平行线的判定-教学设计
平行线的判定 教案
平行线的判定教案教案标题:平行线的判定教案目标:1. 理解平行线的定义和性质。
2. 学会使用不同方法判定平行线。
3. 运用所学知识解决与平行线相关的问题。
教学重点:1. 平行线的定义和性质。
2. 平行线的判定方法。
教学难点:1. 运用所学知识解决与平行线相关的问题。
教学准备:1. 平行线的定义和性质的课件或教材。
2. 平行线判定的示意图或实物。
教学过程:一、导入(5分钟)1. 引入平行线的概念,让学生回顾并复习平行线的定义。
2. 提问:如何判断两条线段是平行的?二、知识讲解(15分钟)1. 讲解平行线的性质:平行线在同一平面内,永不相交,且任意一条直线与平行线的交线与另一条平行线的交线平行。
2. 介绍平行线的判定方法:a. 判定法一:同位角相等法。
当两条直线被一条横截线所切割时,同位角相等,则这两条直线平行。
b. 判定法二:内错角相等法。
当两条直线被一条横截线所切割时,内错角相等,则这两条直线平行。
c. 判定法三:平行线定理。
若两条直线分别与第三条直线相交,且同侧内角或同侧外角相等,则这两条直线平行。
三、示例演练(20分钟)1. 通过示意图或实物展示不同判定方法的应用。
2. 以具体的例题进行练习,引导学生运用不同的判定方法判断线段是否平行。
四、巩固练习(15分钟)1. 分发练习题,让学生独立完成。
2. 针对练习题进行讲解和答疑。
五、拓展延伸(10分钟)1. 提出一些与平行线相关的拓展问题,让学生思考并解答。
2. 鼓励学生探索和发现更多关于平行线的性质和判定方法。
六、总结归纳(5分钟)1. 总结平行线的定义和性质。
2. 归纳不同的平行线判定方法。
教学反思:本节课通过引入平行线的概念,讲解平行线的性质和判定方法,以及示例演练和练习题的训练,使学生能够熟练运用不同的判定方法判断线段是否平行。
同时,通过拓展延伸和总结归纳,培养学生的思维能力和归纳总结能力。
在教学过程中,要注重引导学生思考和解决问题的能力,提高学生的学习兴趣和主动性。
平行线的判定教案市公开课一等奖教案省赛课金奖教案
平行线的判定教案一、教学目标1. 知识目标:掌握平行线的判定方法,包括同位角相等、内错角互补、对顶角相等以及平行线的特性,为解决与平行线相关的几何问题打下基础。
2. 技能目标:培养学生观察、分析和推理的能力,提升解决几何问题的能力。
3. 情感目标:通过合作学习和解决实际问题的过程,培养学生的团队合作精神,增强自信心。
二、教学重点和难点1. 教学重点:学习平行线判定的方法和技巧,掌握平行线的基本特性。
2. 教学难点:理解平行线的概念及其判定方法,运用所学知识解决实际问题。
三、教学准备黑板、白板、书籍、平行尺、草纸、教学案例等。
四、教学过程Step 1 引入新知1. 引导学生思考:你们对“平行线”有什么了解?该如何判定两条线是否平行?2. 出示两条线段 AB 和 CD,让学生观察并比较。
引导学生表示平行的概念。
3. 引导学生讨论并总结两条线段平行的条件,如同位角相等、内错角互补、对顶角相等等。
Step 2 学习平行线判定方法1. 同位角相等:绘制两条平行线,引导学生观察同位角的性质和关系,并通过示例教案演示同位角相等的判定方法。
2. 内错角互补:绘制两条交叉的线段,引导学生观察内错角的性质和关系,并通过示例教案演示内错角互补的判定方法。
3. 对顶角相等:绘制两条平行线与第三条交叉线,引导学生观察对顶角的性质和关系,并通过示例教案演示对顶角相等的判定方法。
4. 引导学生总结并记忆平行线的判定方法,培养学生观察、分析和推理的能力。
Step 3 拓展知识与应用1. 引导学生运用所学知识解决实际问题。
例如:已知直线 AB 和直线 CD,点 P 为两直线之间的一个点,如何判定直线 PA 和直线 PB 是否平行?2. 给学生分组讨论并解决教师提供的实际问题,加深对平行线判定方法的理解和掌握。
Step 4 总结归纳1. 通过学生的合作探究和问题解决,教师对平行线的判定方法进行总结,并与学生一起归纳出判定平行线的要点和方法。
七年级数学下册《平行线的判定》教案、教学设计
1.提高观察能力,学会从几何图形中发现规律,总结性质。
2.培养逻辑思维能力,学会运用已知条件推导出结论。
3.学会运用画图、列表等方法整理、分析问题,提高解决问题的策略。
4.学会与同学合作交流,分享学习心得,提高合作能力。
(三)情感态度与价值观
1.培养学生严谨、认真的学习态度,对待数学问题要有耐心和毅力。
1.必做题:
a.请从生活中找到三个平行线的例子,并简要说明其应用。
b.根ቤተ መጻሕፍቲ ባይዱ平行线的判定方法,完成以下练习题:
-判断以下直线是否平行,并说明理由:
① a ∥ b, b ∥ c,求证:a ∥ c。
②在ΔABC中,AB ∥ CD,求证:∠BAC = ∠DCE。
-填空题:
①如果两条直线上的同位角相等,那么这两条直线()。
3.作业完成后,请认真检查,确保答案正确,提高作业质量。
4.作业提交时间:下节课前。
三、教学重难点和教学设想
(一)教学重点
1.理解并掌握平行线的定义及判定方法,包括同位角相等、内错角相等、同旁内角互补。
2.能够运用直尺、圆规等工具准确画出平行线。
3.熟练运用平行线的性质解决实际问题。
(二)教学难点
1.对平行线判定方法的灵活运用,尤其是同位角、内错角、同旁内角在实际问题中的应用。
2.画平行线时,学生对工具的使用不够熟练,需要加强实践操作。
1.设计具有层次性的练习题,让学生运用平行线的判定方法解题。
2.练习题包括:
a.判断题:判断哪些直线是平行线,并说明理由。
b.填空题:补充完整平行线的判定条件。
c.应用题:运用平行线性质解决实际问题。
3.学生独立完成练习题,教师巡回指导,解答学生疑问。
浙教版数学七年级下册1.3《平行线的判定》教学设计1
浙教版数学七年级下册1.3《平行线的判定》教学设计1一. 教材分析《平行线的判定》是浙教版数学七年级下册第1.3节的内容。
本节主要让学生掌握同位角相等、内错角相等、同旁内角互补这三个平行线的判定方法,并通过实际例题让学生学会运用这些方法解决实际问题。
