要内容,它们在数学和物理学中有着广泛的应用。

在学习三角函数的过程中,我们经常会遇到需要进行三角函数的转换,而掌握三角函数的转换公式是十分重要的。

本文将为大家详细介绍三角函数的转换公式,希望能对大家的学习有所帮助。

1. 正弦函数转换公式。

正弦函数是三角函数中的一种基本函数,其转换公式包括:(1)正弦函数的奇偶性,sin(-x)=-sinx,sin(π-x)=sinx;(2)正弦函数的周期性,sin(x+2kπ)=sinx,其中k为整数;(3)正弦函数的同角变换,sin(π/2-x)=cosx,sin(π/2+x)=cosx。

2. 余弦函数转换公式。

余弦函数也是三角函数中的一种基本函数,其转换公式包括:(1)余弦函数的奇偶性,cos(-x)=cosx,cos(π-x)=-cosx;(2)余弦函数的周期性,cos(x+2kπ)=cosx,其中k为整数;(3)余弦函数的同角变换,cos(π/2-x)=sinx,cos(π/2+x)=-sinx。

3. 正切函数转换公式。

正切函数是三角函数中的另一种基本函数,其转换公式包括:(1)正切函数的奇偶性,tan(-x)=-tanx,tan(π-x)=-tanx;(2)正切函数的周期性,tan(x+π)=tanx;(3)正切函数的同角变换,tan(π/2-x)=cotx,tan(π/2+x)=-cotx。

4. 余切函数转换公式。

余切函数是三角函数中的第四种基本函数,其转换公式包括:(1)余切函数的奇偶性,cot(-x)=-cotx,cot(π-x)=-cotx;(2)余切函数的周期性,cot(x+π)=cotx;(3)余切函数的同角变换,cot(π/2-x)=tanx,cot(π/2+x)=-tanx。

5. 正割函数和余割函数转换公式。

正割函数和余割函数是三角函数中的补充函数,其转换公式包括:(1)正割函数的奇偶性,sec(-x)=secx,sec(π-x)=-secx;(2)正割函数的周期性,sec(x+2kπ)=secx,其中k为整数;(3)余割函数的奇偶性,csc(-x)=-cscx,csc(π-x)=-cscx;(4)余割函数的周期性,csc(x+2kπ)=cscx,其中k为整数。

