高频电子线路 杨霓清 答案 第五章-角度调制与解调

合集下载

高频电子线路第5章参考答案

高频电子线路第5章参考答案
这个结果和把u1、u2换位输入的结果相比较,输出电压中少 了ω1的基频分量,而多了ω2的基频分量,同时其他组合频率 分量的振幅提高了一倍。
高频电子线路习题参考答案
5-5 图示为二极管平衡电路,u1=U1COSω1t,u2=U2COSω2t, 且U2>>U1。试分析RL上的电压或流过RL的电流频谱分量, 并与图5-7所示电路的输出相比较。 解5-5 设变压器变比为1:1,二极 管伏安特性为通过原点的理想 特性,忽略负载的影响,则 每个二极管的两端电压为:
高频电子线路习题参考答案
2 2 U1 U3 U1 U3 3a 3 cos(21 3 )t cos(21 3 )t 4 4 2 U2 U U 3 1 3 U1 cos(23 1 )t cos(23 1 )t 4 4 2 U2 U U 2 3 2U3 cos(22 3 )t cos(22 3 )t 4 4 2 U2 U U 3 2 3U2 cos(23 2 )t cos(23 2 )t 4 4
高频电子线路习题参考答案
5-4 二极管平衡电路如图所示,u1及u2的注入位置如图所示, 图中, u1=U1COSω1t,u2=U2COSω2t且U2>>U1.求u0(t) 的表示式,并与图5-7所示电路的输出相比较.
解5-4
题 5 4图
设变压器变比为1:1,二极管伏安特性为通过原点的 理想特性,忽略负载的影响,则每个二极管的两端电压为:
u D1 u1 u 2 , u D2 (u1 u 2 ) 则负载电流为: 展开后为:
题 5 5图
i D1 g DK( 2 t)(u1 u 2 ) i D2 g D K(2 t )(u1 u 2 )

《高频电子线路》 高等教育出版社 课后答案

《高频电子线路》 高等教育出版社 课后答案
-6 −12
F
= 0.0356 × 109 Hz = 35.6 MHz
R p = Qρ = 100 BW0.7 = fρ Q =
35.6 × 106 Hz = 35.6 × 104 Hz = 356 kH z 100
[解]
f0 ≈ 1
= 100 kΩ//114. kΩ//200 kΩ=42 kΩ R 42 kΩ 42 kΩ = = 37 Qe = e = ρ 390 μH/300 PF 1.14 kΩ BW0.7 = f 0 / Qe = 465 kHz/37=12.6 kHz

Re = Rs // R p // RL

R p = Qρ = 100
390 μH = 114 k66.7 BW0.7 150 × 103
2 2
⎛ 2Δf ⎞ ⎛ 2 × 600 × 103 ⎞ 1 66.7 = 1+ ⎜Q = + ⎟ ⎜ ⎟ = 8.1 f0 ⎠ 10 × 106 ⎠ ⎝ ⎝
2.3
个多大的电阻? [解]
L=
ww
w.
Q=
Up Uo
• •
已知并联谐振回路的 f 0 = 10 MHz, C=50 pF, BW0.7 = 150 kHz, 求回路的 L 和 Q 以及 Δf = 600 kHz 时电压衰减倍数。如将通频带加宽为 300 kHz,应在回路两端并接一
1 1 = = 5 × 10−6 H = 5 μ H 2 6 2 −12 (2π f 0 ) C (2π × 10 × 10 ) × 50 × 10
课后答案网
案 网
目 第2章 第3章 第4章 第5章 第6章 第7章

小信号选频放大器 谐振功率放大器 正弦波振荡器 振幅调制、振幅解调与混频电路 角度调制与解调电路 反馈控制电路

《高频电子线路》(周选昌)习题解答完整答案

《高频电子线路》(周选昌)习题解答完整答案

1 LC ∑

1-9 画出图 P1-9 所示的四个无耗的电抗~频率特性曲线,并写出关键点的频率值。
L C (a)
L
C
L1
L2 C
C1
L C2
(b) 图 P1-9
(c)
(d)
解:其电抗~频率特性曲线及关键点的频率如下图所示。
X f
X fp 0 f
0
fs
(a) f S = X
1 2p LC
(b ) X f
f0 f0 6.5 × 10 6 = → Q0 = = = 26 Q0 BW0.7 250 × 10 3
→L=
f0 =
1 2π LC
(2πf 0 )2 C
1
= 11.76 µH
Q0 =
RT
ρ
→ RT = ρQ0 = ω 0 LQ0 = 12.49 KΩ
若希望回路的通频带宽展宽一倍,则要求品质因素 Q 降低一倍,即谐振电阻减少一倍,则 应在回路两端并一个与谐振电阻 RT 一样的电阻,即 R x = RT = 12.49 KΩ 。
fp =
1 2p LC
fp
0
fp
fs
0
fs
f
(c)
(d)
1 , fp = fS = 2p L2C 2p
' = RS
1 1 ' ' ' ,回路总电容: = 2 RL 。 此 时 有 谐 振 阻 抗 : RT = R0 // RS RS , R L // RL 2 PL PC
RT
C ∑ = C1 // C 2 ,有载品质因素: Qe =
ρ
= RT ω 0 C ∑ ,其中 ω 0 =
1 LC ∑

(完整版)高频电子线路第5章习题答案

(完整版)高频电子线路第5章习题答案

第5章 振幅调制、振幅解调与混频电路5.1 已知调制信号()2cos(2π500)V,u t t Ω=⨯载波信号5()4cos(2π10)V,c u t t =⨯令比例常数1a k =,试写出调幅波表示式,求出调幅系数及频带宽度,画出调幅波波形及频谱图。