教材通过简单的图形和实例,引导学生探究平行线的判定方法,培养学生的观察、思考和解决问题的能力。
二. 学情分析七年级的学生已经掌握了基本的图形知识,具有一定的观察和思考能力。
但学生在解决实际问题时,还缺乏一定的逻辑推理能力和证明意识。
因此,在教学过程中,教师需要注重启发学生的思考,引导学生学会用数学语言表达问题,并用逻辑推理的方式解决问题。
三. 教学目标1.了解并掌握同位角相等、内错角相等、同旁内角互补这三个平行线的判定方法。
2.学会运用平行线的判定方法解决实际问题。
3.培养学生的观察、思考和解决问题的能力。
4.培养学生运用数学语言表达问题和用逻辑推理解决问题的意识。
四. 教学重难点1.教学重点:掌握同位角相等、内错角相等、同旁内角互补这三个平行线的判定方法。
2.教学难点:如何引导学生理解并运用这些判定方法解决实际问题。
五. 教学方法1.启发式教学:通过提问、引导学生思考,激发学生的学习兴趣和主动性。
2.实例分析:通过具体的实例,让学生直观地理解平行线的判定方法。
3.小组讨论:让学生分组讨论,培养学生的合作意识和解决问题的能力。
4.归纳总结:引导学生自己总结平行线的判定方法,培养学生的归纳能力。
六. 教学准备1.准备相关的图形和实例,用于讲解和练习。
2.准备课件,用于辅助教学。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,激发学生的学习兴趣。
2.呈现(10分钟)展示相关的图形和实例,引导学生观察和思考,引导学生总结出同位角相等、内错角相等、同旁内角互补这三个平行线的判定方法。
3.操练(10分钟)让学生分组讨论,每组给出一个实例,运用所学的判定方法进行判断。
数学教案-平行线的判定
数学教案-平行线的判定一、教学目标1.知识目标:掌握平行线的概念和判定方法。
2.能力目标:能够通过定理和性质判定两条直线是否平行。
3.情感目标:培养学生的逻辑思维能力和解决问题的能力。
二、教学重点与难点1.教学重点:平行线的判定方法。
2.教学难点:通过性质和定理判定两条直线是否平行的方法。
三、教学准备1.教材:数学教科书、教学PPT。
2.工具:黑板、彩色粉笔、直尺。
四、教学过程步骤一:导入新知(5分钟)1.教师提出问题:“什么是平行线?如何判断两条直线是否平行?”2.通过让学生讨论来回答这个问题,并引导学生了解平行线的概念。
步骤二:引入判定平行线的定理和性质(10分钟)1.教师通过演示和讲解,引入平行线的判定定理和性质。
2.第一种判断方法是“同位角相等定理”,通过同位角相等来判定直线是否平行。
3.第二种判断方法是“内错角相等定理”,通过内错角相等来判定直线是否平行。
4.第三种判断方法是“平行线的性质”,通过直线和平行线之间的性质来判定直线是否平行。
步骤三:举例演练(30分钟)1.教师通过示意图和具体例子,演示和讲解判定平行线的方法。
2.学生根据教师的引导,进行课堂练习。
步骤四:学习体会(10分钟)1.教师引导学生进行总结:通过本节课学习,你们学到了什么?你们能够独立解决什么问题?2.学生积极发言,分享自己的学习体会和解决问题的思路。
五、课堂作业1.预习下一节课的内容。
2.完成课堂练习题。
六、板书设计- 平行线的判定方法- 同位角相等定理- 内错角相等定理- 平行线的性质七、教学反思通过本节课的教学,学生对平行线的判定方法有了初步的了解,能够通过定理和性质判定两条直线是否平行。
在教学过程中,学生参与度较高,积极思考问题并提出自己的解决方法。
然而,我也注意到部分学生在练习过程中还存在一些困难,应该在下节课中给予更多的帮助和指导。
八年级数学上册《平行线的判定》教案、教学设计
五、作业布置
为了巩固本节课所学内容,培养学生的几何思维和解决问题的能力,特布置以下作业:
1.基础巩固题:完成课本第56页的练习题1、2、3,重点在于运用平行线的判定方法解决问题。
要求:学生在完成作业时,注意理解题意,规范作图,仔细计算,确保答案正确。
三、教学重难点和教学设想
(一)教学重难点
1.重点:平行线的定义及其判定方法,包括同位角相等、内错角相等、同旁内角互补等。
2.难点:理解平行线性质的推理过程,以及在实际问题中的应用。
(二)教学设想
1.采用情境教学法,引入生活中的实际案例,让学生感知平行线在实际中的应用,激发学生学习兴趣。
例:在建筑工地,工人师傅如何保证两条直线平行?引导学生思考平行线在实际生活中的重要性。
二、学情分析
八年级学生已经具备了一定的几何基础,掌握了直线、射线、角等基本概念,能够进行简单的几何推理。在此基础上,学习平行线的判定,对于学生来说是一个新的挑战。他们需要将已知的几何知识进行拓展,运用逻辑推理和空间想象能力来探索平行线的性质和判定方法。考虑到学生的认知发展水平,他们可能在学习过程中遇到以下困难:对平行线性质的理解不够深入,判定方法的选择和应用存在困惑,以及在实际问题中运用平行线知识解决问题的能力不足。因此,在教学过程中,教师应关注学生的个体差异,提供适当的引导和帮助,鼓励学生积极参与讨论,培养他们的几何思维和解决问题的能力。同时,通过实际案例的引入,激发学生的学习兴趣,增强他们对数学知识实用性的认识。
(2)针对学生的疑惑,给予耐心解答,帮助他们克服学习难点。
(3)课后辅导,针对学生的薄弱环节,进行有针对性的辅导。
6.评价方式多样化,关注学生的全面发展。
人教版初中数学教案(最新6篇)
人教版初中数学教案(最新6篇)平行线的判定教案篇一一、教学目标1、了解推理、证明的格式,理解判定定理的证法。
2、掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证。
3、通过第二个判定定理的推导,培养学生分析问题、进行推理的能力。
4、使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育。
二、学法引导1、教师教法:启发式引导发现法。
2、学生学法:积极参与、主动发现、发展思维。