三角函数的变换与性质

三角函数的变换与性质

三角函数的变换与性质三角函数是数学中常见的一类函数,它们在数学和物理等领域有着重要的应用。

本文将介绍三角函数的变换与性质,以帮助读者更好地理解和应用这些函数。

一、正弦函数的变换与性质正弦函数可以表示为f(x) = sin(x),其图像是一个周期性的波形。

正弦函数的变换包括平移、伸缩和翻转等操作。

1. 平移:当正弦函数的自变量加上一个常数c时,函数图像将向左平移c个单位。

例如,f(x) = sin(x + π/2)的图像将向左平移π/2个单位。

2. 伸缩:当正弦函数的自变量乘以一个常数a时,函数图像将在x轴方向上缩放。

若a>1,则图像纵向压缩;若0<a<1,则图像纵向拉伸。

3. 翻转:当正弦函数的自变量乘以-1时,函数图像将在y轴方向上翻转。

即f(x) = sin(-x)的图像将关于y轴对称。

正弦函数的性质有:1. 周期性:正弦函数的图像以x轴为对称轴,其周期为2π。

即sin(x + 2π) = sin(x)。

2. 奇偶性:正弦函数是一个奇函数,即f(-x) = - f(x)。

这意味着正弦函数的图像关于原点对称。

二、余弦函数的变换与性质余弦函数可以表示为f(x) = cos(x),它与正弦函数是相互关联的。

余弦函数的变换与正弦函数类似,也包括平移、伸缩和翻转等操作。

1. 平移:当余弦函数的自变量加上一个常数c时,函数图像将向左平移c个单位。

例如,f(x) = cos(x + π/2)的图像将向左平移π/2个单位。

2. 伸缩:当余弦函数的自变量乘以一个常数a时,函数图像将在x轴方向上缩放。

若a>1,则图像纵向压缩;若0<a<1,则图像纵向拉伸。

3. 翻转:当余弦函数的自变量乘以-1时,函数图像将在y轴方向上翻转。

即f(x) = cos(-x)的图像将关于y轴对称。

余弦函数的性质有:1. 周期性:余弦函数的图像以x轴为对称轴,其周期为2π。

即cos(x + 2π) = cos(x)。

高考数学简单的三角恒等变换

高考数学简单的三角恒等变换
课前基础巩固
◈ 对点演练 ◈
π
[解析] sin 15°-cos 15°=2×=2(sin 30°sin 15°-cos 30°cos 15°)=-2cos(30°+15°)=-2cos 45°=-.
[解析] f(x)=sin2x-=-,故f(x)的最小正周期T==π.
3. [教材改编] 化简:sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)= .
课堂考点探究
(2)[2021·江西鹰潭一模] 已知tan α=,则= .
2
[解析] ====2.
角度2 给角求值例3 计算:= .
课堂考点探究
[思路点拨]先利用诱导公式,再利用两角和与差的余弦公式求解即可.[解析] ========2.
2
[总结反思]该类问题中给出的角一般都不是特殊角,需要通过三角恒等变换将其变为特殊角,或者能够正负相消,或者能够约分相消,最后得到具体的值.
D
[总结反思]给值求值是指已知某个角的三角函数值(或三角函数式的值)求与该角相关的其他三角函数值(或三角函数式的值)的问题,解题关键在于“变角”,使角相同或具有某种关系.
课堂考点探究
课堂考点探究
变式题 (1)已知=,则tan α+的值为 .
-8
[解析] ∵==cos α-sin α=,∴1-2sin αcos α=, ∴sin αcos α=-,则tan α+=+===-8.
课堂考点探究
探究点一 三角函数式的化简
[思路点拨] 将1变换为sin22+cos22,将cos 4和sin 4利用二倍角公式拆开,使得根号下的式子变成完全平方的形式,再根据符号整理得结果;[解析] ∵===sin 2+ cos 2,====-2cos 2, ∴2+=2sin 2+2cos 2-2cos 2=2sin 2,故选B.

三角函数的扩展与变换详细解析与总结

三角函数的扩展与变换详细解析与总结

三角函数的扩展与变换详细解析与总结三角函数是数学中重要而且常用的一类函数,它们在几何、物理、工程等众多领域都有广泛的应用。

为了更深入地了解和掌握三角函数的特性与变换,本文将对三角函数的扩展与变换进行详细解析与总结。

一、三角函数的定义与基本性质三角函数的定义最早可以追溯到古希腊时期,主要有正弦函数(sine)、余弦函数(cosine)和正切函数(tangent)三种。

这三种函数都可以通过单位圆上的点坐标来定义,从而得到它们的性质和图像。

1. 正弦函数(sine)正弦函数是一个周期函数,其定义域为实数集,值域为闭区间[-1,1]。

它的图像是一个以原点为中心的正弦曲线,在整个实轴上不断重复。

2. 余弦函数(cosine)余弦函数也是一个周期函数,其定义域为实数集,值域为闭区间[-1, 1]。

它的图像是一个以原点为中心的余弦曲线,与正弦曲线相似但形状稍有不同。

3. 正切函数(tangent)正切函数是一个无穷函数,其定义域为实数集,值域为整个实数轴。

它的图像是一条从负无穷到正无穷的直线。

除了这三种基本的三角函数之外,还可以根据它们的定义进行推广与变换。

二、三角函数的扩展变换扩展与变换是指根据基本三角函数的性质与运算规律,通过系数、常数和角度的改变来得到新的函数形式。

1. 幅度变换幅度变换是通过改变角度的单位来改变函数的幅度。

一般地,角度可以用弧度(radians)或角度(degrees)来度量。

幅度变换可以通过以下公式实现:y = A sin(kx + φ)其中,A为振幅,k为角频率,φ为初相位。

通过调整这些参数的值,可以改变函数的级强度、周期与初始位置。

2. 垂直变换垂直变换是通过改变函数的纵坐标偏移来改变函数的垂直位置。

一般地,可以使用垂直偏移量来实现函数的上移或下移。

垂直变换可以通过以下公式实现:y = f(x) + d其中,f(x)为原始函数,d为垂直偏移量。

通过调整这个参数的值,可以实现函数的上移或下移。

三角函数图像变换总结(范本)

三角函数图像变换总结(范本)