[解] 5()(42cos 2π500)cos(2π10)AM u t t t =+⨯⨯54(10.5cos 2π500)cos(2π10)V t t =+⨯⨯20.5,25001000Hz 4a m BW ===⨯= 调幅波波形和频谱图分别如图P5.1(s)(a)、(b)所示。

5.2 已知调幅波信号5[1cos(2π100)]cos(2π10)V o u t t =+⨯⨯,试画出它的波形和频谱图,求出频带宽度BW 。

[解] 2100200Hz BW =⨯=调幅波波形和频谱图如图P5.2(s)(a)、(b)所示。

5.3已知调制信号3[2cos(2π210)3cos(2π300)]Vu t t Ω=⨯⨯+⨯,载波信号55cos(2π510)V,1c a u t k =⨯⨯=,试写出调辐波的表示式,画出频谱图,求出频带宽度BW 。

[解] 35()(52cos2π2103cos2π300)cos2π510c u t t t t =+⨯⨯+⨯⨯⨯3555353555(10.4cos2π2100.6cos2π300)cos2π5105cos2π510cos2π(510210)cos2π(510210)1.5cos2π(510300) 1.5cos2π(510300)(V)t t tt t t t t t =+⨯⨯+⨯⨯⨯=⨯⨯+⨯+⨯+⨯-⨯+⨯++⨯- 3max 222104kHz BW F =⨯=⨯⨯=频谱图如图P5.3(s)所示。

5.4 已知调幅波表示式6()[2012cos(2π500)]cos(2π10)V u t t t =+⨯⨯,试求该调幅波的载波振幅cm U 、调频信号频率F 、调幅系数a m 和带宽BW 的值。

高频电子线路习题答案

高频电子线路习题答案

=9
8Ct = 260 × 10−12 − 9 × 12 × 10−12
Ct
=
260 − 8
108 × 10−12
=
19pF
1
L= (
2π × 535× 103 ) (2 260+ 19 )× 10-12
10 6
=
≈ 0.3175mH
3149423435
答:电容 Ct 为 19pF,电感 L 为 0.3175mH.
=
1 2π CRD
arctan(2π
fCRD )
∞ 0
=
1 4CRD
=
1 4 × 100 × 10−12 × 56
1010 = ≈ 44.64MHz
224
U
2 n
=
2
I
0qBn
H
2 0
= 2 × 0.465× 10−3 × 1.6× 10−19 × 44.64× 106× 562 ≈ 2083× (µV 2 )
= 4π 2 × 4652 ×106 × 200 ×10 −12
10 6 = 4π 2 ×4652 ×200 ≈ 0.586mH
B 0.707
=
f0 QL
:
QL
=
f0 B0.707
=
465× 103 8× 103
= 58.125
:
R0
= Q0 ω0C
100 = 2π × 465× 103 × 200× 10−12
=
1+
f0 0.024
12

0.998f0
=
4.99kHz
1
1
109
Q = 2πf0Crq = 2π ×5 ×103 ×0.024 ×10−12 ×15 = 3.6π = 88464260

高频电路课后答案第 5 章(王卫东编著)

 高频电路课后答案第 5 章(王卫东编著)

第5章解:(1)66625cos(2π10)17.5cos(2π10)cos(2π5000)7.5cos(2π10000)cos(2π10)u t t t t t =⨯+⨯⨯-⨯⨯66625cos(2π10)8.75cos(2π 1.00510)8.75cos(2π0.99510)t t t =⨯+⨯⨯+⨯⨯663.75cos(2π 1.0110) 3.75cos(2π0.9910)t t -⨯⨯-⨯⨯此调幅波所含的频率分量与振幅为频率(MHz )1 1.0050.995 1.010.99振幅(V )258.758.753.753.75(2)此调幅波的包络为:m ()25(10.7cos 2π50000.3cos 2π10000)25(10.7cos 0.3cos 2)U t t t =+-=+-θθ令即2m ()25(10.7cos 0.3cos 2)25(1.30.7cos 0.6cos )U t =+-=+-θθθθ(cos 1)θ≤22713736115cos cos 15cos 6612144⎡⎤⎛⎫⎛⎫=---=---⎢⎥⎪⎝⎭⎝⎭⎢⎥⎣⎦θθθ因此,当cos 1θ=-即180θ︒=时,包络的谷值为0V ;当cos 712θ=即54.3θ︒=时,包络的峰值约为37.6V 。

5.2解:设调幅波载波功率为c P ,则边频功率为2u l a c 14P P m P ==。

(1)a 1m =时,u l 110025(W)4P P ==⨯=(2)a 0.3m =时,2u l 10.3100 2.25(W)4P P ==⨯⨯=5.3解:设调幅波载波功率为c P ,则边频功率为2u l a c 14P P m P ==。

(1)∵22u l a c 110.750.6125(kW)44P P m P ===⨯⨯=∴u l 20.6125 1.225(kW)P P P =+=⨯=边频(2)集电极调幅时:o cD D50%P P P P ===η∴cD 510(kW)0.5P P ===η(3)基极调幅时:oD50%P P ==η,而o c u l 5 1.225 6.225(kW)P P P P =++=+=∴oD 6.22512.45(kW)0.5P P ===η5.4解:设载波功率为c P ,则有c 1000WP =边频功率为2u l a c14P P m P ==总功率为2a c u l c 12m P P P P P ⎛⎫=++=+ ⎪⎝⎭,因此am uP lP P1250W 250W 1500W 0.7122.5W122.5W1245W5.6解:(1)根据频谱可知已调波有四个边频分量,且每个边频分量是一个AM 信号。

