超全中考作图题汇总
中考数学作图题60例
中考数学作图题60例一、解答题(共60小题)1.如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=.2.图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.3.如图,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB′C′D′,使它与四边形ABCD位似,且相似比为2.(1)在图中画出四边形AB′C′D′;(2)填空:△AC′D′是三角形.4.如图,在边长均为1的正方形网格纸上有一个△ABC,顶点A、B、C及点O均在格点上,请按要求完成以下操作或运算:(1)将△ABC向上平移4个单位,得到△A1B1C1(不写作法,但要标出字母);(2)将△ABC绕点O旋转180°,得到△A2B2C2(不写作法,但要标出字母);(3)求点A绕着点O旋转到点A2所经过的路径长.5.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.6.如图,一条公路的转弯处是一段圆弧().(1)用直尺和圆规作出所在圆的圆心O;(要求保留作图痕迹,不写作法)(2)若的中点C到弦AB的距离为20m,AB=80m,求所在圆的半径.7.各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形.如何计算它的面积?奥地利数学家皮克(G•Pick,1859~1942年)证明了格点多边形的面积公式S=a+b﹣1,其中a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积.如图,a=4,b=6,S=4+×6﹣1=6(1)请在图中画一个格点正方形,使它的内部只含有4个格点,并写出它的面积.(2)请在图乙中画一个格点三角形,使它的面积为,且每条边上除顶点外无其它格点.(注:图甲、图乙在答题纸上)8.如图,△ABC是直角三角形,∠ACB=90°.(1)尺规作图:作⊙C,使它与AB相切于点D,与AC相交于点E,保留作图痕迹,不写作法,请标明字母.(2)在你按(1)中要求所作的图中,若BC=3,∠A=30°,求的长.9.如图,在△ABC中,∠C=60°,∠A=40°.(1)用尺规作图作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);(2)求证:BD平分∠CBA.10.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段c,直线l及l外一点A.求作:Rt△ABC,使直角边为AC(AC⊥l,垂足为C),斜边AB=c.11.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.12.在边长为1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a,边界上的格点数为b,则格点多边形的面积可表示为S=ma+nb﹣1,其中m,n为常数.(1)在下面的方格中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形;(2)利用(1)中的格点多边形确定m,n的值.13.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).14.如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)15.⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC;(2)如图2,直线l与⊙O相切于点P,且l∥BC.16.如图,在方格网中已知格点△ABC和点O.(1)画△A′B′C′和△ABC关于点O成中心对称;(2)请在方格网中标出所有使以点A、O、C′、D为顶点的四边形是平行四边形的D点.17.下列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长;(2)如图甲,把六边形ABCDEF沿EH,BG剪成①②③三部分,请在图甲中画出将②③与①拼成的正方形,然后标出②③变动后的位置,并指出②③属于旋转、平移和轴对称中的哪一种变换;(3)在图乙中画出一种与图甲不同位置的两条裁剪线,并在图乙中画出将此六边形剪拼成的正方形.18.如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.19.如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)20.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(记过保留根号和π).21.如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.22.如图,在△ABC中,AB=AC,∠DAC是△ABC的一个外角.实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法)(1)作∠DAC的平分线AM;(2)作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE,CF.猜想并证明:判断四边形AECF的形状并加以证明.23.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(3,2)、B(3,5)、C (1,2).(1)在平面直角坐标系中画出△ABC关于x轴对称的△A1B1C1;(2)把△ABC绕点A顺时针旋转一定的角度,得图中的△AB2C2,点C2在AB上.①旋转角为多少度?②写出点B2的坐标.24.如图,在△ABC中,∠ACB=90°,AC=BC=AD.(1)作∠A的平分线交CD于E;(2)过B作CD的垂线,垂足为F;(3)请写出图中两对全等三角形(不添加任何字母),并选择其中一对加以证明.25.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).26.如图,△ABC各顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)在图中画出△ABC向左平移3个单位后的△A1B1C1;(2)在图中画出△ABC绕原点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,AC边扫过的面积是.27.如图,AC是⊙O的直径,点B在⊙O上,∠ACB=30°(1)利用尺规作∠ABC的平分线BD,交AC于点E,交⊙O于点D,连接CD(保留作图痕迹,不写作法)(2)在(1)所作的图形中,求△ABE与△CDE的面积之比.28.如图,将△ABC在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A3B3C3.(1)△ABC与△A1B1C1的位似比等于;(2)在网格中画出△A1B1C1关于y轴的轴对称图形△A2B2C2;(3)请写出△A3B3C3是由△A2B2C2怎样平移得到的?(4)设点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为.29.如图,△ABC是等腰三角形,AB=AC,请你用尺规作图将△ABC分成两个全等的三角形,并说明这两个三角形全等的理由.(保留作图痕迹,不写作法)30.如图,已知锐角△ABC.(1)过点A作BC边的垂线MN,交BC于点D(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,若BC=5,AD=4,tan∠BAD=,求DC的长.31.如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(﹣3,4),B(﹣4,2),C (﹣2,1),且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A1B1C1,并写出A1的坐标;(2)P(a,b)是△ABC的AC边上一点,△ABC经平移后点P的对称点P′(a+3,b+1),请画出平移后的△A2B2C2.32.如图,已知BD平分∠ABF,且交AE于点D,(1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);(2)设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD时,求证:四边形ABCD 是菱形.33.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(项点是网格线的交点).(1)先将△ABC竖直向上平移6个单位,再水平向右平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;(3)线段B1C1变换到B1C2的过程中扫过区域的面积为.34.如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.35.阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是.36.如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为()A.80°B.90°C.100°D.105°37.已知在Rt△ABC中,∠ACB=90°,现按如下步骤作图:①分别以A,C为圆心,a为半径(a>AC)作弧,两弧分别交于M,N两点;②过M,N两点作直线MN交AB于点D,交AC于点E;③将△ADE绕点E顺时针旋转180°,设点D的像为点F.(1)请在图中直线标出点F并连接CF;(2)求证:四边形BCFD是平行四边形;(3)当∠B为多少度时,四边形BCFD是菱形.38.在每个小正方形的边长为1的网格中.点A,B,D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF.(Ⅰ)如图①,当BE=时,计算AE+AF的值等于(Ⅱ)当AE+AF取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置如何找到的(不要求证明).39.设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆.延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFGH与矩形ABCD等积.理由:连接AH,EH.∵AE为直径,∴∠AHE=90°,∴∠HAE+∠HEA=90°.∵DH⊥AE,∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED,∴△ADH∽.∴,即DH2=AD×DE.又∵DE=DC∴DH2=,即正方形DFGH与矩形ABCD等积.(2)操作实践平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.如图②,请用尺规作图作出与▱ABCD等积的矩形(不要求写具体作法,保留作图痕迹).(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的(填写图形名称),再转化为等积的正方形.如图③,△ABC的顶点在正方形网格的格点上,请作出与△ABC等积的正方形的一条边(不要求写具体作法,保留作图痕迹,不通过计算△ABC面积作图).(4)拓展探究n边形(n>3)的“化方”思路之一是:把n边形转化为等积的n﹣1边形,…,直至转化为等积的三角形,从而可以化方.如图④,四边形ABCD的顶点在正方形网格的格点上,请作出与四边形ABCD等积的三角形(不要求写具体作法,保留作图痕迹,不通过计算四边形ABCD面积作图).40.定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD 是对等四边形;(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD 的长.41.如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD,CD.(1)求证:△ABC≌△ADC;(2)若∠BAC=30°,∠BCA=45°,AC=4,求BE的长.42.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.43.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.44.在平面直角坐标系中,点A的坐标是(0,3),点B在x轴上,将△AOB绕点A逆时针旋转90°得到△AEF,点O、B的对应点分别是点E、F.(1)若点B的坐标是(﹣4,0),请在图中画出△AEF,并写出点E、F的坐标.(2)当点F落在x轴的上方时,试写出一个符合条件的点B的坐标.45.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(2,﹣4),B(4,﹣4),C(1,﹣1).(1)画出△ABC关于y轴对称的△A1B1C1,直接写出点A1的坐标;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).46.如图,已知△ABC三个顶点坐标分别是A(1,3),B(4,1),C(4,4).(1)请按要求画图:①画出△ABC向左平移5个单位长度后得到的△A1B1C1;②画出△ABC绕着原点O顺时针旋转90°后得到的△A2B2C2.(2)请写出直线B1C1与直线B2C2的交点坐标.47.如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣1,5),B(﹣4,1),C (﹣1,1)将△ABC绕点A逆时针旋转90°,得到△AB′C′,点B,C的对应点分别为点B′,C′,(1)画出△AB′C′;(2)写出点B′,C′的坐标;(3)求出在△ABC旋转的过程中,点C经过的路径长.48.