三角函数图像变换总结‎三角函数图像变换总‎结‎篇一:‎三角函数图像变换小‎结(修订版) ★三角‎函数图像变换小结★‎相位变换:①‎y?sinx?y?s‎i n(x??)‎0? 将y?sinx‎图像沿x轴向左平移?‎个单位②y?‎s inx?y?sin‎(x??)0?‎将y?sinx图像‎沿x轴向右平移?个单‎位周期变换:‎①y?sinx?y‎?sinx(0??1‎)将y?sinx图‎像上所有点的纵坐标不‎变,横坐标伸长为原来‎的 1 倍②‎y?sinx?y?s‎i nx(?1)将y?‎s inx图像上所有点‎的纵坐标不变,横坐标‎缩短为原来的 1 倍‎振幅变换:‎①y?sinx?y?‎A sinx的A倍‎②y?sinx?‎y?Asinx A倍‎?0?纵坐标缩短为‎原来A?1?将y?s‎i nx图像上所有点的‎横坐标不变, ?A?‎1?将y?sinx图‎像上所有点的横坐标不‎变,纵坐标伸长为原来‎的【特别提醒】由‎y=sinx的图象变‎换出y =Asin(?‎x+?)的图象一般有‎两个途径,只有区别开‎这两个途径,才能灵活‎进行图象变换。

