ANSYS高级接触问题13

合集下载

ansys接触问题

ansys接触问题

接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。

接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。

一般的接触分类接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触,在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触,另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。

ANSYS接触能力ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。

为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。

如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSTS使用的接触单元和使用它们的过程,下面分类详述。

点─点接触单元点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下)如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。

点─面接触单元点─面接触单元主要用于给点─面的接触行为建模,例如两根梁的相互接触。

基于ANSYS软件的接触问题分析及在工程中的应用

基于ANSYS软件的接触问题分析及在工程中的应用

基于ANSYS软件的接触问题分析及在工程中的应用基于ANSYS软件的接触问题分析及在工程中的应用一、引言接触问题是工程领域中常见的一个重要问题,它在很多实际应用中都具有关键作用。

接触分析能够帮助工程师设计和改进各种产品和结构,从而提高其性能和寿命,减少故障和事故的发生。

ANSYS作为一款强大的工程仿真软件,提供了多种接触分析方法和工具,为工程师们解决接触问题提供了便利。

本文将重点介绍基于ANSYS软件的接触问题分析方法和其在工程中的应用。

二、接触问题的分析方法接触问题的分析方法主要包括两种:解析方法和数值模拟方法。

解析方法基于一系列假设和理论分析,能够给出理论解析解,但局限于简单的几何形状和边界条件。

数值模拟方法通过建立几何模型和边界条件,利用数值计算的方法求解接触过程的力学行为和变形情况,可以适用于复杂的几何形状和边界条件。

ANSYS软件采用的是数值模拟方法,它基于有限元法和多体动力学原理,可以使用接触元素来建立模型,模拟接触过程中的相互作用,得到接触点的应力、应变以及变形信息,从而分析接触的性能和行为。

接下来将介绍ANSYS软件中的接触分析方法和其在工程中的应用。

三、接触分析方法1. 接触元素:ANSYS软件提供了多种接触元素供用户选择,包括面接触元素、体接触元素和线接触元素。

用户可以根据具体的接触问题选择合适的接触元素,建立几何模型来模拟接触行为。

2. 接触定义:在ANSYS软件中,用户可以通过定义接触性质、接触参数和接触约束来描述接触问题。

接触性质包括摩擦系数、接触行为模型等;接触参数包括接触初始状态、接触刚度等;接触约束包括接触面间的约束条件等。

3. 接触分析:通过在ANSYS软件中建立模型,定义接触参数和加载条件,进行接触分析,得到接触点的应力、应变和变形信息。

可以通过分析结果来评估接触性能,发现可能存在的问题,并进行改进和优化。

四、ANSYS软件在工程中的应用1. 机械工程领域:在机械工程中,接触问题广泛存在于各种设备和结构中,如轴承、齿轮、支撑结构等。

ANSYS接触问题(42页,详细)(图文)

ANSYS接触问题(42页,详细)(图文)

接触问题(参考ANSYS的中文帮助文件)当两个分离的表面互相碰触并共切时,就称它们牌接触状态。

在一般的物理意义中,牌接触状态的表面有下列特点:1、不互相渗透;2、能够互相传递法向压力和切向摩擦力;3、通常不传递法向拉力。

接触分类:刚性体-柔性体、柔性体-柔性体实际接触体相互不穿透,因此,程序必须在这两个面间建立一种关系,防止它们在有限元分析中相互穿过。

――罚函数法。

接触刚度――lagrange乘子法,增加一个附加自由度(接触压力),来满足不穿透条件――将罚函数法和lagrange乘子法结合起来,称之为增广lagrange法。

三种接触单元:节点对节点、节点对面、面对面。

接触单元的实常数和单元选项设置:FKN:法向接触刚度。

这个值应该足够大,使接触穿透量小;同时也应该足够小,使问题没有病态矩阵。

FKN值通常在0.1~10之间,对于体积变形问题,用值1.0(默认),对弯曲问题,用值0.1。

FTOLN:最大穿透容差。

穿透超过此值将尝试新的迭代。

这是一个与接触单元下面的实体单元深度(h)相乘的比例系数XX省为0.1。

此值太小,会引起收敛困难。

ICONT:初始接触调整带。

它能用于围绕目标面给出一个“调整带”,调整带内任何接触点都被移到目标面上;如果不给出ICONT值,ANSYS根据模型的大小提供一个较小的默认值(<0.03=PINB:指定近区域接触范围(球形区)。

