弹性力学极坐标法习题法案

合集下载

弹性力学第四章:平面问题的极坐标解答2

弹性力学第四章:平面问题的极坐标解答2
π 2
r
σr +P θ 3σr −σθ 2σcos θ
x3 σx =− π (x2 + y2)2 2P xy2 σy =− π (x2 + y2)2 2P x2 y τxy =− π (x2 + y2)2 2P
2. 位移分量
假定为平面应力情形。 假定为平面应力情形。其极坐标形式的物理方程为
P
O y
由楔形体受集中力的情形, 由楔形体受集中力的情形,可以得到 P
O y
(令 β =0 ,α =π) : 2P cosθ σr = − ( ) π r (4-26) ) σθ =0 —— 极坐标表示的应力分量 极坐标表示的应力分量 τrθ =τθr =0
利用极坐标与直角坐标的应力转换式( ), ),可求得 利用极坐标与直角坐标的应力转换式(4-7),可求得
∂r ϕ = f (r)sinθ
θ
ϕ = f (r) (M =常 ) 数
ϕ = f (r)sinθ ϕ = f (r)cosθ (M = P⋅rsinθ) (M =M+P⋅rcosθ)
附1:曲梁应力函数确定的基本方法 :
思路: 思路: 与直梁确定应力函数的方法类似, 与直梁确定应力函数的方法类似,借且于 梁截面上应力与内力 弯矩、剪力) 应力与内力( 梁截面上应力与内力(弯矩、剪力)的关 应力与应力函数间微分关系, 系、应力与应力函数间微分关系,来推断 应力函数的分离变量形式。 应力函数的分离变量形式。 梁截面上的应力内力的关系: 梁截面上的应力内力的关系:
θ
M = Py = P⋅rsinθ
由材料力学初等理论,可知截面上正应力 由材料力学初等理论, 由此假定: 由此假定:
σθ ∝M(= P⋅rsinθ)

弹性力学 第四章 平面问题的极坐标解答

弹性力学 第四章 平面问题的极坐标解答

s = sσ
(3) 多连体中的位移单值条件
§ 4-4 应力分量的坐标变换式
·问题的提出
工程中有些问题, 用极坐标计算方便, 但应力分量用直角坐 标表述更直观. 反之也存在.
由此需要对应力分量进行坐标变换.
§ 4-4 应力分量的坐标变换式
·坐标变换
已知 σx、σy、τxy , 求 σρ、συ、τρυ?
y
fρ τ + ∂τρυdρ ρυ ∂ρ ∂συ dυ συ+ ∂σρ ∂υ σρ+ dρ ∂τυρ C ∂ρ dυ τυρ+ ∂υ
B

§ 4-1 极坐标中的平衡微分方程
·平衡微分方程
x
υ dυ ρ
Σ Fρ = 0 :
συ
A
σρ τρυ P τυρ
∂σρ σρ+ dρ (ρ+dρ)dυ - σρ ρdυ ∂ρ ∂συ dυ - συ+ dυ dρ sin ∂υ 2 + τυρ+ - συ dρ sin
Σ Fυ = 0 :
συ = ?
§ 4-4 应力分量的坐标变换式
·坐标变换
συ = ?
将两坐标系下微元体组合
τyx σy σx συ
τυρ τxy
§ 4-4 应力分量的坐标变换式
·坐标变换
已知 σx、σy、τxy , 求 σρ、συ、τρυ?
O x
υ
τyx
σy σx
συ y
τυρ τxy
Σ Fυ = 0 :
O h/2 h/2 lqx源自(v)x=0, l = 0
应力边界条件: ( σy ) y=-h/2 = - q (τyx ) y=-h/2 = 0 ( σy ) y= h/2 = 0 (τyx ) y= h/2 = 0

6-3弹性力学平面问题(极坐标)

