最新条件概率练习题

合集下载

条件概率练习+答案

条件概率练习+答案

条件概率1. 4张奖券中只有1张能中奖,现分别由4名同学无放回地抽取.若已知第一名同学没有抽到中奖券,则最后一名同学抽到中奖券的概率是( )A .14B .13C .12D .1 解析:选B 因为第一名同学没有抽到中奖券,所以问题变为3张奖券,1张能中奖,最后一名同学抽到中奖券的概率显然是13. 2.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A 为“三个人去的景点不相同”,B 为“甲独自去一个景点”,则概率P(A B)等于 ( ) A. B. C. D.【解析】选C.由题意可知,n(B)=22=12,n(AB)==6.所以P(A B)===. 3. 甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A 为“三个人去的景点不相同”,B 为“甲独自去一个景点”,则概率P (A |B )等于( )A .49B .29C .12D .13解析:选C 由题意可知,n (B )=C 1322=12,n (AB )=A 33=6.∴P (A |B )=n (AB )n (B )=612=12. 4.在区间(0,1)内随机投掷一个点M(其坐标为x),若A=, B=,则P(B|A)等于 ( )A. B. C. D. 【解析】选A.P(A)==. 因为A ∩B=,所以P(AB)==, : _ _ 所以P(B A)===.5.已知甲在上班途中要经过两个路口,在第一个路口遇到红灯的概率为0.5,两个路口连续遇到红灯的概率为0.4,则甲在第一个路口遇到红灯的条件下,第二个路口遇到红灯的概率为()A.0.6B.0.7C.0.8D.0.9【解析】选C.设第一个路口遇到红灯的事件为A,第二个路口遇到红灯的事件为B, 则P(A)=0.5,P(AB)=0.4,则P(B A)==0.8.6. 一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,则这时另一个小孩是男孩的概率是________.析:设A =“其中一个是女孩”,B =“其中一个是男孩”,则P (A )=34,P (AB )=12,∴P (B |A )=P (AB )P (A )=237.高三毕业时,甲、乙、丙等五位同 站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是________.【解析】设“甲、乙二人相邻”为事件A,“甲、丙二人相邻”为事件B,则所求概率为P(B A), 由于P(B A)=,而P(A)==,AB 是表示事件“甲与乙、丙都相邻”,故P(AB)==,于是P(B A)==.8.如图,三行三列的方阵中有9个数a ij (i=1,2,3,j=1,2,3),从中任取三个数,已知取到a 22的条件下,求至少有两个数位于同行或同列的概率.【解析】令事件A={任取的三个数中有a 22}.令事件B={三个数至少有两个数位于同行或同列}.则={三个数互不同行且互不同列}.依题意可知n(A)==28,n(A )=2,故P( A)===,所以P(B A)=1-P( A)=1-=.即已知取到a 22的条件下,至少有两个数位于同行或同列的概率为. 9.有外形相同的球分装在三个盒子中,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A 的球,则在第二个盒子中任取一个球;若第一次取得标有字母B 的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则称试验成功,求试验成功的概率.解:设A ={从第一个盒子中取得标有字母A 的球},B ={从第一个盒子中取得标有字母B 的球},R ={第二次取出的球是红球},则容易求得P (A )=710,P (B )=310,P (R |A )=12,P (R |B )=45. 事件“试验成功”表示为RA ∪RB ,又事件RA 与事件RB 互斥,故由概率的加法公式,得P (RA ∪RB )=P (RA )+P (RB )=P (R |A )P (A )+P (R |B )P (B )=12×710+45×310=0.59.。

条件概率例题

条件概率例题

20 道条件概率例题例题1袋中有 5 个红球和 3 个白球,从中不放回地依次摸出两个球。

已知第一次摸出红球,求第二次摸出红球的概率。

解:第一次摸出红球后,袋中还有 4 个红球和 3 个白球,所以第二次摸出红球的概率为4/7。

例题2一个盒子里有 6 个黑球和 4 个白球,从中随机取出两个球。

若已知第一个球是黑球,求第二个球也是黑球的概率。

解:第一个球是黑球后,盒子里还有 5 个黑球和 4 个白球,所以第二个球是黑球的概率为5/9。

例题3有三张卡片,分别写着数字1、2、3。

从中随机抽取一张,放回后再抽取一张。

已知第一次抽到数字2,求第二次抽到数字 3 的概率。

解:因为是有放回抽取,所以第一次抽到数字 2 后,第二次抽取时每张卡片被抽到的概率仍为1/3,所以第二次抽到数字 3 的概率为1/3。

例题4一批产品中有合格品和次品,合格品率为80%。

从中随机抽取一件产品,已知是合格品,求该产品是一等品的概率(设合格品中一等品率为60%)。

解:由条件概率公式,所求概率为合格品中的一等品率,即60%。

例题5箱子里有红色球和蓝色球,红色球占总数的40%。

从箱子里随机取出一个球,已知是红色球,求这个球上标有数字 5 的概率(设红色球中有30%标有数字5)。

解:根据条件概率公式,所求概率为红色球中标有数字 5 的比例,即30%。

例题6某班级男生占总人数的60%。

在男生中,喜欢数学的占70%。

从班级中随机抽取一名学生,已知是男生,求该学生喜欢数学的概率。

解:所求概率为男生中喜欢数学的比例,即70%。

例题7有两个盒子,盒子 A 中有 3 个红球和 2 个白球,盒子 B 中有 4 个红球和3 个白球。

从盒子 A 中随机取出一个球放入盒子B,然后从盒子 B 中随机取出一个球。

已知从盒子 B 中取出的是红球,求从盒子 A 中取出的也是红球的概率。

解:设从盒子 A 中取出红球为事件A,从盒子 B 中取出红球为事件B。

先求P(A) = 3/5,P(B|A) = (4 + 1)/(7 + 1) = 5/8。

高中试卷-专题30 条件概率与全概率公式(含答案)

高中试卷-专题30 条件概率与全概率公式(含答案)

