统计学教案(第6章抽样推断)

合集下载

统计学课件-6 抽样推断

统计学课件-6 抽样推断
• 抽样推断可以用于工业生产过程的质量控制。 • 利用抽样推断法还可以对于某种总体的假设进行检验,
判断其真伪,以作出正确的决策。
5
6.1.2 抽样推断的基本概念
全及总体和样本总体
全及总体也称母体,简称总体(Population), 是指所要研究对象的全体。
样本总体又称子样,简称样本(Sample)。它 是从全及总体中随机抽取出来的,用以代表全及 总体的部分单位的集合。
抽样误差有实际抽样误差、抽样平均误差和抽样 极限误差三个密切联系而又相互区别的概念
18
6.2 抽样误差总体总体参数样本样本统计量
4
抽样推断的特点
• 建立在随机取样的基础上 • 运用概率估计法 • 存在着可控性误差
统计推断的作用
• 对有些不可能或不必要进行全面调查, 但又需要了解 其全面数量情况的社会经济现象,可以运用抽样推断, 实现调查的目的。
• 抽样调查与全面调查同时进行,可以发挥互相补充和 检查调查质量的作用。
非概率抽样又称非随机抽样,是对总体中每一个 体都给予平等的抽取机会,即每一个体抽中或不 抽取完全由机遇规律来决定,排除人的主观因素 的选择。
10
抽样框与抽样单元
抽样框又称抽样结构,是指包括全部抽样单位的 名单框架 。
• 抽样框的主要形式
✓ 名单抽样框,即列出全部总体单位的名录一览表。 ✓ 区域抽样框,即按地理位置将总体范围划分为若干小区域,
《淮南子·说山训》 偶然的东西是没有根据的,因为它是偶然的; 但同样因为它是偶然的,它又是有根据的。
黑格尔
3
6.1 抽样推断概述
6.1.1 抽样推断的意义及特点
抽样推断的意义
抽样推断是在随机抽样基础上推论有关总体的情 况,即用样本对从中抽取样本的那个总体的数量 特征作出具有一定可靠程度的估计和判断。

统计学基础课件(第六章抽样推断)

统计学基础课件(第六章抽样推断)

统计学基础
第六章 抽样推断
其中一类是登记性误差,即在调查过程中由于观察、 测量、登记、计算上的差错所引起的误差,这类误差 是所有统计调查都可能发生的。
另一类是代表性误差,即样本各单位的结构不足以 代表总体而引起的误差。
Fundamentals of Statistics
统计学基础
第六章 抽样推断
第六章 抽样推断
第六章 抽样推断
Fundamentals of Statistics
统计学基础
第六章 抽样推断
教学目的与要求:
抽样估计是抽样调查的继续, 它提供了一套利用抽样资料来 估计总体数量特征的方法。通 过本章的学习,要理解和掌握 抽样估计的概念、特点,抽样 误差的含义、计算方法,抽样 估计的置信度,推断总体参数 的方法,能结合实际资料进行 抽样估计。
(只有两种表现)
Fundamentals of Statistics
总体成数
P=
N1 N
成数标准差 p
P 1 P 统计学基础
第六章 抽样推断
样本指标是根据样本各单位标志值或标志属性
计算的综合指标。
x
=
∑x n
研究数 样本平均数
x
=
∑xf ∑f
量标志
样本标准差
x
2
x
n
x
x
2
x
f
f
研究品 质标志
含义: 抽样极限误差是指样本指标和总体指标之间抽
样误差的可能范围。由于总体指标是一个确定的 数,而样本指标则是围绕着总体指标左右变动的 量,它与总体指标可能产生正离差,也可能产生 负离差,样本指标变动的上限或下限与总体指标 之差的绝对值就可以表示抽样误差的可能范围, 我们将这种以绝对值形式表示的抽样误差可能范 围称为抽样极限误差。

统计学原理-第六章 抽样调查(复旦大学第六版)

统计学原理-第六章  抽样调查(复旦大学第六版)
全体。其单位数用N来表示。
2.样本总体:简称样本,是从全及总体中随机
抽取出来,代表全及总体部分单 位的集合体。单位数用n表示。
5
二.全及指标和抽样指标
(一)全及指标
X 总体平均数: X N 总体成数:P
2
XF 或X F Q=
2 2
N1 N N
(X-X) 总体方差: = 总体标准差:= (X-X)
(一)考虑顺序的不重复抽样数目
N! A N ( N 1)(N 2) ( N n 1) ( N n)! 4 3 2 1 2 例如A4 12 2 1
n N
(二)考虑顺序的重复抽样数目
B N
n N 2 4
n 2
例如 B 4 16
10
(三)不考虑顺序的不重复抽样数目
Ex X
28