6-3弹性力学平面问题(极坐标)
可通过微分关系直接由直角坐标系下的几何方程得到。 同前分析,当 0 时,
所以

四. 极坐标系下的物理方程
因、方向正交,则物理方程与直角坐标系下具有相同形式。 即 当为平面应变问题时,E1E、1 。
五. 极坐标系下的相容方程
极坐标系下如果用应力函数表示相容方程,体力必须为零 或关于 ( , ) 有势。
x y
2
f x f y (1 ) x y 0
f f 1 f 1
2
五. 极坐标系下的应力边界条件
设边界S的外法线方向与 、 方向的方向余弦分别为 l1、 l2 ,其上作用的面力沿、方向的分量分别为f、f 。则其 应力边界条件与直角坐标系下具有相同形式。 即
2
2 1 1 2 2 2 2
二. 极坐标系下的平衡微分方程
1. 直角坐标与极坐标系下的应力分量关系
(1)极坐标系下的应力分量和体力分量
O
如图,根据应力状态的定义, 过P 点分别以 方向和 方向为法线的截面 上的应力 、、 , 作为在极坐 标系下的应力分量。 称为径向应力, y 称为环向向应力。 (2)应力分量的坐标转换
d 1 d 2 0 d d
2 2

f 0
1 u
(不计体力)
f f 1
2
应力分量 边界条件
应力分量 (不计体力)
( ) s l1 ( ) s l2 f ( ) s l1 ( ) s l2 f
应力边界条件
位移边界条件

弹性力学平面问题极坐标

弹性力学平面问题极坐标

r
r
2 2 2 x2 y2
sin cos
r
r
cos2 sin2
r2
sin cos
r2
2
2
2 r 2
1 r
r
1 r2
2 r 2
二. 极坐标系下的平衡微分方程
1. 直角坐标与极坐标系下的应力分量关系
(1)极坐标系下的应力分量和体力分量
O
如图,根据应力状态的定义,过P
点分别以 r 方向和 方向为法线的截面
由半圆上的应力和外力的平衡关系,有
M
O
x
a
r r r
y
Fx 0
Fy 0 Mz 0
0
r
r
a
cos
ad
0
r
r a
sin
ad
0
0
r
ra
cos
r
ra
sin
d
0
0
r
ra
sin
r
ra
cos
d
0
a 0 a 0
0
r
ra
a ad
M
0
0
r
a2d M
ra
a 0
0
r
1 r
2 r
r
Fb
0
三. 极坐标系下的几何方程
1. 直角坐标与极坐标系下的位移分量关系
类似体力分量的投影关系 2. 极坐标系下的应变分量
O
x
r
Pu
u
ur
v
r
y
将P点分别沿 r 和 方向(相互垂直)两线元的线应变 r、 及其切应变 r , 作为P点的应变分量。
3. 极坐标系下的几何方程

弹性力学简明教程-第四章_平面问题的极坐标解答习题详解

弹性力学简明教程-第四章_平面问题的极坐标解答习题详解

第四章 平面问题的极坐标解答典型例题讲解例4-1 如图所示,矩形薄板在四边受纯剪切力作用,切应力大小为q 。

如果离板边较远处有一小圆孔, 试求孔边的最大和最小正应力。

例4-1图【解】(1)根据材料力学公式,求极值应力和量大正应力的方位角α0max min 2x y σσσσ+⎫=⎬⎭ 其中0,,x y x q σστ===得max min ,q q σσ==-。

最大正应力σmax 所在截面的方位角为α0max 0max 0tan 104yqq τασσπα=-=-=-→--=-qqx若在该纯剪切的矩形薄板中,沿与板边成π4方向截取矩形ABCD ,则在其边界上便承受集度为q 的拉力和压力,如图所示。