三、重点•难点及解决办法(一)重点判定定理的推导和例题的解答。
(二)难点使用符号语言进行推理。
(三)解决办法1、通过教师正确引导,学生积极思维,发现定理,解决重点。
2、通过教师指导,学生自行完成推理过程,解决难点及疑点。
四、课时安排1课时《·》五、教具学具准备三角板、投影仪、自制胶片。
六、师生互动活动设计1、通过设计练习,复习基础,创造情境,引入新课。
2、通过教师指导,学生探索新知,练习巩固,完成新授。
3、通过学生自己总结完成小结。
七、教学步骤(一)明确目标掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力。
(二)整体感知以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知。
(三)教学过程创设情境,复习引入师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影)。
学生活动:学生口答第1、2题。
师:你能说出有什么条件,就可以判定两条直线平行呢?学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行。
教师将第3题图形画在黑板上。
学生活动:学生口答理由,同角的补角相等。
师:要求学生写出符号推理过程,并板书。
【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行。
平行线的判定教学设计
平行线的判定教学设计英文回答:教學設計,平行線的判斷。
目標:學生將能夠定義平行線。
學生將能夠識別平行線。
學生將能夠應用平行線的性質來解決問題。
材料:平行線工作表。
直尺。
角尺。
鉛筆。
彩色筆。
教學程序:1. 動機活動(5 分鐘)。
詢問學生他們在日常生活中見過什麼平行線。
在白板上展示平行線的例子(例如,書架、牆壁、軌道)。
2. 定義平行線(10 分鐘)。
向學生解釋平行線的定義,永遠不會相交的兩條直線。
展示平行線的圖像,並討論其特徵。
3. 識別平行線(15 分鐘)。
提供平行線工作表,其中包含各種線段。
讓學生使用直尺和角尺來確定哪些線段是平行的。
討論平行線的各種屬性,例如:平行線具有相同的坡度。
平行線之間的距離在任何一點都相等。
4. 應用平行線的性質(10 分鐘)。
為學生提供一個問題解決活動,其中涉及使用平行線的性質。
讓學生合作解決問題,並展示他們的解決方案。
5. 評估(5 分鐘)。
評估學生是否能夠定義平行線、識別平行線並應用平行線的性質。
讓學生完成平行線測驗或工作表。
中文回答:教学设计,平行线的判定。
目标:学生能够定义平行线。
学生能够识别平行线。
学生能够运用平行线的性质解决问题。
材料:平行线练习题。
直尺。
三角尺。
铅笔。
彩笔。
教学过程:1. 激发活动(5 分钟)。
询问学生们在日常生活中见过哪些平行线。
展示平行线实例(如书柜、墙壁、铁轨)。
2. 定义平行线(10 分钟)。
向学生解释平行线的定义,永远不相交的两条直线。
展示平行线的图片,并讨论平行线特征。
3. 识别平行线(15 分钟)。
提供平行线练习题,其中包含各种线段。
让学生们利用直尺和三角尺判断哪些线段是平行的。
讨论平行线的性质:平行线斜率相同。
任意一点,平行线之间的距离相等。
4. 运用平行线性质(10 分钟)。
给学生们提供应用平行线性质解决问题的情境。
让学生合作解决问题并展示解法。
5. 测评(5 分钟)。
测评学生是否能定义平行线、识别平行线并运用平行线性质。
七年级数学上册《平行线的判定》教案、教学设计
2.实践应用:
(1)观察生活中有哪些平行线的例子,用手机或相机拍照,并简要说明其中的平行线判定方法。
(2)结合实际情境,设计一道平行线相关的问题,并给出解答。
3.小组合作:
以小组为单位,共同完成以下任务:
(1)讨论平行线在实际生活中的应用,形成一份调查报告。
1.注重学生的认知规律,从简单到复杂,由易到难,逐步引导学生掌握平行线的判定方法。
2.考虑到学生的个体差异,因材施教,给予不同层次的学生适当的关注和指导。
3.激发学生的学习兴趣,通过生动有趣的生活实例,提高学生参与课堂的积极性和主动性。
4.培养学生的合作意识,组织学生进行小组讨论,使学生在互动交流中共同提高。
四、教学内容与过程
(一)导入新课
1.教学活动设计
利用多媒体展示生活中常见的平行线现象,如铁轨、电线、书本的边缘等,引导学生观察并思考这些现象背后的数学原理。
2.提出问题
提问:“同学们,你们在生活中还见到过哪些平行线的例子?这些平行线有什么共同的特点?”通过问题引导学生关注平行线的概念。
3.引入新课
在学生回答问题的基础上,教师总结:“平行线在我们的生活中无处不在,今天我们就来学习如何判定两条直线是否平行。”
作业评价:
1.作业完成情况将作为学生课堂表现评价的一部分,鼓励学生认真完成作业,提高自身能力。
2.教师将对作业进行批改,并及时给予反馈,帮助学生查漏补缺,提高学习效果。
3.对于表现优秀的学生,教师将给予表扬和奖励,激发学生的学习积极性。
请同学们认真对待本次作业,通过作业的完成,提高自己的数学素养,为今后的学习打下坚实基础。
平行线的判定数学教案
平行线的判定数学教案一、教学目标1. 让学生理解平行线的概念,掌握平行线的判定方法。
2. 培养学生观察、分析、推理的能力,提高解决问题的能力。
3. 激发学生学习数学的兴趣,培养合作意识。
二、教学内容1. 平行线的概念:在同一平面内,永不相交的两条直线叫做平行线。
2. 平行线的判定方法:(1)同位角相等;(2)内错角相等;(3)同旁内角互补。
三、教学重点与难点1. 教学重点:平行线的判定方法。
2. 教学难点:平行线的判定方法的运用。
四、教学方法1. 采用问题驱动法,引导学生探究平行线的判定方法。
2. 利用几何画板软件,动态展示平行线的判定过程,增强直观感受。
3. 组织小组讨论,培养学生的合作意识。
五、教学过程1. 导入新课:通过生活中的实例,引入平行线的概念。