2、一致性 当抽样单位数充分大时,抽样指标和未知 的总体指标之间的绝对离差为任意小的可能性 也趋于必然性。
x X 任意小
3、有效性
即用抽样指标估计总体指标,要求作为优良估 计量方差应该比其他估计量的方差小。

2
x X f
2
f

2
x X f
x
x E ( x)
2
18
说明:根据数理统计理论,在重复抽样条件下, 抽样平均误差与全及总体的标准差成正比例关系。 与抽样总体单位平方根成反比关系。
19
在不重复抽样情况下,抽样平均误差计算公式如下:
x x

N n 250 4-2 ( )= ( ) =9.13(件) n N 1 2 4-1
2
N
X X F 或 F X X F 或 F

统计学基础课件(第六章抽样推断)

统计学基础课件(第六章抽样推断)

Fundamentals of Statistics
统计是指这种偶然性代表性误差。 即按随机原则抽样时,在没有登记性误差和系统性误 差的条件下单纯由于不同的随机样本得出不同估计量 而产生的误差。抽样误差是抽样调查所固有的,是无 法避免与消除的,但可以运用数学方法计算其数量界 限,并通过抽样设计程序控制其范围,所以这种抽样 误差也称为可控制误差。 需要指出,抽样误差不是 固定不变的数,它的数值是随样本不同而变化的,所 以它也是随机变量。
重复抽样 AA AB AC AD BA BB BC BD CA CB CC CD DA DB DC DD
N n = 42 =16 (个样本)
Fundamentals of Statistics
统计学基础
第六章 抽样推断
不重复抽样
N(N-1)(N-2)……. 4×3 = 12(个样本)
Fundamentals of Statistics
Fundamentals of Statistics
统计学基础
第六章 抽样推断
本章主要内容 •抽样推断概述 •抽样误差 •抽样估计的方法 •样本容量的确定
Fundamentals of Statistics
统计学基础
第第一六章节抽样推抽断样推断概述
一、抽样推断的概念和特点 概念
抽样推断是在抽样调查的基础上,用样 本实际资料计算样本指标,并据以推算总 体相应的数量特征的一种统计分析方法。
代表性误差的发生有以下两种情况:
一种是由于违反抽样调查的随机原则,如有意地多选较好的 单位或较坏的单位进行调查。这样做,所据以计算的抽样指标 必然出现偏高或偏低现象,造成系统性的误差。系统性误差和 登记性误差都是不应当发生的,是可以也应该采取措施避免发 生或将其减小到最小限度。