专题30 条件概率与全概率公式一、单选题1.(2020·河南南阳高二二模(理))根据历年气象统计资料,某地四月份吹东风的概率为,下雨的概率为,既吹东风又下雨的概率为.则在下雨条件下吹东风的概率为( )A .B .C .D .【答案】C 【解析】分析:在下雨条件下吹东风的概率=既吹东风又下雨的概率 下雨的概率详解:在下雨条件下吹东风的概率为,选C2.(2020·安徽省六安中学高二期中(理))根据以往数据统计,某酒店一商务房间1天有客人入住的概率为,连续2天有客人入住的概率为,在该房间第一天有客人入住的条件下,第二天也有客人入住的概率为( )A .B .C .D .【答案】D 【解析】设第二天也有客人入住的概率为P ,根据题意有,解得,故选D.3.(2020·河南开封高三二模(理))已知正方形,其内切圆与各边分别切于点,,、,连接,,,.现向正方形内随机抛掷一枚豆子,记事件:豆子落在圆内,事件:豆子落在四边形外,则( )A .B .C .D .【答案】B 【解析】93011308302589811911¸8830=11113045351312353443=55P ×34P =ABCD I E F G H EF FG GH HE ABCD A I B EFGH ()P B A =2π21π-12π142-由题意,设正方形的边长为,则圆的半径为,面积为;正方形,面积为;所求的概率为.故选:B .4.(2020·河南高二期末(理))把一枚硬币连续抛两次,记“第一次出现正面”为事件,“第二次出现正面”为事件,则=( )A .B .C .D .【答案】A 【解析】“第一次出现正面”:,“两次出现正面”: ,则故选A5.(2020·陕西临渭高二期末(文))已知,,等于( )A .B .C .D .【答案】C 【解析】根据条件概率的定义和计算公式:把公式进行变形,就得到,故选C.ABCD 2a I r a =2a p EFGH 22a \22222(|)1a a P B A a p p p-==-A B ()P B A 121416182(1)P A =111()=224P AB =´()1()14|==1()22P AB P B A P A =()1P B|A 2=()35P A =()P AB 56910310110()()0(|),()P AB P A P B A P A >=当时,()0()(|)()P A P AB P B A P A >=当时,6.(2020·黑龙江南岗哈师大附中高二期末(理))从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件A 为“第一次取到的是奇数”,B 为“第二次取到的是3的整数倍”,则( )A .B .C .D .【答案】B 【解析】由题意事件为“第一次取到的是奇数且第二次取到的是3的整数倍”:若第一次取到的为3或9,第二次有2种情况;若第一次取到的为1,5,7,第二次有3种情况,故共有个事件由条件概率的定义:故选:B7.(2020·西夏宁夏大学附属中学高二月考(理))将两颗骰子各掷一次,设事件“两个点数不相同”, “至少出现一个6点”,则概率等于( )A .B .C .D .【答案】A 【解析】由题意事件A={两个点数都不相同},包含的基本事件数是36-6=30至少出现一个6点的情况分二类,给两个骰子编号,1号与2号,若1号是出现6点,2号没有6点共五种2号是6点,一号不是6点有五种,若1号是出现6点,2号也是6点,有1种,故至少出现一个6点的情况是11种∴=8.(2020·广东东莞高二期末)一个袋中装有大小相同的3个白球和3个黑球,若不放回地依次取两个球,设事件为“第一次取出白球”,事件为“第二次取出黑球”,则概率( )A .B .C .D .【答案】B 【解析】(|)P B A =3813401345345()9P A =A B I 223313´+´=1313()9872P A B ==´I ()13(|)()40P A B P B A P A ==I A =B =()|P A B 10115115185361011A B ()P B A =56351225设事件为“第一次取出白球”,事件为“第二次取出黑球”,,第一次取出白球的前提下,第二次取出黑球的概率为:.故选:B.二、多选题9.(2020·大名中学高二月考)甲乙两个质地均匀且完全一样的四面体,每个面都是正三角形,甲四个面上分别标有数字1,2,3,4,乙四个面上分别标有数字5,6,7,8,同时抛掷这两个四面体一次,记事件为“两个四面体朝下一面的数字之和为奇数”,事件为“甲四面体朝下一面的数字为奇数”,事件为“乙四面体朝下一面的数字为偶数”,则下列结论正确的是( )A .B .C .D .【答案】ABD 【解析】由已知,,由已知有,,,所以,则A 正确;,则B 正确;事件、、不相互独立,故错误,即C 错误,则D 正确;综上可知正确的为ABD.故选:ABD .10.(2020·江苏海安高级中学高二期中)甲箱中有5个红球,2个白球和3个黑球,乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱中,分别以,,表示由甲箱中取出的是红球,白A B ()()31333==,==626510P A P A B ´()()3()5P AB P B A P A ==A B C ()()()P A P B P C ==()()()P BC P AC P AB ==1()8P ABC =1()()()8P A P B P C ××=22221()44442P A =´+´=21()()42P B P C ===1()()()4P AB P A P B ==1()4P AC =1()4P BC =()()()P A P B P C ==()()()P BC P AC P AB ==A B C 1()8P ABC =1()()()8P A P B P C ××=1A 2A 3A球和黑球的事件;再从乙箱中随机取出一球,以表示由乙箱中取出的球是红球的事件,则下列结论正确的是( )A .B .C .事件与事件相互独立D .、、两两互斥【答案】BD 【解析】因为每次取一球,所以,,是两两互斥的事件,故D 正确;因为,所以,故B 正确;同理,所以,故AC 错误;故选:BD11.(2020·江苏海安高级中学高一期中)以下对各事件发生的概率判断正确的是( )A .连续抛两枚质地均匀的硬币,有3个基本事件,出现一正一反的概率为B .每个大于2的偶数都可以表示为两个素数的和,例如12=5+7,在不超过15的素数中随机选取两个不同的数,其和等于14的概率为C .将一个质地均匀的骰子先后抛掷2次,记下两次向上的点数,则点数之和为6的概率是D .从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是【答案】BCD 【解析】A.连续抛两枚质地均匀的硬币,有4个基本事件,包含两正,两反,先反再正,先正再反,出现一正一反的概率,故A 不正确;B 2()5P B =15()11P B A =B 1A 1A 2A 3A 1A 2A 3A ()()()123523,,101010p A p A p A ===11155()51011()5()1110P BA P B A P A ´===3223232434()()4410111011(),()23()11()111010P BA P BA P B A P B A P A P A ´´======1235524349()()()()10111011101122P B P BA P BA P BA =++=´+´+´=13115536122142P ==B.不超过15的素数包含2,3,5,7,11,13,共6个数字,随机选取两个不同的数字,和等于14的包含,则概率为,故B 正确;C.将一个质地均匀的骰子先后抛掷2次,共36种情况,点数之和为6包含,共5种,所以点数之和为6的概率,故C 正确;D.由题意可知取出的产品全是正品的概率,故D 正确.12.(2020·山东昌乐二中高二月考)一袋中有大小相同的4个红球和2个白球,给出下列结论:①从中任取3球,恰有一个白球的概率是;②从中有放回的取球6次,每次任取一球,恰好有两次白球的概率为;③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为.则其中正确命题的序号是( )A .①B .②C .③D .④【答案】ABD 【解析】一袋中有大小相同的4个红球和2个白球,①从中任取3球,恰有一个白球的概率是故正确;②从中有放回的取球6次,每次任取一球,每次抽到白球的概率为,则恰好有两次白球的概率为,故正确;③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为,故错误;④从中有放回的取球3次,每次任取一球,每次抽到红球的概率为:则至少有一次取到红球的概率为,故正确.()3,11261115P C ==()()()()()1,5,2,4,3,3,4,2,5,1536P =232412C P C ==358024325262721423635C C p C ==2163p ==4226218033243p C æöæö==ç÷ç÷èøèø1143114535C C C C =4263p ==3031261327p C æö=-=ç÷èø故选:ABD.三、填空题13.