2. 探究平行线的判定方法:(1)同位角相等;(2)内错角相等;(3)同旁内角互补。
3. 实例分析:运用平行线的判定方法,解决实际问题。
4. 巩固练习:设计相关练习题,让学生独立完成,检验学习效果。
6. 布置作业:设计课后作业,巩固所学知识。
六、教学评价1. 采用课堂问答、练习题和小组讨论等方式,评价学生对平行线判定方法的掌握程度。
2. 关注学生在解决问题时的思维过程,评价学生的观察、分析、推理能力。
3. 结合学生的课堂表现、作业完成情况和课后自主学习情况,全面评价学生的学习效果。
七、教学反思1. 针对本节课的教学内容,反思教学目标的设定是否符合学生的实际需求。
2. 反思教学方法的选择和运用,是否有利于学生的理解和掌握。
3. 分析学生在学习过程中遇到的问题,思考如何在教学中进行调整和改进。
八、教学拓展1. 探究平行线的其他判定方法,如利用向量、坐标等概念。
2. 介绍平行线在实际应用中的例子,如建筑设计、交通规划等。
3. 引导学生关注数学与现实生活的联系,提高学生运用数学知识解决实际问题的能力。
九、课后作业1. 完成练习册的相关题目,巩固平行线的判定方法。
平行线的判定优质教学案
平行线的判定优质教学案一、目标:1. 知识与技能:(1)从“旋转木支架摆.放平行线的活动过程中发现”同位角相等,两直线平行;培养学生动手操作,主动探究及合作交流的能力。
(2)会用平行线的判定方法判定两直线平行,初步学会用几何语言进行简单推理和表述。
2.过程与方法:在探索图形的过程中,通过观察、操作、推理等手段,有条理地思考和表达自己地探索过程和结果,从而进一步加强学生分析,概括、表达能力。
3.情感态度价值观:让学生在活动中体验探索、交流.、成功与提升的喜悦,激发学生学习数学的兴趣,培养学生勇于实践,大胆猜想...、推理的科学态度。
二、重点:平行线的判定公理和两条判定定理。
三、教学难点:运用平行线的判定方法进行简单的推理四、教学教具:多媒体、三角板、木支架,直木棍五、教学方法:启发式引导式六、教学过程:1:课前下发预习资料,重温.对顶角.,邻补角的知识,认识公理与定理。
2:复习并导入新课:(1)直木棍展示两直线在同一平面内的两种位置关系,相交与平行,相交产生对顶角与邻补角,对顶角相等,邻补角互补。
(2)今天这节课有一个任务,“笔记本中的横隔线”拥有什么样的位置关系?是平行吗?有什么依据? 目测并不科学,需要通过严谨的.验证,通过这节课的学习要来完成这个任务。
(3)板书课题:5.2.2平行线的判定上新课前先认识新朋友,公理与定理,多媒体。
3:(1) 木支架活动,请学生摆.放,有偏差则不会平行,从经验得出上下两线平移会重.合。
这样摆是平行的,这个是基本事实叫公理,是经过实践的考验。
板书:公理:同位角相等,两直线平行。
结合图形,引导学生用符号语言表述平行线判定公理:∵∠1=∠2 (已知)∴a∥b (同位角相等,两直线平行)(2) 揭秘平行线四步画法的原理。
多媒体展示。
(3)例题运用。
例1:如下图,直线AB,CD同时垂直于直线EF,试说明AB∥CD.(4)公理谢幕.,回到木支架.,将卡纸放于内错角,也可以平行?猜测是平行,多媒体辅助,猜测:内错角相等,两直线平行。
平行线的判定定理教案
平行线的判定定理教案
一、教学目标:
1.了解平行线的定义;
2.掌握平行线的判定定理;
3.能够运用平行线的判定定理解决实际问题。
二、教学内容:
1.平行线的定义;
2.平行线的判定定理:①同位角相等定理;②平行线夹角定理;
③平行线垂直于同一直线定理;④平行线垂直于平行线定理。
三、教学方法
1.导入法:通过提问,让学生回忆平行线的定义,以引入本节
课的主要内容。
2.讲解法:通过简单的例子,讲解平行线的判定定理,并进行
详细的解析,让学生理解每个定理的条件和结论。
3.示范法:通过图片展示和板书的形式,给学生展示各种图形,并演示如何使用平行线的判定定理进行判断,让学生从中发现规律和特点。
4.练习法:通过练习题的形式,让学生独立完成各种难度的练习,巩固所学的知识点。
四、教学过程
1.导入(5分钟)
通过提问,让学生回忆平行线的定义和特点。
2.讲解(20分钟)
(1)同位角相等定理;
(2)平行线夹角定理;
(3)平行线垂直于同一直线定理;
(4)平行线垂直于平行线定理。
3.示范(15分钟)
通过板书和图片的形式,演示如何使用不同的定理判断平行线。
4.练习(20分钟)
让学生进行练习,并及时指导和纠正。
5.总结(5分钟)
通过回答问题和总结,巩固本节课所学的知识点。
五、教学评价
1.教学方法得当,能够引起学生的兴趣;
2.教学内容适合学生的认知水平;
3.教学效果良好,学生能够运用所学知识解决各种实际问题。
《平行线的判定》教案
《平行线的判定》教案【教学目标】1、理解平行线的判定方法2、能运用所学过的平行线的判定方法,进行简单的推理和计算.【教学重点与难点】教学重点:三个判定方法的发现、说理和应用.教学难点:问题的思考和推理过程是难点.【教学过程】【活动1】合作动手实验引入复习画两条平行线的方法.【活动2】平行线的判定方法1由上面,同学们你能发现判定两直线平行的方法吗?语言叙述:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单地说:同位角相等,两直线平行.几何叙述:∵∠1=∠2,∴l1∥l2(同位角相等,两直线平行)【活动3】例题讲解例已知直线l1,l2被l3所截,如图,∠1=45°,∠2=135°,试判断l1与l2是否平行.并说明理由.解:l1∥l2理由如下:∵∠2+∠3=180°,∠2=135°∴∠3=180°-∠2=180°-135°=45°∵∠1=45°∴∠1=∠3∴l1∥l2(同位角相等,两直线平行)思路:(1)判定平行线方法.(2)图中有无同位角(注∠3位置)(3)能说明∠3=∠1吗?(4)结论.(5)∠3还可以是其它位置吗?你能说明l1∥l2吗?【活动4】从原有认知结构提出问题l3l1l2123如图,问21l l 与平行的条件是什么? 