这样就把受纯剪切作用的板看作与一对边受拉,另一对边受压的板等效。

(2)取极坐标系如图。

由2222442222cos 2(1)(13),cos 2(13),(4-18)sin 2(1)(13).ρφρφr r σq φρρr σq φρr r τq φρρ⎫=--⎪⎪⎪⎪=-+⎬⎪⎪=--+⎪⎪⎭得矩形薄板ABCD 内的应力分量为()()()2222442222cos 2(1)(13)cos 2(13)sin 2(1)(13)ρφρφa a σq φa ρρa σq φb ρa a τq φc ρρ=--=-+=--+ 其中α为小孔的半径,而孔边最大与最小正应力由式(b ),在ρ=α处得到44cos 2(13)4cos 2,φa σq φaϕ=-+=-当φ=0,π时,孔边最小正应力为(σφ)min=−4q ,当φ=±π2时,孔边最大正应力为(σφ)max=4q 。

分析:矩形板ABCD 边界上各点的应力状态与板内无孔时的应力状态相同。

也可以应用叠加法,求解薄板的各种较复杂的平面应力(应变)问题。

习题全解4-1试比较极坐标和直角坐标中的平衡微分方程、几何方程和物理方程,指出哪些项是相似的,哪些项是极坐标中特有的?并说明产生这些项的原因。

弹性力学 第七章平面问题的极坐标解答

弹性力学 第七章平面问题的极坐标解答
x r cos
arctan y
x
y r sin
x
y
r x
y
两种坐标系下位移分量坐标转换公式:
ur u
v sin u cos
v
cos
u
sin
u v
ur ur
cos sin
u u
sin cos
r
u
x
u
v
ur y
2、极坐标下的平衡微分方程
•几何描述
PB面积:rd AC面积:(r+dr)d
第七章 平面问题的极坐标解答
•本质上坐标系的选择并不影响弹性力学问题的求 解。 •但是影响边界条件的描述和表达,从而关系问题 的求解难易程度。 •圆形,楔形,扇形等物体,采用极坐标系求解比 较方便。
采用极坐标可更方便几何定位描述。
§7-1 平面问题的极坐标方程
1、极坐标与直角坐标之间的关系式:
r2 x2 y2
rds 1 xds cos 1 cos yds sin 1 sin
xyds cos 1 sin yxds sin 1 cos 0
用 xy 代替 yx 简化以后,得
r x cos2 y sin2 2 xy sin cos
o
yx y
x
y
B x
y
r
xy xya
c
A
x
b r r
同样可由三角板A的平衡条件F=0,得到 r ( y x )sin cos xy (cos2 sin2 )
和y分别改换为r和 。
r
1
E
2
( r
1
)
1 2
E
(
1
r
)
r

弹性力学平面问题的极坐标解答课件

弹性力学平面问题的极坐标解答课件

b
a
2
ln
a
b2
a
2
0
位移的确定
H, I, K待定
u
1 E
(1 )
A
(1 3 )B
2(1 )B(ln
1)
2(1
)C
I
sin
K
cos
u
4B
E
H
I
cos
K
sin
左端固定:(u )0 0
0,
(u ) 0 0
0,
u
0
0
0
常数的确定:
H
I
0,
K
1 E
极坐标下的双调和方程
代入协调方程,得到应力函数U需满足
的双调和方程
2
2
1
1
2
2
2
2U
2
1
U
1
2
2U
2
0
§7-2 轴对称应力及其位移
应力函数与无关,双调和方程为
d2
d 2
1
d
d
d2 U
d 2
1
dU
d
0
4
d4 U
d 4
23
d3 U
d 3
2
d2 U
d 2
dU
问题描述 任一截面上的弯矩:
M () F cos R tan F R sin
应力函数:
U f () sin
O
m
ba
F
x
n
y
f()的求解及应力表达式
微分方程及其通解
d2
d 2
1
d
d
1
2
d2 f

弹性力学 第4章_平面问题的极坐标解答

弹性力学 第4章_平面问题的极坐标解答


0,
略去三阶微量,保留到二阶微量,得
1 2
f 0。
目录
(b)
14
§4.1 极坐标中的平衡微分方程
式(b)中1、2、4项与直角坐标的方程相 似,而
τ ρυ