高频电子技术思考题答案.doc

高频电子技术思考题答案.doc

高频电子技术思考题答案第一章 绪论1.1、无线发射电路的天线被制作在印制电路板上,能向外发射无线电波,在印制电路板上还有许多印制的导电连接线,这些导线也会向外发射无线电波吗?答:为了将正弦振荡形成的电磁能量尽可能多地向外传播出去,以便实现信号的无线传输,可以采取多种办法,例如将电容器两极板之间的距离拉大,如图1.8(b)所示,电磁波就容易发射出去;也可以将电感制成图1.8(c)所示的形状,电磁波也容易发射出去。

门铃电路印制电路板如1.9所示,由图可以看出,振荡电路中的电感L 1即被印制成图1.8(c)所示的形状,它电容C 1组成LC 谐振电路,既起着选频的作用,同时又起向外发射无线电信号的作用,这样的部件,称其为“天线”。

印制电路板上印制的导电连接线则起不到这种作用。

1.2、无线电波的传播有哪几种方式?答:地表波传播、空间波传播、天波传播、散射传播和地空传播等5种1.3、无线电频率资源有哪些特点?为什么要进行无线电管理?答:无线电频率资源具有以下四个特性:(1)有限性,(2)非耗竭性,(3)排他性,(4)易受污染性。

由于无线电频率资源的上述特性,国际社会和任何国家都必须对它进行科学的规划、严格的管理。

按照现有的法规,无线电管理的内容主要包括以下几个方面:(1)无线电台设置和使用管理(2)频率管理(3)无线电设备的研制、生产、销售和进口管理(4)非无线电波的无线电辐射管理1.4、已知一无线电波的频率是433MHz ,求其波长,这种无线电波能利用其电离层反射实现远距离传输吗?答:该无线电波在真空中的波长m c 693.010433/103/68=⨯⨯==νλ,按空间波模式传播,不能利用电离层反射来实现远距离传输。

1.5、无线电广播中的中波段,其电波是依靠什么方式传播的?答:中波段的频率在300~3000kHz 之间,以地波传播方式为主。

1.6、要实现地面与空间站的无线通信,应选用哪个频段?答:选用高于几十兆赫的VHF 、UHF 和SHF 频段无线电波。

《高频电子线路》课后答案

《高频电子线路》课后答案

高频电子线路参考答案第2章 小信号选频放大器2.1 已知并联谐振回路的1μH,20pF,100,L C Q ===求该并联回路的谐振频率0f 、谐振电阻p R 及通频带0.7BW 。

[解] 90-612110.035610Hz 35.6MHz 2π2π102010f LCH F-===⨯=⨯⨯6312640.71010022.4k 22.361022.36k 201035.610Hz35.610Hz 356kH z100p HR Q Ff BW Q ρρ--===Ω=⨯Ω=Ω⨯⨯===⨯=2.2 并联谐振回路如图P2.2所示,已知:300pF,390μH,100,C L Q ===信号源内阻s 100k ,R =Ω负载电阻L 200k ,R =Ω求该回路的谐振频率、谐振电阻、通频带。

[解] 011465kHz 2π2π390μH 300PFf LC≈==⨯0.70390μH100114k Ω300PF////100k Ω//114.k Ω//200k Ω=42k Ω42k Ω42k Ω371.14k Ω390μH/300 PF/465kHz/37=12.6kHzp e s p Lee e R Q R R R R R Q BWf Q ρρ===========2.3 已知并联谐振回路的00.710MHz,C=50pF,150kHz,f BW ==求回路的L 和Q 以及600kHz f ∆=时电压衰减倍数。

如将通频带加宽为300 kHz ,应在回路两端并接一个多大的电阻? [解] 6262120115105μH (2π)(2π1010)5010L H f C --===⨯=⨯⨯⨯⨯ 6030.7101066.715010f Q BW ⨯===⨯2236022*********.78.11010p oU f Q f U ••⎛⎫⎛⎫∆⨯⨯=+=+= ⎪ ⎪⨯⎝⎭⎝⎭当0.7300kHz BW =时6030.746120101033.33001033.31.061010.6k 2π2π10105010e e e ef Q BW Q R Q f C ρ-⨯===⨯====⨯Ω=Ω⨯⨯⨯⨯而471266.72.131021.2k 2π105010p R Q ρ-===⨯Ω=Ω⨯⨯⨯ 由于,p e pRR R R R =+所以可得10.6k 21.2k 21.2k 21.2k 10.6k e p p eR R R R R Ω⨯Ω===Ω-Ω-Ω2.4 并联回路如图P2.4所示,已知:360pF,C =1280μH,L ==100,Q 250μH,L = 12=/10,n N N =L 1k R =Ω。

第五章高频电路课后答案

第五章高频电路课后答案

v AM t 10 1 0.5 cos 2 103 t cos 2 106 t
6 6
10 cos 2 10 t 2.5 cos 2 10


10 2.5 106-103 106 2.5 106+103
10 t
3

f / Hz
频谱结构图如右图所示。 (2)载波分量的功率为 PC
VCM TΩ t 0
vDSBt
TΩ t
o 180o 突变 180o 突变 180 突变
5-6 某 调 幅 波 的 数 学 表 达 式 为
v AM t VAM 1 m1 cos1t m2 cos2t cosc t , 且
2 21 ,当该调幅波分别通过具有如图 P5-6 所示频率特性的滤波器后:
c
(b)
c

0
c
2c
(c)
4c
6c
, t 360cos10 106 t ( mV )
5-8 在 图 P5-8 所 示 的 差 分 对 管 调 制 电 路 中 , 已 知 vc 大, VBEon 可忽略。使用开关函数求 i iC1
,VCC VEE 10V , REE 15K ,晶体三极管的 很 v t 5 cos 2 103 t (mV)
i=i1-i2 源电路。若晶体三极管的 很大, VBEon 可
忽略,试导出输出电流 i 的表示式。若
-I0
I0
0 V cos v1 t 1M v id c t,v2 t V2 M cos t ,且
V2M VEE ,试画出下列两种情况下输出电
流 i 的波形及其频谱图:⑴ V1M 很小,处于小 信号状态;⑵ V1M 很大,处于开关工作状态。 解: iC 3