再问:三线八角分为三类角, 当同位角相等时,两直线平行,那么内错角或同旁内角具有什么关系时,也能判定两直线平行呢?这就是我们今天要学习的问题.将内错角或同旁内角设法转化为利用同位角相等. 【活动5】运用特殊和一般的关系,发现新的判定方法 1.通过合作学习,提出猜想.①若图中,直线AB 与CD 被直线EF 所截,若∠3=∠4,则AB 与CD 平行吗? 你可以从以下几个方面考虑:(1)我们已经有怎样的判定两直线平行的方法? (2)有∠3=∠4,能得出有一对同位角相等吗? 由此你又获得怎样的判定平行线的方法?要求学生板书说理过程,在此基础上.将“猜想”更改成判定方法二: 两条直线被第三条直线所截,如果内错角相等,则两条直线平行. 教师并强调几何语言的表述方法 ∵∠3=∠4∴AB ∥CD (内错角相等,两条直线平行) 然后,完成“做一做”∠1=121°,∠2=120°,∠3=120°. 说出其中的平行线,并说明理由.②若图中,直线AB 与CD 被直线EF 所截,若∠2+∠4=180°,则AB 与CD 平行吗? 你可以由类似的方法得到正确的结论吗? 由此又获得怎样的判定平行线的方法?要求学生板书说理过程,在此基础上.将“猜想”更改成判定方法三: 两条直线被第三条直线所截,如果同旁内角互补,则两条直线平行. 强调几何语言的表述方法 ∵∠2+∠4=180°∴AB ∥CD (同旁内角互补,两条直线平行) 引导学生猜想:同旁内角互补,两条直线平行. 【活动6】例题教学,体验新知例2.如图,∠C+∠A=∠AEC .判断AB 与CD 是否平行,并说明理由.分析:延长CE ,交AB 于点F ,则直线CD ,AB 被直线CF 所截.这样,我们可以通过判断内错角∠C 和∠AFC 是否相等,来判定AB 与CD 是否平行.EF4A B CD1 32 EF4A B CD13 2 EF GA B CD132H提问:能否用不一样的方法来判定AB 与CD 是否平行? 提示:连结AC .例3 如图∠A+∠B+∠C+∠D=360°,且∠A=∠C ,∠B=∠D , 那么AB ∥CD ,AD ∥BC .请说明理由.先让学生思考,以小组为单位进行讨论,然后派出代表发言,学生基本上都能想到,用同旁内角互补,两条直线平行的判定,但书写难度较大,教师要加以引导说理过程. 【活动7】应用举例,变式练习(讲与练结合方式进行教学) 如图(1)∠1=∠A ,则GC ∥AB ,依据是 ; (2)∠3=∠B ,则EF ∥AB ,依据是 ; (3)∠2+∠A=180°,则DC ∥AB ,依据是 ; (4)∠1=∠4,则GC ∥EF ,依据是 ; (5)∠C+∠B=180°,则GC ∥AB ,依据是 ; (6)∠4=∠A ,则EF ∥AB ,依据是 . 探究活动:有一条纸带如图所示,如果工具只有圆规, 怎样检验纸带的两条边沿是否平行?如果没有工具呢? 请说出你的方法和依据.A CDBEACDB EFA BC。
平行线判定教案
平行线判定教案
重要概念:平行线是在同一个平面上,永远不会相交的线。
目标:学生能够根据给定条件判断两条直线是否平行。
教学步骤:
1. 引入概念:首先向学生解释什么是平行线,即在同一个平面上,永远不会相交的线。
可通过绘制图形展示给学生。
2. 提供判断平行线的条件:告诉学生判断平行线的一个重要条件是两条线的斜率相等。
3. 讲解斜率:回顾一下斜率的概念,即一条直线上任意两点之间的垂直距离除以水平距离。
4. 给出示例问题:提供几组直线的方程或图形,让学生判断它们是否平行。
5. 指导学生计算斜率:指导学生计算每条直线的斜率,然后比较它们是否相等。
6. 学生实践:让学生尝试解决一些问题,并自己计算斜率来判断直线是否平行。
7. 总结:总结斜率相等是判断直线是否平行的一个重要条件,并鼓励学生通过练习来加深对此概念的理解。
扩展练习:
1. 提供更多的直线方程或图形,让学生自己判断它们是否平行。
2. 让学生创造自己的问题,并通过计算斜率来判断直线是否平行。
3. 引导学生思考并解答问题,如:是否可能有两条不平行的直线具有相等的斜率?解释原因。
最新平行线的判定教学设计一等奖(通用8篇)
最新平行线的判定教学设计一等奖(通用8篇)平行线的判定教学设计一等奖篇一1、对于平行线的判定(2)的引入,在上课时平行线判定(1)的基础上,导入得当,衔接自然,达到预期设想目标。
2、把本课时一分为二,重点在于对例2的讲解上,添加辅助线的.导入也十分顺畅,学生掌握较好。
3、对于少部分同学同位角、内错角是哪两条直线被哪一条直线所截构成的还不是很清楚,要引起足够的重视。
平行线的判定教学设计一等奖篇二《平行线的判定及性质》的复习课是在学习这两部分知识之后,针对学生在平行线的'判定及性质区别上以及几何简单推理表述上仍存在困惑,而精心设计了这一节课的导学案。
1、教学目标和重难点基于学生的学习情况,确定了本节课的教学目标和教学重难点。
教学目标是:使学生了解平行线的判定和性质的区别;掌握平行线的判定及性质,并且会运用它们进行简单推理和计算。
教学重难点是:平行线的判定与性质的区别和简单的几何推理过程的书写。
2、具体内容安排如下:首先安排的是自主学习部分,以填空的形式。
再次让学生认清“角的数量关系”与“线平行”相互转化的几何思想,进一步明确由“角数量关系”得到“线平行”要运用平行线的判定;反过来,由“线平行”得到“角数量关系”要运用平行线的性质;从而让学生进一步体会两者在的“条件”和“结论”恰好相反。
接着安排的是巩固提高练习。
在学生明确判定和性质内容和区别之后,让学生试着书写几何推理过程。
该部分的题难度逐步提升,并且设计了一题多解的类型,开动学生脑筋,激发学习兴趣。
进一步提高分析问题、解决问题的能力,以便于能够灵活地将图形语言、符号语言和文字语言进行简单的转化。
再者安排了提高练习,目的是照顾中等生,让他们通过本节课也有一定的提高。
最后是测评反馈,目的是通过本节课学习,了解学生对该部分知识的掌握情况。
1、导学案内容设计上,测评反馈较简单,起不到测评效果;3、小组讨论过程中,学生不懂得如何进行讨论,讨论的作用起不到;4、解决问题的方法总结上不到位;5、驾驭课堂能力差,学生学习热情不能很好地调动;6、教学语言不够简练,教学心理紧张。