统计学 第 6 章 抽样与参数估计

统计学  第 6 章   抽样与参数估计

第6章抽样与参数估计第6章抽样与参数估计6.1抽样与抽样分布6.2参数估计的基本方法6.3总体均值的区间估计6.4总体比例的区间估计6.5样本容量的确定学习目标理解抽样方法与抽样分布估计量与估计值的概念点估计与区间估计的区别评价估计量优良性的标准总体均值的区间估计方法总体比例的区间估计方法样本容量的确定方法参数估计在统计方法中的地位统计推断的过程6.1抽样与抽样分布什么是抽样推断概率捕样方法抽样分布抽样方法抽样方法概率抽样(probabilitysampling)也称随机抽样特点按一定的概率以随机原则抽取样本抽取样本时使每个单位都有一定的机会被抽中每个单位被抽中的概率是已知的,或是可以计算出来的当用样本对总体目标量进行估计时,要考虑到每个样本单位被抽中的概率简单随机抽样(simplerandomsampling)从总体N个单位中随机地抽取n个单位作为样本,每个单位入抽样本的概率是相等的最基本的抽样方法,是其它抽样方法的基础特点简单、直观,在抽样框完整时,可直接从中抽取样本用样本统计量对目标量进行估计比较方便局限性当N很大时,不易构造抽样框抽出的单位很分散,给实施调查增加了困难没有利用其它辅助信息以提高估计的效率分层抽样(stratifiedsampling)将抽样单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本优点保证样本的结构与总体的结构比较相近,从而提高估计的精度组织实施调查方便既可以对总体参数进行估计,也可以对各层的目标量进行估计系统抽样(systematicsainplmg)将总体中的所有单位(抽样单位)按一定顺序排列,在规定的范闱内随机地抽取一个单位作为初始单位,然后按爭先规定好的规则确定其它样本单位先从数字1到k之间随机抽取一个数字r作为初始单位,以后依次取r+k,r+2k…等单位优点:操作简便,可提高估计的精度缺点:对估计量方差的估计比较困难整群抽样(clustersampling)将总体中若干个单位合并为组(群),抽样时直接抽取群,然后对中选群中的所有单位全部实施调查特点抽样时只需群的抽样框,可简化工作量调查的地点相对集中,节省调查费用,方便调查的实施缺点是估计的精度较差抽样分布总体中各元素的观察值所形成的分布分布通常是未知的可以假定它服从某种分布总体分布(populationdistribution)一个样本中各观察值的分布也称经验分布当样本容屋n逐渐增大时,样本分布逐渐接近总体的分布样本分布(sampledistribution)抽样分布的概念(samplingdistribution)抽样分布是指样本统计屋的分布,即把某种样本统计量看作一个随机变量,这个随机变屋的全部可能值构成的新的总体所形成的分布即为某种统计量的抽样分布.统计量:样本均值,样本比例,样本方差等样本统计量的概率分布是一种理论概率分布随机变量是样本统计量样本均值,样本比例,样本方差等结果来自容量相同的所有可能样本提供了样本统计量长远稳定的信息,是进行推断的理论基础,也是抽样推断科学性的重要依据对抽样分布的理解抽样分布:即不是总体分布,也不是样本分布,是根据所有可能样本计算的统计量的全部可能取值形成的分布样本均值的抽样分布容量相同的所有町能样本的样本均值的概率分布一种理论概率分布进行推断总体均值的理论基础样本均值的抽样分布样本均值的抽样分布(例题分析)【例】设一个总体,含有4个元素(个体),即总体单位数N=4。

第6章 抽样推断

第6章 抽样推断

2.抽样误差 是指随机误差,也就是由于随机抽样的偶然因素使样本 不足以代表总体,而引起抽样指标和全及指标之间的绝对离 差。 抽样误差不包括登记误差,也不包括偏差。偏差和登记 性的误差都是抽样工作中的组织问题,应该采取措施预防发 生或把它减少到最小限度。 由于总体平均数和成数是唯一确定的,抽样平均数和成 数则是随机变量,因而抽样误差也不是唯一确定的,而是随 机变量。
三种误差的区别:
抽样误差:抽样指标和全及指标之间的绝对
离差,不可避免,可以控制。 登记误差:由于观察、测量、登记、计算造 成的误差,可以避免。 偏查:由于有意识选取调查单位造成的系统 偏差。理论上可以避免。
3.影响抽样误差的因素
(1) 抽样单位数目的多少
在其他条件不变的情况下,抽样单位数愈多,抽样误差
0.92 0.08 10 1 0.0814 86.14% 10 100
例3 某玻璃器皿厂某日生产15000只印花玻璃杯,现 按重复抽样方式从中抽取150只进行质量检验,结果有 147只合格,其余3只为不合格品,试求这批印花玻璃杯 合格率(成数)的抽样平均误差。
N 15000 n 150 147 p 98% 150 p (1 p ) 0.98 (1 0.98) p 1.14% n 150 若按不重复抽样方式:
p
p (1 p ) n 0.98 (1 0.98) 150 (1 ) (1 ) 1.1374% n N 150 15000
四、抽样极限误差
概念:是指样本指标与总体指标之间抽样误差 的一种可能范围。 是用绝对值形式表示的样本指标与总体指
标偏差的可允许的最大范围,也称为允许误差。
由抽样指标变动可允许的上限或下限与总体指

统计学第六章 抽样法

统计学第六章  抽样法
31
第六章 抽样法
序号
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16 合计
样本变量x
40、40 40、50 40、70 40、80
50、40 50、50 50、70 50、80
70、40 70、50 70、70 70、80
80、40 80、50 80、70 80、80

x
x E(x)
总体
研究如何利用 样本数据来 推断总体特 征。
内容包括:参 数估计和假 设检验。
目的:对总体
特征作出推
样 本
断。
这是推断统计学研 究的问题
5
第六章 抽样法
描述统计与推断统计的关系
反映客观 现象的数