(2020·全国高三课时练习(理))一个口袋中装有6个小球,其中红球4个,白球2个.如果不放回地依次摸出2个小球,则在第1次摸出红球的条件下,第2次摸出红球的概率为________.【答案】【解析】故答案为:14.(2020·邢台市第二中学高二期末)某校组织甲、乙、丙、丁、戊、己等6名学生参加演讲比赛,采用抽签法决定演讲顺序,在“学生甲和乙都不是第一个出场,且甲不是最后一个出场”的前提下,学生丙第一个出场的概率为__________.【答案】【解析】设事件A :“学生甲和乙都不是第一个出场,且甲不是最后一个出场”;事件B :“学生丙第一个出场”,对事件A ,甲和乙都不是第一个出场,第一类:乙在最后,则优先从中间4个位置中选一个给甲,再将余下的4个人全排列有种;第二类:乙没有在最后,则优先从中间4个位置中选两个给甲乙,再将余下的4个人全排列有种,故总的有.对事件AB ,此时丙第一个出场,优先从除了甲以外的4人中选一人安排在最后,再将余下的4人全排列有种故.故答案为:15.(2020·湖南天心长郡中学高三其他(理))甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以,和表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论35()()235(|)253P AB P B A P A ===35141444C A ×2444A A ×()14244444n A C A A A =×+×1444C A ×()()()14441424444414n AB C A P B A n A C A A A ×===×+×141A 2A 3A中正确的是___________.①;②;③事件B 与事件相互独立;④,,是两两互斥的事件【答案】②④【解析】因为每次取一球,所以,,是两两互斥的事件,故④正确;因为,所以,故②正确;同理,所以,故①③错误.故答案为:②④16.(2018·全国高二课时练习)某气象台统计,该地区下雨的概率为,刮四级以上风的概率为,既刮四级以上的风又下雨的概率为,设为下雨,为刮四级以上的风,则=_______,=__________【答案】 【解析】由已知,,,∴ , 故答案为,求条件概率一般有两种方法:一是对于古典概型类题目,可采用缩减基本事件总数的办法来计算,P(B|A)=,其中n(AB)表示()25P B =()1511P B A =1A 1A 2A 3A 1A 2A 3A ()()()123523,,101010P A P A P A ===11155()51011()5()1110P BA P B A P A ´===3223232434()()4410111011(),()23()11()111010P BA P BA P B A P B A P A P A ´´======1235524349()()()()10111011101122P B P BA P BA P BA =++=´+´+´=415215110A B ()P B A ()P A B 3438()415P A =()215P B =()110P AB =()()()3|8P AB P B A P A ==()()()3|4P AB P A B P B ==3438n AB n A ()()事件AB 包含的基本事件个数,n(A)表示事件A 包含的基本事件个数.二是直接根据定义计算,P(B|A)=,特别要注意P(AB)的求法.四、解答题17.(2020·甘肃省静宁县第一中学高二月考(理))有件产品,其中件是次品,其余都是合格品,现不放回的从中依次抽件.求:(1)第一次抽到次品的概率;(2)第一次和第二次都抽到次品的概率;(3)在第一次抽到次品的条件下,第二次抽到次品的概率.【答案】(1);(2);(3).【解析】(1)因为有5件是次品,第一次抽到次品,有5中可能,产品共有20件,不考虑限制,任意抽一件,有20中可能,所以概率为两者相除.(2)因为是不放回的从中依次抽取2件,所以第一次抽到次品有5种可能,第二次抽到次品有4种可能,第一次和第二次都抽到次品有5×4种可能,总情况是先从20件中任抽一件,再从剩下的19件中任抽一件,所以有20×19种可能,再令两者相除即可.(3)因为第一次抽到次品,所以剩下的19件中有4件次品,所以,抽到次品的概率为18.(2020·阜新市第二高级中学高二月考)甲、乙两地都位于长江下游,根据一百多年的气象记录,知道甲、乙两地一年中雨天占的比例分别为和,两地同时下雨的比例为,问:(1)乙地为雨天时甲地也为雨天的概率是多少?(2)甲地为雨天时乙地也为雨天的概率是多少【答案】(1)0.67(2)0.60【解析】(1)设 “甲地为雨天”, “乙地为雨天”,则根据题意有,,.所以乙地为雨天时甲地也为雨天的概率是.(2)甲地为雨天时乙地也为雨天的概率是.p AB p A ()()20521411941941920%18%12%A =B =()0.20P A =()0.18P B =()0.12P AB =()()0.12|0.67()0.18P AB P A B P B ==»()()0.12|0.60()0.20P AB P B A P A ===19.(2020·山东平邑高二期中)已知口袋中有2个白球和4个红球,现从中随机抽取两次,每次抽取1个.(1)若采取放回的方法连续抽取两次,求两次都取得白球的概率;(2)若采取不放回的方法连续抽取两次,求在第一次取出红球的条件下,第二次取出的是红球的概率.【答案】(1)(2)【解析】(1)两次都取得白球的概率;(2)记事件:第一次取出的是红球;事件:第二次取出的是红球,则, ,利用条件概率的计算公式,可得.20.(2019·攀枝花市第十五中学校高二期中(理))先后抛掷一枚骰子两次,将出现的点数分别记为.(1)设向量,,求的概率;(2)求在点数之和不大于5的条件下,中至少有一个为2的概率.【答案】(1);(2)【解析】先后抛掷一枚骰子两次,“将出现的点数分别记为”包含的基本事件有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),…,(6,5),(6,6),共36个.(1)记“向量,,且”为事件,由得:,从而事件包含共3个基本事件,故.(2)设“点数之和不大于5”为事件,包含(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),1935221669P =´=A B 452()653P A ´==´432()655P AB ´==´()233(|)()525P AB P B A P A ==´=,a b (,)m a b =u r (2,1)n =-r 1m n ×=u r r,a b ,a b 11212,a b (,)m a b =u r (2,1)n =-r 1m n ×=u r rA 1m n ×=u r r21a b -=B (1,1),(2,3),(3,5)31()3612P A ==,a b B(2,3),(3,1),(3,2),(4,1),共10个基本事件;设“中至少有一个为2”为事件,包含(1,2),(2,1),(2,2),(2,3),(3,2),共5个基本事件,故“在点数之和不大于5的条件下,中至少有一个为2” 的概率:.21.(2020·延安市第一中学高二月考(文))10张奖券中有3张有奖,甲,乙两人不放回的各从中抽1张,甲先抽,乙后抽.求:(1)甲中奖的概率.(2)乙中奖的概率.(3)在甲未中奖的情况下,乙中奖的概率.【答案】(1);(2);(3)【解析】(1)设“甲中奖”为事件,则(2)设“乙中奖”为事件,则又,所以(3)因为,所以22.(2020·河南南阳高二期中(文))某校从学生文艺部6名成员(4男2女)中,挑选2人参加学校举办的文艺汇演活动.(1)求男生甲被选中的概率;(2)在已知男生甲被选中的条件下,女生乙被选中的概率;(3)在要求被选中的两人中必须一男一女的条件下,求女生乙被选中的概率.,a b C ,a b ,a b ()51()102n BC P n B ===31031013A ()310P A =B ()()()()P B P AB AB P AB P AB =+=+()32110915P AB =´=()73710930P AB =´=()()()179315303010P B P AB P AB =+=+==()710P A =()730P AB =()()()7130|7310P AB P B A P A ===【答案】(1);(2);(3).【解析】(1)记4名男生为A ,B ,C ,D ,2名女生为a ,b ,从6名成员中挑选2名成员,有,,,,,,,,,,,,,,共有15种情况,,记“男生甲被选中”为事件M ,不妨假设男生甲为A事件M 所包含的基本事件数为,,,,共有5种,故.(2)记“男生甲被选中”为事件,“女生乙被选中”为事件,不妨设女生乙为,则,又由(1)知,故.(3)记“挑选的2人一男一女”为事件,则,“女生乙被选中”为事件,,故.131512AB AC AD Aa Ab BC BD Ba Bb CD Ca Cb Da Db ab AB AC AD Aa Ab ()51153P M ==M N b ()115P MN =()13P M =()()()15P MN P N M P M ==S ()815P S =N ()415P SN =()()()12P SN P N S P S ==。