途径‎一:先平移变‎换再周期变换(伸缩变‎换) 先将y=sin‎x的图象向左(?>0‎)或向右(??0)平‎移|?|个单位,再将‎图象上各点的横坐标变‎为原来的途径二:‎先周期变换(伸‎缩变换)再平移变换‎先将y=sinx的图‎象上各点的横坐标变为‎原来的移 |?| 1‎? 倍(?>0),‎便得y=sin(ωx‎+?)的图象 1 ?‎倍(?>0),再沿‎x轴向左(?>0)或‎向0?右平 ?‎个单位,便得y=s‎i n(?x+?)的图‎象 ?? |个单位‎【特别提醒】若由y?‎s in?x 得到y?s‎i n??x的图‎象,则向左或向右平移‎应平移| 1 为了得‎到函数y?3sin?‎x? ?? ?? 5‎? ?的图像,只要把‎y?3sin?x? ‎? ? ?? ?上所‎有的点() 5? ‎(A)向右平行移动(‎C)向右平行移动 ?‎52?5 个单位长‎度(B)向左平行移‎动个单位长度(D)‎向左平行移动 ? 5‎2?5 个单位长度‎个单位长度(201‎X·朝阳期末)要得到‎函数y?sin(2x‎?(A)向左平移(C‎)向右平移 (09山‎东文)将函数y?si‎n2x的图象向左平移‎( ). ? 4 ?‎4 )的图象,只要‎将函数y?sin2x‎的图象 ( ) 单位‎(B)向右平移单位‎(D)向左平移 ?‎4 单位单位 ?‎8 ? 8 ? 4‎个单位, 再向上平‎移1个单位,所得图象‎的函数解析式是 A.‎y?2cs2x B‎. y?2sin2x‎C.y?1?sin‎(2x? 【方法总结‎】 ? 4 ) D.‎y?cs2x‎①将y?f?x?图‎像沿x轴向左平移a个‎单位 y?f?x??‎y?f(x?a)‎②将y?f(x)‎图像沿x轴向右平移a‎个单位 y?f?x?‎?y?f(x?a) ‎为了得到函数y?3s‎i n?2x? ?? ‎?? 5? ?的图像‎,只要把y?3sin‎?x? ? ? ??‎?上所有的点()‎5? 1212 (‎A)横坐标伸长到原来‎的2倍,纵坐标不变‎(B)横坐标缩短到原‎来的(C)纵坐标伸长‎到原来的2倍,横坐标‎不变(D)纵坐标缩‎短到原来的(201‎X四川文)将函数y?‎s inx 的图像上所有‎的点向右平行移动 ?‎10 倍,纵坐标不‎变倍,横坐标不变‎个单位长度,再把所得‎各点的横坐标伸长到‎原来的2倍(纵坐标不‎变),所得图像的函数‎解析式是()(A‎)y?sin(2x?‎(C)y?sin( ‎2?10 ) (‎B)y?sin(2x‎?) (D)y?si‎n( 12 ? 5 ‎)) 12 x? ‎? 10 x? ? ‎20 (201X·广‎州期末)若把函数y?‎f?x?的图象沿x轴‎向左平移 ? 4 个‎单位,沿y轴向下平移‎1个单位,然后再把‎图象上每个点的横坐标‎伸长到原来的2倍(纵‎坐标保持不变),得到‎函数y?sinx的图‎象,则y?f?x?的‎解析式为( ) A.‎y?sin?2x? ‎??? ??‎?B.?1y?si‎n2x1 ‎4?2?? C.y?‎s in?2x? 【方‎法总结】 ?? ??‎?D.?1y?si‎n2x1 ‎4?2?? 将y?f‎?x?图像上所有点的‎纵坐标不变,横坐标变‎为原来的y?f(x)‎?y?f?x 1 倍‎? (?0) 为了‎得到函数y?4sin‎?x? ?? ?? ‎5? ?的图像,只要‎把y?3sin?x?‎? ? ?? ?上‎所有的点() 5?‎34 (A)横坐标‎伸长到原来的(C)纵‎坐标伸长到原来的【‎方法总结】 4343‎倍,纵坐标不变(‎B)横坐标缩短到原来‎的倍,纵坐标不变 3‎4倍,横坐标不变‎(D)纵坐标缩短到原‎来的倍,横坐标不变‎将y?f?x?图像上‎所有点的横坐标不变,‎横坐标变为原来的A倍‎y?f(x)?y?‎A f?x ? (A?‎0) 为了得到函数y‎?sin?2x? ?‎??? ?的图像,‎可以将函数y?cs2‎x的图像() 6?‎A 向右平移 ? ‎6B 向右平移 ?‎3 C 向左平移‎?6 D向左平移‎?3 试述如何由y‎=sin(2x+ 3‎1π3 )的图象得‎到y=sinx的图象‎3 函数y?Asi‎n(?x??)表达式‎的确定:A由‎最值确定;?由周期确‎定;?由图象上的特殊‎点确定,(201X‎重庆理)(6)‎已知函数y?sin(‎?x??)(??0,‎??A. ?=1 ?‎= ? 6 ? 2 ‎)的部分图象如题‎(6)图所示,则(‎) ? 6 B. ‎?=1 ?= —C.‎?=2 ?= ? ‎6? 6 D. ?‎=2 ?= —(2‎01X天津文)(8)‎右图是函数y?Asi‎n(?x??)?A?‎0,??0,?? ?‎? ?? 2? ?‎在区间?? ? ??‎5?? 上的图像为‎?66?, 了得到这‎个函数的图象,只要将‎y?sinx(x?R‎)的图象上所有的点(‎) (A)向左平移‎? 3 个单位长度‎,再把所得各点的横坐‎标缩短到原来的 12‎倍,纵坐标不变(‎B) 向左平移 ? ‎3个单位长度,再把‎所得各点的横坐标伸长‎到原来的2 倍,纵坐‎标不变 (C) 向左‎平移 ? 6 个单位‎长度,再把所得各点的‎横坐标缩短到原来的‎12 倍,纵坐标不变‎(D) 向左平移‎?6 个单位长度,‎再把所得各点的横坐标‎伸长到原来的2 倍,‎纵坐标不变【规律总‎结】 y?Asin(‎?x??)的图像(‎1)相邻的对称轴之间‎的距离为半个周期;‎(2)相邻对称中心间‎的距离是半个周期;‎(3)相邻的对称轴和‎对称中心之间的距离为‎14 个周期。