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C (3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.49.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径50.如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分.(保留作图痕迹,不写作法)51.如图,将线段AB放在边长为1的小正方形网格,点A点B均落在格点上,请用无刻度直尺在线段AB上画出点P,使AP=,并保留作图痕迹.(备注:本题只是找点不是证明,∴只需连接一对角线就行)52.图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;(2)在图②中,以格点为顶点,AB为一边画一个正方形;(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.53.“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).54.手工课上,老师要求同学们将边长为4cm的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)55.如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()A.甲、乙都可以B.甲、乙都不可以C.甲不可以、乙可以D.甲可以、乙不可以56.将正方形纸片以适当的方式折叠一次,沿折痕剪开后得到两块小纸片,用这两块小纸片拼接成一个新的多边形(不重叠、无缝隙),给出以下结论:①可以拼成等腰直角三角形;②可以拼成对角互补的四边形;③可以拼成五边形;④可以拼成六边形.其中所有正确结论的序号是.57.如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()A.B.C.D.58.一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.59.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()A.2种B.3种C.4种D.5种60.如图,在边上为1个单位长度的小正方形网格中:(1)画出△ABC向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1.(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.(3)求△CC1C2的面积.2015年全国中考数学作图题60例参考答案与试题解析一、解答题(共60小题)1.如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=3.考点:作图—复杂作图;平行四边形的性质.专题:作图题.分析:(1)根据角平分线上的点到角的两边距离相等知作出∠A的平分线即可;(2)根据平行四边形的性质可知AB=CD=5,AD∥BC,再根据角平分线的性质和平行线的性质得到∠BAE=∠BEA,再根据等腰三角形的性质和线段的和差关系即可求解.解答:解:(1)如图所示:E点即为所求.(2)∵四边形ABCD是平行四边形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分线,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=3.故答案为:3.点评:考查了作图﹣复杂作图,关键是作一个角的角平分线,同时考查了平行四边形的性质,角平分线的性质,平行线的性质和等腰三角形的性质的知识点.2.图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.考点:正多边形和圆;圆锥的计算;作图—复杂作图.专题:作图题.分析:(1)作AE的垂直平分线交⊙O于C,G,作∠AOG,∠EOG的角平分线,分别交⊙O于H,F,反向延长FO,HO,分别交⊙O于D,B顺次连接A,B,C,D,E,F,G,H,八边形ABCDEFGH即为所求;(2)由八边形ABCDEFGH是正八边形,求得∠AOD=3=135°得到的长=,设这个圆锥底面圆的半径为R,根据圆的周长的公式即可求得结论.解答:(1)如图所示,八边形ABCDEFGH即为所求,(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3=135°,∵OA=5,∴的长=,设这个圆锥底面圆的半径为R,∴2πR=,∴R=,即这个圆锥底面圆的半径为.故答案为:.点评:本题考查了尺规作图,圆内接八边形的性质,弧长的计算,圆的周长公式的应用,会求八边形的内角的度数是解题的关键.3.如图,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB′C′D′,使它与四边形ABCD位似,且相似比为2.(1)在图中画出四边形AB′C′D′;(2)填空:△AC′D′是等腰直角三角形.考点:作图-位似变换.专题:作图题.分析:(1)延长AB到B′,使AB′=2AB,得到B的对应点B′,同样得到C、D的对应点C′,D′,再顺次连接即可;(2)利用勾股定理求出AC′2=42+82=80,AD′2=62+22=40,C′D′2=62+22=40,那么AD′=C′D′,AD′2+C′D′2=AC′2,即可判定△AC′D′是等腰直角三角形.解答:解:(1)如图所示:(2)∵AC′2=42+82=16+64=80,AD′2=62+22=36+4=40,C′D′2=62+22=36+4=40,∴AD′=C′D′,AD′2+C′D′2=AC′2,∴△AC′D′是等腰直角三角形.故答案为:等腰直角.点评:本题考查了作图﹣位似变换.画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.同时考查了勾股定理及其逆定理等知识.熟练掌握网格结构以及位似变换的定义是解题的关键.4.如图,在边长均为1的正方形网格纸上有一个△ABC,顶点A、B、C及点O均在格点上,请按要求完成以下操作或运算:(1)将△ABC向上平移4个单位,得到△A1B1C1(不写作法,但要标出字母);(2)将△ABC绕点O旋转180°,得到△A2B2C2(不写作法,但要标出字母);(3)求点A绕着点O旋转到点A2所经过的路径长.考点:作图-旋转变换;弧长的计算;作图-平移变换.专题:作图题.分析:(1)根据图形平移的性质画出平移后的△A1B1C1即可;(2)根据图形旋转的性质画出△ABC绕点O旋转180°后得到的△A2B2C2;(3)根据弧长的计算公式列式即可求解.解答:解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示:(3)∵OA=4,∠AOA2=180°,∴点A绕着点O旋转到点A2所经过的路径长为=4π.点评:本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.也考查了弧长的计算.5.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0);(3)△A2B2C2的面积是10平方单位.考点:作图-位似变换;作图-平移变换.专题:作图题.分析:(1)利用平移的性质得出平移后图象进而得出答案;(2)利用位似图形的性质得出对应点位置即可;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.解答:解:(1)如图所示:C1(2,﹣2);故答案为:(2,﹣2);(2)如图所示:C2(1,0);故答案为:(1,0);(3)∵A2C22=20,B2C=20,A2B2=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:×20=10平方单位.故答案为:10.点评:此题主要考查了位似图形的性质以及平移的性质和三角形面积求法等知识,得出对应点坐标是解题关键.6.如图,一条公路的转弯处是一段圆弧().(1)用直尺和圆规作出所在圆的圆心O;(要求保留作图痕迹,不写作法)(2)若的中点C到弦AB的距离为20m,AB=80m,求所在圆的半径.考点:作图—复杂作图;勾股定理;垂径定理的应用.专题:作图题.分析:(1)连结AC、BC,分别作AC和BC的垂直平分线,两垂直平分线的交点为点O,如图1;(2)连接OA,OC,OC交AB于D,如图2,根据垂径定理的推论,由C为的中点得到OC⊥AB,AD=BD=AB=40,则CD=20,设⊙O的半径为r,在Rt△OAD中利用勾股定理得到r2=(r﹣20)2+402,然后解方程即可.解答:解:(1)如图1,点O为所求;(2)连接OA,OC,OC交AB于D,如图2,∵C为的中点,∴OC⊥AB,∴AD=BD=AB=40,设⊙O的半径为r,则OA=r,OD=OD﹣CD=r﹣20,在Rt△OAD中,∵OA2=OD2+BD2,∴r2=(r﹣20)2+402,解得r=50,即所在圆的半径是50m.点评:本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法;解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了勾股定理和垂径定理.7.各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形.如何计算它的面积?奥地利数学家皮克(G•Pick,1859~1942年)证明了格点多边形的面积公式S=a+b﹣1,其中a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积.如图,a=4,b=6,S=4+×6﹣1=6(1)请在图中画一个格点正方形,使它的内部只含有4个格点,并写出它的面积.(2)请在图乙中画一个格点三角形,使它的面积为,且每条边上除顶点外无其它格点.(注:图甲、图乙在答题纸上)考点:作图—应用与设计作图.专题:作图题.分析:(1)根据皮克公式画图计算即可;(2)根据题意可知a=3,b=3,画出满足题意的图形即可.解答:解:(1)如图所示,a=4,b=4,S=4+×4﹣1=5;(2)因为S=,b=3,所以a=3,如图所示,点评:本题考查了应用与设计作图,关键是理解皮克公式,根据题意求出a、b的值.8.如图,△ABC是直角三角形,∠ACB=90°.(1)尺规作图:作⊙C,使它与AB相切于点D,与AC相交于点E,保留作图痕迹,不写作法,请标明字母.(2)在你按(1)中要求所作的图中,若BC=3,∠A=30°,求的长.考点:作图—复杂作图;切线的性质;弧长的计算.专题:作图题.分析:(1)过点C作AB的垂线,垂足为点D,然后以C点为圆心,CD为半径作圆即可;(2)先根据切线的性质得∠ADC=90°,则利用互余可计算出∠DCE=90°﹣∠A=60°,∠BCD=90°﹣∠ACD=30°,再在Rt△BCD中利用∠BCD的余弦可计算出CD=,然后根据弧长公式求解.解答:解:(1)如图,⊙C为所求;(2)∵⊙C切AB于D,∴CD⊥AB,∴∠ADC=90°,∴∠DCE=90°﹣∠A=90°﹣30°=60°,∴∠BCD=90°﹣∠ACD=30°,在Rt△BCD中,∵cos∠BCD=,∴CD=3cos30°=,∴的长==π.点评:本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法;解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了切线的性质和弧长公式.9.如图,在△ABC中,∠C=60°,∠A=40°.(1)用尺规作图作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);(2)求证:BD平分∠CBA.。
中考数学作图题
中考数学作图题(2018年5月质检)1、(漳州)如图,在△ABC中,∠A=80˚,∠B=40˚.(1)求作线段BC的垂直平分线DE,垂足为E,交AB于点D;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,求证:AC=CD.2、(福州)如图,在Rt△ABC中,∠C=90˚,∠B=54˚,AD是△ABC的角平分线.求作AB的垂直平方MN交AD于点E,连接BE;并证明DE=DB.(要求:尺规作图,保留作图痕迹,不写作法)(2019年1月质检)3、如图,已知四边形ABCD是矩形.(1)请用直尺和圆规在边AD上作点E,使得EB=EC.(保留作图痕迹)(2)在(1)的条件下,若AB=4,AD=6,求EB的长.4、(福州)如图,三角形ABC,将三角形ABC绕点A逆时针旋转120˚,得到三角形ADE,其中中点B与点D对应,点C与点E对应。