当目标单元进入pinball区时,认为它处于近区域接触,pinball区是围绕接触单元接触检测点的圆(二维)或球(三维)。

可以用实常数PINB调整球形区(此方法用于初始穿透大的问题是必要的) PMIN和PMAX:初始容许穿透容差。

这两个参数指定初始穿透范围,ANSYS 把整个目标面(连同变形体)移到到由PMIN和PMAX指定的穿透范围内,而使其成为闭合接触的初始状态。

初始调整是一个迭代过程,ANSYS最多使用20个迭代步把目标面调整到PMIN和PMAX范围内,如果无法完成,给出警告,可能需要修改几何模型。

ANSYS主要的接触问题

ANSYS主要的接触问题

• ·点-面接触单元在节点传递力(面-面接触单元 在高斯点传递力)此特性使其只能用于低阶单元 (角节点)-这是由于中间节点的单元节点上的 反力不均匀(图1-3):
• ·单元不提供偏移功能-用这些单元尚无法模拟梁 和壳的厚度效应。
图1-3
§2 接触刚度
• 点-面接触单元(conta48、49)要求给出罚刚度。可 以通过实验来确定一个合适的接触刚度,使求解收敛而且 侵入量可以接受。
• 例1.梁端部接触 • 目标:验证采用点一面接触单元模拟梁端部接触。 • 建立2D点一面接触单元,求解大变形接触分析并进行后
处理。图4-1 • 模型描述:悬臂梁施加端部位移(图4-1)。
图4-1
• 文件: node_to_surface.inp
• /PREP7
• ET,1,BEAM3 • B=0.5 • H=0.5 • R,1,B*H,B*(H**3)/12,
Component
• Component name = CONTACT
• Component is made of = nodes • 【OK】 • 命令:CM,CONTACT,node
• 由于几何体和变形的多样化,可能有多个目标面 和同一个接触面相互作用,在这种情况下必须定 义多个接触对。对每个表面,需要建立一个包含 表面节点上的组元,然后通过这些表面节点在接 触面之间形成所有可能的接触形状。应该包括比 实际需要更多的节点。
• ·普通的点-面接触功能通过多个交迭的接触单元 来实现。在缺省的情况下,一个单元的每个接触 点与每个可能的目标面连接,大表面上生成的单 元总数会很快变得非常巨大(图3-1)。
表面指定为一组节点,用点-面接触单元来模拟面一面的接触。 • ·面一面接触单元处理角点接触有困难,因为它们采用高斯点作为接

ANSYS接触问题的求解方法

ANSYS接触问题的求解方法

ANSYS接触问题的求解方法接触问题的关键在于接触体间的相互关系,此关系又可分为在接触前后的法向关系与切向关系。

法向关系在法向,必须实现两点:接触力的传递;两接触面间没有穿透。

ANSYS 通过两种算法来实现此法向接触关系:罚函数法和拉格朗日乘子法。

1.罚函数法通过接触接触问题的关键在于接触体间的相互关系,此关系又可分为在接触前后的法向关系与切向关系。

法向关系在法向,必须实现两点:1.接触力的传递;2.两接触面间没有穿透。

ANSYS通过两种算法来实现此法向接触关系:罚函数法和拉格朗日乘子法。

1.罚函数法通过接触刚度在接触力与接触面间的穿透值(接触位移)间建立力与位移的线性关系:接触刚度*接触位移=法向接触力对面面接触单元17*,接触刚度由实常数FKN来定义。

穿透值在程序中通过分离的接触体上节点间的距离来计算。

接触刚度越大,则穿透就越小,理论上在接触刚度为无穷大时,可以实现完全的接触状态,使穿透值等于零。

但是显而易见,在程序计算中,接触刚度不可能为无穷大(否则病态),穿透也就不可能真实达到零,而只能是个接近于零的有限值。

以上力与位移的接触关系可以很容易地合并入整个结构的平衡方程组K*X=F中去。

并不改变总刚K的大小。

这种罚函数法有以下几个问题必须解决:1.接触刚度FKN应该取多大?接触刚度FKN取大些可以减少虚假穿透,但是会使刚度矩阵成为病态。

2.既然与实际情况不符合的虚假穿透既然是不可避免的,那么可以允许有多大为合适?因此,在ANSYS程序里,通常输入FKN实常数不是直接定义接触刚度的数值,而是接触体下单元刚度的一个因子,这使得用户可以方便地定义接触刚度了,一般FKN取0.1到1中间的值。

当然,在需要时,也可以把接触刚度直接定义,FKN 输入为负数,则程序将其值理解为直接输入的接触刚度值。

对于接近病态的刚度阵,不要使用迭代求解器,例如PCG等。

它们会需要更多的迭代次数,并有可能不收敛。

可以使用直接法求解器,例如稀疏求解器等。

ANSYS高级接触教程

ANSYS高级接触教程
力和变形,另一表面为软材料构成是可变形的。 • 只在一个表面特别刚硬并且不关心刚硬物体的应力
时有效。 • 柔-柔 • 两个接触体都可以变形。
§2 接触单元
• ANSYS 采用接触单元来模拟接触问题:
• 跟踪接触位置;
• 保证接触协调性(防止接触表面相互穿透);
• 在接触表面之间传递接触应力(正压力和摩 擦)。
• 检查外法线方向(这在自动划分刚性目标面时非常重要) 图 3-3
• 打开单元坐标系标志并重绘单元
/PSYMS,ESYS,1 • 目标单元外法线方向应该指向接触面。如果单元法向
不指向接触面,用命令使之反转:
ESURF,,REVE
图3-3
• 例:Seal.dat (图3-3)
• Step 5. 建立接触面单元

设置接触单元属性、选择可变形体表面节点,并在可
变形体上建立接触单元(过程与在可变形体上建立目标单
元相同)
Main Menu > Preprocessor > Modeling >
Create > Elements > Surf/Contact >
Surf to Surf (ESURF)

这些接触单元与基体有同样的阶数(低阶或高阶)。
• 库仑法则是宏观模型,表述物体间的等效剪力 FT 不能超过正压力 FN 的一部分:
FT <= μ × FN 式中: μ- 摩擦系数 • 一旦所受剪力超过 FT,两物体将发生相对滑动。 4、弹性库仑摩擦模型:允许粘着和滑动。
§3 自动时间步、控制
接触单元的 Keyopt(7)选项控制时间步的预报。 • 0-无控制:不影响时间步尺寸。当自动时间步开关