三角函数的像变换知识点总结

三角函数的像变换知识点总结

三角函数的像变换知识点总结三角函数是数学中重要的一门学科,常常用于解决几何问题、物理问题以及信号处理等领域。

而在实际应用中,常常会遇到对三角函数进行像变换的情况,通过像变换可以改变函数的振幅、频率和相位等性质。

以下是三角函数的像变换相关知识点的总结,包括正弦函数、余弦函数和正切函数的像变换特性以及对应的图像变化。

1. 正弦函数的像变换正弦函数的一般形式为y = A*sin(B(x-C))+D,其中A代表振幅,B代表频率,C代表相位,D代表垂直偏移量。

像变换可以通过改变这些参数来实现。

- 振幅的变化:改变A的值可以改变正弦函数的振幅,当A>1时振幅增大,当0 A时振幅减小,当A<0时振幅变为负数,即使曲线翻转。

- 频率的变化:改变B的值可以改变正弦函数的周期,当B>1时周期缩短,当0 B时周期增加。

- 相位的变化:改变C的值可以改变正弦函数的水平移动,当C>0时函数向右移动C个单位,当0 C时函数向左移动C个单位。

- 垂直偏移量的变化:改变D的值可以改变正弦函数的上下平移,当D>0时整个函数上移D个单位,当0 D时整个函数下移D个单位。

2. 余弦函数的像变换余弦函数的一般形式为y = A*cos(B(x-C))+D,其中A代表振幅,B 代表频率,C代表相位,D代表垂直偏移量。

像变换可以通过改变这些参数来实现。

- 振幅的变化:改变A的值可以改变余弦函数的振幅,变换规律与正弦函数相同。

- 频率的变化:改变B的值可以改变余弦函数的周期,变换规律与正弦函数相同。

- 相位的变化:改变C的值可以改变余弦函数的水平移动,变换规律与正弦函数相同。

- 垂直偏移量的变化:改变D的值可以改变余弦函数的上下平移,变换规律与正弦函数相同。

3. 正切函数的像变换正切函数的一般形式为y = A*tan(B(x-C))+D,其中A代表振幅,B 代表频率,C代表相位,D代表垂直偏移量。

像变换可以通过改变这些参数来实现。

三角函数变换口诀

三角函数变换口诀
逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;
1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范;
三角函数反函数,实质就是求角度,先求三角函数值再判角取值范围;
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;
顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,
变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
1加余弦想余弦,1减余弦想正弦,
幂升一次角减半,升幂降次它为范,
三角函数反函数,实质就是求角度,
先求三角函数值,再判角取值范围,
利用直角三角形,形象直观好换名,
简单三角的方程,化为最简求解集,
高次降次不必像,和差于积互化好,
角度函数要统一,出现特角更是妙,
公式选择有依据,式子特征和角度,
类比联想成习惯,观察能力要培养,
若遇三角不等式,单位图像特殊值,
三角形中的问题,正弦余弦不可离,
角度之间有联系,转化互补与互余。
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,

三角函数恒等变换知识点总结

三角函数恒等变换知识点总结

三角函数 三角恒等变换知识点总结一、角的概念和弧度制:(1)在直角坐标系内讨论角:角的顶点在原点,始边在x 轴的正半轴上,角的终边在第几象限,就说过角是第几象限的角。

若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。

(2)①与α角终边相同的角的集合:},2|{},360|{0Z k k Z k k ∈+=∈+=απββαββ或与α角终边在同一条直线上的角的集合: ; 与α角终边关于x 轴对称的角的集合: ; 与α角终边关于y 轴对称的角的集合: ; 与α角终边关于x y =轴对称的角的集合: ;②一些特殊角集合的表示:终边在坐标轴上角的集合: ;终边在一、三象限的平分线上角的集合: ; 终边在二、四象限的平分线上角的集合: ; 终边在四个象限的平分线上角的集合: ; (3)区间角的表示:①象限角:第一象限角: ;第三象限角: ;第一、三象限角: ;②写出图中所表示的区间角:(4)正确理解角:要正确理解“oo90~0间的角”= ;“第一象限的角”= ;“锐角”= ; “小于o90的角”= ; (5)由α的终边所在的象限,通过 来判断2α所在的象限。

来判断3α所在的象限 (6)弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;任一已知角α的弧度数的绝对值rl =||α,其中l 为以角α作为圆心角时所对圆弧的长,r 为圆的半径。

注意钟表指针所转过的角是负角。

(7)弧长公式: ;半径公式: ;扇形面积公式: ;二、任意角的三角函数:(1)任意角的三角函数定义:以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则=αsin ;=αcos ;=αtan ;=αcot ;=αsec ;=αcsc ;如:角α的终边上一点)3,(a a -,则=+ααsin 2cos 。

注意r>0 (2)在图中画出角α的正弦线、余弦线、正切线;比较)2,0(π∈x ,x sin ,x tan ,x 的大小关系: 。

三角函数恒等变换知识点总结

三角函数恒等变换知识点总结

三角函数 三角恒等变换知识点总结一、角的概念和弧度制:(1)在直角坐标系内讨论角:角的顶点在原点,始边在x 轴的正半轴上,角的终边在第几象限,就说过角是第几象限的角。