τ υρ ρ
--是由于 ρ面的面积大于 ρ 面引起的, --是由于 面上的切应力 τ υρ 在C点

cos , x
sin , x
sin ; y
cos 。 y
代入,即得一阶导数的变换公式,
Φ sin Φ sinυ Φ cosυ (cosυ )Φ , x ρ ρ υ ρ ρ υ
Φ cos Φ cosυ Φ sinυ (sinυ )Φ。 y ρ ρ υ ρ ρ υ
(e)
34
§4.3 极坐标中的应力函数及相容方程
二阶导数的变换公式,可以从式(e) 导 出。例如
2 Φ ( Φ ) x x x 2 sinυ )(cos Φ sinυ Φ ). (cosυ υ ρ ρ υ ρ ρ υ
展开即得:
35
§4.3 极坐标中的应力函数及相容方程
Φ ( x, y ) 可看成是 Φ Φ(ρ,υ) ,而 ρ,υ 又
是 x, y的函数,即 Φ 是通过中间变量 ρ,υ, 为 x, y 的复合函数。 有:
Φ Φ ρ Φ υ , x ρ x υ x
Φ Φ ρ Φ υ. y ρ y υ y
33
§4.3 极坐标中的应力函数及相容方程
(3) 应用应力变换公式(下节)
σ ρ σ x cos 2 υ σ y sin 2 υ 2τ xy cosυsin υ Φ cos υ Φ sin υ 2 Φ cosυsin υ. 2 2 xy y x

第七章_弹性力学平面问题的极坐标系解答讲解

第七章_弹性力学平面问题的极坐标系解答讲解
在r = b边界(外径):
r= -qb,r=0
本问题仍为轴对称问题,且体力为零,
可采用前述的应力函数求解方程,也可按位移法求解。
1.按应力函数法求解
按应力函数求解前面已导出应力分量和位移表达式:
, ,
平面应力问题的位移:
法求解:
由基本方程 得
代入应力与位移之间关系式,对于平面应力问题,有
其中Brsin=By可略去。
将( r,)代入应力分量表达式
A、C、D由力的边界条件来定。
力的边界条件:在主要边界上,
在r = a:r= 0,r= 0, 2Aa+C/a-2D/a3= 0
在r = b:r= 0,r= 0, 2Ab+C/b-2D/b3= 0
在次要边界上,
在=0,环向方向的面力为零, 满足。
在= 0: 由于主要边界满足,则此式自然满足;
在= 0:
(3)
主要边界满足时,由(1)、(2)、(3)求出A、B、C,应力求出后,依次可求出应变和位移表达式,详细推导在徐芝纶(上册)P.91-92。
在徐芝纶(4-13)中I、K、H为刚体位移,I = u0、K = v0, H =。
可利用约束确定,如令r0=(a+b)/2,= 0处
应力分量表达代入几何方程的第一式并积分,得
——(b)
考虑位移单值性比较(a)和(b)式:
4Br-F=0B=F=0
轴对称问题的应力和位移解为:
, ,

A、C由两个力的边界条件确定。
对于无体力圆盘(或圆柱)的轴对称问题,
则根据圆盘(或圆柱)中心应力和
位移有限值,得
A=0
图示圆盘受力情况,得应力为r==2C= -q
然后,利用r = a时, ,得

弹性力学-第八章 平面问题的极坐标解答

弹性力学-第八章 平面问题的极坐标解答
径向线段PA的转角: 径向线段 的转角: 的转角 线段PB的相对伸长: 线段 的相对伸长: 的相对伸长 环向线段PB的转角: 环向线段 的转角: 的转角
ur
∂ur ur + dr ∂r A A′
x
εθ1 =
α1 = 0
P′B′ − PB (r + ur )dθ − rdθ ur (c) ) = = PB rdθ r
σ = σ r er ⊗ er +τ rθ er ⊗ eθ +τθ r eθ ⊗ er + σθ eθ ⊗ eθ 剪应力互等定理 τ rθ = τ θ r 极坐标下的平衡方程
∇ ⋅σ + f = ( ∂ σ r 1 ∂ τ rθ σ r − σ θ + + + f r )e r ∂r r ∂θ r ∂τ 1 ∂σ θ 2τ rθ +( rθ + + + fθ )eθ = 0 ∂r r ∂θ r
θ r dθ
σr τ rθ
B
Pτθr
σθ x
∂r ∂σ r C ∂σθ dθ σr + dr y − σθ + dθ dr ∂r ∂θ ∂τθr 2 ∂σθ dθ σθ + dθ τθr + dθ ∂θ + fr rdrdθ = 0 −σθ dr ∂θ 2 高阶小量,舍去) (高阶小量,舍去)