(1)画出三角形ADE(2)求直线BC与直线DE相交的锐角的度数.5、(三明)如图,△ABC中,AB=8,AC=6(1)请用尺规作图的方法在AB上找点D,使得△ACD~△ABC(保留作图痕迹,不写作法)(2)在(1)的条件下,求AD的长.(2019年5月质检)6、(三明)如图,△ABC,∠A=90˚,AB=AC.(1)请你用尺规作图的方法在边AC上确定点P,使得点P到边BC的距离等于PA的长;(保留作图痕迹,不写作法)(2)在(1)的条件下,求证:BC=AB+AP.7、(厦门)在正方形ABCD中,E是CD边上的点,过点E作EF⊥BD于F.(1)尺规作图:在图6中求作点E,使得EF=EC;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接FC,求∠BCF的度数.8、(南平)如图,AE//BF,AC平分∠BAE,交BF于点C.(1)求证:AB=BC;(2)尺规作图:在AE上找一点D,使得四边形ABCD为菱形(不写作法,保留作图痕迹).9、(福州)如图,在Rt△ABC中,∠ACB=90˚,BD平分∠ABC.求作⊙O,使得点O在边AB上,且⊙O经过B、D两点:求证明AC与⊙O相切.(要求尺规作图,保留作图痕迹,不写作法)(2019年中考)10、 (福州)已知△ABC 和点'A ,如图.(1)以点'A 为一个顶点作'''C B A ∆,使得'''C B A ∆∽ABC ∆,且'''C B A ∆的面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)(2020年1月质检)11、 (福州)如图,已知∠MON ,A 、B 分别是射线OM 、ON 上的点.(1)尺规作图:在∠MON 的内部确定一点C ,使得BC//OA 且 OA BC 21=;(保留作图痕迹,不写作法) (2)在(1)中,连接OC ,用无刻度直尺在线段OC 上确定一点D ,使得OD=2CD ,并证明OD=2CD12、 (龙岩)如图,在平面直角坐标系中有点A (-4,0)、B (0,3)、P (-4,4)三点,线段CD 与AB 关于点P 中心对称,其中A 、B 的对应点分别为C 、D.(1)在图中画出线段CD ,保留作图痕迹;(2)线段CD 向下平移 个单位,四边形ABCD 为菱形.13、 (南平)如图,在边长为1的正方形网格中,△ABO 的顶点均在格点上,点A 、B 的坐标分别是A (2,2)、B (1,3),把△ABO 绕点O 逆时针旋转90˚后得到O B A 11∆.(1)画出O B A 11∆,直接写出1A 、1B 的坐标;(2)求在旋转过程中,△ABO 所扫过的面积.14、 (厦门)如图10,在△ABC 中,AB=AC.(1)若以点A 为圆心的圆与边BC 相切于点D ,请在图10中作出点D ;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若该圆与边AC 相交于点E ,连接DE ,当∠BAC=100˚时,求∠AED 的度数.(2020年5月质检)15、 (三明)如图,已知△ABC ,AB=AC.(1)把△ABC 绕点C 顺时针旋转得到△DEC ,使得点B 的对应点E 落在AB 边上,用尺规作图的方法作出△DEC ;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接AD ,求证:AD=BC.16、 (宁德)如图,在Rt △ABC 中,∠ACB=90˚,AC=4,BC=3,正方形DECF 的三个顶点D 、E 、F 分别落在边AB 、AC 、BC 上.(1)用尺规作出正方形DECF ;(2)求正方形DECF 的边长.17、 (宁德)如图,已知点P 是线段AB 的中点.(1)过点P 作直线l ,使得l ⊥AB ;(要求尺规作图,不写作法,保留作图痕迹)(2)根据你作的图形,在直线l 上取不同的两点C 、D ,连接AC 、BC 、AD 、BD ,求证: ∠CAD=∠CBD.18、 (福州)如图,已知∠MON ,A 、B 分别是射线OM 、ON 上的点.(1)尺规作图:在∠MON 的内部确定一点C ,使得BC//OA 且BC=21OA ; (保留作图痕迹,不写作法)(2)在(1)中,连接OC ,用无刻度直尺在线段OC 上确定一点D ,使得OD=2CD ,并证明OD=2CD.19、 (厦门)如图9,在△ABC 中,∠B=90˚,点D 在BC 上,连接AD ,过点D 作射线 DE ⊥AD.(1)在射线DE 上求作点M ,使得△ADM ~△ABC ,且点M 与点C 是对应点;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若cos ∠BAD=32,BC=6,求DM 的长.20、 (泉州)如图,将圆心角为120˚的扇形AOB 绕点A 按逆时针方向旋转一定的角度后,得到扇形''B AO ,使得点'O 恰 在上.(1)求作点'O ;(尺规作图,保留作图痕迹,不写作法和证明过程)(2)连接AB 、'AB 、'AO ,求证:'AO 平分'BAB .21、 (莆田)已知边长为a 的正方形ABCD 和∠O=45˚,如图(1)以∠O 为一个内角作菱形OPMN ,使得OP=a ;(要求:尺规作图,不写作法,保留作图痕迹)(2)设正方形ABCD 的面积为1S ,菱形OPMN 的面积为2S ,求21S S 的值.。
中考尺规作图大全-(含练习答案)
中考尺规作图大全-(含练习答案)尺规作图是一种使用没有刻度的直尺和圆规的方法。
基本作图是尺规作图的最基本、最常用的方法,而一些复杂的尺规作图都是由基本作图组成的。
基本作图包括五种:作一条线段等于已知线段、作一个角等于已知角、作已知线段的垂直平分线、作已知角的角平分线、过一点作已知直线的垂线。
题目一要求作一条线段等于已知线段a。
作法是先作射线AP,然后在射线AP上截取AB=a,这样线段AB就是所求作的图形。
题目二要求作已知线段MN的垂直平分线,即找到点O 使得MO=NO(即O是MN的中点)。
作法是分别以M、N 为圆心,以大于MN的相同线段为半径画弧,两弧相交于P、Q,然后连接PQ交MN于O,这样点PQ就是所求作的MN 的垂直平分线。
题目三要求作已知角AOB的角平分线OP。
作法是以O 为圆心,任意长度为半径画弧,分别交OA、OB于M、N,然后以M、N为圆心,以大于MN的线段长为半径画弧,两弧交∠AOB内于P,最后作射线OP,这样射线OP就是∠AOB的角平分线。
题目四要求作一个角等于已知角AOB。
作法是先作射线O’A’,然后以O为圆心,任意长度为半径画弧,交OA于M,交OB于N,接着以O’为圆心,以OM的长为半径画弧,交O’A’于M’,再以M’为圆心,以MN的长为半径画弧,交前弧于N’,最后连接O’N’并延长到B’,这样∠A’O’B’就是所求作的角。
题目五要求经过直线AB上一点P做已知直线CD的垂线。
作法是以P为圆心,任意长为半径画弧,交AB于M、N,然后分别以M、N为圆心,以大于MN的长为半径画弧,两弧交于点Q,最后连接CQ、DQ即可得到所求作的CD。
3.删除明显有问题的段落(无问题段落为1、2、4、5)4.改写每段话3)过D、Q作直线CD。
则直线CD是求作的直线。
改写为:作直线CD,使其经过点P并垂直于直线AB,方法如下:6)题目六:经过直线外一点作已知直线的垂线已知:如图,直线AB及外一点P。
求作:直线CD,使CD经过点P,且CD⊥AB。
(完整版)初三物理中考复习作图题专项训练
初三物理中考复习作图题专项训练一、光学作图题:1.画出图中的入射或反射光线并标出前两个图中的反射角的大小.2.一束太阳光与水平地面成30°夹角,现欲使这束太阳光竖直的射向井底,请在图中准确画出这平面镜的位置。
(要求标明法线以及平面镜与水平地面的夹角)3。
画出下图中的反射、折射光路.4.完成下图中光线通过各玻璃砖的光路。
5.完成图中光线通过各透镜前或后的光路。
6。
在下图的方框内填入恰当的透镜.7.根据平面镜成像的特点,画出下列物体在平面镜中的像。
8。
如图,有一光源S放在平面镜前,经平面镜得到两条反射光线,请用作图法找出光源S的位置,并作出它的像S′.9.如下图一,发光点S射向平面镜的光线中有两条光线的反射光线是AB和CD,请在图中画出平面镜的位置。
10。
如上图二,S为平面镜MN前的一个点光源,请画出通过A点的反射光线。
11.如上图三,S是一发光点,S′是它在平面镜中的像,SA是S发出的一条光线,请画出平面镜,并作出SA 经平面镜的反射光线.12。
如图,AB物体在平面镜中成像后,眼位于镜前E处,作图说明要使眼睛看不到平面镜中的像,应该把镜的哪一部分挡住.二、作力的图示:1.如图,拉力F=15N,画出物体A受到的重力G的图示。
(滑轮重及摩擦不计)2。
小车重6N,受到跟水平方向成30°角斜向右上方的拉力F=4N的作用,画出此二力的图示。
3。
一个重为20N的气球,在空中匀速下降。
请在图中画出气球所受重力的图示。
4。
在水中上浮的小球重为10N,受到的浮力为15N,在图中用力的图示法把这两个力都表示出来。
5.物体A重20N,静止放在斜面上,它对斜面的压力为15N。
用力的图示法把物体的重力和物体对斜面的压力表示出来。
6.在图中用力的图示法画出在斜面上滚动的重为5N的小球受到的重力。
7. 用力的图示法作出重为10N的物体放在水平桌面上的受力图.8.重为10N的物体在大小为20N的力F作用下,紧贴在竖直的墙壁上不动。
中考物理作图题专题训练汇总及答案解析
中考物理作图题专题训练汇总及答案解析中考物理复作图题一、作图题1、A、B为某一发光点S发出的光线经平面镜MN反射后的两条反射光线,如图所示,试做出这两条反射光线的入射光线,并确定发光点的位置.2、如图所示的AB、CD是同一发光点S发出的光经平面镜反射后的两条反射光线,试根据光的反射定律用作图方法确定发光点S的位置.3、如图所示,光射在水面上,在图中画出反射光线.4、如图所示,S′为发光点S在平面镜MN中的像,若S 发出的一条光线SO经平面镜反射后过P点,请在图中找出发光点S的位置,并完成光路.5、根据平面镜成像特点,画出图中物体AB在平面镜中所成的像.(保留作图辅助线)6、画出下图中从A点出发,经平面镜反射后经过B的光线.7、如图所示,一束光从空气斜射向水面,请你在图中画出光的实际传播路径.8、作图题:一条光芒照射到水面产生反射和折射,这条光芒经水面折射后的光芒如图所示,请在图中画出它的入射光线和反射光线的大致方向.9、根据入射光线和折射光线,在图中的虚线框内画出适当的类型的透镜.10、如图所示,已知凸透镜的一条折射光线和一条入射光线,请你对应画出它们的入射光线和折射光芒.11、如图所示,一个凸透镜的主光轴与平静水面重合,F 为凸透镜的焦点.请画出图中光线在凸透镜左边的入射光芒以及图中光芒进入水中的折射光芒.12、如图所示,a、b分别为一束入射光线和一束出射光线.请画出a经过凹透镜后的折射光线和与b对应的入射光线.13、请在图中画出经过透镜折射后的光芒.14、如图所示,F为凸透镜L的焦点,OO′为凸透镜的主光轴,AB为射向凸透镜且过焦点的光芒,在凸透镜的右侧有一平面镜MN和主光轴OO′成45°,请画出经凸透镜折射后和经平面镜反射后的完整光路图.15、画出图中静止在斜面上的物体A所受的重力G和它对斜面的压力F的示意图.16、图12甲所示是一吊灯吊挂在天花板上,其中O点为灯的重心,请画出吊灯所受的拉力和重力的示意图。
中考数学作图题专项练习精选
中考作图题专项练习1.如图,在正方形网格上有一个△ABC.(1)作△ABC 关于直线MN 的对称图形(不写作法); (2)若网格上的最小正方形的边长为1,求△ABC 的面积.5cm14cmC2(郑州)如图,木工师傅要把一块矩形木板ABCD 的四个角锯成半径为5cm ,且与两边相切的圆弧形,请你帮助师傅设计一种方案,并在木板上把一个角的圆弧线画出来(保留画图痕迹,写出画法). 3(郑州).用两个全等的直角三角形拼下列图形:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(3)正方形;(4)等腰三角形,一定可以拼成的图形是【 】(A )(1)(2)(5) (B )(2)(3)(5) (C )(1)(4)(5) (D )(1)(2)(3) 4(甘肃)现需测量一井盖(圆形)的直径,但只有一把角尺(尺的两边.互相垂直,一边有刻度,且两边长度都长于井盖半径).请配合图形、文字说 明测量方案,写出测量的步骤(要求写出两种测量方案).5(甘肃)某地板厂要制作一批正六边形形状的地板砖,为适应市场多样化需求要求在地板砖上设计的图案能够把正六边形6等分,请你帮他们设计等分图案(至少设计两种)A BC M N第21题6(广东)如图4,AB、AC分别是菱形ABCD的一条边和一条对角线,请用尺规把这个菱形补充完整.(保留作图痕迹,不要求写作法和证明)7(广州)已知:线段a(如图7)求作:(1)△ABC,使AB=BC=CA=a;(2)⊙O,使它内切于△ABC.(说明:要求写出作法.)8(湘谭)如图.1O7国道OA和320国道OB在我市相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使P到OA、OB的距离相等,且使PC’=PD,用尺规作出货站P的位置(不写作法,保留作图痕迹,写出结论).9(江西)有一长方形餐厅,长10米,宽7米,现只摆放两套同样大小的圆桌和椅子,一套圆桌和椅子占据的地面部分可看成半径为1.5米的圆形(如左下图所示).在保证通道最狭窄处的宽度不小于0.5米的前提下,此餐厅内能否摆下三套或四套同样大小的圆桌和椅子呢?请在摆放三套或四套的两种方案中选取一种,在右下方14×20方格纸内画出设计示意图.(提示:①画出的圆应符合比例要求;②为了保证示意图的清晰,请你在有把握后才将设计方案正式画在方格纸上.说明:正确地画出了符合要求的三个圆得5分,正确地画出了符合要求的四个圆得8分.)10(龙江)如图4,A、B是两个蓄水池,都在河流a的同旁,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A、B两池,问该站建在河边哪一点,可使所修的渠道最短,试在图中画出该点(不写作法,但要保留作图痕迹)11(茂名)某校有一个正方形的花坛,现要将它分成形状和面积都相同的四块种上不同颜色的花卉,请你帮助设计三种不同的方案,分别画在下面三个正方形图形上(用尺规作图或徒手作图均可,但要尽可能准确些、美观些).(2分)(2分)(2分)12(南宁)尺规作图:把图8(实线部分)补成以虚线l为对称轴的轴对称图形,你会得到一只美丽蝴蝶的图案.(不用写作法,保留作图痕迹).13(青岛)作图题(本题满分 4分)用圆规、直尺作图,不写作法,但要保留作图痕迹. . 某汽车探险队要从A 城穿越沙漠去B 城,途中需要到河流L 边为汽车加水,汽车在河边哪一点加水,才能使行驶的总路程最短?请你在图上画出这一点.14(滨州)如图,某住宅小区拟在休闲场地的三条道路上修建三个凉亭A 、B 、C 且凉亭用长廊两两连通.如果凉亭A 、B 的位置己经选定,那么凉亭C 建在什么位置,才能使工程造价最低?请用尺规作出图形(不写作法,但保留作图痕迹),并简要说明理由.15(烟台)(1)四年一度的国际数学家大会于2002年8月20日在北京召开.大会会标如图甲.它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和是5.求中间小正方形的面积.(2)现有一张长为6.5cm 、宽为2cm 的纸片,如图,请你将它分割成6块,再拼合成一个正方形.(要求:先在图乙中画出分割线,再画出拼成的正方形并标明相应数据)16(汕头)如图,已知在△ABC 中,∠A =90°。