ANSYS高级接触分析

ANSYS高级接触分析

ANSYS高级接触分析ANSYS是一种工程仿真软件,可以用于进行各种结构、流体和多物理场的仿真分析。

其中,高级接触分析是ANSYS的一项强大功能,可以用于模拟两个或多个物体之间的接触行为,包括刚性接触、弹性接触和非线性接触。

本文将介绍ANSYS高级接触分析的基本原理、应用领域和实例。

ANSYS高级接触分析的基本原理是通过数值方法来求解接触问题。

其基本思想是将接触问题分解为两个或多个物体之间的几何约束和力学方程,并通过离散化和迭代求解来得到接触状态和接触力。

在求解过程中,可以考虑物体之间的几何形状、材料特性、摩擦力和接触刚度等因素,以模拟真实接触行为。

ANSYS高级接触分析的应用领域非常广泛,例如机械工程、汽车工程、电子工程和生物医学工程等。

在机械工程领域,可以用于模拟齿轮传动、轴承接触和摩擦等问题。

在汽车工程领域,可以用于模拟刹车片与刹车盘之间的接触行为。

在电子工程领域,可以用于模拟芯片与散热器之间的接触热阻。

在生物医学工程领域,可以用于模拟骨骼和关节之间的接触力和摩擦力。

下面以模拟齿轮传动为例,介绍ANSYS高级接触分析的实例。

假设有两个齿轮,需要分析它们之间的接触行为。

首先,在ANSYS中建立齿轮的几何模型,并定义材料特性和接触边界条件。

然后,设置求解器和参数,运行仿真计算。

最后,通过结果分析和后处理,得到齿轮之间的接触力、接触应力和接触变形等信息。

在该实例中,ANSYS高级接触分析可以帮助工程师评估齿轮传动的安全性和可靠性。

通过模拟齿轮之间的接触行为,可以得到接触力的分布和接触应力的大小,进而判断齿轮是否会发生磨损、疲劳和断裂等问题。

如果发现问题,可以进一步优化齿轮设计,以提高传动效率和使用寿命。

总的来说,ANSYS高级接触分析是一种强大的工程仿真技术,可以用于模拟各种接触问题。

通过该技术,工程师可以评估接触行为的性能和可靠性,优化设计方案,提高产品的质量和竞争力。

因此,掌握ANSYS高级接触分析技术对于工程师来说是非常重要的。

ANSYS高级接触问题73852资料

ANSYS高级接触问题73852资料


与低阶单元和高阶单元都兼容

提供更好的接触结果(于后处理接触压力和摩擦应力)

可考虑壳和梁的厚度,以及壳的厚度变化

半自动接触刚度计算

刚性表面由“控制节点 – pilot node”控制

热接触特性

众0 个可用的实常数、2 个材料属性和 30 个可用
• 检查外法线方向(这在自动划分刚性目标面时非常重要) 图 3-3
• 打开单元坐标系标志并重绘单元
/PSYMS,ESYS,1 • 目标单元外法线方向应该指向接触面。如果单元法向
不指向接触面,用命令使之反转:
ESURF,,REVE
图3-3
• 例:Seal.dat (图3-3)
• Step 5. 建立接触面单元
擦)。采用切向罚刚度保证切向的协调性。(图1-2) • 作为初值,可采用:Ktangent=0.01 · Knormal • 切向罚刚度与法向罚刚度以同样的方式对收敛性和计算精度产生
影响。
• 2、接触刚度的选取
• 选定一个合适的接触刚度值需要一些经验。
• 对于面一面接触单元,接触刚度通常指定为基体单 元刚度的一个比例因子。
过程。
§2 接触单元
§2 接触单元
• 2. 点一面接触单元用于某一点和任意形状的面的 接触
• 可使用多个点-面接触单元模拟棱边和面的接 触;
• 不必事先知道接触的准确位置; • 两个面可以具有不同的网格; • 支持大的相对滑动; • 支持大应变和大转动。 • 例:点面接触可以模拟棱边和面之间的接触
§2 接触单元
§2 接触单元
• 3. 点-点接触单元用于模拟单点和另一个确定点 之间的接触。

ANSYS接触问题

ANSYS接触问题

接触问题(参考ANSYS的中文帮助文件)当两个分离的表面互相碰触并共切时,就称它们牌接触状态。

在一般的物理意义中,牌接触状态的表面有下列特点:1、不互相渗透;2、能够互相传递法向压力和切向摩擦力;3、通常不传递法向拉力。

接触分类:刚性体-柔性体、柔性体-柔性体实际接触体相互不穿透,因此,程序必须在这两个面间建立一种关系,防止它们在有限元分析中相互穿过。

――罚函数法。

接触刚度――lagrange乘子法,增加一个附加自由度(接触压力),来满足不穿透条件――将罚函数法和lagrange乘子法结合起来,称之为增广lagrange法。

三种接触单元:节点对节点、节点对面、面对面。

接触单元的实常数和单元选项设置:FKN:法向接触刚度。

这个值应该足够大,使接触穿透量小;同时也应该足够小,使问题没有病态矩阵。

FKN值通常在0.1~10之间,对于体积变形问题,用值1.0(默认),对弯曲问题,用值0.1。

FTOLN:最大穿透容差。

穿透超过此值将尝试新的迭代。

这是一个与接触单元下面的实体单元深度(h)相乘的比例系数,缺省为0.1。

此值太小,会引起收敛困难。

ICONT:初始接触调整带。

它能用于围绕目标面给出一个“调整带”,调整带内任何接触点都被移到目标面上;如果不给出ICONT值,ANSYS根据模型的大小提供一个较小的默认值(<0.03=PINB:指定近区域接触范围(球形区)。