条件概率练习题

条件概率练习题

条件概率练习题1. 假设事件A和事件B是两个独立的事件,它们各自发生的概率分别是P(A)=0.3和P(B)=0.4。

计算事件A和事件B同时发生的概率。

2. 如果事件A和事件B不是独立的,已知P(A)=0.5,P(B)=0.6,以及P(AB)=0.2,求事件B在事件A发生的条件下发生的概率。

3. 某工厂生产的产品中,有5%的产品是次品。

如果从这批产品中随机抽取10件,计算恰好有2件次品的概率。

4. 已知一个家庭有两个孩子,其中一个是男孩。

求这个家庭有两个男孩的概率。

5. 某城市发生地震的概率是0.01,如果这个城市发生了地震,那么发生海啸的概率是0.8。

求这个城市发生海啸的概率。

6. 假设有三扇门,其中一扇门后有奖品,另外两扇门后是空的。

你选择了一扇门,但主持人知道每扇门后的情况,并打开了另一扇没有奖品的门。

现在主持人问你,是否要改变你的选择。

求改变选择后赢得奖品的概率。

7. 某公司有30%的员工是女性,70%的员工是男性。

如果随机抽取一名员工,发现他是部门经理,已知部门经理中有40%是女性,求这名员工是女性的概率。

8. 假设一个袋子里有5个红球和3个蓝球。

如果从袋子里随机取出一个球,发现是红球,计算袋子里剩下4个红球的概率。

9. 某医院对患者进行两种不同的疾病测试,测试A和测试B。

已知测试A的准确率是90%,测试B的准确率是95%。

如果一个患者同时进行了这两种测试,并且两种测试都显示他患病,求他真正患病的概率。

10. 假设有一对夫妇,他们的第一个孩子是女孩。

求他们第二个孩子也是女孩的概率。

11. 某公司有100名员工,其中10名是经理。

如果随机选择一名员工进行培训,发现他已经是经理,求这名员工是经理的概率。

12. 某彩票的中奖概率是1/1000,如果一个人购买了10张彩票,计算他中奖至少一次的概率。

13. 某城市在一年中有30天下雨,如果今天下雨了,那么明天下雨的概率是0.4。

求明天下雨的概率。

条件概率高中练习题及讲解及答案

条件概率高中练习题及讲解及答案

条件概率高中练习题及讲解及答案### 条件概率高中练习题及讲解#### 练习题一某班级有50名学生,其中男女生各半。

已知该班级有10名学生近视。

若随机抽取一名学生,该学生是男生的概率为P(A)=0.5,是近视的概率为P(B)=0.2。

求以下概率:1. 抽取的学生是男生且近视的概率P(AB)。

2. 抽取的学生是男生,给定他是近视的情况下的概率P(A|B)。

#### 解题步骤及讲解首先,我们需要理解条件概率的定义:P(A|B) = P(AB) / P(B)。

1. 计算P(AB):已知班级中男生和女生各半,近视学生占20%,那么男生中近视的学生比例为20%。

计算P(AB),即男生且近视的学生数占总学生数的比例,即:\[ P(AB) = \frac{10}{50} = 0.2 \]2. 计算P(A|B):根据条件概率公式,我们需要已知P(B)和P(AB)。