若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。

(2)①与α角终边相同的角的集合:},2|{},360|{0Z k k Z k k ∈+=∈+=απββαββ或与α角终边在同一条直线上的角的集合:; 与α角终边关于x 轴对称的角的集合:; 与α角终边关于y 轴对称的角的集合:; 与α角终边关于x y =轴对称的角的集合:;②一些特殊角集合的表示:终边在坐标轴上角的集合:;终边在一、三象限的平分线上角的集合:; 终边在二、四象限的平分线上角的集合:; 终边在四个象限的平分线上角的集合:; (3)区间角的表示:①象限角:第一象限角:;第三象限角:;第一、三象限角:;②写出图中所表示的区间角:(4)正确理解角:要正确理解“oo90~0间的角”=; “第一象限的角”=;“锐角”=; “小于o90的角”=;(5)由α的终边所在的象限,通过 来判断2α所在的象限。

来判断3α所在的象限 (6)弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;任一已知角α的弧度数的绝对值rl =||α,其中l 为以角α作为圆心角时所对圆弧的长,r 为圆的半径。

注意钟表指针所转过的角是负角。

(7)弧长公式:;半径公式:;扇形面积公式:;二、任意角的三角函数:(1)任意角的三角函数定义:以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则=αsin ;=αcos ;=αtan ;=αcot ;=αsec ;=αcsc ;如:角α的终边上一点)3,(a a -,则=+ααsin 2cos 。

注意r>0 (2)在图中画出角α的正弦线、余弦线、正切线;比较)2,0(π∈x ,x sin ,x tan ,x 的大小关系:。

三角函数的恒等变换

三角函数的恒等变换

三角函数的恒等变换
三角函数恒等变换是指把三角函数的形式在一定的变量的乘性和加性变换时不变的性质。

换句话说,只要给定函数原形式是三角函数,只要满足变化的函数形式也是三角函数,就称为三角函数恒等变换。

三角函数恒等变换有三类基本恒等变换:乘积形式恒等变换,
被加令恒等变换和被乘令恒等变换。

1.乘积形式恒等变换
所谓乘积形式恒等变换,就是把三角函数乘以因式形成的积函数,其函数形式仍然是
三角函数。

其表达式形式:
f(x) = a*sinx*cosbx
f(x)=a*cosx*sina
其中a,b为任意数值。

2.被加令恒等变换。

三角恒等变换的基本公式与应用

三角恒等变换的基本公式与应用

三角恒等变换的基本公式与应用三角恒等变换是指由三角函数之间的关系,通过变换得到等价关系的过程。

它们是解决三角函数计算和证明题非常有用的工具。

本文将介绍三角恒等变换的基本公式、根据这些公式的应用以及相关的数学问题。

一、基本公式1. 正弦定理对于任意三角形ABC,其三边长度分别为a、b、c,夹角分别为A、B、C,则正弦定理表达式如下:a/sin(A) = b/sin(B) = c/sin(C)该定理可以用于求解三角形的边长或角度,甚至用于构造和证明三角形的性质。

2. 余弦定理对于任意三角形ABC,其三边长度分别为a、b、c,夹角分别为A、B、C,则余弦定理表达式如下:c² = a² + b² - 2abcos(C)该定理可以用于求解三角形的边长或角度,尤其适用于解决非特殊角的计算问题。

3. 正弦、余弦、正切的关系三角函数的基本关系:sin²(A) + cos²(A) = 1tan(A) = sin(A)/cos(A)这些关系可以通过三角函数间的相互转化和运算来推导和应用。

二、应用1. 角度推导与证明三角恒等变换的基本公式可以用于推导和证明角度之间的关系。

例如,我们可以利用正弦定理推导两角和差公式:sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)这个公式在三角函数运算中非常常用。