高频电子线路大纲

高频电子线路大纲

金陵科技学院信息技术学院«高频电子线路»教学大纲适用专业:通信工程、电子信息课程编号:0806205097 总学时数:48学时一、本课程的性质, 任务和基本要求:性质: 必修课任务:使学生掌握通信电子线路的基本分析方法和基本部件的工作原理,为后续专业课程打下基础。

基本要求:掌握无线通信设备基础理论知识及典型电路原理,通过与实践课程的紧密配合,在提高对理论理解的同时,增强分析解决实际问题的能力。

二.教学内容:理论总学时:40学时绪论本课程以通信系统为主要研究对象,讨论无线电技术设备和系统中的高频放大,振荡,频率变换等电子线路的基本原理和应用。

本课程包含以下内容:高频小信号放大器,高频功率放大器,正弦波振荡器,混频器,调制与解调电路等;本课程重原理,应用性强,学生应认真对待实验。

要点:1、无线电波段的划分:粗略了解中波,短波,超短波及微波的频段范围;2、电波传播速度c,频率f,波长λ三者关系:c=λf;3、了解无线电波三种传播方式:沿地面传播(地波),直线传播(直线波),依靠电离层传播(天波);了解中长波;短波,超短波,微波各自的传播方式及应用场合;4、了解无线通信系统的基本组成框图及各部分作用;5、了解调制的概念;为什么要调制;如何调制(即有哪三种调制方式);6、了解模拟通信的发送设备和接收设备的组成框图及各部分作用;7、超外差接收机的基本组成框图及各部分作用。

重点:1、电波传播速度c,频率f,波长λ三者关系:c=λf2、无线电波三种传播方式:沿地面传播,直线传播,依靠电离层传播;中长波;短波,超短波,微波各自对应的传播方式;3、无线通讯系统的基本组成框图及各部分作用;4、调制的概念:为什么要调制,调制的三种方式;三种信号概念:基带信号、载波信号、已调波信号的含义。

5、模拟通信的发送设备和接收设备的组成框图及各部分作用6、超外差接收机的基本组成框图、各部分作用;与直接式接收机相比的不同和优势难点:超外差接收机的基本组成框图及各部分作用第一章选频网络与阻抗变换要点:1、了解选频与滤波电路的主要原理;2、掌握串联和并联谐振回路的如下概念:总阻抗Z(或总导纳Y),谐振频率ω0,固有品质因数Q0,通频带BW0.7,矩形系数Kr0.1;掌握谐振回路的单位谐振曲线特征,会由曲线定性看指标;3、串联和并联谐振回路的主要参数计算方法(ω0;Z;Kr0.1)及其应用;4、部分接入回路的阻抗变换;5、双耦合回路的基本概念:掌握双耦合回路的谐振曲线特征及其矩形系数Kr0.1;6、典型滤波器电路原理及其应用场合(含:LC谐振式、石英晶体滤波器、陶瓷滤波器和声表面波滤波器);重点:1、选频与滤波电路的基本原理;2、掌握串联和并联谐振回路的主要参数计算方法(ω0;Z;Kr0.1)及其应用场合;学会由单位谐振曲线定性看指标;3、阻抗变换的典型电路及原理;4、各类典型滤波器电路特点及其应用场合。

(完整版)高频电子线路课后答案(胡宴如_狄苏燕)

(完整版)高频电子线路课后答案(胡宴如_狄苏燕)

说明所有习题都是我们上课布置的作业题,所有解答都是本人自己完成,其中难免有错误之处,还望大家海涵。

第2章 小信号选频放大器2.1 已知并联谐振回路的1μH,20pF,100,L C Q ===求该并联回路的谐振频率0f 、谐振电阻p R 及通频带0.7BW 。

[解] 90-6120.035610Hz 35.6MHz 2π2π102010f LCH F-===⨯=⨯⨯6312640.71010022.4k 22.361022.36k 201035.610Hz35.610Hz 356kH z100p HR Q Ff BW Q ρρ--===Ω=⨯Ω=Ω⨯⨯===⨯=2.2 并联谐振回路如图P2.2所示,已知:300pF,390μH,100,C L Q ===信号源内阻s 100k ,R =Ω负载电阻L 200k ,R =Ω求该回路的谐振频率、谐振电阻、通频带。

[解] 0465kHz 2π2π390μH 300PFf LC≈==⨯0.70390μH100114k Ω300PF////100k Ω//114.k Ω//200k Ω=42k Ω42k Ω371.14k Ω390μH/300 PF/465kHz/37=12.6kHzp e s p Lee e R Q R R R R R Q BWf Q ρρ===========2.3 已知并联谐振回路的00.710MHz,C=50pF,150kHz,f BW ==求回路的L 和Q 以及600kHz f ∆=时电压衰减倍数。

如将通频带加宽为300 kHz ,应在回路两端并接一个多大的电阻? [解] 6262120115105μH (2π)(2π1010)5010L H f C --===⨯=⨯⨯⨯⨯ 6030.7101066.715010f Q BW ⨯===⨯2236022*********.78.11010p oU f Q f U ••⎛⎫⎛⎫∆⨯⨯=+=+= ⎪ ⎪⨯⎝⎭⎝⎭ 当0.7300kHz BW =时6030.746120101033.33001033.31.061010.6k 2π2π10105010e e e ef Q BW Q R Q f C ρ-⨯===⨯====⨯Ω=Ω⨯⨯⨯⨯g而471266.72.131021.2k 2π105010p R Q ρ-===⨯Ω=Ω⨯⨯⨯g 由于,p e pRR R R R =+所以可得10.6k 21.2k 21.2k 21.2k 10.6k e p p eR R R R R Ω⨯Ω===Ω-Ω-Ω2.4 并联回路如图P2.4所示,已知:360pF,C =1280μH,L ==100,Q 250μH,L = 12=/10,n N N =L 1k R =Ω。