当目标单元进入pinball区时,认为它处于近区域接触,pinball区是围绕接触单元接触检测点的圆(二维)或球(三维)。

可以用实常数PINB调整球形区(此方法用于初始穿透大的问题是必要的)PMIN和PMAX:初始容许穿透容差。

这两个参数指定初始穿透范围,ANSYS 把整个目标面(连同变形体)移到到由PMIN和PMAX指定的穿透范围内,而使其成为闭合接触的初始状态。

初始调整是一个迭代过程,ANSYS最多使用20个迭代步把目标面调整到PMIN和PMAX范围内,如果无法完成,给出警告,可能需要修改几何模型。

ANSYS高级接触问题13资料

ANSYS高级接触问题13资料
Surf/Contact > Surf to Surf(ESURF) • ·对于直接生成刚性目标面,在建立目标单元之前需要要指定附加的单元属性
TSHAP
• ·刚性目标面的自动划分不需要TSHAP。ANSYS能根据实 体模型确定合适的目标单元形状。
• -划分线(LMESH) 2-D刚性目标面
• -划分面(AMESH) 3-D刚性目标面
• 采用足够小的时间步长以获得收敛。 • -对于瞬态分析,冲击时必须使用足够数
量的计算步以描述表面间的动量转移。
• -对于路径相关现象(如接触摩擦),相 对较小的最大时间步长对计算精度是必须 的。
面一面接触单元
• §1 概述 • 面-面接触单元,是模拟任意两个表面间接触的方法。表面可以具有任意形
状。是ANSYS中最通用的接触单元。精度高、特性丰富还可使用接触向导建 模方便。(其它接触单元目前尚不能用向导)。 • ·面-面接触单元在面的高斯点处传递压力,这种先进技术使面-面接触单元 具有很多优点: • -与低阶单元和高阶单元都兼容 • -提供更好的接触结果(于后处理接触压力和摩擦应力) • -可考虑壳和梁的厚度,以及壳的厚度变化 • -半自动接触刚度计算 • -刚性表面由“控制节点”控制 • -热接触特性 • -众多的高级选项来处理复杂问题。 • ·具有众多的高级选项(20个可用的实常数、2个材料属性和30个可用的单元 选项)提供了丰富的特征库,能够用于模拟特殊的效果和处理困难的收敛情 况。 • 然而众多的选项的智能缺省选项可以有效求解许多接触问题而不需要用户介 入太多。 • 通常的做法是:开始使用高级选项之前,先试着采用缺省设置:只指定罚刚 度,穿透容差和子步数,然后进行分析。只在采用缺省设置遇到困难时才采 用高级选项。 • ·所有的高级选项也可以通过接触向导来控制。

ANSYS高级接触问题处理

ANSYS高级接触问题处理
的一个比例因子。
• -开始估计时,选用 • FKN = 1.0 大面积实体接触 • FKN = 0.01-0.1 较柔软(弯曲占主导的)部分 • -另外,也可以指定一个绝对刚度值,单位:(力/长度)
/ 面积。 • ·点一点(除CONTA178)和点-面接触单元需要为罚刚
度KN输入绝对值: • -初始估计时: • 对于大变形: 0.1*E < KN < 1.0*E • 对于弯曲: 0.01*E < KN < 0.1*E • E 为弹性模量
ANSYS 高级接触问题
• 接触问题概述 • 在工程中会遇到大量的接触问题,如齿轮的啮合、法兰
联接、机电轴承接触、卡头与卡座、密封、板成形、冲 击等等。接触是典型的状态非线性问题,它是一种高度 非线性行为。接触例子如图1:
• 分析中常常需要确定两个或多个相互接触 物体的位移、接触区域的大小和接触面上 的应力分布。

• 3. 点-点接触单元用于模拟单点和另一个确定点 之间的接触。
• -建立模型时必须事先知道确切的接触位置;
• -多个点-点接触单元可以模拟两个具有多个单 元表面间的接触;
• ·每个表面的网格必须是相同的; • ·相对滑动必须很小; • ·只对小的转动响应有效。
• 例如: 点一点接触可以模拟一些面的接触。如地 基和土壤的接触
• 3、选取接触刚度的指导:
• Step 1.开始采用较小的刚度值 • Step 2.对前几个子步进行计算 • Step 3.检查穿透量和每一个子步中的平衡迭代次数
• ·在粗略的检查中,如以实际比例显示整个模型时就能观察到穿透, 则穿透可能太大了,需要提高刚度重新分析。
• ·如果收敛的迭代次数过多(或未收敛),降低刚度重新分析。 • 注意:罚刚度可以在载荷步间改变,并且可以在重启动中调整。 • 牢记:接触刚度是同时影响计算精度和收敛性的最重要的参数。如

ANSYS高级接触问题73852

ANSYS高级接触问题73852

·接触分析中自动时间步的其它注意事项:
• 与所有其它非线性分析一样,对接触问题,时间步长是非 常有力的提高收敛性的工具。
• 采用足够小的时间步长以获得收敛。 • 对于冲击瞬态分析,必须使用足够数量的计算步以描
述表面间的动量转移。 • 对于路径相关现象(如接触摩擦),相对较小的最大
时间步长对计算精度是必须的。

库仑法则是宏观模型,表述物体间的等
效剪力 FT 不能超过正压力 FN 的一部分:
FT <= μ× FN
• 式中: μ- 摩擦系数

一旦所受剪力超过 FT,两物体将发生相对
滑动。
• 4、弹性库仑摩擦模型:允许粘着和滑动。
§3 自动时间步、控制
• 接触单元的 Keyopt(7)选项控制时间步的预报。 • 0-无控制:不影响时间步尺寸。当自动时间步开关
打开时,对于静态问题通常选此项。 • 1-自动缩减:如果接触状态改变较大,时间步二分。
对于动态问题,自动缩减通常是充分的。 • 2-合理的:比自动缩减费用更昂贵的算法。为保持
一个合理的时间载荷增量,需要在接触预测中选择此 项。适用于静态分析和连续接触时瞬态分析。 • 3-最小值:该选项为下一子步、预报时间增量的最 小值(计算费用十分昂贵,建议不用)。这个选项在 碰撞和断续接触分析中是有用的。
ANSYS 高级接触问题
• 接触问题概述 • 在工程中会遇到大量的接触问题,如齿轮的啮合、法兰
联接、机电轴承接触、卡头与卡座、密封、板成形、冲 击等等。接触是典型的状态非线性问题,它是一种高度 非线性行为。接触例子如图1:
ANSYS 高级接触问题
• 分析中常常需要确定两个或多个相互接触物体的 位移、接触区域的大小和接触面上的应力分布。