概率论
(包括分布理论、大 数定律和中心极限定
理等)
样本数
描述统计
推断统计

总体数 据
(统计数据的搜集 、整理、显示和分
13
第六章 抽样法
第二节 有关抽样的基本概念(2)
(二)抽样总体
也称子样,样本或样本总体,它是从全 及总体中随机抽取出来的,代表全及总体的 那部分单位的集合体。抽样总体的单位数称 为样本容量,用n表示,对于N来说,n是很 小的。
总体
样 本
14
第六章 抽样法
第二节 有关抽样的基本概念(3)
• 二 全及指标和抽样指标p.249 (一) 全及指标
研究总体中 的品质标志
总体成数 P N1
N
总体成数标准差 P
P1 P
17
第六章 抽样法
第二节 有关抽样的基本概念(5)
(二)抽样指标
抽样指标是由样本总体各单位标志值 或标志特征计算的综合指标,也称统计量。 与全及指标相对应有:样本平均数,样本 标准差;样本成数,样本成数的标准差。

胡德华版统计学第六章

胡德华版统计学第六章

6.2.2 机械抽样
机械抽样又称等距抽样或系统抽样, 机械抽样又称等距抽样或系统抽样,就是将总体的各单位按某一标 志的大小进行排队,用总体单位数除以样本单位数求得抽样间隔, 志的大小进行排队,用总体单位数除以样本单位数求得抽样间隔,然后 按照相同的间隔等距抽取样本的一种抽样方式。 按照相同的间隔等距抽取样本的一种抽样方式。 根据总体单位排列方法,等距抽样可分为两类: 根据总体单位排列方法,等距抽样可分为两类:一是按有关标志排 二是按无关标志排队。 队;二是按无关标志排队。 所谓有关标志就是指与调查问题直接相关的标志。 所谓有关标志就是指与调查问题直接相关的标志。 采用等距抽样法,主要应解决以下两个问题: 采用等距抽样法,主要应解决以下两个问题: 一是要计算抽样间隔, 代表抽样间隔, 代表总体单位数 代表总体单位数, 代 一是要计算抽样间隔,若K代表抽样间隔,N代表总体单位数,n代 代表抽样间隔 表抽取的样本单位数, 表抽取的样本单位数,则K=N / n 。 二是要确定起点样本,即第一个样本。 二是要确定起点样本,即第一个样本。通常的方法可采取在第一组 1-K个样本单位中随机抽取的方法,也可以在第一组 个样本单位中随机抽取的方法, 个样本单位中随机抽取的方法 也可以在第一组1-K个样本单位中采 个样本单位中采 用取中间值的方法,然后,每隔K个单位抽取一个样本 个单位抽取一个样本, 用取中间值的方法,然后,每隔 个单位抽取一个样本,直到抽够样本 为止。 为止。 等距随机抽样方法可以使样本单位均匀地分布在总体的各个部分, 等距随机抽样方法可以使样本单位均匀地分布在总体的各个部分, 因而使样本具有更高的代表性,减少了抽样误差; 因而使样本具有更高的代表性,减少了抽样误差;采用机械顺序抽取样 简单易行,便于操作。但是,在应用等距抽样方法时, 本,简单易行,便于操作。但是,在应用等距抽样方法时,要注意抽样 间隔与现象本身所具有的规律不能重叠,否则,会加大抽样误差。 间隔与现象本身所具有的规律不能重叠,否则,会加大抽样误差。 等距随机抽样方法比较适合于同质性较高的总体。 等距随机抽样方法比较适合于同质性较高的总体。

《国民经济统计学概论》_第六章_抽样推断

《国民经济统计学概论》_第六章_抽样推断
总体未分组: 2 (X X )2 N
总体分组: 2 (X X )2 F F
总体成数的方差为 P(1 - P)
2.统计量,又称样本指标,反映样本特 征的统计指标
(1)样本平均数( x ),样本各 单位数量标志值的平均数
未分组: x x
n
分组: x xf f
(2)样本成数(p) 是指样本中具有某一相同标志表现的单
要有四个:
(1)总体平均数( X )
总体各单位数量标志值的平均数
X
总体未分组情况下:X N
总体分组情况下:
XF
X
F
(2)总体成数(P)
是指总体中具有某一相同标志表现的单 位数占全部总体单位数的比重
多为交替指标
总体中具有相同标志表现的单位数用N1 表示
P N1 N
(3)总体方差和标准差 总体方差(σ2)
特点: 1.抽样方式组织简便,便于实施 2.在已知总体某些有关信息的情况下,
采用等距抽样能保证样本单位在总体中 均匀的分布,从而提高了样本对总体的 代表性,有利于降低抽样误差。
无关标志排队 有关标志排队
(三)类型抽样 首先把总体按某一标志分成若干个类型
组,使各组组内标志值比较接近,然后 分别在各组内按随机原则抽取样本单位。 特点:在于把分组法和随机抽样原则结 合起来。
i2ni
n
抽样成数的平均误差:
重置抽样:
p
P(1 P) n
不重置抽样:
第四节 抽样的组织形式及抽样方 案设计
一、抽样的组织形式 (一)简单随机抽样 从总体全部单位中直接按随机原则抽取
样本单位,使每个总体单位都有同等机 会被抽中
最基本形式
(1)直接抽选法 直接从调查对象中随机抽选。