高频电子线路_杨霓清_答案_第五章-角度调制与解调

高频电子线路_杨霓清_答案_第五章-角度调制与解调

高频电子线路_杨霓清_答案_第五章-角度调制与解调思考题与习题5.1 什么是角度调制,5.2 调频波和调相波有哪些共同点和不同点,它们有何联系, 5.3 调角波和调幅波的主要区别是什么,5.4 调频波的频谱宽度在理论上是无限宽,在传送和放大调频波时,工程上如何确定设备的频谱宽度,解:工程上确定设备的频谱宽度是依据确定 BWf,,2m5.5 为什么调幅波调制度 M不能大于1,而调角波调制度可以大于1, a5.6 有一余弦电压信号。

其中和均为常数,求其瞬时角频率和,,,()cos[]tVt,,,,m0000瞬时相位解: 瞬时相位 ,,,()tt,,00瞬时角频率 ,,()()/tdtdt,5.7 有一已调波电压,试求它的、的表达式。

如果,,()t,,()t,,,()cos()tVAtt,,mc1它是调频波或调相波,它们相应的调制电压各为什么,dt,,,,2 解:,, ,,tAt,tAt2,,,,,,,,,11dt若为调频波,则由于瞬时频率变化与调制信号成正比,即 ,,t,,1,,,所以调制电压, ,,tkut2At,ut2At,,,,,,,f,1,1kf若为调相波,则由于瞬时相位变化与调制信号成正比,即 ,,t,,12 ,(t)所以调制电压, ,,tkuutAt,,,,,p,,1kp由此题可见,一个角度调制波可以是调频波也可以是调相波,关键是看已调波中瞬时相位的表达式与调制信号:与调制信号成正比为调相波,与调制信号的积分成正比(即瞬时频率变化与调制信号成正比)为调频波。

5.8 已知载波信号,调制信号为周期性方波和三角波,分别如题5.8图(a),,()costVt,ccmc和(b)所示。

试画出下列波形:(1)调幅波,调频波;(2)调频波和调相波的瞬时角频率偏移,,()t。

瞬时相位偏移,,()t(坐标对齐)。

(a) (b)题5.8图解:(1)对应两种调制信号画出调幅波和调频波的波形分别如图题5.8(1)(a)(b)所示。

(完整版)高频电子线路第5章习题答案

(完整版)高频电子线路第5章习题答案

第5章振幅调制、振幅解调与混频电路5.1已知调制信号u (t) 2cos(2 n 500t)V,载波信号%(t) 4cos(2 n 10 t) V,令比例常数k a 1,试写出调幅波表示式,求出调幅系数及频带宽度,画出调幅波波形及频谱图。

5[解] u AM (t) (4 2cos2 n 500 t)cos(2 n 10 t)4(1 0.5cos2n 500 t)cos(2 n 105 )t V2 m a — 0.5, BW 2 500 1000 Hz4调幅波波形和频谱图分别如图P5.1(s)(a)、(b)所示。

5.2已知调幅波信号%[1 cos(2n 100t)]cos(2 n 105 t) V,试画出它的波形和频谱图,求出频带宽度BW。

[解] BW 2 100 200 HzwT 涉#泸评/ 伽阖pF HD调幅波波形和频谱图如图P5.2(s)(a)、(b)所示5.3已知调制信号u [2cos(2 n 2 103t) 3cos(2 n 3001)] V 载波信号料aJ L L____ L那禰T彌他//kHz/召阿』53 5[解] u c(t) (5 2cos2 n 2 10 t 3cos2 n 300t)cos2 n 5 10 tBW 2 F max 2 2 101 2 3 4 kHz频谱图如图P5.3(s)所示。

1[解]由m a U cm 1 V,可得m a 2/ U cm 2/5 0.42BW 2 5 103 Hz=10 kHz5(1 0.4cos2 n 255cos2 n 5 10 t51.5cos2 n(5 103 510 t 0.6cos2 n 300t)cos2 n 5 10 t3cos2 TT(5 10 2 10 ) t5300) t 1.5cos2 n(5 105 3cos2n(5 10 t 2 10 ) t300)t(V)5.4 已知调幅波表示式u(t) [20 12cos(2 n 500 t)]cos(2 n1061) V,试求该调幅波的载波振幅U泅、调频信号频率F、调幅系数 g和带宽BW的值。

高频电子线路第五版课后答案

高频电子线路第五版课后答案

• 8.2 求解 :由题知
第10章习题
习题
• 8.9 调制信号为正弦波,当频率为500Hz、振幅为1V时, 调角波的最大频移
解:由题知
• 8.4
习题
• 解:调频波的一般数学表达式为
定系数 (设放大器和前级匹配
)。晶体管在
时参数如下:
解:图3.1的等效图为图3.1a和图3.1b。 其中
图3.1
图3.1a 图3.1b 图3.1c
图3.1d
例3.3.3中频放大器设计(单调谐回路)
步骤:(已知中心频率和通频带