北师大版数学八年级上册3《平行线的判定》教学设计1
北师大版数学八年级上册3《平行线的判定》教学设计1一. 教材分析《平行线的判定》是北师大版数学八年级上册第三章的内容。
本节课主要通过探究同位角、内错角、同旁内角的概念,引导学生理解平行线的判定方法。
教材通过生活中的实例引入平行线的概念,让学生感受数学与生活的联系,激发学习兴趣。
本节课的内容是学生进一步学习直线、平面几何等知识的基础,对于学生形成几何直观、培养逻辑思维能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了直线、射线的基本概念,具备了一定的观察、操作、推理能力。
但部分学生对于实际生活中的平行线现象可能缺乏直观感知,对于平行线的判定方法的理解和应用尚有困难。
因此,在教学过程中,教师需要关注学生的认知基础,通过丰富的教学活动,帮助学生建立正确的平行线概念,提高推理和应用能力。
三. 教学目标1.理解同位角、内错角、同旁内角的定义,掌握平行线的判定方法。
2.能够运用平行线的判定方法解决实际问题,提高解决问题的能力。
3.培养学生的观察、操作、推理能力,提高学生对几何图形的认识。
4.激发学生学习数学的兴趣,培养学生的合作意识和创新精神。
四. 教学重难点1.教学重点:同位角、内错角、同旁内角的定义,平行线的判定方法。
2.教学难点:平行线的判定方法的运用,解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生感受平行线的实际意义,激发学习兴趣。
2.活动教学法:通过观察、操作、讨论等活动,让学生在实践中掌握平行线的判定方法。
3.推理教学法:引导学生运用已知知识,推理出平行线的判定方法,培养学生的推理能力。
六. 教学准备1.教学课件:制作课件,展示平行线的判定方法及相关实例。
2.教学素材:准备一些实际生活中的平行线图片,用于引导学生观察和讨论。
3.学具:为学生准备一些直线、射线等学具,用于实践活动。
七. 教学过程1.导入(5分钟)教师通过展示一些实际生活中的平行线图片,引导学生观察并说出平行线的特点。
《平行线的判定》教案
《平行线的判定》教案一、教学目标知识与技能:1. 让学生掌握平行线的定义和性质;2. 能够运用平行线的判定方法判断两条直线是否平行。
过程与方法:1. 通过观察、操作、交流等活动,培养学生的空间想象能力和逻辑思维能力;2. 学会运用同位角、内错角、同旁内角等方法判定平行线。
情感态度与价值观:1. 激发学生对数学学科的兴趣;2. 培养学生的团队合作精神,提高学生的解决问题的能力。
二、教学内容1. 平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
2. 平行线的性质:(1)平行线上的对应角相等;(2)平行线上的内错角相等;(3)平行线上的同位角相等;(4)平行线之间的距离相等。
3. 平行线的判定方法:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行。
三、教学重点与难点重点:平行线的定义和性质,平行线的判定方法。
难点:平行线的判定方法的灵活运用。
四、教学准备1. 教学课件;2. 直线模型;3. 量角器;4. 直尺。
五、教学过程1. 导入:通过展示直线模型,引导学生回顾直线的性质,为新课的学习做好铺垫。
3. 平行线的性质:引导学生通过量角器测量直线上的角,发现平行线的性质。
5. 巩固练习:设计一些判断题,让学生运用所学知识判断直线是否平行。
7. 布置作业:设计一些有关平行线的练习题,巩固所学知识。
六、教学策略1. 采用问题驱动的教学方法,引导学生主动探索平行线的性质和判定方法;2. 通过小组合作、讨论交流的形式,培养学生的团队合作精神;3. 利用多媒体课件,直观展示直线和平行线的性质,提高学生的空间想象能力。
七、教学评价1. 课堂提问:检查学生对平行线定义、性质和判定方法的理解程度;2. 课后作业:评估学生对平行线知识的掌握情况;3. 小组讨论:评价学生在团队合作中的表现,以及解决问题的能力。
1. 邀请数学家或相关领域专家,进行专题讲座,加深学生对平行线知识的理解;2. 组织学生进行数学竞赛,激发学生学习数学的兴趣;3. 开展数学实践活动,如制作直线和平行线的模型,提高学生的动手能力。
平行线的判定优秀教案
平行线的判定【课时安排】4课时【第一课时】【教学目标】1.了解平行线的概念,理解同一平面内两条直线间的位置关系。
2.掌握平行公理及平行线的画法。
【教学重难点】重点:平行线的概念、画法及平行公理。
难点:理解平行线的概念和根据几何语言画出图形。
【教学过程】(一)情景导入我们知道两条直线相交只有一个交点,除相交外,两条直线还存在其它的位置关系吗?看下面的图片:〔投影1〕双杆上面的两根横杆、支撑横杆的直干它们所在的直线相交吗?黑板的上下两边它们所在的直线相交吗?游泳池中分隔泳道的线它们所在的直线相交吗?屏风的折处和边所在的直线相交吗?今天我们就来讨论这样的问题。
(二)平行线演示:分别将木条a、b与木条c钉在一起,并把它们想象成三条直线。
转动a,直线a 从在c的左侧与直线b相交逐步变为在右侧与b相交。
想象一下,在这个过程中,有没有直线a与直线b不相交的位置呢?有,这时直线a 与直线b 左右两旁都没有交点。
同一平面内,不相交的两条直线叫做平行线。
直线AB 与直线CD 平行,记作“AB ∥CD”。
注意:1.“同一平面内”是前提,以后我们会知道,在空间即使不相交,可能也不平行;2.平行线是“两条直线”的位置关系,两条线段或两条射线平行,就是指它们所在的直线平行;3.“不相交”就是说两条直线没有公共点。
归纳一下,在同一平面内,两条直线有几种位置关系?动手画一画。
相交和平行两种。
注意:这里所指的两条直线是指不重合的直线。
(三)平行公理再来看上面的实验,想象一下,在转动木条a 的过程中,有几个位置能使a 与b 平行? 有且只有一个位置使a 与b 平行。