梁前德《统计学》(第二版)学习指导与习题训练答案:06第六章 抽样推断 习题答案

梁前德《统计学》(第二版)学习指导与习题训练答案:06第六章  抽样推断 习题答案

旗开得胜第六章抽样推断习题答案一、名词解释用规范性的语言解释统计学中的名词。

1. 随机原则:是指在抽样时排出主观上有意识地抽取调查单位,每个单位以相同概率被取到,从而增强样本对总体的代表性。

2. 统计量:是反映样本特征的综合指标,随样本不同而取不同的值,具有随机性。

3. 随机变量:是指变量的值无法预先确定仅以一定的可能性取值的量。

4. 样本容量:是指样本中的总体单位数量。

5. 中心极限定理:是概率论中讨论随机变量序列部分和的分布渐近于正态分布的一类定理。

这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。

6. 抽样平均误差:是反应抽样误差一般水平的指标,它的实质含义是指抽样平均数的标准差。

7. 区间估计:通过从总体中抽取的样本,根据一定的可行度与精确度的要求,构造出适当的区间,以作为总体的分布参数(或参数的函数)的真值所在范围的估计。

8. 简单随机抽样:也称为单纯随机抽样、纯随机抽样、SPS抽样,是指从总体N个单位中任意抽取n个单位作为样本,使每个可能的样本被抽中的概率相等的一种抽样方式。

1旗开得胜二、填空题根据下面提示的内容,将适宜的名词、词组或短语填入相应的空格之中。

1. 随机原则,样本,数量特征2. 样本,样本单位3. 样本个数4. 平均数,平均数5. 次数6. 平均数,成数,标准差7. 统计量,参数8. 越大,越小9. 点估计,区间估计10. 样本指标11. 重复抽样,不重复抽样12. 无偏性,有效性2313. 随机原则,样本指标,控制14. 总体单位,抽样15. 标志16. 重复抽样,不重复抽样17. 所有单位,全面调查18. 泊松分布,超几何分布19. nσ,Nn n-1σ20. σ*t =∆三、单项选择从各题给出的四个备选答案中,选择一个最佳答案,填入相应的括号中。

1 C2 A3 C4 C5 B6 D7 A8 B9 B 10 A11 A 12 B 13 A 14 B 15 C16 C 17 D 18 A 19 A 20 D四、多项选择从各题给出的四个备选答案中,选择一个或多个正确的答案,填入相应的括号中。

统计学复习第6章+抽样调查

统计学复习第6章+抽样调查
研究工人的生活水平,按工人月工资额高 低排队。
机械抽样按样本单位抽选的方法不 同,可分为三种: 1.随机起点等距抽样
示意图:
a k k k+a 2k+a k (n-1)k+a (k为抽取间隔)
k
2.半距起点等距抽样
示意图:
k 2
k
k
k k 2 2k k 2
k
(n 1)k k 2
k
(k为抽取间隔)
解: N 4000, 0.2,t 3, 1.5 t 2 2 N 32 (1.5) 2 4000 n 2 450(人) 2 2 2 2 2 N t (0.2) 4000 3 (1.5) 1 若误差范围缩小 (即0.1M 3 ),保证程度不变 2 32 (1.5) 2 4000 则 n 1344(人) 2 2 2 (0.1) 4000 3 (1.5)
在抽样调查中应用的总体指标和样本指标还有: 方差:总体方差 、样本方差s
2 2
标准差:总体标准差 、样本标准差s
抽样框 ——即总体单位的名单,是指对可以选择作为
样本的总体单位列出名册或顺序编号,以 确定总体的抽样范围和结构。 样本个数——指从总体中可能抽取的样本的数量。
样本容量——指一个样本所包括的单位数。
第二节 抽样调查的组织形式
• • • • • 一、简单随机抽样(纯随机抽样) 二、类型抽样(分类抽样) 三、机械抽样(等距抽样) 四、整群抽样 五、多阶段抽样
一、简单随机抽样(纯随机抽样)
即从总体单位中不加任何分组、排队, 完全随机地抽取调查单位。
随机抽选可有各种不同的具体做法,如: 1.直接抽选法; 2.抽签法; 3.随机数码表法;