1、直流偏置: 满足放大状态 静态工作条做
2、选取回路总电容 3、求回路总电感
1)如果将次级线圈短路,这时反射到初级的阻抗等于什么?
初级等效电路(并联型)应该怎么画?
2 如果将次级线圈开路,这时反射阻抗等于什么?
初级等效电路应该怎么画?
3 如果
,反射到初级的阻抗等于什么?
解:如2.5(a) ,利用戴维南定理将互感耦合并联型回路等效 为互感耦合串联联型回路的形式。图中,
图2.5 互感耦合并联型回路
7.2、怎样用被调放大器电路内的仪表( )来判断调幅是否对称?
解:调幅如果对称,则在未调制与调制两种状态时,表 的读数字应该无 变化。
7.3 有一正弦调制的调幅波方程式为 试求这电流的有效值,以及表示之。
解:上式展开为
假设该电流流经电阻R,
7.4 有一调幅波方程式为
1 、试求它所包含的各个分量的频率与振幅; 2 、绘出这个调幅波包络的形状,并求出峰值与谷值调幅度。 解:
4、选取回路的空载品质因数 ,求回路损耗
5、由
,求回路的有载品单调谐回路)
6、已知晶体管的y参数以及负载参数,

(高频电子线路)第五章角度调制与解调

(高频电子线路)第五章角度调制与解调

相位鉴频器
利用两个不同频率的本振信号与 输入信号相乘,通过低通滤波器 提取低频分量,实现鉴频。
相干解调与非相干解调
相干解调需要使用与调制信号同频同 相的载波信号进行解调,通常在调相 和调频信号的解调中采用。
VS
非相干解调不需要使用载波信号,只 需将输入信号通过一个适当的滤波器 或网络,将其频谱搬移到低频端,然 后进行解调。
鉴频器的性能指标包括鉴频范围、线性度、灵敏度和噪声抑制能力等。
鉴频器的电路实现
变容二极管鉴频器
利用变容二极管的电容随反向电 压变化的特点,将调频信号的频 率变化转换为电压变化,从而实 现鉴频。
场效应管鉴频器
利用场效应管的跨导随栅极电压 变化的特点,将调频信号的频率 变化转换为电压变化,从而实现 鉴频。
VS
抗噪声性能的提高
为了提高调相系统的抗噪声性能,可以采 用多种方法,如采用高性能的调制解调器 、采用差分相干解调技术、采用信道编码 技术等。
调相系统的同步
同步的概念与重要性
在调相系统中,同步是指接收端与发送端之 间的信号频率和相位保持一致的过程。同步 是保证信号正确传输的关键因素之一,如果 接收端与发送端的信号不同步,将会导致信 号失真或误码。
扩展频谱调频是将调制信号的频谱扩 展到更宽的频带内,以实现信息的传 输。
这种方法具有抗干扰能力强、保密性 好、抗多径干扰等优点,常用于军事 通信和卫星通信等领域。
调相信号的产生与接
04

调相信号的波形与频谱
调相信号的波形
调相信号通常采用正弦波或余弦波作为载波,通过改变载波的相位来传递信息。常见的 调相信号波形包括调相波、调频波和调相调频波等。
本章将介绍角度调制的基本原理、调制解调方法以及性能分析。

高频------(杨霓清)答案(1)

高频------(杨霓清)答案(1)

第一章 选频网络与阻抗变换思考题与习题1.1 已知LC 串联谐振回路的C =100pF ,0f =1.5MHz ,谐振时的电阻5r =Ω,试求:L 和0Q 。

解:由0f =得2612011(2)(2 1.510)10010L f C ππ-==⨯⨯⨯⨯6112.610112.6H H μ-=⨯=66002 1.510112.6105LQ r ωπ-⨯⨯⨯⨯==212.2=1.2 对于收音机的中频放大器,其中心频率0f =465kHz ,0.7BW =8kHz ,回路电容C=200pF ,试计算回路电感L 和e Q 的值。

若电感线圈的0Q =100,问在回路上应并联多大的电阻才能满足要求? 解:由0f =得 2220012533025330585.73(μH)(2)0.465200L f C f C π===≈⨯由 00.7ef BW Q =得 00.746558.1258e f Q BW ===00310001100171(k )2246510210eo Q R Q C f C ωππ-===≈Ω⨯⨯⨯⨯ 058.12517199.18(k )100e eo Q R R Q ∑==⨯=Ω 外接电阻 017199.18236.14(k )17199.18eo e R R R R R ∑∑⨯==≈Ω--1.3 有一并联回路在某频段内工作,频段最低频率为535kHz ,最高频率1605 k Hz 。

现有两个可变电容器,一个电容器的最小电容量为12pF ,最大电容量为100 pF ;另一个电容 器的最小电容量为15pF ,最大电容量为450pF 。

试问: 1)应采用哪一个可变电容器,为什么? 2)回路电感应等于多少? 3)绘出实际的并联回路图。

解:1)max max min min '16053'535f C f C === 因而maxmin'9'C C =但100912<, 45030915=> 因此应采用max min = 450PF, = 15pF C C 的电容器。

高频(杨霓清)答案(4、5章)分解

高频(杨霓清)答案(4、5章)分解

第四章4.7 有一调幅波的表达式为625(10.7cos250000.3cos210000)cos210t t t υπππ=+-(1)试求出它所包含的各分量的频率与振幅;(2)绘出该调幅波包络的形状,并求出峰值与谷值幅度; 解:(1)它所包含的各分量的频率与振幅分别为 载频 610 振幅 25第一对边频 6105000± 振幅0.5×25×0.7=8.75 第二对边频 641010± 振幅0.5×25×0.3=3.75 (2)绘出的该调幅波包络为:求出的调幅峰值与谷值幅度为 m a x 1.7V =, m i n 0V =4.8 当采用相移法实现单边带调制时,若要求上边带传输的调制信号为11cos m V t ΩΩ,下边带传输的调制信号为22cos m V t ΩΩ,试画出其实现方框图。

解:方框图如下图所示1122()c o s ()c o s ()o M mc M m ct A V t A V t υωωΩΩ=+Ω+-Ω4.9 电视图像传输系统如题4.9图,设输入的图像信号频谱在0~6MHz 范围内是均匀的,试画出(A ~H )各点的频谱图,证明系统输出信号o υ不失真地重现输入图像信号1υ频谱。