aC如图,过点B 画直线a 的平行线,能画几条?试试看。
只能画一条。
从实验和作图,我们可以得到怎样的事实?经过直线外一点,有且只有一条直线与这条直线平行。
这一基本事实是人们在长期的实践中总结出来的结论,我们称它为公理,这个结论叫做平行公理。
在上图中,过点C 画直线a 的平行线,它与过点B 画的平行线平行吗?试试看。
平行线判定教学设计
平行线判定教学设计第1篇:《平行线的判定》教学设计《平行线的判定(1)》教学设计一、教学目标:1.知识与技能:掌握平行线的判定方法判定方法,初步学会用几何语言进行简单推理和表述。
2.过程与方法:通过猜想、观察、操作、推理等活动,进一步发展空间观念,培养学生推理能力和有条理表达能力。
3.情感态度价值观:在活动中培养学生的合作意识,在活动中体验探索成功的喜悦,激发学生学习数学的兴趣,培养学生勇于实践,大胆猜想、推理的科学态度。
二、教学重点:探索并掌握直线平行的判定方法。
三、教学难点:运用平行线的判定方法进行简单的推理。
四、教学教具:多媒体、三角板、直尺。
五、教学方法:在教师引导下学生通过自主探索、合作交流等方式获得新知识、新方法,教师适时点拨,精炼概括,使学生的思维逐渐清晰条理,帮助学生积累经验、训练技能。
六、教学过程:(一)复习旧知引入新课:1、上节课我们学习了什么内容?(平行线,平行公理及其推论)2、如何用平行线的定义及平行公理的推论来说明两直线平行呢?(学生回答,教师总结)如果用平行线定义难以说明两条直线没有交点,平行公理的推论对条件要求较强,要有三条平行线,且其中的两条分别与第三条平行。
这说明用这两个途径说明直线平行都有一定的局限性,那么有没有其他的途径判定两条直线是否平行的方法呢?今天我们一起来探讨平行线的判定方法。
(二)探索新知1、平行线的判定方法1 (1)、回忆上节用三角板和直尺过一点P画已知直线AB的平行线的过程,你发现三角板起着什么样的作用?这种画法实际上是画一对什么角相等吗?我们是否得到一个判定两直线平行的方法?(让学生观察图形后回答,这两个角是直线AB、CD被EF截得的同位角)。
判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
简单记为“同位角相等,两直线平行”。
结合图形,引导学生用符号语言表述平行线判定方法1:因为∠1=∠2 (已知) 所以a∥b(同位角相等,两直线平行)(2)、木工用角尺画平行线的过程中,使说出用角尺画平行线的道理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线的判定教学设计新学网首页 > 语文 > 数学 > 物理 > 化学§5.2.2平行线的判定【教学重点与难点】教学重点:探索并掌握直线平行的判定方法教学难点:直线平行的判定方法的应用【教学目标】1、经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。
2、经历探究直线平行的判定方法的过程,掌握直线平行的判定方法,领悟归纳和转化的数学思想方法。
【教学方法】通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索。
教学环节的设计与展开,都以问题的解决为中心,使教学过程成为在教师指导下学生的一种自主探索的学习活动过程,在探索中形成自己的观点。
【教学过程】一、复习旧知引入新课(设计说明:复习同位角、内错角、同旁内角的识别,为探究利用角的关系判断两直线平行做好准备,由平行公理推论自然引入新课。
)1.如图,已知四条直线AB、AC、DE、FG(1)∠1与∠2是直线_____和直线____被直线________所截而成的________角.(2) ∠3与∠2是直线_____和直线____被直线________所截而成的________角.(3) ∠5与∠6是直线_____和直线____被直线________所截而成的________角.(4) ∠4与∠7是直线_____和直线____被直线________所截而成的________角.(5) ∠8与∠2是直线_____和直线____被直线________所截而成的________角.2.如果a∥b ,b ∥c ,那么_______,理由是_____________________.通过上节课的学习我们知道根据平行公理的推论可以判定两直线平行,除此之外,还有哪些方法可以判定两直线平行呢?这是我们这节课要研究的问题。
由此导入新课(教学说明:能够熟练的从几何图形中熟练识别出同位角、内错角、同旁内角及它们是哪两条直线被哪一直线所截形成的,对利用角的关系判断两直线平行至关重要,因此在新课开始之前,对相关知识进行复习,是非常必要的;在复习过程中,要关注学生识别的熟练程度,及时地进行调整与补充。
)二、探索新知(设计说明:利用问题引导学生探究平行线的判定方法,调动学生的求知欲,给学生提供自主探索、与合作交流的空间,培养学生主动参与数学活动的意识。
)1、平行线的判定方法1(1)问题:在用直尺和三角形画平行线过程中,三角尺起着什么样的作用?学生演示画图过程并分析出在画平行线的过程中,三角板是为画∠pHF与∠BGF相等。
问题:这两个角具有什么样的位置关系,我们是否得到一个判定两直线平行的方法?教师引导学生正确表达平行线的判定方法1并板书。
方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
简单记为:同位角相等,两条直线平行。
(2)教师引导学生,结合图形用符号语言表达两直线平行的判定方法1:如果∠1=∠2,那么AB∥CD.教师强调判定两直线平行方法1的条件中有两层意思:第一层这两个角是这两条被第三条直线所截而成的一对同位角;第二层这两个角相等两者缺一不可。
(3)简单应用.①教师表演木工用米尺画平行线过程,让学生说出用角尺画平行线的道理教师规范说理过程:因为∠DCB与∠FEB是直线CD、EF被AB所截而成的同位角,而且∠DCB=∠FEB,即同位角相等,根据直线平行判定方法,从而CD∥EF。