中考复习:作图专题
一、平移、旋转、对称、位似1.在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(﹣4,6),(﹣1,4).(1)请在图中的网格平面内建立平面直角坐标系;(2)请画出△ABC关于x轴对称的△A1B1C1;(3)请在y轴上求作一点P,使△PB1C的周长最小,并写出点P的坐标.2.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)把△ABC向上平移3个单位后得到△A1B1C1,请画出△A1B1C1并写出点B1的坐标;(2)已知点A与点A2(2,1)关于直线l成轴对称,请画出直线l及△ABC关于直线l对称的△A2B2C2,并直接写出直线l的函数解析式.3.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(顶点是网格线的交点)(1)先将△ABC竖直向上平移5个单位,再水平向右平移4个单位得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;(3)求线段B1C1变换到B1C2的过程中扫过区域的面积.4.如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣1,5),B(﹣4,2),C(﹣2,2).(1)平移△ABC,使点B移动到点B1(1,1),画出平移后的△A1B1C1,并写出点A1,C1的坐标.(2)画出△ABC关于原点O对称的△A2B2C2.(3)线段AA1的长度为.5.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上.(1)画出△ABC关于原点成中心对称的△A'B'C',并直接写出△A'B'C'各顶点的坐标.(2)求点B旋转到点B'的路径长(结果保留π).6.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).(1)把△ABC平移后,其中点A移到点A1(4,5),画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2 B2C2.6.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.7.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.8.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.9.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.10.如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P 点的坐标.11.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.12.如图,已知△ABC三个顶点坐标分别是A(1,3),B(4,1),C(4,4).(1)请按要求画图:①画出△ABC向左平移5个单位长度后得到的△A1B1C1;②画出△ABC绕着原点O顺时针旋转90°后得到的△A2B2C2.(2)请写出直线B1C1与直线B2C2的交点坐标.13.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(项点是网格线的交点).(1)先将△ABC竖直向上平移6个单位,再水平向右平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;(3)线段B1C1变换到B1C2的过程中扫过区域的面积为.14.如图,在边长均为1的正方形网格纸上有一个△ABC,顶点A、B、C及点O 均在格点上,请按要求完成以下操作或运算:(1)将△ABC向上平移4个单位,得到△A1B1C1(不写作法,但要标出字母);(2)将△ABC绕点O旋转180°,得到△A2B2C2(不写作法,但要标出字母);(3)求点A绕着点O旋转到点A2所经过的路径长.15.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(2,﹣4),B(4,﹣4),C(1,﹣1).(1)画出△ABC关于y轴对称的△A1B1C1,直接写出点A1的坐标;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).16.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).17.如图,△ABC各顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)在图中画出△ABC向左平移3个单位后的△A1B1C1;(2)在图中画出△ABC绕原点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,AC边扫过的面积是.18.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π).19.如图,在由边长为1的单位正方形组成的网格中,按要求画出坐标系及△A1B1C1及△A2B2C2;(1)若点A、C的坐标分别为(﹣3,0)、(﹣2,3),请画出平面直角坐标系并指出点B的坐标;(2)画出△ABC关于y轴对称再向上平移1个单位后的图形△A1B1C1;(3)以图中的点D为位似中心,将△A1B1C1作位似变换且把边长放大到原来的两倍,得到△A2B2C2.20.如图,已知A(﹣4,2),B(﹣2,6),C(0,4)是直角坐标系平面上三点.(1)把△ABC向右平移4个单位再向下平移1个单位,得到△A1B1C1.画出平移后的图形,并写出点A的对应点A1的坐标;(2)以原点O为位似中心,将△ABC缩小为原来的一半,得到△A2B2C2,请在所给的坐标系中作出所有满足条件的图形.21.已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.22.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(画出图形)(3)△A2B2C2的面积是平方单位.23.如图,在平面直角坐标系中,△ABC的顶点坐标为A(﹣2,3)、B(﹣3,2)、C(﹣1,1).(1)若将△ABC向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A1B1C1;(2)画出△A1B1C1绕原点旋转180°后得到的△A2B2C2;(3)△A′B′C′与△ABC是位似图形,请写出位似中心的坐标:;(4)顺次连接C、C1、C′、C2,所得到的图形是轴对称图形吗?二、垂直平分线、角平分线:1.已知直线l及其两侧两点A、B,如图.(1)在直线l上求一点P,使PA=PB;(2)在直线l上求一点Q,使l平分∠AQB.(以上两小题保留作图痕迹,标出必要的字母,不要求写作法)2.如图,已知直线l及其两侧两点A、B.(1)在直线l上求一点O,使到A、B两点距离之和最短;(2)在直线l上求一点P,使PA=PB;(3)在直线l上求一点Q,使l平分∠AQB.3.已知甲村和乙村靠近公路a、b,为了发展经济,甲乙两村准备合建一个工厂,经协商,工厂必须满足以下要求:(1)到两村的距离相等;(2)到两条公路的距离相等.你能帮忙确定工厂的位置吗?4.已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.(1)作出边AC的垂直平分线DE;(2)当AE=BC时,求∠A的度数.5.如图,在直线l上找一点,使PA=PB.6.如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.7.作图题:(要求保留作图痕迹,不写作法)(1)作△ABC中BC边上的垂直平分线EF(交AC于点E,交BC于点F);(2)连结BE,若AC=10,AB=6,求△ABE的周长.8.已知,如图,Rt△ABC中,∠ABC=90°.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC的垂直平分线,交AC于点M;②连接BM,在BM的延长线上取一点D,使MD=MB,连接AD、CD.(2)试判断(1)中四边形ABCD的形状,并说明理由.9.小河的同旁有甲、乙两个村庄(如图),现计划在河岸AB上建一个水泵站,向两村供水,用以解决村民生活用水问题.(1)如果要求水泵站到甲、乙两村庄的距离相等,水泵站M应建在河岸AB上的何处?(2)如果要求建造水泵站使用建材最省,水泵站M又应建在河岸AB上的何处?10.如图,在6×6的正方形网格中,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C;(2)过点P画OA的垂线,垂足为H;(3)线段PH的长度是点P到直线的距离,线段的长度是点C 到直线OB的距离;(4)线段PC、PH、OC这三条线段大小关系是.(用“<”号连接)11.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)12.作图题(不写作法,保留作图痕迹):如图,已知点M、N和∠AOB,求作一点P,使P到点M、N的距离相等,且到∠AOB的两边的距离相等.13.画图(不用写作法,要保留作图痕迹)尺规作图:求作∠AOB的角平分线OC.14.如图,已知△ABC.(1)作边BC的垂直平分线;(2)作∠A的平分线.(要求:不写作法,保留作图痕迹)15.如图,已知点M,N和∠AOB,求作一点P,使P到M,N的距离相等,且到∠AOB的两边的距离相等.(要求尺规作图,并保留作图痕迹)16.作图题(不写作图步骤,保留作图痕迹).已知:如图,求作点P,使点P到A、B两点的距离相等,且P到∠MON两边的距离也相等.17.如图,已知△ABC.(1)作边BC的垂直平分线;(2)作∠C的平分线.(要求:不写作法,保留作图痕迹)18.如图,在三角形ABC中,先按要求画图,再回答问题:(1)过点A画∠BAC的平分线交BC于点D;过点D画AC的平行线交AB于点E;过点D画AB的垂线,垂足为F.(2)度量AE、ED的长度,它们有怎样的数量关系?(3)比较DF、DE的大小,并说明理由.19.如图,已知△ABC.(1)请用尺规作图法作出BC的垂直平分线DE,垂足为D,交AC于点E(保留作图痕迹,不写作法);(2)请用尺规作图法作出∠C的角平分线CF,交AB于点F(保留作图痕迹,不写作法);(3)请用尺规作图法在BC上找出一点P,使△PEF的周长最小(保留作图痕迹,不写作法).20.已知△ABC中,∠C=90°,按下列语句作图.(尺规作图,保留作图痕迹,不必写作法)(1)作AB边的垂直平分线,交AC于点E,交AB于点F;(2)连接CF.(3)作∠BFC的平分线,交BC于G.21.已知:△ABC(如图),(1)求作:作△ABC的内切圆⊙I.(要求:用尺规作图,保留作图痕迹,不写作法,不要求证明).(2)在题(1)已经作好的图中,若∠BAC=88°,求∠BIC的度数.22、如图,AE∥BF,AC平分∠BAE,交BF于C.(1)尺规作图:过点B作AC的垂线,交AC于O,交AE于D,(保留作图痕迹,不写作法);(2)在(1)的图形中,找出两条相等的线段,并予以证明.23、如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.24、如图,在Rt△ABC中,∠ACB=90°,AC=1,AB=2(1)求作⊙O,使它过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)所作的圆中,求出劣弧的长25、如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).26、已知△ABC中,∠A=25°,∠B=40°.(1)求作:⊙O,使得⊙O经过A、C两点,且圆心O落在AB边上.(要求尺规作图,保留作图痕迹,不必写作法)(2)求证:BC是(1)中所作⊙O的切线.27、如图,在Rt△ABC中,∠ACB=90°.(1)先作∠ABC的平分线交AC边于点O,再以点O为圆心,OC为半径作⊙O (要求:尺规作图,保留作图痕迹,不写作法);(2)请你判断(1)中AB与⊙O的位置关系,并证明你的结论.28.如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹);(2)连结AP,若AC=4,BC=8时,试求BP的长.29、如图,在△ABC中,AD⊥BC,垂足为D.(1)尺规作图(不写作法,保留作图痕迹):作△ABC的外接圆⊙O,作直径AE,连接BE;(2)若AB=8,AC=6,AD=5,求直径AE的长.(证明△ABE∽△ADC)30、如图,已知△ABC,且∠ACB=90°.(1)请用直尺和圆规按要求作图(保留作图痕迹,不写作法和证明):①以点A为圆心,BC边的长为半径作⊙A;②以点B为顶点,在AB边的下方作∠ABD=∠BAC.(2)请判断直线BD与⊙A的位置关系(不必证明).。
中考数学尺规作图真题汇编