题4.9图 解:各点频谱如下图所示4.10 何谓过调幅?为什么双边带调制信号和单边带调制信号均不会产生过调幅?答:调制信号振幅大于载波信号振幅的情况称为过调幅。

因为双边带和单边带调制信号已经将载波信号抑制,故均不会产生过调幅。

4.11 一非线性器件的伏安特性为(0)0(0)D g i υυυ>⎧=⎨≤⎩式中 121122cos cos Q Q m m V V V t V t υυυωω=++=++。

若 2m V 很小,满足线性时变条件,则在1/2Q m V V =-、0、1m V 三种情况下,画出1()g υ波形,并求出时变增量电导1()g υ的表达式,分析该器件在什么条件下能实现振幅调制、解调和混频等频谱搬移功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思考题与习题5.1 什么是角度调制?5.2 调频波和调相波有哪些共同点和不同点,它们有何联系?5.3 调角波和调幅波的主要区别是什么?5.4 调频波的频谱宽度在理论上是无限宽,在传送和放大调频波时,工程上如何确定设备的频谱宽度?解:工程上确定设备的频谱宽度是依据2m BW f =∆确定5.5 为什么调幅波调制度 M a 不能大于1,而调角波调制度可以大于1?5.6 有一余弦电压信号00()cos[]m t V t υωθ=+。

其中0ω和0θ均为常数,求其瞬时角频率和瞬时相位解: 瞬时相位 00()t t θωθ=+瞬时角频率()()/t d t dt ωθ=5.7 有一已调波电压1()cos()m c t V A t t υωω=+,试求它的()t ϕ∆、()t ω∆的表达式。

如果它是调频波或调相波,它们相应的调制电压各为什么?解:()t ϕ∆=21A t ω,()()12d t t A t dtϕωω∆∆== 若为调频波,则由于瞬时频率()t ω∆变化与调制信号成正比,即()t ω∆=()f k u t Ω=12A t ω,所以调制电压()u t Ω=1fk 12A t ω 若为调相波,则由于瞬时相位变化()t ϕ∆与调制信号成正比,即()t ϕ∆=p k u Ω(t )所以调制电压()u t Ω=1pk 21A t ω 由此题可见,一个角度调制波可以是调频波也可以是调相波,关键是看已调波中瞬时相位的表达式与调制信号:与调制信号成正比为调相波,与调制信号的积分成正比(即瞬时频率变化与调制信号成正比)为调频波。

5.8 已知载波信号()cos c cm c t V t υω=,调制信号为周期性方波和三角波,分别如题5.8图(a)和(b )所示。

试画出下列波形:(1)调幅波,调频波;(2)调频波和调相波的瞬时角频率偏移()t ω∆。

瞬时相位偏移()t ϕ∆(坐标对齐)。

(a ) (b )题5.8图解:(1)对应两种调制信号画出调幅波和调频波的波形分别如图题5.8(1)(a )(b)所示。

(a ) (b)题5.8(1)(2) 对应于两种调制信号调频波FM 和调相波PM 的和分别如图5.8(2)(a )(b)所示。

5.9有一个AM 波和FM 波,载频均为1MHz ,调制信号均为3()0.1sin(210)V t t υπΩ=⨯。

频率调制的调频灵敏度1kHz/V f k =,动态范围大于20V 。

(1)求AM 波和FM 波的信号带宽;(2)若3()20sin(210)V t t υπΩ=⨯,重新计算AM 波和FM 波的带宽;(3)由以上两项计算结果可得出什么结论?解:(1)AM 波的信号带宽:322102kHz BW F ==⨯=FM 波的信号带宽: 0.1210.121f mf k V M ππΩ==⨯⨯=Ω⨯ 32(1)2(0.11)12102k H z fB W M F =+=+⨯≈⨯= (2)若3()20sin(210)V t t υπΩ=⨯AM 波的信号带宽:322102kHz BW F ==⨯=FM 波的信号带宽: 20212021f mf k V M ππΩ==⨯⨯=Ω⨯ 32(1)2(201)1401040kHz f BW M F =+=+⨯≈⨯=(3)由以上两项计算结果可得出什么结论窄带调频时,其带宽等于AM 信号的带宽;宽带调频时,带宽近似等于最大频偏的两倍。

5.10 已知83()500cos(21020sin 210)mV t t t υππ=⨯+⨯,(1)若为调频波,试求载波频率c f 、调制频率F 、调频指数f M 、最大频偏m f ∆、有效频谱宽度CR BW 和平均功率av P (设负载电阻50L R =Ω)。

(2)若为调相波,试求调相指数P M ,调制信号()t υΩ(设调相灵敏度5rad/V p k =,最大频偏m f ∆。

解:根据()t υ表达式,c ω=8210π⨯rad/s , ()t ϕ∆=820sin(210)π⨯rad ,求得 (1)FM 波:c f =2c ωπ=82102ππ⨯=100M Z H ,F =2πΩ=32102Z H ππ⨯=1K Z H f M =20rad ,m f ∆=f M F =20K Z H所以 CR BW =2 (f M +1)F =42K Z H , av P =212m LV R =2.5mW (2) PM 波:p M =20rad因为 p k ()t υΩ=320sin(210)t π⨯所以 ()t υΩ=2053sin(210)t π⨯=43sin(210)t π⨯(V) ∆m f =p M F =20K Z H5.11 已知载波信号6()cos 5cos 25010V c cm c t V t t υωπ==⨯⨯,调制信号3() 1.5cos 2210t t υπΩ=⨯⨯V ,(1)若为调频波,且单位电压产生的频偏为4kHz ,试写出()t ω、()t ϕ和调频波()t υ表达式。