Laplace算子 算子
2
∇ = e r ∂ + eθ 1 ∂ ∂r r ∂θ
(8.1) (8.2)
∂2 1 ∂ 1 ∂2 ∇ = ∇ ⋅∇ = 2 + + 2 2 ∂r r ∂r r ∂θ B.极坐标下的几何方程 极坐标下的几何方程

弹性力学 第4章 1-5 极坐标解答

弹性力学   第4章 1-5 极坐标解答

(4 12)
u H
若适当给定约束条件,无刚体位移
u | 0 , u | / 2 0 F K I 0
A 1 C u (1 ) (1 ) E E u 0
R2
•五. 特例
1.只受内压
R ( )2 1

2
1 qr
A ln B 2 ln C 2 D (4 10)
2.应力分量的通解

A

2
B(1 2 ln ) 2C B(3 2 ln ) 2C (4 11)
0
A

2
3.位移分量的通解
I cos K sin
§4.5 轴对称应力和对应的位移
构件的几何形状,受力都关于通过Z轴对称。则为 轴对称应力问题,应力分量和应力函数均与无关。
( )
( )
( )
1.应力分量(不计体力,与无关)
1 d d d 2 2 d
0
2.相容方程:(采用应力函数,不计体力)
d2 d 2 ( 2 ) d d d2 d 2 ( 2 ) 0 d d
3.这是一个常微分方程,可以求得通解为:
A ln B 2 ln C 2 D
(4 10)
轴对称应力问题的求解
1.应力函数的通解:
(4)针孔问题(应力集中) 受外压qb内径a0时:
| r
2 q 2q2 r 2 2 1 ( ) R
孔虽然很小,但孔边应力却提高了近2倍, 这就是应力集中现象。如果外力为拉力, 则此处为2倍的拉力实际问题中,孔边发 生开裂,就是这个原因。

弹性力学 第七章 平面问题的极坐标解

弹性力学 第七章 平面问题的极坐标解

第七章平面问题的极坐标解知识点极坐标下的应力分量极坐标下的应变分量极坐标系的Laplace算符轴对称应力分量轴对称位移和应力表达式曲梁纯弯曲纯弯曲位移与平面假设带圆孔平板拉伸问题楔形体问题的应力函数楔形体应力楔形体受集中力偶作用极坐标平衡微分方程几何方程的极坐标表达应力函数轴对称位移厚壁圆筒作用均匀压力曲梁弯曲应力曲梁作用径向集中力孔口应力楔形体边界条件半无限平面作用集中力一、内容介绍在弹性力学问题的处理时,坐标系的选择从本质上讲并不影响问题的求解,但是坐标的选取直接影响边界条件的描述形式,从而关系到问题求解的难易程度。

对于圆形,楔形,扇形等工程构件,采用极坐标系统求解将比直角坐标系统要方便的多。

本章的任务就是推导极坐标表示的弹性力学平面问题基本方程,并且求解一些典型问题。

二、重点1、基本未知量和基本方程的极坐标形式;2、双调和方程的极坐标形式;3、轴对称应力与厚壁圆筒应力;4、曲梁纯弯曲、楔形体和圆孔等典型问题§7.1 平面问题极坐标解的基本方程学习思路:选取极坐标系处理弹性力学平面问题,首先必须将弹性力学的基本方程以及边界条件通过极坐标形式描述和表达。