提出问题:两条直线线被第三条直线所截形成的内错角相等时,是否两直线也平行?同旁内角之间又有怎样的关系时两直线平行呢?2、判定方法2(1)问题:若上图中∠pHF=∠HGA,那么AB∥CD,为什么?分析:目前我们掌握了两种判定两直线平行的方法,但问题的条件都不符合,而根据问题的情景(两条直线被第三条直线所截),可以利用判定方法1同位角相等,两直线平行来解决问题,这就需要将以问题中的内错角相等转化为同位角相等。
可以先放手让学生尝试独立解决,后小组交流师生共同规范说理过程:因为∠pHF=∠HGA,而∠BGF=∠HGA(对顶角相等),所以∠1=∠2, 即同位角相等因此AB∥CD(2)师生归纳判定两条直线平行的方法2,教师板书:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
简单记为:内错角相等,两直线平行。
教师引导学生结合图形用符号语言表达方法2:如果∠pHF=∠HGA,那么AB∥CD。
3、判定方法3讨论:同旁内角数量上满足什么关系时,两直线平行?①学生根据图像先排除相等,当∠4是锐角时,∠2是钝角才有可能使a∥b,进一步观察猜想:如果同旁内角互补时,两条直线平行,即如果∠2+∠4=180 °,那么a∥b。
②学生利用平行判定方法1或方法2来说明猜想正确.教师根据学生说理,再准确地板书:因为∠4+∠2=180°,而∠4+∠1=180°,根据同角的补角相等,所以有∠2=∠1,即同位角相等,从而a∥b。
因为∠4+∠2=180°,而∠4+∠3=180°,根据同角的补角相等,所以有∠3=∠2,,即内错角相等,从而a∥b。
③师生归纳两条直线平行的判定方法3,教师板书:两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行。
简单记为:同旁内角互补,两直线平行。
结合图形用符号语言表达:如果∠4+∠2=180°,那么a∥b。
教师总结:我们在遇到一个新问题时常常利用已学的知识将其转化为已知的(或以解决的)问题,在这节课中,平行线的判定方法2、3就是借助于对顶角相等或邻补角互补,将内错角相等转化为同位角相等,或将同旁内角互补转化为同位角相等而得出的,这种将未知转化为已知的方法是数学中的一种重要方法,这也是我们今后推理常用的方法。
(教学说明:平行线的判定方法1是结合平行线的画法给出的,大部分学生可能会用直尺和三角板画平行线,但学生并不明白画图的原理,因此可能有部分学生并不能熟练的画图,也不能理解三角板从中所起的作用,因此在教学时,要给学生充分的回忆和分析的时间。
判定方法2、3是采用了探讨问题的方式,引导学生通过自主探索、合作交流与分析去发现角与两直线平行之间的关系,在分析思考的过程中注意向学生渗透分析问题的方法。
同时要特别关注三个结论的三种语言(文字、图形、符号)的相互转化,尤其是符号语言这是今后推理的基础。
完成三个判定方法的探究后教师进行了了一个方法小结,有意识的让学生认识数学中的转化思想,让学生逐步得学会应用它。
)初步应用:例:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?分析:垂直与直角总联系在一起.,至于要判定两条直线是否平行,先考虑学过哪些判定平行线的方法,题中的条件与哪种判定方法的条件相同。
学生先口述判断与理由,教师纠正并规范板书两步推理过程:因为b⊥a,c⊥a,所以∠1=∠2=90°,从而b∥c.教师说明:这个道理过程有两个因为……所以…… . 第一个“因为”“所以”是根据垂直定义,第二个只写出“所以”的内容b∥c,中间省略一个“因为”的内容,这个内容就是第一个“所以”中的∠1=∠2.这样处理是使说理表达更简练, 第二个“因为”、“所以”是根据同位角相等,两直线平行.例题讲解后,师提问:你还能利用其他方法说明b∥c吗?教师鼓励学生模仿课本方法用图(1)内错角相等的方法写出理由,用图(2) 同旁内角互补的方法写出理由.(1) (2)如果∠1,∠2不是同位角,也不是内错角、同旁内角,如图(3), 教师启发学生用化归思想将它转化为已知问题来解决,并且有条理地陈述理由: 如图(3),因为a⊥b,c⊥a,所以∠1=90°,∠2=90°.因为∠3=∠1=90°,从而b∥c(同位角相等,两直线平行). (3)(教学说明:此问题的难度不大,是平行线判定的应用方法可以有多种,鼓励学生用多种方法解决,现在对于推理证明的要求已经到了简单推理的层次,因此,在解决问题的过程中,不仅要关注学生说理的能力,还要关注学生是否能规范书写推理过程)三、巩固训练熟练技能(设计说明:通过形式不同的练习加强学生对知识的理解,训练学生灵活应用知识解决问题的能力)一、判断题1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等。
( )2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等。
( )二、填空1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或________,那么________, 理由是______________; 如果∠2+∠5= ______ 或者_______,那么a∥b,理由是__________.(1) (2) (3)2.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.三、选择题1.如图3所示,下列条件中,不能判定AB∥CD的是( )A.AB∥EF,CD∥EFB.∠5=∠A;C.∠ABC+∠BCD=180°D.∠2=∠32.右图,由图和已知条件,下列判断中正确的是( )A.由∠1=∠6,得AB∥FG;B.由∠1+∠2=∠6+∠7,得CE∥EIC.由∠1+∠2+∠3+∠5=180°,得CE∥FI;D.由∠5=∠4,得AB∥FG四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b的位置关系,并说明理由.。