我们已经计算出P(AB)为0.2,而P(B)为0.2。

代入公式得:\[ P(A|B) = \frac{P(AB)}{P(B)} = \frac{0.2}{0.2} = 1 \]#### 练习题二在一个装有红球和蓝球的箱子中,红球有30个,蓝球有20个。

随机抽取一个球,求以下概率:1. 抽到红球的概率P(A)。

2. 若已知抽到的球是红球,再抽一个球,抽到蓝球的概率P(B|A)。

#### 解题步骤及讲解1. 计算P(A):红球总数占总球数的比例即为抽到红球的概率:\[ P(A) = \frac{30}{30+20} = \frac{30}{50} = 0.6 \]2. 计算P(B|A):已知抽到红球后,箱子中剩余的球数为49(30个红球和20个蓝球)。

此时抽到蓝球的概率为:\[ P(B|A) = \frac{20}{49} \]#### 练习题三某地区有两家医院,A医院和B医院。

A医院的诊断准确率为90%,B医院的诊断准确率为95%。

某患者分别在两家医院进行了检查,两家医院都诊断为阳性。

条件概率经典例题

条件概率经典例题

1、一个盒子里有10个红球和5个蓝球,从中随机摸取一个球后不放回,再摸取一个球。

若第一次摸到红球,则第二次摸到蓝球的概率是?A. 1/3B. 1/4C. 5/19(答案)D. 5/182、某城市有60%的家庭拥有汽车,拥有汽车的家庭中80%至少有一辆SUV。

随机选择一个家庭,若该家庭拥有汽车,则它至少拥有一辆SUV的概率是?A. 0.6B. 0.48(答案)C. 0.8D. 0.43、一家医院接收了100名流感患者,其中60人患有A型流感,40人患有B型流感。

已知患有A型流感的患者中,70%需要住院治疗;患有B型流感的患者中,40%需要住院治疗。

若随机选择一名患者且该患者需要住院治疗,则他患有A型流感的概率是?A. 0.6B. 0.7(答案)C. 0.4D. 0.54、一个班级里有20名男生和15名女生,男生中有80%喜欢数学,女生中有60%喜欢数学。

随机选择一名学生,若该学生喜欢数学,则他是男生的概率是?A. 8/19B. 12/19C. 8/13(答案)D. 15/235、一家电子产品商店售出了100台平板电脑,其中60台是安卓系统,40台是苹果系统。

已知安卓系统平板电脑中,有10%出现了故障;苹果系统平板电脑中,有5%出现了故障。

若随机选择一台平板电脑且该平板电脑出现了故障,则它是安卓系统的概率是?A. 0.6B. 0.4(答案,考虑故障率与销量的综合影响)C. 0.1D. 0.56、一个篮子里有12个鸡蛋,其中4个是坏的。

随机取出两个鸡蛋,若第一个取出的是好鸡蛋,则第二个取出的是坏鸡蛋的概率是?A. 4/11(答案)B. 4/12C. 3/11D. 1/37、一家餐厅提供了100份外卖,其中60份是披萨,40份是汉堡。

已知披萨订单中,有80%包含了饮料;汉堡订单中,有50%包含了饮料。

若随机选择一份外卖且该外卖包含了饮料,则它是披萨的概率是?A. 0.6B. 0.48(答案,利用条件概率公式计算)C. 0.5D. 0.88、一个盒子里有5张红牌和3张黑牌,随机抽取两张牌。

条件概率练习题

条件概率练习题

条件概率练习题问题一某电子商务平台调查了2000名用户对于两种不同颜色的产品的满意度。

结果显示,用户对绿色产品的满意度为80%,对蓝色产品的满意度为75%。

此外,调查还发现,用户中有30%的人购买绿色产品,70%的人购买蓝色产品。

请你回答以下问题:1. 如果一个用户购买了蓝色产品,那么他对产品满意的概率是多少?2. 如果一个用户对产品满意,那么他购买的是蓝色产品的概率是多少?问题二某公司对其销售人员进行了培训,以提高销售业绩。

根据培训后的数据统计,已知一个销售人员达到预定销售目标的概率为80%,未达到预定销售目标的概率为20%。

另外,对于已达到预定销售目标的销售人员,他们接受过培训的概率为90%;对于未达到预定销售目标的销售人员,他们也接受过培训的概率为50%。

请你回答以下问题:1. 已知一个销售人员接受过培训,他达到预定销售目标的概率是多少?2. 已知一个销售人员未达到预定销售目标,他接受过培训的概率是多少?问题三某城市统计数据显示,约有10%的人是患有特定疾病的。

医生发现,在患有该疾病的人中,约有95%的人会出现某种症状。

而在没有患有该疾病的人中,约有5%的人也会出现该症状。

现在有一个人出现了这种症状,请你回答以下问题:1. 这个人患有上述特定疾病的概率是多少?2. 已知这个人患有上述特定疾病,他出现该症状的概率是多少?解答问题一1. 根据题意可得,购买蓝色产品的用户对产品满意的概率为75%。

<!-- 计算 -->购买蓝色产品并对产品满意的人数为 70% * 75% = 52.5%购买蓝色产品的总人数为 70%因此,如果一个用户购买了蓝色产品,他对产品满意的概率为52.5% / 70% ≈ 75%2. 已知用户对产品满意,购买蓝色产品的概率为?<!-- 计算 -->购买蓝色产品并对产品满意的人数为 52.5%总对产品满意的人数为(购买绿色产品并对产品满意的人数 +购买蓝色产品并对产品满意的人数)总对产品满意的人数为 30% * 80% + 70% * 75% = 67.5%因此,如果一个用户对产品满意,他购买的是蓝色产品的概率为52.5% / 67.5% ≈ 78%问题二1. 已知销售人员接受过培训,他达到预定销售目标的概率为?<!-- 计算 -->接受过培训的人达到预定销售目标的人数为 90% * 80% = 72%接受过培训的人总人数为 90%因此,已知一个销售人员接受过培训,他达到预定销售目标的概率为72% / 90% ≈ 80%2. 已知销售人员未达到预定销售目标,他接受过培训的概率为?<!-- 计算 -->未达到预定销售目标的人接受过培训的人数为 50% * 20% = 10% 未达到预定销售目标的人总人数为 20%因此,已知一个销售人员未达到预定销售目标,他接受过培训的概率为 10% / 20% = 50%问题三1. 这个人患有上述特定疾病的概率为?<!-- 计算 -->患有特定疾病并出现症状的人数为 10% * 95% = 9.5%出现症状的人数为(患有特定疾病并出现症状的人数 + 没有患有特定疾病但出现症状的人数)出现症状的人数为 10% * 95% + 90% * 5% = 9.5% + 4.5% = 14% 因此,这个人患有上述特定疾病的概率为9.5% / 14% ≈ 67.9%2. 已知这个人患有上述特定疾病,他出现该症状的概率为?<!-- 计算 -->患有特定疾病并出现症状的人数为 9.5%患有特定疾病的人数为(患有特定疾病并出现症状的人数 + 没有患有特定疾病但出现症状的人数)患有特定疾病的人数为 10%因此,已知这个人患有上述特定疾病,他出现该症状的概率为9.5% / 10% = 95%。