第6章抽样推断19619

第6章抽样推断19619

1
e dx
(
x )2 22
2
x t 2
1 et2dt 1
(3)一般正态分布的标准化
若 X N , , 2
对其进行“标准化”变换,即令
Z X
则 Z N 0,1
2 、中心极限定理
一般意义: 无论随机变量服从何种分布,只要样本容量足够
大,都可以近似地看作是服从正态分布。中心极限 定理说明,大量相互独立的随机变量和的概率分布 是以正态分布为极限的。由于正态分布在概率论中 占有的中心地位,中心极限定理因此而得名。
(四)样本容量——指一个样本所包括的单位数。
(五)抽样比例——抽样比例是指在抽取样本时,所抽取的样 本单位数与总体单位数之比。
(六)样本个数——指从总体中可能抽取的最多的样本数量。
1、重复抽样: (1)考虑顺序: M = N n (2)不考虑顺序: M = (N + n- 1)! n!(N - 1)!
(一) 全及总体和抽样总体(总体和样本)
全及总体:所要调查观察的全部事物。
总体单位数用N表示。
抽样总体:抽取出来调查观察的单位。
抽样总体的单位数用n表示。 n ≥ 30 大样本 n < 30 小样本
(二) 抽样方法 1、重复抽样: 1
N
2、不重复抽样: 1 、 1 、 1 ...... 1 N N 1 N 2 N n
重复抽样和不重复抽样会产生三个差别: 抽取的样本数目不同 抽样误差的计算公式不同 抽样误差的大小不同
(三) 参数和统计量
(全及指标和抽样指标、总体指标和样本指标)
全及指标:全及总体的那些指标。 抽样指标:抽样总体的那些指标。
参数
研究总体中 的数量标志

统计学 第6章 统计推断(1、2节)

统计学 第6章 统计推断(1、2节)

即,我们有95%的把握认为,该外资 企业员工平均每周加班时间为52.3小时 至57.7小时之间。
第六章 统计推断

总体成数(比例)
1、假定条件
的区间估计
对于试验结果只有两种情况的总体(二项 总体),且为大样本,即满足
np 5和n(1 - p) 5
2、使用正态分布 z 统计量
第六章 统计推断
第六章 统计推断
设 是总体 的一个参数, 是参数 2的 1 和 X 两个统计量,且 ,对给定的常 1 2 数 ,及任意的 1) , 有 , (0 则称随机区间 ) 1 P( 1 2 是臵信度(臵信水平)为 的臵信区间 1 1 , 2 (区间估计)。其中 分别为臵信下限和 1 和 2 臵信上限。
(比例)为: 225 因为是大样本,故得: p 500 45% p (1 p ) p (1 p ) p z 2 , p z 2 n n
即,我们有95%的把握认为,19岁以下的青少年上网比例 在40.64%至49.36%之间。
第六章 统计推断
在简单随机抽样条件下,样本均值和样本 比例的抽样误差: 样本均值的抽样误差
重复抽样:
x

n
2
不重复抽样:
x

当总体方差 未知时,可用样本方差 代替。
第六章 统计推断
N n ( ) n N 1
2
s
2

样本比例的抽样误差
重复抽样: 不重复抽样:
p
1
n
p


2
第六章 统计推断
、1

2
方式一

《统计学》课件第6章抽样推断

《统计学》课件第6章抽样推断

01
定义
抽样推断是一种通过从总体中随 机抽取部分样本,并利用这些样 本数据来推断总体特性的统计方 法。
02
03
04
代表性
样本应具有代表性,能够反映总 体的特征和规律。
抽样推断的重要性
01
02
03
节省成本
通过抽样可以减少所需的 数据量,降低调查成本。
提高效率
通过快速收集样本数据, 能够快速获得总体信息, 提高调查效率。
对数据进行核查,确保 数据的准确性,及时纠
正错误或异常值。
分类与编码
对数据进行适当的分类 和编码,以便进行后续
的数据分析。
数据清理
删除或修正不准确、不 完整或重复的数据,提
高数据质量。
数据分析与解释
描述性统计
使用描述性统计方法,如平均 数、中位数、众数、标准差等
,对数据进行初步分析。
推断性统计
根据调查目的,选择合适的推 断性统计方法,如回归分析、 方差分析、卡方检验等,对总 体进行推断。
非参数假设检验的步骤
确定数据特征、提出假设、构造检验统计量、确定临界值、作出推 断结论。
非参数假设检验的优缺点
优点是适用范围广、灵活性高;缺点是计算较为复杂,需要更多的 样本数据支持。
05
样本量的确定
影响样本量的因素
总体标准差
总体标准差越大,需要的样本量 也越大,以减小估计误差。
置信水平置信水平越Biblioteka ,所需样本量也越 大,以减小估计误差。
《统计学》课件第6章抽样 推断
目录
• 抽样推断概述 • 抽样方法与技术 • 参数估计 • 假设检验 • 样本量的确定 • 实例分析
01
抽样推断概述