ANSYS高级接触分析

ANSYS高级接触分析

图3-3
• 例:Seal.dat (图3-3) • Step 5. 建立接触面单元 • 设置接触单元属性、选择可变形体表面节点,并在可 变形体上建立接触单元(过程与在可变形体上建立目标单 元相同) Main Menu > Preprocessor > Modeling > Create > Elements > Surf/Contact > Surf to Surf (ESURF) • 这些接触单元与基体有同样的阶数(低阶或高阶)。 • 注意,在壳或梁单元上建立目标单元或接触单元时, 可以选择要在梁或壳单元的顶层还是底层建立单元。
例如: 超弹密封
• Step 3. 设置单元选项和实常数 • 接触对由实常数号来定义,接触单元和目标单元必须具有相同的实常数。 • Step 4. 建立目标单元(网格) • 此步中所采用的方法依赖于目标面是刚性的还是柔性的。 • 刚性目标面采用: • 直接生成 (E 命令) • 自动划分 (LMESH, AMEAH) • 可变形目标面采用 • Main Menu > Preprocessor > Modeling > Create > Elements > Surf/Contact > Surf to Surf(ESURF) • 对于直接生成刚性目标面,在建立目标单元之前需要要指定附加的单元属 性 TSHAP
• 2、接触刚度的选取
选定一个合适的接触刚度值需要一些经验。 • 对于面一面接触单元,接触刚度通常指定为基体单 元刚度的一个比例因子。 ◦ 开始估计时,选用 ◦ FKN = 1.0 大面积实体接触 ◦ FKN = 0.01-0.1 较柔软(弯曲占主导的部分) • 另外,也可以指定一个绝对刚度值,单位:(力/ 长度)/ 面积。 • 对于点一点(除 CONTA178)和点-面接触单元需 要为罚刚度 KN 输入绝对值: ◦ 初始估计时: ◦ 对于大变形: 0.1*E < KN < 1.0*E ◦ 对于弯曲: 0.01*E < KN < 0.1*E ◦ E 为弹性模量

ANSYS高级接触问题71103

ANSYS高级接触问题71103

§2 摩擦
• 1、两个接触体的剪切或滑动行为可以是无摩擦的或有摩 擦的 • 无摩擦时允许物体没有阻力地相互滑动; • 有摩擦时,物体之间会产生剪切力。 • 2、摩擦消耗能量,并且是路径相关行为。 • 为获得较高的精度,时间步长必须小(图2-1)
图2-1
• 3、ANSYS 中,摩擦采用库仑模型,并有附加 选项可处理复杂的粘着和剪切行为。 • 库仑法则是宏观模型,表述物体间的等 效剪力 FT 不能超过正压力 FN 的一部分: FT <= μ × FN • 式中: μ- 摩擦系数 • 一旦所受剪力超过 FT,两物体将发生相对 滑动。 • 4、弹性库仑摩擦模型:允许粘着和滑动。
例如: 超弹密封
• Step 3. 设置单元选项和实常数 • 接触对由实常数号来定义,接触单元和目标单元必须具有相同的实常数。 • Step 4. 建立目标单元(网格) • 此步中所采用的方法依赖于目标面是刚性的还是柔性的。 • 刚性目标面采用: • 直接生成 (E 命令) • 自动划分 (LMESH, AMEAH) • 可变形目标面采用 • Main Menu > Preprocessor > Modeling > Create > Elements > Surf/Contact > Surf to Surf(ESURF) • 对于直接生成刚性目标面,在建立目标单元之前需要要指定附加的单元属 性 TSHAP
§2 接触单元
§2 接触单元
• 2. 点一面接触单元用于某一点和任意形状的面的 接触 • 可使用多个点-面接触单元模拟棱边和面的接 触; • 不必事先知道接触的准确位置; • 两个面可以具有不同的网格; • 支持大的相对滑动; • 支持大应变和大转动。 • 例:点面接触可以模拟棱边和面之间的接触

ANSYS中的接触问题

ANSYS中的接触问题

点-点的接触在ANSYS程序中提供了三种点-点的接触单元,在此,我们主要介绍前二种:[$#8226] CONTAC12[$#8226] CONTAC52[$#8226] COMBIN40我们可以在预先知道接触位置的单点接触问题中使用点-点的接触单元。

也可以在接触面网格完全相同的情况,例如过盈装配问题中,用点-点的接触元来模型两个面之间的接触。

CONTAC12:2-D点-点的接触单元这个单元是通过总体坐标系X-Y平面内的二个结点来定义的,可以用于2-D平面应力,平面应变和轴对段分析中。

程序通过一个相对于总体坐标X轴的输入角Q(用度表示)来定们接触面,接触面不一定垂直于结点I,J的连线,并且结点I,J可以位于同一位置。

CONTAC12的单元坐标系是这样定义的,总体坐标的X轴逆时针旋转Q角便得到正的滑动方向,法向方法N垂直于S,正的法向位移有张开缝隙的作用。

我们可以用下面二种方法来定义初始过盈量或缝隙。

[$#8226] 明确定义实常数INTF,这时单元关键字K4必须设置成“Real Consttant”(这是这个选项的缺省值)。

一个负的INTF值表示处于初始张开的缝隙状态。

[$#8226] 让程序以初始节点位置为基础计算初始过盈量或缝隙,这时单元关键字k4必须设置为“Initnodelocats”。

初始分开的结点定义了初始张开的缝隙。

一个实常数,初始单元状态(START)一旦被定义,程序将忽略由INTF给定的条件,有效的开始条件是:[$#8226] START=0:由INTF决定缝隙状态[$#8226] START=1:缝隙是关闭的,且没有滑动[$#8226] START=2:缝隙是关闭的,且有方向的滑动[$#8226] START=-2:缝隙是关闭的,且有负方向的滑动[$#8226] START=3:缝隙是张开的一个对开始条件的好的估计将有助于问题的收敛。