高中概率分布练习题及讲解

高中概率分布练习题及讲解

高中概率分布练习题及讲解一、基础概念题1. 某班级有40名学生,其中男生20名,女生20名。

随机抽取一名学生,求抽到男生的概率。

2. 一个袋子里有5个红球和3个蓝球,每次抽取一个球后放回。

求连续抽取三次,至少出现一次红球的概率。

3. 一个骰子掷出数字1的概率是多少?二、条件概率题1. 已知一个事件A发生的概率为0.3,另一个事件B在A发生的条件下发生的概率为0.5。

求事件A和B同时发生的概率。

2. 一个班级有50名学生,其中20名是男生,30名是女生。

如果从班级中随机抽取一名学生,发现他是男生,那么他是班级中成绩最好的学生的概率是多少?(假设班级中成绩最好的学生是男生的概率为0.4)三、独立事件题1. 一个袋子里有10个球,其中2个是白球,8个是黑球。

如果从袋子中随机抽取一个球,观察颜色后放回,再抽取一次。

求两次都抽到白球的概率。

2. 一个家庭有两个孩子,假设生男生女的概率各为1/2。

求这个家庭有两个男孩的概率。

四、二项分布题1. 一个硬币连续投掷10次,求至少出现5次正面的概率。

2. 一个学生在10次考试中,每次考试通过的概率为0.7。

求这个学生至少通过8次考试的概率。

五、正态分布题1. 一个班级的学生数学成绩服从均值为80分,标准差为10分的正态分布。

求数学成绩在70到90分之间的学生所占的比例。

2. 一个工厂生产的零件长度服从均值为50厘米,标准差为1厘米的正态分布。

求长度在49到51厘米之间的零件所占的比例。

六、泊松分布题1. 一个电话服务中心平均每小时接到4个电话。

求在任意一个小时内接到6个或更多电话的概率。

2. 一个网站平均每分钟有2个访问者。

求在任意一分钟内有5个或更多访问者的概率。

七、综合题1. 一个班级有50名学生,其中30名是男生,20名是女生。

如果随机抽取5名学生,求至少有3名男生的概率。

2. 一个工厂每天生产100个零件,其中每个零件都是合格品的概率为0.95。

求工厂一天中生产的零件中有超过5个不合格品的概率。

条件概率趣味例子

条件概率趣味例子

条件概率趣味例子1. 你知道吗,比如说抽奖的时候,一共有 10 个球,其中只有 1 个红球能中奖。

你先抽了一个没中,然后主持人在剩下的 9 个球中去掉了 8 个白球,这时候你再抽中红球的概率不就大多了嘛!这就是条件概率在起作用啊!2. 想象一下,你和朋友玩猜硬币正反的游戏。

前三次你都猜错了,你就觉得下一次猜中的概率会很大呢,哈哈,其实这也包含了条件概率呀!就好像一直下雨,你觉得接下来晴天的概率会大一点似的。

比如你说:“哎呀,总不能一直下雨吧,下次肯定是晴天啦!”3. 有一次我参加考试,前面几道题都很难,我做得不太好。

但我就想后面简单题答对的概率会变大吧!这不就是条件概率嘛,就好比走路摔了一跤,总觉得接下来会走得更稳啦!就像我当时对自己说:“前面这么难,后面肯定会容易些呀!”4. 去超市抽奖,前面已经有好多人没抽中大奖,你会不会觉得自己抽中大奖的概率变大了呢?这就是条件概率呀!就好像排队买好吃的,看到前面的人买了好多,你就觉得自己能买到的机会也大了呢。

例如你会说:“前面那么多人都没中,该轮到我啦!”5. 大家打篮球的时候,一个人连续几次投篮都不进,是不是觉得下一次投进的概率会增加呀?嘿嘿,这可不就是条件概率嘛!就跟等公交车似的,等了好久没来,就感觉下一刻车肯定会来啦。

就像球友会喊:“都不进这么多次了,这次肯定能进!”6. 玩猜数字游戏,你猜了几次都不对,然后根据提示再猜,这时候猜对的概率不就变了嘛。

这就是条件概率的魅力呀!好比找东西,找了一会儿没找到,后面再找就更有方向了。

比如你会念叨:“都猜了这么多次了,这次肯定能中!”7. 掷骰子的时候,前几次都没掷出六点,你是不是就觉得接下来掷出六点的可能性大了呢?对呀,这就是条件概率在捣鬼呢!跟买彩票一个道理,买了很多次没中,就觉得下一次有希望呀。

就像玩家会说:“一直没六点,下把肯定是了!”8. 上课回答问题,前面几个同学都答错了,那你答对的概率是不是就相对提高了呢?哈哈,这就是条件概率啦!就像去旅游找景点,别人走错路了,你就觉得自己能找对似的。

条件概率练习题

条件概率练习题

条件概率练习题一、选择题1. 条件概率P(A|B)表示:A. 事件A发生的条件概率B. 事件B发生的条件概率C. 在事件B发生的条件下,事件A发生的条件概率D. 事件A和事件B同时发生的概率2. 如果事件A和事件B是互斥的,那么P(A|B)等于:A. 0B. 1C. P(A)D. P(B)3. 已知P(A) = 0.3,P(B) = 0.4,P(A∩B) = 0.2,那么P(A|B)等于:A. 0.5B. 0.4C. 0.3D. 0.64. 贝叶斯定理表明了:A. 事件的独立性B. 事件的互斥性C. 条件概率的计算方法D. 事件的必然性5. 如果两个事件A和B相互独立,那么P(A∩B)等于:A. P(A) + P(B)B. P(A) - P(B)C. P(A) × P(B)D. P(A) / P(B)二、计算题6. 已知事件A和事件B的概率分别为P(A) = 0.45,P(B) = 0.55。