统计学教学课件:第六章 抽样推断

统计学教学课件:第六章  抽样推断

已知: N 5000, 300小时,x 25小时
F (t) 95% t 1.96
重复抽样:
二、区间估计
总体指标的推断(置信区间):
x x X x x pp P pp
说明在一定可能下,总 体指标落在抽样指标的 一定范围内。
置信区间: X [x x , x x ]
P [ p p, p p ]
置信区间是统计意义上的,即一定概率下,总体指标所 落在的区间长度,等于两倍的抽样极限误差。
第四节 全及指标的推断
抽样调查的目的是为了用样本指标推断总 体指标。对总体指标的估计有两种,一种是点 估计,一种是区间估计。
一、点估计(又称“定值估计”)
——不考虑抽样误差,直接用样本指标代替全及指标。即:
X x;P p
点估计不能说明误差大小,意义不大;而采用区间估 计,可以将误差控制在一定的范围内(即说明总体指标 在某一范围内的可能性大小) 。
1. 概念:先将总体单位按某一有关标志分类(组),再按
随机原则从各类(组)中抽取样本的组织形式。
(1)样本容量n的 分配方法:
① 等比例抽取
② 不等比例抽取 (标志变异大的组多抽,反之少抽。)
组与组之间是全面调查(组间方差不影响 ) (2)特点:
组内是非全面调查(组内方差影响 )
注:类型抽样的误差常小于简单随机抽样。
原则:
节省人力、物力、财力;
保证抽样推断能达到预期的可靠程度和精确 度的要求下,确定一个适当的样本容量。
确定必要抽样单位数n的依据
1、总体被研究标志的变异程度(变异大多抽,小则少抽) 2、抽样误差的范围(精确程度)(范围大少抽,小则多抽) 3、抽样推断的可靠程度(可靠程度高多抽,反之少抽)

统计学A第6章 抽样推断

统计学A第6章 抽样推断

2
样本可能数目

3 0.577 9
计算复杂,可对 定义公式变形为 更为简单的形式
3.2 抽样平均误差
(2)抽样平均误差的计算 1)抽样平均数的抽样平均误差 ① 重复抽样
第6章 抽样推断 第3节 抽样平均误差
x
(总体标准差)
n (样本容量)
在总体标准差未知, 且样本单位数较大时, 可用样本标准差代替。
解: 已知: n 100, x 58, x
则:
x


10
10 1(公斤) 100 n
x
即: 当根据样本学生的平均体重估计全部学生 的平均体重时,抽样平均误差为1公斤。
② 不重复抽样
1)抽样平均数的抽样平均误差
例2: 某厂生产一种新型灯泡共2000只,随机抽出400只作 耐用时间试验,测试结果平均使用寿命为4800小时, 样本标准差为300小时,求抽样推断的平均误差?
的数量特征做出具有一定可靠性的估计判断,从而达
到对全部研究对象的认识的一种统计方法。 一、 2.特点 ① 抽样调查建立在随机取样的基础上; ② 抽样推断是由部分推算总体的一种方法; ③ 抽样推断是运用概率估计的方法; ④ 抽样推断的抽样误差可以事先计算并加以控制。
1.2 抽样调查的作用
第6章 抽样推断 第1节 抽样调查的意义和作用
x E x
1 0.25 0 0.25 0 0.25 0 0.25 1
2
合计


27
3
3.2 抽样平均误差
第6章 抽样推断 第3节 抽样平均误差
例1 样本平均数的平均数(总体平均数)
27 23 4 E x 3(或X 3) 9 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计学
2ˆθ满足
{
1ˆP θ≤ }2
ˆθθ≤ 1α=-
则称随机区间[1ˆθ,2ˆθ]是参数θ的置信水平为1α-的置信区间, 1α-称为[1
ˆθ,2ˆθ]的置信度,1ˆθ,2ˆθ称为置信限。