中考数学之尺规作图真题汇编一、网格纸作图【2019·武汉】如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使AF∥DC,且AF=DC.(2)如图1,在边AB上画一点G,使∠AGD=∠BGC.(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB.【解答】解:(1)如图所示,线段AF即为所求;(2)如图所示,点G即为所求;(3)如图所示,线段EM即为所求.【2019·无锡】按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A为⊙O上一点,请用直尺(不带刻度)和圆规作出⊙O的内接正方形;(2)我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点.请运用上述性质,只用直尺(不带刻度)作图.①如图2,在▱ABCD中,E为CD的中点,作BC的中点F.②如图3,在由小正方形组成的4×3的网格中,△ABC的顶点都在小正方形的顶点上,作△ABC的高AH.【解答】解:(1)如图1,连结AO并延长交圆O于点C,作AC的中垂线交圆于点B,D,四边形ABCD即为所求.(2)①如图2,连结AC,BD交于点O,连结EB交AC于点G,连结DG并延长交CB 于点F,F即为所求②如图3所示,AH即为所求.【2020·安徽】如图1,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网M N在网格线上,格线的交点)为端点的线段AB,线段,()1画出线段AB关于线段MN所在直线对称的线段11A B(点A B分别为,A B的对应点);11()2将线段11B A ,绕点1B ,顺时针旋转90︒得到线段12B A ,画出线段12B A .【答案】(1)见解析;(2)见解析.【解析】【分析】(1)先找出A ,B 两点关于MN 对称的点A 1,B 1,然后连接A 1B 1即可; (2)根据旋转的定义作图可得线段B 1A 2.【详解】(1)如图所示,11A B 即为所作;(2)如图所示,12B A 即为所作.【点睛】本题主要考查作图-旋转与轴对称,解题的关键是掌握旋转变换和轴对称的定义与性质.【2021·荆州】如图,在5×5的正方形网格图形中,小正方形的边长都为1,线段ED 与AD 的端点都在网格小正方形的顶点(称为格点)上.请在网格图形中画图:(1)以线段AD 为边画正方形ABCD ,再以线段DE 为斜边画等腰直角三角形DEF ,其中顶点F在正方形ABCD外;(2)在(1)中所画图形基础上,以点B为其中一个顶点画一个新正方形,使新正方形的面积为正方形ABCD和△DEF面积之和,其它顶点也在格点上.【分析】(1)根据正方形,等腰直角三角形的定义画出图形即可.(2)画出边长为的正方形即可.【解答】解:(1)如图,正方形ABCD,△DEF即为所求.(2)如图,正方形BKFG即为所求.二、角平分线【2021·铜仁】.如图,在Rt△ABC中,∠C=90°,AB=10,BC=8,按下列步骤作图:步骤1:以点A为圆心,小于AC的长为半径作弧分别交AC、AB于点D、E.步骤2:分别以点D、E为圆心,大于DE的长为半径作弧,两弧交于点M.步骤3:作射线AM交BC于点F.则AF的长为()A.6B.3C.4D.6【分析】利用基本作图得到AF平分∠BAC,过F点作FH⊥AB于H,如图,根据角平分线的性质得到FH=FC,再根据勾股定理计算出AC=6,设CF=x,则FH=x,然后利用面积法得到×10•x+×6•x=×6×8,解得x=3,最后利用勾股定理计算AF的长.【解答】解:由作法得AF平分∠BAC,过F点作FH⊥AB于H,如图,∵AF平分∠BAC,FH⊥AB,FC⊥AC,∴FH=FC,在△ABC中,∵∠C=90°,AB=10,BC=8,∴AC==6,设CF=x,则FH=x,∵S△ABF+S△ACF=S△ABC,∴×10•x+×6•x=×6×8,解得x=3,在Rt△ACF中,AF===3.故选:B.三、垂直平分线【2019·泰州】如图,△ABC中,∠C=90°,AC=4,BC=8.(1)用直尺和圆规作AB的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交BC于点D,求BD的长.【解答】解:(1)如图直线MN即为所求.(2)∵MN垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∵AD2=AC2+CD2,∴x2=42+(8﹣x)2,解得x=5,∴BD=5.【2021·北部湾】如图,四边形ABCD中,AB//CD,∠B=∠D,连接AC.(1)求证:△ABC≌△CDA;(2)尺规作图:过点C作AB的垂线,垂足为E(不要求写作法,保留作图痕迹);(3)在(2)的条件下,已知四边形ABCD的面积为20,AB=5,求CE的长.【答案】(1)证明:∵AB//CD,∴∠ACD=∠CAB,在△ABC和△CDA中,{∠B=∠D∠CAB=∠ACD AC=CA,∴△ABC≌△CDA(AAS);(2)解:过点C作AB的垂线,垂足为E,如图:(3)解:由(1)知:△ABC≌△CDA,∵四边形ABCD的面积为20,∴S△ABC=S△CDA=10,∴12AB⋅CE=10,∵AB=5,∴CE=4.【2019·盐城】如图,AD是△ABC的角平分线.(1)作线段AD的垂直平分线EF,分别交AB、AC于点E、F;(用直尺和圆规作图,标明字母,保留作图痕迹,不写作法.)(2)连接DE、DF,四边形AEDF是形.(直接写出答案)【解答】解:(1)如图,直线EF即为所求.(2)∵AD平分∠ABC,∴∠BAD=∠CAD,∴∠BAD=∠CAD,∵∠AOE=∠AOF=90°,AO=AO,∴△AOE≌△AOF(ASA),∴AE=AF,∵EF垂直平分线段AD,∴EA=ED,F A=FD,∴EA=ED=DF=AF,∴四边形AEDF是菱形.故答案为菱形.四、全等或相似【2019·福建】如图,已知△ABC为和点A'.(1)以点A'为顶点求作△A'B'C',使△A'B'C'∽△ABC,S△A'B'C'=4S△ABC;(尺规作图,保留作图痕迹,不写作法)(2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、A'C'的中点,求证:△DEF∽△D'E'F'.(2)证明(略)【答案】见解析【解析】【2021·贵港】尺规作图(只保留作图痕迹,不要求写出作法).如图,已知△ABC,且AB >AC.(1)在AB边上求作点D,使DB=DC;(2)在AC边上求作点E,使△ADE∽△ACB.CBACBA【分析】(1)作线段BC的垂直平分线交AB于点D,连接CD即可.(2)作∠ADT=∠ACB,射线DT交AC于点E,点E即为所求.【解答】解:(1)如图,点D即为所求.(2)如图,点E即为所求.五、三角形四心(内心、外心、重心、垂心)【2019·陇南】已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=______.【答案】25π【解析】解:(1)如图⊙O即为所求.(2)设线段BC的垂直平分线交BC于点E.由题意OE=4,BE=EC=3,在Rt△OBE中,OB=√32+42=5,∴S圆O=π•52=25π.故答案为25π.(1)作线段AB,BC的垂直平分线,两线交于点O,以O为圆心,OB为半径作⊙O,⊙O即为所求.(2)在Rt△OBE中,利用勾股定理求出OB即可解决问题.本题考查作图-复杂作图,等腰三角形的性质,三角形的外接圆与外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.五、其他类型【2021·山西】已知正方形ABCD的边长为4个单位长度,点E是CD的中点,请仅用无刻度直尺按下列要求作图(保留作图痕迹).(1)在图1中,将直线AC绕着正方形ABCD的中心顺时针旋转45°;(2)在图2中,将直线AC向上平移1个单位长度.【分析】(1)根据正方形的性质和旋转的性质即可作出图形;(2)根据平移的性质即可作出图形.【解答】解:(1)如图1,直线l即为所求;(2)如图2中,直线a即为所求.。
2024年中考物理复习压轴真题专项汇编—作图题(光学和力学综合46题)
2024年中考物理复习压轴真题专项汇编—作图题(光学和力学综合46题)【题型1力的示意图与图示】1.(2023•通辽)如图所示,物体A与弹簧连接(弹簧被压缩),静止在光滑的斜面上,请画出物体A的受力示意图。
【答案】【解答】解:物体A与弹簧连接,静止在光滑的斜面上,则物体A不受摩擦力,过物体A的重心分别画出平行于斜面向上的弹力,竖直向下的重力、垂直于斜面向上的支持力,如图所示:2.(2023•自贡)如图所示,物体A静止在斜面上,请画出物体A的受力示意图。
【答案】【解答】解:从A的重心分别沿竖直向下、沿斜面向上和垂直于斜面向上的方向画一条带箭头的线段,分别用G、f和F表示重力、摩擦力和支持力。
如下图所示:3.(2023•云南)我国传统节日有悬挂灯笼的习俗,请在图中画出灯笼受到拉力F的示意图。
【答案】见解答【解答】解:拉力的方向沿绳子向上,作用点在灯笼上,从灯笼由绳子的接触点作竖直向上的拉力;如图所示:4.(2023•兰州)如图所示的避险车道内铺有厚厚的碎石,失控车辆一旦冲入就会因陡坡、碎石摩擦而快速停下,这在很大程度上保护了驾乘人员和车辆的安全。
正因如此,避险车道被称为高速公路上的“救命道”。
请在简化图中画出失控车辆冲入避险车道减速滑行时的受力示意图。
【答案】【解答】解:失控车辆冲入避险车道减速滑行时受到竖直向下的重力、垂直于斜面向上的支持力和沿斜面向下的阻力;三个力的作用点可画在车的重心上,沿三个力的方向分别画一条带箭头的线段,并分别在线段末尾标上相关字母,如图所示:5.(2023•临沂)作出图中漂浮在水面上的小球所受力的示意图(O为小球的重心)。
【答案】见解答【解答】解:小球受浮力和重力,浮力和重力是一对平衡力,过重心作竖直向下的重力和竖直向上的浮力,如下图:6.(2023•贵州)如图所示是在水平地板上推动拖把向左移动的情景。
请分析并画出地板对拖把头的作用力的示意图(O点为拖把头重心)。
【答案】见解答【解答】解:拖把头受到地面的竖直向上的支持力和向右的摩擦力,作用点都在拖把头重心O,如图所示:7.(2023•鄂州)如图所示,将一袋大米无初速度地放在向右匀速运动的传送带上,米袋将随传送带先做加速运动,后随传送带一起匀速运动。
中考物理:“作图题”专项整理
中考物理:“作图题”专项整理2019年1月13日作图题的考查内容主要集中在:用力的示意图表示重力、压力、浮力等;能正确找出动力、阻力、画出每个力的力臂;会组装滑轮组并分析省力情况;能跟据光的反射定律、平面镜成像特点解决作图问题;能根据凸透镜成像规律分析、解决一些简单的光现象;能根据要求设计电路、画电路图、连接实物,能进行简单家庭电路的连接;能根据安培定则进行有关判断和绕螺线管。
一、光学类例1.根据平面镜成像特点,在图5-1中画出物体AB在平面镜MN中的像A'B'。
解析:平面镜类的作图要注意:①成像特点:物成虚像很好看,关于镜面对称站,作图虚实要分清,箭头别忘加其中。
②物点是所有入射光线的“发光点”;像点看作是所有反射光线的“收光点”(因所有反射光线反向延长都经过像点)。
例2.如图5-2所示,是一条经水面反射后的光线。
请在图中画出其入射光线及与人射光线对应的折射光线的大致方向。
解析:作光的反(折)射光路图应明确:①法线是反(折)射光线和入射光线之间的分界线;它还是入(反或折)射角确定的唯一标准。
②光的折射特点:直射不变斜射变,空气入水靠法线;光路可逆真奇妙,水进空气好知道;折角随着入角变,千万别忘作法线。
例3.在图5-3中完成透镜的光路图.解析:透镜类的作图要了解:平行于主光轴的光线经凸透镜后会聚,过异侧的焦点;经凹透镜后发散,反向延长过同侧的焦点。
利用光路的可逆性分析上述光线得出:从焦点发出的光线过凸透镜后平行于主光轴;射向凹透镜另一侧焦点的光线(也可看作过焦点)过凹透镜后与主光轴平行。
不管是凸透镜还是凹透镜,过光心的光线,方向都不变。
可记作:凸镜会聚凹镜散,特别记住三条线;平行主轴过焦点,凸镜异侧凹镜反;光路可逆别忘掉,过焦光线能知道;光心个性真算靓,光线穿过不变向。
二、电磁类例4. 图5-4韩宇同学想利用爸爸汽车上换下来的蓄电池制作一个小照明灯,手头上有3.8V的小灯泡和三只不同阻值的电阻(其阻值分别为A.2Ω;B.8Ω;C.16Ω)、开关及部分导线,他又从学校实验室借来了电压表和一只最大阻值为20Ω的滑动变阻器,测量得知蓄电池的电压为6V。
(完整版)中考数学尺规作图专题复习(含答案)
中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。
1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。
5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。
中考数学作图题---精选
1、作图:(不写作法,但要保留作图痕迹)如图所示,要在街道旁修建一个牛奶站,向居民区A、B提供牛奶,牛奶站应建在什么地方,才能使A、B到它的距离之和最短.2、如图(1),A、B两单位分别位于一条封闭街道的两旁(直线L1、L2是街道两边沿),现准备合作修建一座过街人行天桥.(1)天桥应建在何处才能使由A经过天桥走到B的路程最短?在图(2)中作出此时桥PQ的位置,简要叙述作法并保留作图痕迹.(注:桥的宽度忽略不计,桥必须与街道垂直).(2)根据图(1)中提供的数据计算由A经过天桥走到B的最短路线的长.(单位:米)3、有一块三角形的土地,现要平均分给四个农户种植.请给出两种分法.(在下列所给的图形上画图,不要求写作法,保留作图痕迹且要有简要分法的说明)4、画图题.如图:求作一点P,使PC=PD,并且P到∠AOB两边的距离相等.(不写作法,保留作图痕迹.)5、如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,且到∠AOB 的两边的距离相等.(要求用尺规画图,保留作图痕迹)6、如图,AC 、BD 为正方形ABCD 对角线,相交于点O,点D 为BC 边的中点,正方形边长为2cm,在BD 上找点P ,使DP+CP 之和最小,且最小值为________。
7、如图,点P 在∠AOB 内部,问如何在射线OA 、OB 上分别找点C 、D ,使PC+CD+DP 之和最小?请简要说明。