本节的主要工作是介绍基本物理量,包括位移、应力和应变的极坐标形式;并且将基本方程,包括平衡微分方程、几何方程和本构关系转化为极坐标形式。

由于仍然采用应力解法,因此应力函数的极坐标表达是必要的。

应该注意的是坐标系的选取与问题求解性质无关,因此弹性力学直角坐标解的基本概念仍然适用于极坐标。

学习要点:1、极坐标下的应力分量;2、极坐标平衡微分方程;3、极坐标下的应变分量;4、几何方程的极坐标表达;5、本构方程的极坐标表达;6、极坐标系的Laplace算符;7、应力函数。

1、极坐标下的应力分量为了表明极坐标系统中的应力分量,从考察的平面物体中分割出微分单元体ABCD,其由两个相距dρ的圆柱面和互成dϕ的两个径向面构成,如图所示在极坐标系中,用σρ 表示径向正应力,用σϕ 表示环向正应力,τϕρ 和τρϕ 分别表示圆柱面和径向面的切应力,根据切应力互等定理,τϕρ =τρϕ 。

弹性力学 平面问题的极坐标解答2

弹性力学  平面问题的极坐标解答2

r 0
由此可见,应变分量也只是r的 函数,与无关,即应变绕z轴对 称
2、位移分量
u r 1 A r [(1 ) 2 (1 3 ) B r E r 2(1 ) B ln r 2(1 )C ]
积分得:
1 A ur [(1 ) (1 3 ) Br E r 2(1 ) Br (ln r 1) 2(1 )Cr ] 平衡微分方程 4—2 极坐标中的几何方程和物理方程 4—3 极坐标中的应力函数与相容方程 4—4 应力分量的坐标变换式 4—5 轴对称应力和相应的位移
4—6 圆环或圆筒受均布压力 4—8 圆孔的孔边、应力集中
4—9 半平面体在边界上受集中力
4—10 半平面体在边界上受分布力
A r 2 B(1 2 ln r ) 2C r A 2 B(3 2 ln r ) 2C r
r r
由此可以看出,应力分量只是r得函数,不 随而变化,且只有正应力,无剪应力
一、轴对称问题的应变和位移
1、应变分量
1 A r [(1 ) 2 (1 3 ) B E r 2(1 ) B ln r 2(1 )C ] 1 A [(1 ) 2 (3 ) B E r 2(1 ) B ln r 2(1 )C ]
1 sin yx ds sin 1 cos 0
r x cos y sin 2 xy sin cos
2 2
同理,由平衡方程:
F 0
2 2
r ( y x ) sin cos xy (cos sin )
o
x
y yx

弹性力学 平面问题极坐标解法

弹性力学 平面问题极坐标解法
第四章 平面问题极坐标解法
适解问题:主要边界是圆周曲 线的弹性力学平面问题比较适 用于极坐标解法
圆环问题 曲梁(扇形)问题 楔形体问题 开圆孔问题
注意:不同坐标系下的解答, 仅是表答形式不同。由于弹性 力学问题是唯一的,问题的解 答的物理本质也是相同的。
极坐标系
极坐标系是曲线坐标系
坐标r(径向坐标、极径):坐标 原点到空间点的距离,坐标正向 有原点指向空间点
完全光滑(法向不脱离、切向无摩擦, 可滑动)
法向力学平衡 Tr Tr 0 法向位移连续 ur ur 切向自由 T T 0
不完全光滑(法向不脱离、切向有摩擦,可滑动)
力学平衡 Tr Tr 0, T T 0 法向位移连续 ur ur 切向库伦摩擦定律 T T f Tr f Tr
r
F
0
E
1 2
(
r ),
几何方程
r
E
2(1
)
r
r
ur r
边界条件
ur r
1 r
u
Tr rl r m Tr T rl m T
r
1 ur
r
u r
u r
ur ur u u
极坐标下的应力函数和相容方程(1)
直角坐标下的相容方程 4 22 0
y P
r x2 y2
切线构成局部正交坐标标架
极坐标下的应力、应变和位移
应力分量
法向是径向坐标正向的截面的应力
r rr r
方向是周向坐标正向的截面的应力
r r 应变分量
径向坐标方向的线应变 r rr 周向坐标方向的线应变 相互垂直的径向和周向的剪应变 r 位移分量
径向位移 ur 周向位移 u
2 2 2 1 1 2