CONTAC12的实常数:界面角THETA-定义接触面方位的角度法向刚度KN-在法线方向的接触刚度位移过盈量INTF-初始过盈量基缝隙初始单元状态START粘附刚度KS-在滑动方向的接触刚度KS缺省到KNCONTAC12的单元关键字:摩擦类型K1 弹性库仑刚性库仑方位角来源于 K2 实常数THETA运动方向过盈量或缝隙基于 K4 实常数INTF初始接触的位置接触时间预测目标 K7 最小的时间增量合理的增量使用CONTAC12时的一些注意点:1、检查单元坐标系,保证使所定义的是一个间隙而不是一个钩子。

ANSYS接触问题

ANSYS接触问题

接触问题(参考ANSYS的中文帮助文件)当两个分离的表面互相碰触并共切时,就称它们牌接触状态。

在一般的物理意义中,牌接触状态的表面有下列特点:1、不互相渗透;2、能够互相传递法向压力和切向摩擦力;3、通常不传递法向拉力。

接触分类:刚性体-柔性体、柔性体-柔性体实际接触体相互不穿透,因此,程序必须在这两个面间建立一种关系,防止它们在有限元分析中相互穿过。

――罚函数法。

接触刚度――lagrange乘子法,增加一个附加自由度(接触压力),来满足不穿透条件――将罚函数法和lagrange乘子法结合起来,称之为增广lagrange法。

三种接触单元:节点对节点、节点对面、面对面。

接触单元的实常数和单元选项设置:FKN:法向接触刚度。

这个值应该足够大,使接触穿透量小;同时也应该足够小,使问题没有病态矩阵。

FKN值通常在0.1~10之间,对于体积变形问题,用值1.0(默认),对弯曲问题,用值0.1。

FTOLN:最大穿透容差。

穿透超过此值将尝试新的迭代。

这是一个与接触单元下面的实体单元深度(h)相乘的比例系数,缺省为0.1。

此值太小,会引起收敛困难。

ICONT:初始接触调整带。

它能用于围绕目标面给出一个“调整带”,调整带内任何接触点都被移到目标面上;如果不给出ICONT值,ANSYS根据模型的大小提供一个较小的默认值(<0.03=PINB:指定近区域接触范围(球形区)。

当目标单元进入pinball区时,认为它处于近区域接触,pinball区是围绕接触单元接触检测点的圆(二维)或球(三维)。

可以用实常数PINB调整球形区(此方法用于初始穿透大的问题是必要的)PMIN和PMAX:初始容许穿透容差。

这两个参数指定初始穿透范围,ANSYS 把整个目标面(连同变形体)移到到由PMIN和PMAX指定的穿透范围内,而使其成为闭合接触的初始状态。

初始调整是一个迭代过程,ANSYS最多使用20个迭代步把目标面调整到PMIN和PMAX范围内,如果无法完成,给出警告,可能需要修改几何模型。

ANSYS 18.0有限元分析基础与实例教程课件第13章

ANSYS 18.0有限元分析基础与实例教程课件第13章
接触问题分为两种基本类型:刚体-柔体的接触,半柔体-柔 体的接触,在刚体-柔体的接触问题中,接触面的一个或多个被当 作刚体(与它接触的变形体相比,有大得多的刚度),一般情况下, 一种软材料和一种硬材料接触时,问题可以被假定为刚体-柔体的 接触,许多金属成形问题归为此类接触,另一类,柔体-柔体的接 触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体 (有近似的刚度)。
命令:NEQIT。
GUI:Main Menu > Solution > Unabridged Menu > Load Step Opts > Nonlinear > Equilibrium Iter。
因为大的时间增量会使迭代趋向于变得不稳定,使用线性搜索选 项来使计算稳定化。如图13-2所示。
●程序忽略不是“pilot”节点的所有其他节点上的边界条件。 ●只有“pilot”节点能与其他单元相连 ●当定义了“pilot”节点后,不能使用约束方程(CF)或节点来耦合 (CP)来控制目标面的自由度,如果在刚性面上给定任意载荷或者约 束,必须定义“pilot”节点,是在“pilot”节点上加载,如果没有使 用“pilot”节点,只能有刚体运动。 在每个载荷步的开始,程序检查每个目标面的边界条件,如果下面的 条件都满足,那么程序将目标面作为固定处理: ●在目标面节点上没有明确定义边界条件或给定力 ●目标面节点没有和其他单元相连 ●目标面节点没有使用约束方程或节点耦合 在每个载荷步的末尾,程序将会放松被内部设置的约束条件。
●刚度矩阵的选择 (KEYOPT(6))
●时间步长控制
(KEYOPT(7))
●初始渗透影响
(KEYOPT(9))
●接触刚度修正
(KEYOPT(10))