8、如图,P 是∠AOB 内任一点,分别在OA 、OB 上,求作两点P 1,P 2,使△PP 1P 2的周长最小(简要说明作法).9、如图,在边长为1个单位长度的小正方形组成的两格中,点A 、B 、C 都是格点.(1)将△ABC 向左平移6个单位长度得到得到△A 1B 1C 1;(2)将△ABC 绕点O 按逆时针方向旋转180°得到△A 2B 2C 2,请画出△A 2B 2C 2.A B C D D O P 0P BA。
初中数学中考复习尺规作图题专项练习及答案解析(专题试卷50道)
初中数学中考复习尺规作图题专项练习及答案解析(专题试卷50道)初中数学中考复习作图题专项练习及答案解析一、选择题1、数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是A.B.C.D.2、如图,已知△ABC,AB <BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是A.B.C.D.3、如图,已知△ABC,AB <BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是共32 页,第 1 页4、下列尺规作图,能判断AD是△ABC边上的高是A.B.C.D.5、任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形6、用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形共32 页,第 2 页7、如图,在?ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB、AD于点E、F;再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能条件推理得出的是 A. AG平分∠DAB B. AD=DH C. DH=BC D. CH=DH 8、如图,已知钝角三角形ABC,依下列步骤尺规作图,并保留作图痕迹. 步骤1:以点C为圆心,CA为半径画弧①;步骤2:以点B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC的延长线于点H.下列叙述正确的是:A.BH垂直平分线段AD B.AC 平分∠BAD C.S△ABC=BC·AH D.AB=AD 二、填空题9、阅读下面材料:在数学课上,老师提出如下问题:尺规作图,过圆外一点作圆的切线.已知:⊙O和点P 求过点P 的⊙O的切线小涵的主要作法如下:如图,连结OP,作线段OP的中点A;以A为圆心,OA长为半径作圆,交⊙O于点B,C;作直线PB和PC.共32 页,第3 页所以PB和PC就是所求的切线.老师说:“小涵的做法正确的.”请回答:小涵的作图依据是.10、如图,在△ABC中,∠ACB=80°,∠ABC=60°.按以下步骤作图:①以点A为圆心,小于AC 的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于的长为半径画弧,两弧相交于点G;③作射线AG交BC于点D.则∠ADB的度数为°.EF11、如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径做弧,两弧相交于点P和Q.②作直线PQ交AB于点D,交BC于点E,连接AE.若CE=4,则AE=.12、如图,在△ABC中,AB>AC.按以下步骤作图:分别以点B和点C为圆心,大于BC 一半的长为半径作圆弧,两弧相交于点M和点N;作直线MN交AB于点D;连结CD.若共32 页,第 4 页AB=6,AC=4,则△ACD的周长为.三、计算题13、如图,已知线段a和h.求作:△ABC,使得AB=AC,BC=a,且BC边上的高AD=h.要求:尺规作图,不写作法,保留作图痕迹.14、如图所示,点C、D是∠AOB内部的两点.作∠AOB的平分线OE;在射线OE上,求作一点P,使PC=PD.四、解答题15、如图,已知等腰直角△ABC,∠A=90°.利用尺规作∠ABC的平分线BD,交AC于点D;若将中的△ABD 沿BD折叠,则点A正好落在BC边上的A1处,当AB=1时,求△A1DC的面积.共32 页,第 5 页16、如图,在Rt△ABC中,∠ACB=90°.用尺规在边BC上求作一点P,使PA=PB;连结AP,若AC=4,BC=8时,试求点P到AB边的距离.17、已知△ABC,用直尺和圆规作△ABC的角平分线CD和高AE.18、数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线. 根据以上情境,解决下列问题:(1)李老师用尺规作角平分线时,用到的三角形全等的判定方法是_________. (2)小聪的作法正确吗?请说明理. 共32 页,第 6 页(3)请你帮小颖设计用刻度尺作角平分线的方法. 19、如图,∠AOB=30°,OA表示草地边,OB表示河边,点P表示家且在∠AOB 内.某人要从家里出发先到草地边给马喂草,然后到河边喂水,最后回到家里.请用尺规在图上画出此人行走的最短路线图.若OP=30米,求此人行走的最短路线的长度.20、如图,在△ABC 中,AB=AC=8cm,∠BAC=120°. 作△ABC的外接圆;求它的外接圆半径.21、某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.请找出截面的圆心;若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.共32 页,第7 页22、如图,已知△ABC,用直尺和圆规求作一直线AD,使直线过顶点A,且平分△ABC的面积23、高致病性禽流感是比SARS传染速度更快的传染病.为防止禽流感蔓延,政府规定:离疫点3km范围内为扑杀区;离疫点3km~5km范围内为免疫区,对扑杀区与免疫区内的村庄、道路实行全封闭管理.现有一条笔直的公路AB通过禽流感病区,如图,在扑杀区内公路CD长为4km.请用直尺和圆规找出疫点O;求这条公路在免疫区内有多少千米?24、作图题:如图,已知O是坐标原点,B、C两点的坐标分别为、.以0点为位似中心在y轴的左侧将△OBC放大到两倍,画出图形;分别写出B、C两点的对应点B′、C′的坐标.25、如图,⊙O为△ABC的外接圆,直线l与⊙O相切与点P,且l∥BC.请仅用无刻度的直尺,在⊙O中画出一条弦,使这条弦将△ABC分成面积相等的两部分;共32 页,第8 页请写出证明△ABC 被所作弦分成的两部分面积相等的思路.26、如图,107国道OA和302国道OB在甲市相交于点O,在∠AOB的内部有工厂C和D,现要修建一个货站P,使P到OA,OB的距离相等,且使PC=PD,试确定出点P的位置.27、用尺规作图从△ABC中裁出一个以AB为底边的等腰△ABD,并使得△ABD的面积尽可能大28、如图,已知△ABC,利用尺规完成下列作图.作△ABC的外接圆;若△ABC所在平面内有一点D,满足∠CAB=∠CDB,BC=BD,求作点D.29、如图,点A是半径为3的⊙O上的点,尺规作图:作⊙O的内接正六边形ABCDEF;共32 页,第9 页求中的长.30、已知,如图,直线AB与直线BC相交于点B,点D是直线BC上一点,直线DE∥AB,且点E 到B,D两点的距离相等.用尺规作图作出点E;连接BE,求证:BD平分∠ABE.31、如图,BC 是⊙O的一个内接正五边形的一边,请用等分圆周的方法,在⊙A中用尺规作图作出一个⊙A的内接正五边形.32、已知:如图,在△ABC中,∠A=30°,∠B=60°.作∠B的平分线BD,交AC于点D;作AB的中点E;连接DE,求证:△ADE≌△BDE.共32 页,第10 页33、如图,已知△ABC,用直尺和圆规在平面上求作一个点P,使P到∠B两边的距离相等,且PA=PB.34、如图,在△ABC中,AB=AC=8cm,∠BAC=120°.作△ABC的外接圆;求它的外接圆半径. 35、如图,已知等腰直角△ABC,∠A=90°.利用尺规作∠ABC的平分线BD,交AC于点D;若将中的△ABD沿BD折叠,则点A正好落在BC边上的A1处,当AB=1时,求△A1DC的面积.36、如图,△ABC中,∠C=90°,小王同学想作一个圆经过A、C两点,并且该圆的圆心到AB、AC距离相等,请你利用尺规作图的办法帮助小王同学确定圆心D..共32 页,第11 页37、如图,将矩形ABCD沿对角线AC 折叠,点B落在点E处,请用尺规作出点E.38、如图,在等腰直角△ABC中,∠ACB=90°,AC=1.作⊙O,使它过点A、B、C.在所作的圆中,求出劣弧BC的长.39、如图,在△ABC 中,∠C=90°,∠B=30°.作∠CAB 的平分线,交BC边于点D;求S△ACD:S△ABC的值.40、如图,某地有两所大学和两条交叉的公路.图中点M,N表示大学,OA,OB表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计.共32 页,第12 页41、如图,AE∥BF,AC平分∠BAE,交BF于C.尺规作图:过点B作AC的垂线,交AC于O,交AE于D,;在的图形中,找出两条相等的线段,并予以证明.42、?ABCD 中,点E在AD上,DE=CD,请仅用无刻度的直尺,按要求作图在图1中,画出∠C的角平分线;在图2中,画出∠A的角平分线.43、如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.44、从△ABC中裁出一个以AB为底边的等腰△ABD,并使得△ABD的面积尽可能大.用尺规作图作出△ABD.若AB=2m,∠CAB=30°,求裁出的△ABD的面积.共32 页,第13 页45、如图,在中,.利用直尺和圆规按下列要求作图,并在图中标明相应的字母. ①作②以的垂直平分线,交为圆心,于点,交于点;. 为半径作圆,交的延长线于点⑵在⑴所作的图形中,解答下列问题. ①点②若与的位置关系是_____________;,,求的半径. 46、在数轴上作出表示的点.47、△ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.按要求作图:①画出△ABC 关于原点O的中心对称图形△A1B1C1;②画出将△ABC绕点C顺时针旋转90°得到△A2B2C.48、如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么共32 页,第14 页理是:.49、如图,已知线段a和b,a>b,求作直角三角形ABC,使直角三角形的斜边AB=a,直角边AC=b.50、如图,已知⊙O,用尺规作⊙O的内接正四边形ABCD.共32 页,第15 页参考答案1、A.2、D3、D4、B5、B.6、B7、D8、A9、直径所对的圆周角是直角.10、100.11、8.12、10.13、见解析14、见解析15、(1)详见解析;.16、(1)、答案见解析;(2)、5. 17、答案见解析18、(1)SSS;(2)、理见解析;(3)、答案见解析19、(1)、答案见解析;(2)、30m.20、(1)、答案见解析;(2)、r=8cm 21、见试题解析;这个圆形截面的半径是10cm.22、答案见解析23、(1)作图详见解析;(2)千米.24、(1)图形详见解析;(2) B′,C′.25、26、作图详见解析. 27、28、作图见解析作图见解析29、(1)见试题解析;2π.30~33、详见解析.34、(1)、答案见解析;(2)、r=8cm 35、(1)、答案见解析;(2)、36、作图参见解析.37、作图参见解析. 38、作图参见解析;π. 39、作图见解析1:3 40、答案见解析41、作图见解解析;AB=AD=BC.42、作图参见解析.43、m 244、如图;45、作图见解析;①点B在⊙O上;②5.47、见解析48、见解析49、见46、解析50、答案见解析.答案详细解析【解析】1、试题分析:A、根据作法无法判定PQ⊥l;B、以P为圆心大于P到直线l的距离为半径画弧,交直线l,于两点,再以两点为圆心,大于它们的长为半径画弧,得出其交点,进而作出判断;C、根据直径所对的圆周角等于90°作出判断;D、根据全等三角形的判定和性质即可作出判断.故选:A.考点:作图—基本作图.2、试题分析:PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.故选D.考点:作图—复杂作图3、试题分析:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P 在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选D.考点:基本作图4、试题分析:过点A作BC的垂线,垂足为D,故选B.考点:作图—基本作图.5、试题分析:根据线段垂直平分线的性质可得EG=EH=FH=GF,此可得选项A正确,选项B错误,选项C、正确,选项D正确.故答案选B.考点:线段垂直平分线的性质.6、试题分析:根据作图的痕迹以及菱形的判定方法解答.解:作图痕迹可知,四边形ABCD 的边AD=BC=CD=AB,根据四边相等的四边形是菱形可得四边形ABCD是菱形.故选B.7、试题分析:角平分线的作法,依题意可知AG平分∠DAB,A正确;∠DAH=∠BAH,又AB∥DC,所以∠BAH=∠ADH,所以,∠DAH=∠ADH,所以,AD=DH,又AD=BC,所以,DH=BC,B、C正确,故答案选D. 考点:平行四边形的性质;平行线的性质. 8、试题分析:作法可得BH为线段AD的垂直平分线,故答案选A. 考点:线段垂直平分线的性质. 9、试题分析:∵OP 是⊙A的直径,∴∠PBO=∠PCO=90°,∴OB⊥PB,OC⊥PC,∵OB、OC是⊙O的半径,∴PB、PC是⊙O的切线;则小涵的作图依据是:直径所对的圆周角是直角.故答案为:直径所对的圆周角是直角.【考点】切线的判定;作图—复杂作图.10、试题解析:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠ACB=80°,∠ABC=60°,∴∠CAB=40°,∴∠BAD=20°;。