(2)若为调相波,且单位电压产生的相移为3rad ,试写出()t ω、()t ϕ和调相波()t υ表达式。

(3)计算上述两种调角波的CR BW ,若调制信号频率F 改为4kHz ,则相应频谱宽度CR BW 有什么变化?若调制信号的频谱不变,而振幅m V Ω改为3V ,则相应的频谱宽度有什么变化?解:(1)FM 波已知f k =4K Z H ,m υΩ=1.5V ,所以∆m f =f k m υΩ=6K Z H()t ω=c ω+∆m ωcos t Ω=2π⨯50⨯610+2π⨯6⨯310cos (2π⨯2⨯310t)(rad/s)ϕ(t)=()0tt dt ω⎰= 2π⨯50⨯610t +33sin(2210)t π⨯⨯(rad) υ()t =5cos [2π⨯50⨯610t +33sin(210)t π⨯](V) (2) PM 波已知p k =3rad/V, m υΩ=1.5V , 所以p M =p k m υΩ 4.5radϕ(t)= 2π⨯50⨯610t +4.5cos(2π⨯2⨯310t)(rad)ω(t)=(t)d dt ϕ= 2π⨯50⨯610-2π⨯9⨯3103sin(2210)t π⨯⨯(rad/s) υ(t)=5cos [2π⨯50⨯610t +4.5cos (2π⨯2⨯310t)] (V)(3) 因为CR BW =2(M +1)F ,当F =2K Z H ,F =4 K Z H 时,其相应频谱列表如下:当m V Ω由1.5V 改为3V ,F 仍为2K Z H 时,相应频谱列表如下:上述计算结果表明PM 波的频谱宽度大于FM 波。

5.12已知c f =20MHz ,cm V =10V ,1F =2kHz ,1m V Ω=3V ,2F =3kHz ,2m V Ω=4V ,若/V m f ∆=2kHz/V ,试写出调频波()t υ的表达式,并写出频谱分量的频率通式。

解: 对于多音调制,其调频波的表达式为()t υ=m V cos (c ωt +1f M sin 1Ωt +2f M sin 2t Ω+……….)c ω=622010π⨯⨯rad/s,依题意1f M =11m ω∆Ω=112f m k V πΩΩ=3rad 2f M =22m ω∆Ω=222f m k V πΩΩ=2.67rad所以()t υ=10cos [622010π⨯⨯t +3sin 3(2210)t π⨯⨯+2.673sin(2310)t π⨯⨯](V) 调频波的频谱无限宽,它的频率通式为,m n ω=(c ω+1m Ω+2n Ω)rad/s(m,n 均为+∞-∞)5.13 调频振荡回路由电感L 和变容二极管组成,L =2µH ,变容二极管的参数为:(0)j C =225pF ,12n =,B V =0.6V ,Q V =-6V ,调制信号4()3sin10t t υΩ=。

求输出FM 波时:(1)载波c f ;(2)由调制信号引起的载频偏移c f ∆;(3)最大频率偏移m f ∆;(4)调频灵敏度f k ;(5)二阶失真系数2f k 。

解::(1)载波1122(0)22522567.8()3.326(1)(1)0.6j jQ Q B C C pF V V ====++913.7(M H z )80c f ==== (2)由调制信号引起的载频偏移o f ∆30.45560.6m B Q V m V V Ω==≈++ 2211(1)(1)0.45513.70.133(MHz)82164c c n n f m f ∆=-=-⨯⨯= (3)最大频率偏移m f ∆1110.45513.7 1.56(MHz)222m c f nmf ∆==⨯⨯⨯= (4)调频灵敏度f k1.560.52(MHz/V)3m f m f k V Ω∆=== (5)二阶失真系数2k 20.4551(1)(1)0.174224f m n k =-=-≈ 5.14 画出图5.3.7所示调频电路的高频通路、变容管的直流通路和音频控制电路。

解:图5.3.7所示调频电路的高频通路图5.3.7所示调频电路中变容管的直流通路和音频控制电路直流通路音频控制电路5.15 题5.15图所示是变容管直接调频电路,其中心频率为360MHz ,变容管的3n =,题5.15图0.6V B V =,υΩcos t =Ω(V )。

图中1L 和3L 为高频扼流圈,3C 为隔直流电容,4C 和5C 为高频旁路电容。

(1)分析电路工作原理和各元件的作用;(2)调整2R ,使加到变容管上的反向偏置电压Q V 为6V 时,它所呈现的电容jQ C =20pF ,试求振荡回路的电感量2L ;(3)试求最大频偏m f ∆和调制灵敏度f S =m f ∆/m V Ω。

解:(1)为振荡管T 的电源电压由±15V 提供,变容管反向偏置电压由DD V -经1R 、2R 分压后提供。

振荡回路由1C 、2C 、j C 和2L 组成,电路为变容管部接入的电容三点式振荡电路,υΩ调制j C 使电路输出高频波。

(2) 已知0f =300MK Z H ,回路总电容C ∑=1C //2C //jQ C =1pF//0.5pF//20pF=0.328pF 2L =201C ω∑=0.6μH (3) 已知1C =1pF, 2C =0.5pF,1p = jQ C /j C //2C =60,2p =0,p = 1 +1p =61,m =m B QV V V Ω+=0.15,n =3; ∆m f =2c mf n p1.341M Z H f S =m mf V Ω∆=1.341M Z H 5.16 一变容管直接调制电路,如题5.16图所示,已知4cos 210m V t υπΩΩ=⨯(V ),变容管结电容12100()()j Q C V pF υ-Ω=+,调频指数f M =5rad ,υΩ=0时的振荡频率c f =5MHz 。

相关文档
最新文档