《2024年基于ANSYS软件的接触问题分析及在工程中的应用》范文

《2024年基于ANSYS软件的接触问题分析及在工程中的应用》范文

《基于ANSYS软件的接触问题分析及在工程中的应用》篇一一、引言随着现代工程技术的快速发展,接触问题在各种工程领域中变得越来越重要。

ANSYS软件作为一款强大的工程仿真软件,其在接触问题上的分析和处理能力得到了广泛应用。

本文将介绍基于ANSYS软件的接触问题分析及在工程中的应用。

二、ANSYS软件接触问题分析1. 接触问题基本理论接触问题是一种典型的非线性问题,涉及到两个或多个物体在力、热、电等作用下的相互作用。

在ANSYS中,接触问题主要通过定义接触对、设置接触面参数、定义接触刚度等方式进行模拟。

2. ANSYS软件接触问题处理流程(1)建立模型:在ANSYS中建立涉及接触问题的物理模型。

(2)定义材料属性:设置模型中各部分的材料属性,包括弹性模量、密度、泊松比等。

(3)划分网格:对模型进行网格划分,以便更好地进行后续的数值分析和计算。

(4)定义接触对:根据实际需求,定义接触对,并设置相应的接触面参数。

(5)求解设置:设置求解器、求解参数等。

(6)结果分析:对求解结果进行分析,包括应力分布、位移变化等。

三、ANSYS软件在工程中的应用1. 机械工程领域在机械工程领域,ANSYS软件被广泛应用于分析各种机械零件的接触问题。

例如,齿轮传动中齿轮与齿轮之间的接触问题、轴承中滚动体与内外圈的接触问题等。

通过ANSYS软件的分析,可以有效地预测机械零件的应力分布、疲劳寿命等,为机械产品的设计和优化提供有力支持。

2. 土木工程领域在土木工程领域,ANSYS软件被广泛应用于分析土与结构之间的接触问题。

例如,桥梁、大坝等结构物与地基之间的相互作用、地震作用下建筑结构的动力响应等。

通过ANSYS软件的分析,可以有效地评估结构的稳定性和安全性,为土木工程的设计和施工提供有力支持。

3. 汽车工程领域在汽车工程领域,ANSYS软件被广泛应用于分析汽车零部件的接触问题。

例如,汽车发动机的缸体与缸盖之间的密封问题、汽车轮胎与地面的摩擦问题等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
持一个合理的时间 载荷增量,需要在接触预测中 选择此项。适用于静态分析和连续接触时瞬态分 析。 • 3-最小值:该选项为下一子步、预报时间增量的 最小值(计算费用十分昂贵,建议不用)。这个 选项在碰撞和断续接触分析中是有用的。
·接触分析中自动时间步的其它注意事项:
• -与所有其它非线性分析一样,对接触问 题,时间步长是非常有力的提高收敛性的 工具。
Surf/Contact > Surf to Surf(ESURF) • ·对于直接生成刚性目标面,在建立目标单元之前需要要指定附加的单元属性
TSHAP
• ·刚性目标面的自动划分不需要TSHAP。ANSYS能根据实 体模型确定合适的目标单元形状。
• -划分线(LMESH) 2-D刚性目标面
• -划分面(AMESH) 3-D刚性目标面
• ·在选择柔体表面上的节点时,如果你确定某一部分节点 永远不会接触到目标面时,可以忽略它,以减少计算时间。
• ·接触面的外法向应指向目标面。如果发现外法线方向不 正确,用下列命令修改之
ANSYS 高级接触问题
• 接触问题概述 • 在工程中会遇到大量的接触问题,如齿轮的啮合、法兰
联接、机电轴承接触、卡头与卡座、密封、板成形、冲 击等等。接触是典型的状态非线性问题,它是一种高度 非线性行为。接触例子如图1:
• 分析中常常需要确定两个或多个相互接触 物体的位移、接触区域的大小和接触面上 的应力分布。
• -创建关键点(KMESH)-控制节点(Pilot)
• 刚性目标面能与控制点联系起来,Pilot实际上是只有一个 节点的单元,通过这个节点的运动可以控制整个目标面的 运动。ANSYS只在Pilot节点上检查边界条件而忽略其它 节点的约束。
• ·对可变形体目标面建立目标单元的步骤是:
• 1.先选择可变形体表面上的节点
的一个比例因子。
• -开始估计时,选用 • FKN = 1.0 大面积实体接触 • FKN = 0.01-0.1 较柔软(弯曲占主导的)部分 • -另外,也可以指定一个绝对刚度值,单位:(力/长度)
/ 面积。 • ·点一点(除CONTA178)和点-面接触单元需要为罚刚
度KN输入绝对值: • -初始估计时: • 对于大变形: 0.1*E < KN < 1.0*E • 对于弯曲: 0.01*E < KN < 0.1*E • E 为弹性模量
• 2.然后在可变形体上建立目标单元
• Main Menu > Preprocessor > Modeling > Create > Elements > Surf/Contact >
• Surf to Surf
• ·ANSYS将根据基体的网格确定目标单元形状和外法线方 向。
• ·检查外法线方向(这在自动划分刚性目标面时非常重要) 图3-3
• 3、选取接触刚度的指导:
• Step 1.开始采用较小的刚度值 • Step 2.对前几个子步进行计算 • Step 3.检查穿透量和每一个子步中的平衡迭代次数
• ·在粗略的检查中,如以实际比例显示整个模型时就能观察到穿透, 则穿透可能太大了,需要提高刚度重新分析。
• ·如果收敛的迭代次数过多(或未收敛),降低刚度重新分析。 • 注意:罚刚度可以在载荷步间改变,并且可以在重启动中调整。 • 牢记:接触刚度是同时影响计算精度和收敛性的最重要的参数。如
刚度)来保证接触界面的协调性
• ·在数学上为保持平衡,需要有穿透值 • ·然而,物理接触实体是没有穿透的 • 分析者将面对困难的选择: • -小的穿透计算精度高,因此接触刚度应该大; • -然而,太大的接触刚度会产生收敛困难:模型可能会振荡,接触表面互相跳
开。
• ·接触刚度是同时影响计算精度和收敛的最重要的参数。你必须选定一个合适的 接触刚度。
果收敛有问题,减小刚度值,重新分析 • 在敏感的分析中,还应该改变罚刚度来验证计算结果的有效性。 • -在分析中减小刚度范围,直到结果(接触压力、最大SEQV等)
不再明显改变。
§2 摩擦
• 1、两个接触体的剪切或滑动行为可以是无 摩擦的或有摩擦的
• ·无摩擦时允许物体没有阻力地相互滑动; • ·有摩擦时,物体之间会产生剪切力。 • 2、摩擦消耗能量,并且是路径相关行为。 • 为获得较高的精度,时间步长必须小(图
§3 自动时间步、控制
• 接触单元的Keyopt(7)选项控制时间步的预报。 • 0-无控制:不影响时间步尺寸。当自动时间步开
关打开时,对于静态问题通常选此项。 • 1-自动缩减:如果接触状态改变较大,时间步二
分。对于动态问题,自动缩减通常是充分的。 • 2-合理的:比自动缩减费用更昂贵的算法。为保
2-1)