中考数学专题复习之尺规作图精选训练题
中考数学专题复习之尺规作图精选训练题一.选择题(共10小题)1.利用直角三角板,作△ABC 的高,下列作法正确的是( )A .B .C .D .2.已知线段AB ,按如下步骤作图: ①取线段AB 中点C ; ②过点C 作直线l ,使l ⊥AB ;③以点C 为圆心,AB 长为半径作弧,交l 于点D ;④作∠DAC 的平分线,交l 于点E .则tan ∠DAE 的值为( )A .12B .2√55C .√5+12D .√5−123.阅读以下作图步骤:①在OA 和OB 上分别截取OC ,OD ,使OC =OD ;②分别以C ,D 为圆心,以大于12CD 的长为半径作弧,两弧在∠AOB 内交于点M ;③作射线OM ,连接CM ,DM ,如图所示. 根据以上作图,一定可以推得的结论是( )A.∠1=∠2且CM=DM B.∠1=∠3且CM=DMC.∠1=∠2且OD=DM D.∠2=∠3且OD=DM4.用直尺和圆规作一个角等于已知角,如图,能得出∠A'O'B'=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS5.如图,在△ABC中,∠B=42°,∠C=48°,DI是AB的垂直平分线,连接AD.以A为圆心,任意长为半径画弧,分别交AD,AC于点E,F,分别以E,F为圆心,以大于1EF长为半径画弧,两圆弧交于G点,作射线AG交BC于点H,则∠DAH的度数为()2A.36°B.25°C.24°D.21°6.如图,用直尺和圆规作∠MAN的角平分线,根据作图痕迹,下列结论不一定正确的是()A.AD=AE B.AD=DF C.DF=EF D.AF⊥DE7.如图,在Rt △ABC 中,以点A 为圆心,适当长为半径作弧,交AB 于点F ,交AC 于点E ,分别以点E ,F 为圆心,大于12EF 长为半径作弧,两弧在∠BAC 的内部交于点G ,作射线AG 交BC 于点D .若AC =3,BC =4,则CD 的长为( )A .78B .1C .32D .28.如图,在▱ABCD 中,分别以B ,D 为圆心,大于12BD 的长为半径画弧,两弧相交于点M ,N ,过M ,N 两点作直线交BD 于点O ,交AD ,BC 于点E ,F ,下列结论不正确的是( )A .AE =CFB .DE =BFC .OE =OFD .DE =DC9.如图,Rt △ABC 中,∠C =90°,∠B =30°,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形.其作法错误的是( )A .B .C .D .10.如图所示,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E ,F 为圆心,大于12EF 长为半径作圆弧,两条圆弧交于点P ,作射线AP ,交CD 于点M .若∠ACD =110°,则∠AMC 的度数为( )A .70°B .35°C .30°D .45°二.填空题(共10小题)11.如图,在△ABC 中,∠B =30°,∠C =50°,通过观察尺规作图的痕迹,∠DEA 的度数是 .12.如图,在△ABC 中,∠A =45°,∠B =30°,尺规作图作出BC 的垂直平分线与AB 交于点D ,则∠ACD 的度数为 .13.如图.△ABC 中,∠B =32°,∠BCA =78°,请依据尺规作图的作图痕迹,计算∠α= .14.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是 .15.如图,在平行四边形ABCD (AB <AD )中,按如下步骤作图:①以点A 为圆心,以适当长为半径画弧,分别交AB ,AD 于点M ,N ;②分别以点M ,N 为圆心,以大于12MN 的长为半径画弧,两弧在∠BAD 内交于点P ;③作射线AP 交BC 于点E .若∠B =120°,则∠EAD 为 °.16.如图,在△ABC 中,∠A =90°,分别以点B 和点C 为圆心,大于12BC 的长为半径画弧,两弧相交于M ,N 两点;作直线MN 交AB 于点E .若线段AE =5,AC =12,则BE 长为 .17.如图,在Rt △ABC 中,∠B =90°,以点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点D ,E ,再分别以点D ,E 为圆心,大于12DE 长为半径画弧,两弧交于点F ,作射线AF 交边BC 于点G ,若BG =1,AC =4,则△ACG 的面积为 .18.如图,在△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,大于12BC 的长为半径画弧,两弧相交于M ,N 两点;②作直线MN 交AB 于点D ,连接CD .若∠B =24°,则∠CDA 的度数为 .19.如图,在矩形ABCD 中,连接AC ,以点A 为圆心,小于AD 的长为半径画弧,分别交AD ,AC 于点E ,F ,分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧在∠DAC内交于点G ,作射线AG ,交DC 于点H .若AD =6,AB =8,则△AHC 的面积为 .20.如图,已知∠AOB ,以点O 为圆心,以任意长为半径画弧,与OA 、OB 分别于点C 、D ,再分别以点C 、D 为圆心,以大于12CD 为半径画弧,两弧相交于点E ,过OE 上一点M作MN ∥OA ,与OB 相交于点N ,∠MNB =50°,则∠AOM = .三.解答题(共5小题)21.如图,AB =AE ,BC =ED ,∠B =∠E . (1)求证:AC =AD .(2)用直尺和圆规作图:过点A 作AF ⊥CD ,垂足为F .(不写作法,保留作图痕迹)22.如图,AC 是菱形ABCD 的对角线.(1)作边AB 的垂直平分线,分别与AB ,AC 交于点E ,F (尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,连接FB ,若∠D =140°,求∠CBF 的度数.23.如图,点A 、B 、C 在⊙O 上且AB =AC ,AB ⊥AC ,请你利用直尺和圆规,用三种不同的方法,找到圆心O .(保留作图痕迹)24.如图,已知△ABC,P为边AB上一点,请用尺规作图的方法在边AC上求作一点E,使AE+EP=AC.(保留作图痕迹,不写作法)25.如图,网格中每个小正方形的边长均为1,点A、B在小正方形的顶点上.(1)画出以AB为底的等腰直角△ABC(点C在小正方形的顶点上);(2)画出以AB为一边且面积为20的平行四边形ABDE,(点D、E都在小正方形的顶点上),连接CE,请直接写出线段CE的长.。
中考数学总复习《尺规作图》专项测试卷带答案
中考数学总复习《尺规作图》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.(2024·深圳中考)在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是( )A.①②B.①③C.②③D.只有①2.(2024·呼伦贝尔、兴安盟中考)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,适当长为半径画弧分别交AB,AC于点M和点N,再分别以点M,N为圆心,大于1MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D.若△ACD的面2积为8,则△ABD的面积是( )A.8B.16C.12D.243.(2024·广西中考)如图,在△ABC中,∠A=45°,AC>BC.(1)尺规作图:作线段AB的垂直平分线l,分别交AB,AC于点D,E;(要求:保留作图痕迹,不写作法,标明字母)(2)在(1)所作的图中,连接BE,若AB=8,求BE的长.4.(2024·浙江中考)尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦…我明白了!(1)证明:AF∥CE;(2)指出小丽作法中存在的问题.B层·能力提升AC的5.(2024·济南莱芜区模拟)如图,在矩形ABCD中,分别以点A,C为圆心,大于12长为半径画弧,两弧相交于M,N两点;作直线MN,分别交AD,BC于点E,F,连接AF 和CE.已知DE=3,AB=4,则以下四个结论中正确的是( )AC·EF;②AE=5;①S四边形AFCE=12③∠F AC=∠ACF=30°;④EF=2√5.A.①②③B.①②④C.②③④D.①②6.(2024·武汉中考)如图是由小正方形组成的3×4网格,每个小正方形的顶点叫格点.△ABC三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD交BC于点D,使AD平分△ABC的面积;(2)在(1)的基础上,在射线AD上画点E,使∠ECB=∠ACB;(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90°到点C,再画射线AF交BC 于点G;(4)在(3)的基础上,将线段AB绕点G旋转180°,画对应线段MN(点A与点M对应,点B与点N对应).7.(2024·绥化中考)已知:△ABC.(1)尺规作图:画出△ABC的重心G.(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,连接AG,BG.已知△ABG的面积等于5 cm2,则△ABC的面积是_________cm2.C层·素养挑战8.(2024·淄博淄川区二模)如图,在四边形ABCD中,AB=AD,AB⊥AD,顶点(k>0,x>0)的图象经过C(4,n),D两A(0,2),B(1,0)分别在y轴、x轴上反比例函数y=kx点.(1)求反比例函数的解析式;(2)请用无刻度的直尺和圆规作出线段BC的垂直平分线;(要求:不写作法,保留作图痕迹)(3)线段BC与(2)中所作的垂直平分线分别与BC,AD交于点M,N两点.求点M的坐标.参考答案A层·基础过关1.(2024·深圳中考)在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是(B)A.①②B.①③C.②③D.只有①2.(2024·呼伦贝尔、兴安盟中考)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,适当长为半径画弧分别交AB,AC于点M和点N,再分别以点M,N为圆心,大于1MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D.若△ACD的面2积为8,则△ABD的面积是(B)A.8B.16C.12D.243.(2024·广西中考)如图,在△ABC中,∠A=45°,AC>BC.(1)尺规作图:作线段AB的垂直平分线l,分别交AB,AC于点D,E;(要求:保留作图痕迹,不写作法,标明字母)【解析】(1)图形如图所示:(2)在(1)所作的图中,连接BE,若AB=8,求BE的长.【解析】(2)∵DE垂直平分线段AB,∴EB=EA∴∠EBA=∠A=45°,∴∠BEA=90°AB=4∵BD=DA,∴DE=DB=DA=12∴BE=√2BD=4√2.4.(2024·浙江中考)尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦…我明白了!(1)证明:AF∥CE;【解析】(1)根据小明的作法知,CF=AE∵四边形ABCD是平行四边形∴AD∥BC,又∵CF=AE∴四边形AFCE是平行四边形∴AF∥CE;(2)指出小丽作法中存在的问题.【解析】(2)以A为圆心,EC为半径画弧,交BC于点F,此时可能会有两个交点,只有其中之一符合题意.故小丽的作法有问题.B层·能力提升AC的5.(2024·济南莱芜区模拟)如图,在矩形ABCD中,分别以点A,C为圆心,大于12长为半径画弧,两弧相交于M,N两点;作直线MN,分别交AD,BC于点E,F,连接AF 和CE.已知DE=3,AB=4,则以下四个结论中正确的是(B)AC·EF;②AE=5;①S四边形AFCE=12③∠F AC=∠ACF=30°;④EF=2√5.A.①②③B.①②④C.②③④D.①②6.(2024·武汉中考)如图是由小正方形组成的3×4网格,每个小正方形的顶点叫格点.△ABC三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD交BC于点D,使AD平分△ABC的面积;(2)在(1)的基础上,在射线AD上画点E,使∠ECB=∠ACB;(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90°到点C,再画射线AF交BC 于点G;(4)在(3)的基础上,将线段AB绕点G旋转180°,画对应线段MN(点A与点M对应,点B与点N对应).【解析】(1)如图(1)中,线段AD即为所求;(2)如图(1)中,点E即为所求;(3)如图(2)中,点C,射线AF,点G即为所求;(4)如图(2)中,线段MN即为所求.7.(2024·绥化中考)已知:△ABC.(1)尺规作图:画出△ABC的重心G.(保留作图痕迹,不要求写作法和证明)【解析】(1)分别作出AB边和BC边的垂直平分线,与AB和BC边分别交于点N 和点M连接AM和CN如图所示,点G即为所求作的点.(2)在(1)的条件下,连接AG,BG.已知△ABG的面积等于5 cm2,则△ABC的面积是_________cm2.答案:15【解析】(2)∵点G是△ABC的重心∴AG=2MG∵△ABG的面积等于5 cm2∴△BMG的面积等于2.5 cm2∴△ABM的面积等于7.5 cm2.又∵AM是△ABC的中线∴△ABC的面积等于15 cm2.C层·素养挑战8.(2024·淄博淄川区二模)如图,在四边形ABCD中,AB=AD,AB⊥AD,顶点A(0,2),B(1,0)分别在y轴、x轴上反比例函数y=k(k>0,x>0)的图象经过C(4,n),D两x点.(1)求反比例函数的解析式;【解析】(1)过点D作DT⊥OA于点T.∵A(0,2),B(1,0)∴OA=2,OB=1∵AB⊥AD,DT⊥OT∴∠DTA=∠DAB=∠AOB=90°∵∠DAT+∠OAB=90°,∠OAB+∠ABO=90°,∴∠DAT=∠ABO ∵AD=AB∴△DTA≌△AOB(AAS)∴AT=OB=1,DT=AO=2∴OT=OA+AT=3∴D(2,3)∵反比例函数y=kx (k>0,x>0)的图象经过D点,∴3=k2,∴k=6∴反比例函数解析式为y=6x;(2)请用无刻度的直尺和圆规作出线段BC的垂直平分线;(要求:不写作法,保留作图痕迹)【解析】(2)如图,直线MN即为所求;(3)线段BC与(2)中所作的垂直平分线分别与BC,AD交于点M,N两点.求点M的坐标.【解析】(3)∵C(4,n)在y=6x的图象上∴n=32∴C(4,32)∵BM=CM,B(1,0)∴M(4+12,32+02)即M(52,34).第11页共11页。