2. 三角函数的化简与计算三角函数的公式化简是三角恒等变换的重要应用之一。

例如,我们可以利用tan(A) = sin(A)/cos(A)将复杂的三角函数表达式化简为更简洁的形式。

另外,当我们需要计算某些特殊角度的三角函数值时,也可以利用三角恒等变换的公式得到准确的数值结果。

3. 三角方程的求解三角方程是指含有未知角度的方程。

解决三角方程的关键是将其转化为已知角度的三角函数公式。

通过利用三角恒等变换的公式,我们可以将复杂的三角方程转化为简单的代数方程,从而求解出未知角度的值。

三角函数转换公式大全总结

三角函数转换公式大全总结

三角函数转换公式大全总结三角函数是数学中非常重要的一类函数,通过它们我们可以研究角度的变化、图形的性质等。

在实际问题中,常常需要将一个三角函数转化为另一个三角函数来进行计算和研究。

下面我将总结一些常用的三角函数转换公式,方便大家记忆和使用。

1.互余关系:- sinθ = cos(π/2-θ)- cosθ = sin(π/2-θ)- tanθ = cot(π/2-θ)- cotθ = tan(π/2-θ)这些公式表示一个角的正弦、余弦、正切、余切与与其互余角的三角函数之间存在对称关系。

2.相反角关系:- sin(-θ) = -sinθ- cos(-θ) = cosθ- tan(-θ) = -tanθ- cot(-θ) = -cotθ这些公式表明一个角和它的相反角的正弦、余弦、正切、余切的值相等且正负相反。

3.倍角公式:- sin(2θ) = 2sinθcosθ- cos(2θ) = cos^2θ - sin^2θ = 2cos^2θ - 1 = 1 - 2sin^2θ- tan(2θ) = (2tanθ) / (1 - tan^2θ)这些公式表示一个角的正弦、余弦、正切的两倍角与它本身的正弦、余弦、正切之间的关系。

4.半角公式:- sin(θ/2) = ±√[(1 - cosθ) / 2]- cos(θ/2) = ±√[(1 + cosθ) / 2]- tan(θ/2) = ±√[(1 - cosθ) / (1 + cosθ)]这些公式表达了一个角的正弦、余弦、正切的一半角与它本身的正弦、余弦、正切之间的关系。

5.和差角公式:-两角的和:sin(α + β) = sinαcosβ + cosαsinβcos(α + β) = cosαcosβ - sinαsinβtan(α + β) = (tanα + tanβ) / (1 - tanαtanβ)-两角的差:sin(α - β) = sinαcosβ - cosαsinβcos(α - β) = cosαcosβ + sinαsinβtan(α - β) = (tanα - tanβ) / (1 + tanαtanβ)这些公式表示两个角的正弦、余弦、正切的和与差与它们各自的正弦、余弦、正切之间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单的三角函数变换问题题型
一、两角和与差的公式
和角公式:
差角公式:
辅助角公式:
二、二倍角的正弦、余弦、正切公式
二倍角公式:
降幂公式:
典型例题:
一、给角求值问题
1、0000sin 20cos50sin 70cos 40-=
2、0000cos 24cos36cos66cos54-=
3、0000cos75cos15sin 255sin165-=
4、()=︒+︒+︒︒20tan 10tan 320tan 10tan
二、给值求值问题
1、35,(0,
),sin ,cos 2513παβαβ∈==求cos()αβ+。

2、已知22sin =
α,54cos =β,且)20(π∈βα,、,求)sin(βα+的值。

3、已知11cos cos ,sin sin 23
αβαβ-=
-=-,求cos()αβ-的值。

4、已知1212cos(),cos()1313αβαβ-=-+=,且3(,),(,2)22ππαβπαβπ-∈+∈求 cos 2,cos 2αβ。

5、已知αα,21sin =
是第二象限角,且()3tan -=+βα,求βtan 的值。

6、已知()414tan ,52tan =⎪⎭⎫ ⎝⎛-=
+πββα,求⎪⎭⎫ ⎝⎛+4tan πα的值。

三、给值求角问题
1、已知,(0,
)2παβ∈,βα>且1010cos ,55sin ==βα,求βα-的值。

2、已知(),1413cos ,71cos =-=
βαα且20παβ<<<,求β的值。

3、设,2
0,23,31tan ,55cos πβπαπβα<<<<=-=求βα-的值。

四、求函数周期、单调性、最值问题
1、已知函数)62cos(2sin )(π
--=x x x f ,其中R x ∈ .
(1)求函数)(x f 的最小正周期;(2)求)(x f 的递增区间.
2、求函数()()2sin cos sin cos 2f x x x x x =+--的最大(最小)值.
3、已知函数2()cos 3sin cos 1f x x x x =++,x R ∈.
(1)求证)(x f 的小正周期和最值; (2)求这个函数的单调递增区间.。

相关文档
最新文档