图2-1
• 3、ANSYS中,摩擦采用库仑模型,并有附 加选项可处理复杂的粘着和剪切行为。
• 库仑法则是宏观模型,表述物体间的等效剪 力FT不能超过正压力FN的一部分:

FT<=× FN
• 式中:一摩擦系数
• ·一旦所受剪力超过FT,两物体将发生相对滑动。
• 4、弹性库仑摩擦模型:允许粘着和滑动。

• 3. 点-点接触单元用于模拟单点和另一个确定点 之间的接触。
• -建立模型时必须事先知道确切的接触位置;
• -多个点-点接触单元可以模拟两个具有多个单 元表面间的接触;
• ·每个表面的网格必须是相同的; • ·相对滑动必须很小; • ·只对小的转动响应有效。 • 例如: 点一点接触可以模拟一些面的接触。如地
• 采用足够小的时间步长以获得收敛。 • -对于瞬态分析,冲击时必须使用足够数
量的计算步以描述表面间的动量转移。
• -对于路径相关现象(如接触摩擦),相 对较小的最大时间步长对计算精度是必须 的。
面一面接触单元
• §1 概述 • 面-面接触单元,是模拟任意两个表面间接触的方法。表面可以具有任意形
状。是ANSYS中最通用的接触单元。精度高、特性丰富还可使用接触向导建 模方便。(其它接触单元目前尚不能用向导)。 • ·面-面接触单元在面的高斯点处传递压力,这种先进技术使面-面接触单元 具有很多优点: • -与低阶单元和高阶单元都兼容 • -提供更好的接触结果(于后处理接触压力和摩擦应力) • -可考虑壳和梁的厚度,以及壳的厚度变化 • -半自动接触刚度计算 • -刚性表面由“控制节点”控制 • -热接触特性 • -众多的高级选项来处理复杂问题。 • ·具有众多的高级选项(20个可用的实常数、2个材料属性和30个可用的单元 选项)提供了丰富的特征库,能够用于模拟特殊的效果和处理困难的收敛情 况。 • 然而众多的选项的智能缺省选项可以有效求解许多接触问题而不需要用户介 入太多。 • 通常的做法是:开始使用高级选项之前,先试着采用缺省设置:只指定罚刚 度,穿透容差和子步数,然后进行分析。只在采用缺省设置遇到困难时才采 用高级选项。 • ·所有的高级选项也可以通过接触向导来控制。
• Step 2.指定接触面和目标面
• ·对于刚一柔接触,目标面总是刚性面
• ·对于柔-柔接触,目标面和接触面的不同选择会 产生不同的穿透(图3-1),并且影响求解精度

图3-1
• ·接触面和目标面确定准则
• -如凸面和平面或凹面接触,应指定平面或凹面为目标面;
• -如一个面上的网格较粗而另一个面上的网格较细,应指定粗网格面 为目标面;
应变、应力和变形,另一表面为软材料构 成是可变形的。 • ·只在一个表面特别刚硬并且不关心刚硬物 体的应力时有效。 • 柔-柔 • 两个接触体都可以变形。
§2 接触单元
• ANSYS采用接触单元来模拟接触问题: • —跟踪接触位置; • —保证接触协调性(防止接触表面相互穿透); • —在接触表面之间传递接触应力(正压力和摩擦)。
• -打开单元坐标系标志并重绘单元
• /PSYMS,ESYS,1
• -目标单元外法线方向应该指向接触面。如果单元法向不 指向接触面,用命令使之反转:
• ESURF,,REVE
图3-3
• 例:Seal.dat(图3-3) • Step 5.建立接触面单元 • ·设置接触单元属性、选择可变形体表面节点, • 并在可变形体上建立接触单元(过程与在可变形 • 体上建立目标单元相同)
• Main Menu > Preprocessor > Modeling > Create > Elements > Surf/Contact
• > Surf to Surf • ·这些接触单元与基体有同样的阶数(低阶或高阶)。 • ·注意,在壳或梁单元上建立目标单元或接触单元时,可以选择要在
梁或壳单元的顶层还是底层建立单元。
• 接触单元就是覆盖在分析模型接触面上的一层单 元。
• 在ANSYS中可以采用三种不同的单元来模拟接触: • 面一面接触单元; • 点一面接触单元; • 点一点接触单元。
• ·不同的单元类型具有完全不同的单元特性 和分析过程。
• 1. 面一面接触单元用于任意形状的两个表 面接触
• -不必事先知道接触的准确位置;
表面
• CONTA172 2D、3节点高阶单元,可用于带中间节点的二维实体单 元表面
• ·3D目标单元
• TARGE170
§3 面一面接触分析步骤、实例 (不通过接触向导创建接触对)
• Step 1.建立基体有限元模型
• 设置基体单元类型、实常数、材料特性
• 给基体分网:
• 命令:AMESH

VMESH
• -两个面可以具有不同的网格;
• -支持大的相对滑动;
• -支持大应变和大转动。
• 例如: 面一面接触可以模拟金属成型,如轧 制过程。
• 2. 点一面接触单元用于某一点和任意形状 的面的接触
相关文档
最新文档