如果事件A和事件B同时发生的概率为P(A∩B) = 0.25,求在事件A发生的条件下事件B发生的条件概率P(B|A)。

7. 假设在一个班级中,有60%的学生通过了数学考试,40%的学生通过了物理考试,同时通过数学和物理考试的学生占30%。

求:(a) 一个学生通过了物理考试但没有通过数学考试的概率。

(b) 一个学生通过了数学考试的条件下,他通过了物理考试的条件概率。

8. 假设在一个城市中,有70%的居民拥有汽车,30%的居民拥有游艇。

同时拥有汽车和游艇的居民占20%。

求:(a) 一个居民拥有游艇但没有汽车的概率。

(b) 一个居民拥有汽车的条件下,他拥有游艇的条件概率。

三、应用题9. 在一个小镇上,有两家医院。

医院A的诊断准确率为90%,医院B的诊断准确率为80%。

小镇上患某种罕见病的居民占总人口的1%。

如果一个居民被医院A诊断为患病,求他实际上患病的概率。

10. 假设在一次抽奖活动中,有三类奖品:一等奖、二等奖和三等奖。

160 条件概率练习题

160 条件概率练习题

160 条件概率练习题题目:160 条件概率练习题条件概率是概率论中的重要概念之一,它描述了在已知某一事件发生的条件下,另一事件发生的概率。

为了加深对条件概率的理解和应用,下面将给出一组160个条件概率的练习题,希望能帮助读者更好地掌握条件概率的计算方法和应用场景。

1. 若事件A和事件B互斥(即A和B不可能同时发生),且P(A) = 0.3,P(A并B) = 0.2,则求P(B)。

2. 若事件A和事件B相互独立,且P(A) = 0.4,P(B) = 0.3,则求P(A并B)。

3. 若事件A和事件B相互独立,且P(A) = 0.6,P(B|A) = 0.4,则求P(B)。

4. 若事件A和事件B相互独立,且P(A) = 0.7,P(B|A') = 0.3,则求P(B)。

5. 若事件A和事件B相互独立,且P(A') = 0.2,P(B|A') = 0.3,则求P(B)。

......依次类推,根据题目中的条件,可以逐一计算出每个题目的答案。

这些题目覆盖了条件概率的常见计算方法和特殊情况,对于学生来说是一次很好的练习。

此外,条件概率在实际生活中也有广泛的应用。

例如,在医学诊断中,医生通过患者的症状判断其是否患有某种疾病,这就涉及到了条件概率的计算。

又如,在市场营销中,商家根据消费者的购买记录推荐相关产品,同样也涉及到了条件概率的应用。

了解和掌握条件概率的计算方法和应用场景,不仅可以提高我们的数学能力,还有助于我们更好地理解和解决实际问题。

因此,希望通过这组160个条件概率练习题的训练,可以帮助读者更好地掌握和应用条件概率的知识。

总结:通过本文给出的160个条件概率练习题,读者可以通过计算得出每个题目的答案,进一步巩固和应用条件概率的知识。

条件概率作为概率论的重要概念之一,在实际生活中有着广泛的应用。

希望读者能够通过这次练习,提高自己的数学能力,加深对条件概率的理解,为将来的学习和工作打下坚实的基础。

条件概率练习

条件概率练习

7.1.1条件概率 一、选择题1.袋中有除颜色外完全相同的5个球,其中3个红球和2个白球.现从袋中不放回地连取两个.已知第一次取得红球,则第二次取得白球的概率为( ) A .0.4 B .0.5 C .0.6 D .0.72.10张奖券中有4张“中奖”奖券,甲乙两人先后参加抽奖活动,每人从中不放回抽取一张奖券,甲先抽,乙后抽,在甲中奖条件下,乙没有中奖的概率为( )A .35B .23 C .34 D .4153.(多选)设M 、N 是两个随机事件,则下列等式一定成立的是( )A .()()()P M N P M P N ⋃=+B .()()1P MN P MN =-C .()()()|P MN P M P N M =D .()()()()||P N M P M P M N P N = 二、填空题4.已知甲每次来渝乘坐飞机和高铁的概率分别为0.6和0.4,飞机和高铁正点到达的概率分别为0.8和0.9,若甲已正点抵渝,则甲此次来渝乘坐高铁的概率为____________.5.为积极应对人口老龄化,2021年8月20日,全国人大常委会会议表决通过了关于修改人口与计划生育法的决定,提倡适龄婚育、优生优育,一对夫妻可以生育三个子女.若已知某个家庭有3个小孩,且其中至少有1个男孩的条件下,则第三个孩子是女孩的概率为___________.6.已知1(|)(|)2P A B P B A ==,3(4P A =,则()P B =________. 7.甲、乙两名运动员进行乒乓球比赛,比赛采取5局3胜制,已知每局比赛甲胜的概率为23,乙胜的概率为13,且各局比赛结果互不影响.若第一局乙胜,则本次比赛甲胜的概率为___________.8.已知()()()13P A P B P A B ===∣,则()P A B =∣___________. 9.某医院从3名医生和3名护士中选派4人参加志愿者服务,事件A 表示选派的4人中至少有2名医生,事件B 表示选派的4人中有2名护士,则()P B A =___________.三、解答题10.一个盒子中有6只好晶体管,4只坏晶体管,任取两次,每次取一只,每一次取后不放回.若已知第一只是好的,求第二只也是好的的概率.11.袋中有10个大小、材质都相同的小球,其中红球3个,白球7个.每次从袋中随机摸出1个球,摸出的球不再放回.求:(Ⅰ)第一次摸到红球的概率;(Ⅰ)在第一次摸到红球的条件下,第二次也摸到红球的概率;(Ⅰ)第二次摸到红球的概率.。

高考数学试卷条件概率

高考数学试卷条件概率

一、选择题1. 在一个袋子里装有5个红球和3个蓝球,随机取出两个球,已知第二个球是蓝球,求第一个球是红球的概率。

A. 5/8B. 3/8C. 1/2D. 1/32. 从一副52张的扑克牌中随机抽取4张牌,已知其中有一张是红桃,求剩下的3张牌中至少有一张是红桃的概率。

A. 4/13B. 3/13C. 2/13D. 1/133. 甲、乙两人独立射击一次,甲射击命中的概率为0.6,乙射击命中的概率为0.7,求甲、乙两人同时命中的概率。

A. 0.42B. 0.42C. 0.42D. 0.424. 某地区今年干旱的概率为0.4,那么该地区今年不下旱的概率是多少?A. 0.6B. 0.4C. 0.8D. 0.25. 某班级有30名学生,其中有18名男生和12名女生,随机抽取一名学生,已知这名学生是男生,求这名学生来自前10名学生的概率。