初中中考尺规作图十例(打印)
BPAaOQPNM 尺规做图之阳早格格创做【知识归纳】1、尺规做图的定义:尺规做图是指用不刻度的曲尺战圆规做图.最基原,最时常使用的尺规做图,常常称基原做图.一些搀纯的尺规做图皆是由基原做图组成的.2、五种基原做图:1、做一条线段等于已知线段;2、做一个角等于已知角;3、做已知线段的笔曲仄分线;4、做已知角的角仄分线;5、过一面做已知曲线的垂线; (1)题目一:做一条线段等于已知线段. 已知:如图,线段a .供做:线段AB ,使AB = a . 做法:(1) 做射线AP ;(2) 正在射线AP 上截与AB=a .则线段AB 便是所供做的图形. (2)题目二:做已知线段的中面. 已知:如图,线段MN.供做:面O ,使MO=NO (即O 是MN 的中面). 做法:ONMBPANM BOA③②①A'A'N'O'B'M'O'A'N'M'M'O'(1)分别以M 、N 为圆心,大于的相共线段为半径绘弧, 二弧相接于P ,Q ;(2)对接PQ 接MN 于O .则面O 便是所供做的MN的中面. (3)题目三:做已知角的角仄分线. 已知:如图,∠AOB ,供做:射线OP, 使∠AOP =∠BOP (即OP 仄分∠AOB ).做法:(1)以O 为圆心,任性少度为半径绘弧,分别接OA ,OB 于M ,N ;(2)分别以M 、N为圆心,大于 的线段少为半径绘弧,二弧接∠AOB 内于P;(3) 做射线OP.则射线OP 便是∠AOB 的角仄分线. (4)题目四:做一个角等于已知角. 已知:如图,∠AOB. 供做:∠A ´O ´B ´,使∠A ´O ´B ´=∠AOB 做法: (1)做射线O ´A ´;(2)以O 为圆心,任性少度为半径绘弧,接OA 于M ,接OB 于N ;(3)以O ´为圆心,以OM 的少为半径绘弧,接O ´A ´于M ´;PB(4)以M ´为圆心,以MN 的少为半径绘弧,接前弧于N ´; (5)对接O ´N ´并延少到B ´. 则∠A ´O ´B ´便是所供做的角.(5)题目五:通过曲线上一面干已知曲线的垂线. 已知:如图,P 是曲线AB 上一面. 供做:曲线CD ,是CD 通过面P 做法:(1)以P 为圆,任性少为半径绘弧,接AB 于M 、N ;(2)分别以M 、N 为圆心,大于MN 21的少为半径绘弧,二弧接于面Q ;(3)过D 、Q 做曲线CD. 则曲线CD 是供做的曲线.(6)题目六:通过曲线中一面做已知曲线的垂线 已知:如图,曲线AB 及中一面P. 供做:曲线CD ,使CD 通过面P ,且CD ⊥AB.做法:(1)以P 为圆心,任性少为半径绘弧,接AB 于M 、N ;(2)分别以M 、N 圆心,大于MN 21少度的一半为半径绘弧,二弧接于面Q ;(3)过P 、Q 做曲线CD. 则曲线CD 便是所供做的曲线.ca b mn (7)题目七:已知三边做三角形. 已知:如图,线段a ,b ,c.供做:△ABC ,使AB = c ,AC = b ,BC = a. 做法:(1) 做线段AB = c ;(2) 以A 为圆心,以b 以B 为圆心,以a前弧相接于C ;(3) 对接AC ,BC.则△ABC 便是所供做的三角形.(8)题目八:已知二边及夹角做三角形. 已知:如图,线段m ,n, ∠α. 供做:△ABC ,使∠A=∠α,AB=m ,AC=n. 做法:(1) 做∠A=∠α; (2) 正在AB 上截与AB=m ,AC=n ; (3) 对接BC.则△ABC 便是所供做的三角形.(9)题目九:已知二角及夹边做三角形. 已知:如图,∠α,∠β,线段m .供做:△ABC ,使∠A=∠α,∠B=∠β,AB=m. 做法:(1)做线段AB=m;正在AB的共旁做∠A=∠α,做∠B=∠β,∠A与∠B的另一边相接于C.则△ABC便是所供做的图形(三角形).(10)题目十:已知三角形,做三角形的中接圆战内切圆.已知:如图,△ABC.供做:△ABC中接圆战内切圆.做法:(1)中接圆的圆心是△ABC三条边的笔曲仄分线的接面(转移为做AB、BC的笔曲仄分线接面,半径是接面与△ABC其中一个顶面的少度)(2)内切圆的圆心是△ABC三个角的角仄分线的接面(转移为做∠B、∠C的角仄分线接面,半径是接面到△ABC其中一条边的少度)。
中考物理常考作图题(附答案和解析)
中考物理常考作图题(附答案和解析)1.(3分)如图所示,潜水员眼睛在水下A点处,B点有条小鱼,C 点有只小鸟,请作出潜水员观察鱼、鸟的光路图。
【考点】A3:光直线传播的应用;AN:作光的折射光路图.【分析】(1)根据光在同种均匀介质中沿直线传播的规律作出潜水员观察鱼的光路图;(2)根据光从空气中进入水中时折射角小于入射角的规律作出潜水员观察鸟的光路图。
【解答】解:(1)直接连接BA,光线方向从B指向A,光线BA即为潜水员观察鱼的光路图;(2)首先确定入射点O,点O在AC连线与界面交点的左侧,连接CO与OA即为入射光线与折射光线。
故答案为:【点评】考查光在同种均匀介质中沿直线传播与光的折射定律,难点是确定光的入射点与光线的方向。
2.(3分)如图所示,用两橡皮筋悬挂的金属棒AB处于磁场中,金属棒两端连接着导线(导线对金属棒的作用力忽略不计),当棒中通以由A流向B的电流时,金属棒静止,橡皮筋刚好处于松弛状态;现让电流由B流向A,金属棒仍静止,请画出此时金属棒受力的示意图。
【考点】6H:力的示意图与图示;71:弹力;76:重力;CJ:磁场对通电导线的作用.【分析】当棒中通以由A流向B的电流时橡皮筋处于松弛状态就说明了导线AB受到了一个向上的磁场力的作用;若电流的方向发生改变时,导线AB的受力方向就会变为向下。
先分析金属棒受到的力有:橡皮筋的拉力(两个)、导线AB的重力、导线AB受到的向下的磁力;然后根据力的示意图的画法做出各个力的示意图。
【解答】解:通过分析可知:导体AB受到了四个力的作用:竖直向下的重力、橡皮筋施加的竖直向上的拉力(两个)、竖直向下的磁力。
故答图如下:【点评】解答此题的关键是导体AB所受到的磁力的分析。
3.(5分)欣儿手头上有完全相同的l元硬币10枚,为了测出其中一枚硬币的密度,她设计了一个小实验。
实验器材有空金属筒、量杯和水;主要的实验步骤如下:A.将10枚硬币全部放入水中,此时量杯中水面处刻度如图;B.将10枚硬币放入金属筒中,让金属筒漂浮在量杯中,记下此时水面处的刻度值为53mL;C.将空金属筒放入盛有适量水的量杯中,让其漂浮,记下此时水面处的刻度值为22mL。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【建议收藏】(可打印)中考不能丢的5分:作图题超全汇总
专题视点•考向解读
综合分析全国各地中考试题,作图题是中考必考热点之一,中考作图涉及的主要知识有:
1.光学作图
(1)根据光在同一种均匀介质中沿直线传播作图.
(2)画光的反射和折射光线.
(3)利用平面镜成像特点作图.
(4)根据透镜对光的作用作图.
2.力学作图
(1)画重力、压力、摩擦力、浮力的示意图.
(2)画杠杆的力臂.
(3)画滑轮组的绕线.
3.电磁作图
(1)根据实物图画电路图或根据要求连接实物图
(2)设计电路图.
(3)家庭电路的安装及正确连接.
(4)判断通电螺线管电流方向或者螺线管磁极.
(5)电磁继电器作图
光学作图
1.在图中,画入射光线AO的反射光线OB,并标出反射角及大小。
解:
2.如图所示,一束光射到两个相互垂直的平面镜上,请画出经两个平面镜反射的光路图。
解:
3.请在图中,作出光线由空气斜射入水时的反射光线和大致的折射光线
解:
4.如图,一束光射向左右表面平行的玻璃砖,画出光从玻璃砖左表面射出的光线,并标出该光线与法线的夹角大小。
解:
5.如图所示,画出物体AB在平面镜中的像A′B′。
解:
6.平面镜与水平面的夹角为30°,光源S发出的经过平面镜反射的两条光线如图所示,请画出对应的两条入射光线
和及标出光源S的位置(保留作图痕迹)。
解:
7.如图所示,a,b是在水中的物点发出的光经水面折射后的两条光线,用A、B分别表示该物点(或像点)和它的
像点(或该物点),完成该物点的成像光路图。
解:
8.根据图4中光的传播方向,在虚线框内画上凸透镜或凹透镜。
解:
9.如图画出光线通过透镜前后的完整光路。
解:
10.如图所示,一束光射向凸透镜经折射后,折射光线射到一个平面镜上。
请在图中画出射向凸透镜这束入射光和
经平面镜反射的光路,并标出反射角的度数。
解:
力学作图
11.如图所示,是校园足球比赛的一个场景,请作出足球重力的示意图。
12.如图所示,重50N的物体A静止在斜面B上,对斜面B的压力为40N,作出物体A受到的重力及物体B受到
的压力的示意图。
解:
13.如图所示,用一根细线,拴一块橡皮,甩起来,使橡皮绕手作圆周运动,不计空气阻力,画出橡皮所示重力和
拉力的示意图。
解:
14.如图所示,将一个小球放在竖直放置的弹簧上,用手向下压小球,松手后,小球在弹簧弹力作用下向上加速运
动,不考虑空气阻力,请画出此时小球的受力示意图。
解:
15.如图所示,乒乓球漂浮在水面上,请画出乒乓球受力的示意图。
解:
16.如图所示,木块A与平板小车一起在水平桌面上向左匀速运动,当小车受外力作用突然减速时,木块随即在小
车的平板上滑行。
请在图中用带箭头的线段标出木块滑行的方向,并画出木块滑行过程中的受力示意图。
解:
17.如图所示,图甲是某人沿斜坡滑雪的示意图,请在图乙中画出该人所受重力G、弹力N和阻力f的示意图。
解:
18.如图所示为两位同学在玩翘翘板,他们对板的作用力分别为F1和F2,请在图中画出F1的力臂L1和F2的力臂
L2。
解:
19.某剧组为拍摄需要,设计了如图所示的装置来改变照明灯的高度。
轻质杠杆ABO可绕O点转动,在图中画出
ABO所受阻力F2的示意图,并画出动力臂L1和阻力臂L2。
解:
20.如图所示,粗细均匀的棒一端搁在地上,另一端与支点O连接。
试作出地面对棒的支持力的示意图及支持力的
力臂L。
解:
21.工人沿台阶向上滚动圆柱形塑料桶如所示。
他在A点施加力F使塑料桶绕0点向上滚动,请画出F的力臂。
解:
22.如图所示为钓鱼竿钓鱼的示意图。
O为支点,A为手握鱼竿的作用点,请在图中画出鱼线对钓鱼竿拉力F2的力
臂,最小的动力F1及其力臂。
解:
23.如图中是活塞式抽水机的示意图。
其手柄相当于一个杠杆,O是支点。
请画出阻力F2对支点O的力臂l2;并画
出在a点施加的最小动力F1的示意图。
解:
24.请在图中用笔画线代替绳子,将两个滑轮连成滑轮组,要求人力往下拉绳使重物升起。
25.一个工人站在地面上,使用如图所示的滑轮组将重物从地面提升到楼顶,要求绳子的自由端要向下拉,请你用
笔画代替绳子,画出滑轮组最省力的绕绳方法。
电磁作图
26.根据如图所示的电路图,在答题卡的指定位置用笔画线代替导线连接实物电路。
解:
27.根据下面的实物图画出与之对应的电路图。
解:
28.如图所示,是练习使用滑动变阻器改变灯泡亮度的未完成电路,请用笔画线代替导线完成电路连接。
要求:灯
L1和L2并联,开关同时控制两灯,滑动变阻器只控制L1的亮度,导线不能交叉。
解:
29.如图所示,请在两个虚线框内选填“电源”和“开关”的符号,使开关都闭合时两灯组成并联电路
解:
30.为使电路正常工作,请在图中恰当位置填入电流表或电压表。
解:
31.电冰箱的压缩机(电动机)是由温控开关控制的,冷藏室中的照明灯是由门控开关控制的,即开冰箱门时照明
灯亮、关冰箱门时照明灯灭。
请在图中用笔画线连接好符合上述特点的电冰箱工作电路图。
解:
32.图甲是某宾馆床头柜上的开关示意图,图乙是其控制的电路,其中S1为旋钮开关,单独控制台灯的通断和亮度;
S2为单独控制电视插座的开关。
请在图乙中将电路图连接完整,要求符合安全用电原则。
解:
33.如图所示,甲为一个“一开三孔”开关(即一个开关和一个三孔插座连在一起)实物图,乙为背面接线示意图,
“A”、“B”是从开关接线柱接出的两根导线,请你将图乙中的电路连接完整,使开关控制电灯,又不影响插座供其它电器使用。
解:
34.闭合开关,小磁针静止在如图所示位置,请标出螺线管、小磁针的N、S极和磁感线的方向。
解:
35.如图所示,根据小磁针的方向,判断通电螺线管的极性及电源正负极。
解:
36.用铁钉和带有绝缘层的导线自制一个电磁铁,要使铁钉帽那端为N极,画出铁钉上导线的绕发。
(绕线画3至5圈)
解:
37.根据图中小磁针静止时的指向,用笔划线代替导线将如图所示的实物连线图补充完整(要求:①小磁针的指向
满足如图所示方向;②滑动变阻器的滑片向A端移动时通电螺线管的磁性减弱);标出通电螺线管的N、S极并画出它的一条磁感线,在磁感线上标明磁场方向。
解:
38.如图,是一种温度自动报警器原理示意图,当环境温度低于设定的警戒温度时,灯亮,电铃不响。
当环境温度
达到警戒温度值时,灯不亮电铃响,发出报警信号。
①在图中的虚线框内填入相应的电路元件符号并补全电路;
②标出通电螺线管的N极。
(电铃符号)
解:
39.随州市乡村振兴计划稳步推进,大棚蔬菜种植给农民带来可喜收入。
刘大爷家大棚温度监控电路如图所示,棚
内温度正常时“温控开关”处于断开状态,绿灯亮;棚内温度不正常时“温控开关”处于闭合状态,电磁铁通电工作,电铃响红灯亮。
刘大爷使用中发现电铃和红灯只要拆卸掉任意一个,另一个也“没有电”。
在图中画几匝电磁铁的绕线并将绿灯、红灯、电铃接入电路。