这里有几点需要说明:
(1)区间[1ˆθ,2ˆθ]的端点1ˆθ,2ˆθ及长度2ˆθ-1
ˆθ都是样本的函数,从而都是随机变量,因此[1ˆθ,2
ˆθ]是一个随机区间。

(2){
1ˆP θ≤ }2
ˆθθ≤ 1α=-是说随机区间
[1ˆθ,2
ˆθ]以1α-的概率包含未知参数真值,区间长度2ˆθ-1
ˆθ描述估计的精度,置信水平1α-描述了估计的可靠度。

(3)因为未知参数θ是非随机变量,所以不能说θ落入区间[1ˆθ,2
ˆθ]的概率是1α-,而应是随机区间[1ˆθ,2ˆθ]包含θ的概率是1α-。

通俗地说,在点估计的基础上,给出总体参数的一个范围称为区间估计。

(二)总体均值的区间估计
1.正态总体且方差已知;或非正态总体、方差未知、大样本情况下
在这种情况下,样本均值的抽样分布呈正态分布,其数学期望为总体均值μ,方差为
2
n
σ。

则2
X Z n
ασ
±⋅
称为总体均值在1α-置信水平下的置信区间。

区间估计步骤:
1.计算样本统计量
p
x ,p p )1(,-=
=
μσμ
2.计算抽样平均误差
3.计算极限误差
4.确定置信区间
5.估计总量指标
注意抽样方法的不同
[例]保险公司从投保人中随机抽取36人,计算得36人的平均年龄39.5X =岁,已知投保人平均年龄近似服从正态分布,标准差为岁,试求全体投保人平均年龄的置信水平为99%的置信区间。

解:10.99,0.01,αα-==查(0,1)N 表得2
2.575Z α=
2
7.2
39.5 2.57536.4136X Z n
α
σ
-=-⨯
= 2
7.2
39.5 2.57542.5936
X Z n
α
σ
+=+⨯
= 故全体投保人平均年龄的置信水平为99%的置信区间为[,]
若总体方差2σ未知,可用样本方差S 2
代替
p
p x x μμαα2
2
Z =∆Z =∆[][]
p
p
x
x
p p x x ∆+∆
-∆+∆-,,NP
X
N
(三)估计成数时样本大小的确定
在简单随机重复抽样条件下,得到样本容量:
2
22(1)P Z P P n α-=∆(重复抽样条件下)
在简单随机不重复抽样条件下,我们可以得出估计总体比例时样本容量的计算公式为:
2
2222(1)(1)P NZ P P n N Z P P αα-=∆+-(不重复抽样条件下)
[例]根据以往的生产统计,某种产品的合格率为90%,现要求绝对误差为5%,在置信水平为95%的置信区间时,应抽取多少个产品作为样本
已知,90%P = 5%P ∆= 2
1.96Z α=
则222(1)P
Z P P n α-=∆=221.960.9(10.9)1390.05⨯⨯-= 必要样本容量的影响因素
1.总体方差的大小;
2.允许误差范围的大小;
3.概率保证程度;
4.抽样方法;
5.抽样的组织方式。

第三节 抽样的组织形式
抽样的组织形式有纯随机抽样、机械抽样、类型抽样、整群抽样和多阶段抽样。

一、纯随机抽样
1.含义:对总体单位逐一编号,然后按随机原则直接从总体中抽出若干单位构成样本
2.特点:最符合抽样调查的随机原则,是基本形式。

简便易行。

3.范围:仅适用于单位数不多、标志变异较小、分布较均匀的总体
二、类型抽样
1.含义:先将全及总体中的所有单位按某一主要标志分组,然后在各组中采用纯随机抽样或机械抽样方式,抽取一定数目的调查单位构成所需的样本。

又叫分层抽样或分类抽样。

2.方法:
A比例分配法 n i/n=N i/N
B 最佳分配法根据各层单位的变异程度的大小来分配
C经济分配法除了考虑单位数目和变异程度外,还有调查费用。

3.特点:能保证分布的均匀性,提高样本的代表性,误差较小;能同时推断总体指标和各子总体的指标
三、机械抽样
1.含义:是先将全及总体所有单位按某一标志顺序编号排列,然后按照固定顺序和相等的空间距离或间隔,从中抽取样本单位的一种抽样组织方式。

又叫等距抽样或系统抽样。

2.方法:根据需要计算抽取各个样本单位之间的距离或间隔;然后,按此间隔依次抽取必要的样本单位。

3.特点:能保证样本较均匀地分布。

是不重复的抽样。

相关文档
最新文档