弹性力学简明教程-平面问题的极坐标解答习题详解

弹性力学简明教程-平面问题的极坐标解答习题详解

4第四章年面问軀的級坐标解各典型例题讲解例4T 如图所示,矩形薄板在四边受纯剪切力作用,切应力大小为q 。

如果 离板边较远处有一小圆孔,试求孔边的最大和最小正应力。

例4-1图【解】(1)根据材料力学公式,求极值应力和量大正应力的方位角%其中 = 6 = 0, q = % 得最大正应力。

税“所在截面的方位角为%若在该纯剪切的矩形薄板中,沿与板边成殳方向截取矩形ABCD,则在其边界 4上便承受集度为q的拉力和压力,如图所示。

这样就把受纯剪切作用的板看作与一对边受拉,另一对边受压的板等效。

(2)取极坐标系如图。

由a =t7 cos 2(^(1--^-)(1-3-^5-),P~ P-厂4(4-18)=-^cos2^(l + 3—XP2 2% = -q sin 2卩(1 一二)(i+3 二)・得矩形薄板ABCD内的应力分量为2 2j =gcos2°(l-爲)(1-3牛)(a)=-^ cos 2^(1+ 3^-)(b)p2 2% sin 2卩(1 - $)(1+ 3 爲)(c)其中a为小孔的半径,而孔边最大与最小正应力由式(b),在p = a处得到兀=-q cos 2^(1 + 3—) = -4cos2©当(P = 0, Tl时,孔边最小正应力为(%)仙=一切,当申=±夕时,孔边最大正应力为(%)*乂= 4q。

分析:矩形板ABCD边界上各点的应力状态与板内无孔时的应力状态相同。

也可以应用叠加法,求解薄板的各种较复杂的平面应力(应变)问题。

习题全解4-1试比较极坐标和直角坐标中的平衡微分方程、几何方程和物理方程,指出哪些项是相似的,哪些项是极坐标中特有的?并说明产生这些项的原因。

【解】(1)极坐标,直角坐标中的平衡微分方程—+——+ ― / =0 dp p d (p p dr 1 Oq-^- + ---------- +—^ + f=0Pdcr dr.K—^ + —+ / =0dx dy ——+ —— + /v =0dy dx将极坐标中的平衡微分方程与直角坐标中的平衡微分方程相比较,第一式中, 前两项与直角坐标相似;而严项是由于正P 面上的面积大于负P 面上的面积而产生 的,-严是由于正负(P 而上的正应力%在通过微分体中心的P 方向有投影而引起的。

弹性力学:第四章 平面问题的极坐标解答(1)

弹性力学:第四章  平面问题的极坐标解答(1)

1. 极坐标中的微元体
径向体力: kr 环向体力: k
应力:PA面 ,r
O
r
d r r
rd B
Pr x
(r dr)d
dr
kr k
A
r
r
r
dr
PB面 r , r
d
BC面
r
r
d
AC面
r
r
r
dr
r
r
r
dr
y
d
C
r
r
r
d
r
r
dr
应力正向规定:
正应力 —— 拉为正,压为负;
2 x 2
2 y 2
( x
y)
0
4
4x 42源自4x 2 y2
4
y 4
0
(2-25) 常体力简化 (2-27)
应力的应力函数表示:
x
2
y 2
Xx
y
2
x 2
Yy
xy
2
xy
(2-26)
(x, y)
极坐标下的应力函数与相容方程
(1)极坐标与直角坐标间的关系:
O
r2 x2 y2
arctan y
x
r
x
0
2
y 2
0
r
y
x y
P
y 0
2
x 2
0

0时,
x y
r
r
xy 0
2
xy
0
1 r2
1 r
2 2
1 r r
r
x 0
2
y 2
sin 2
0
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档