A. 9/29B. 9/30C. 18/29D. 18/30二、填空题1. 在一个袋子里装有5个红球和3个蓝球,随机取出两个球,已知第二个球是蓝球,那么第一个球是红球的概率为______。

2. 从一副52张的扑克牌中随机抽取4张牌,已知其中有一张是红桃,那么剩下的3张牌中至少有一张是红桃的概率为______。

3. 甲、乙两人独立射击一次,甲射击命中的概率为0.6,乙射击命中的概率为0.7,那么甲、乙两人同时命中的概率为______。

4. 某地区今年干旱的概率为0.4,那么该地区今年不下旱的概率为______。

5. 某班级有30名学生,其中有18名男生和12名女生,随机抽取一名学生,已知这名学生是男生,那么这名学生来自前10名学生的概率为______。

三、解答题1. 一批产品共有100件,其中有20件不合格,随机抽取3件产品,求以下概率:(1)抽取的3件产品中恰有1件不合格的概率;(2)抽取的3件产品中至少有1件不合格的概率。

2. 甲、乙两人独立射击一次,甲射击命中的概率为0.5,乙射击命中的概率为0.6,求以下概率:(1)甲、乙两人同时命中的概率;(2)甲、乙两人至少有1人命中的概率。

条件概率练习题含答案

条件概率练习题含答案

条件概率练习题含答案条件概率是概率论中的一个重要概念,用于描述事件在给定其他事件发生的条件下发生的概率。

条件概率的计算往往需要运用到贝叶斯定理,是解决实际问题中复杂概率计算的基础。

下面将给出一些条件概率的练习题,并附带答案供读者参考。

练习题一:某城市有两个广播车队,A车队和B车队,各自服务不同的区域。

根据统计数据,A车队在A区域的音质不良时间占总时间的5%,而在B区域的音质不良时间占总时间的10%。

已知听众在该城市80%来自A区域,20%来自B区域。

现在假设一位听众正遇到音质不良的情况,请问这位听众是来自A区域的概率是多少?解答一:设事件A为来自A区域,事件B为遇到音质不良。

根据题意,我们要求的是在遇到音质不良的条件下,该听众来自A区域的概率。

根据条件概率公式,可以得到:P(A|B) = P(A∩B) / P(B),其中P(A∩B)表示事件A和B同时发生的概率,P(B)表示事件B发生的概率。

根据题目中的信息,我们可以得到P(A∩B) = P(A) * P(B|A) = 0.8 * 0.05 = 0.04,P(B) = P(A) * P(B|A) + P(B') * P(B|B') = 0.8 * 0.05 + 0.2 * 0.1 = 0.06,所以P(A|B) = 0.04 / 0.06 = 2/3。

练习题二:一家剧院即将上演两台戏剧,A戏剧和B戏剧,已知A戏剧的门票占总票数的60%,B戏剧的门票占总票数的40%。

观众对A戏剧感兴趣的概率是70%,对B戏剧感兴趣的概率是50%。

现在假设一位观众购票,且对所购剧目感兴趣,请问该观众购买的是B戏剧门票的概率是多少?解答二:设事件A为购买A戏剧门票,事件B为对所购剧目感兴趣。

求解的是在对所购剧目感兴趣的条件下,购买B戏剧门票的概率。

根据条件概率的定义,可以得到:P(B|A) = P(B∩A) / P(A),其中P(B∩A)表示事件B和A同时发生的概率,P(A)表示购买A戏剧门票的概率。

数学课后训练:条件概率

数学课后训练:条件概率

课后训练一、选择题1.已知P(B|A)=12,P(A)=35,则P(AB)=( )A.56B.910C.310D.1102.某种电子元件用满3 000小时不坏的概率为34,用满8 000小时不坏的概率为12.现有一个此种电子元件,已经用满3 000小时不坏,还能用满8 000小时不坏的概率是( )A.34B.23C.12D.133.将两枚质地均匀的骰子各掷一次,设事件A为两个点数都不相同,事件B为两个点数和是7或8,则P(B|A)=()A.13B.518C.1011D.124.甲、乙两班共有70名同学,其中女同学40名,设甲班有30名同学,而女同学有15名,则在碰到甲班同学时正好碰到一名女同学的概率为()A.12B.13C.14D.155.盒中装有6件产品,其中4件一等品,2件二等品,从中不放回地取产品,每次1件.取两次,已知第二次取得一等品,则第一次取得的是二等品的概率是()A.310B.35C.12D.25二、填空题6.设A,B为两个事件,若事件A和B同时发生的概率为16,在事件A发生的条件下,事件B发生的概率为12,则事件A发生的概率为__________.7.分别用集合M={2,4,5,6,7,8,11,12}中的任意两个元素作分子与分母构成真分数,已知取出的一个元素是12,则取出的另一个元素与之构成可约分数的概率是__________.8.6位同学参加百米短跑比赛,赛场共有6条跑道,已知甲同学排在第一跑道,则乙同学排在第二跑道的概率是__________.三、解答题9.一只口袋内装有2个白球和2个黑球,那么(1)先摸出1个白球不放回,再摸出1个白球的概率是多少?(2)先摸出1个白球后放回,再摸出1个白球的概率是多少?10.现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:(1)第1次抽到舞蹈节目的概率;(2)第1次和第2次都抽到舞蹈节目的概率;(3)在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.参考答案1答案:C 解析:∵P (B |A )=()()P AB P A ,∴P (AB )=P (B |A )·P (A )=1332510⨯=.2答案:B 解析:记事件A :“用满3 000小时不坏”,则P (A )=34;记事件B :“用满8 000小时不坏”,则P (B )=12.因为B ⊂A ,所以P (AB )=P (B )=12,则P (B |A )=1()()223()()34P AB P B P A P A ===.3答案:A 解析:由已知n (A )=30,n (AB )=10, ∴P (B |A )=()101()303n AB n A ==.4答案:A 解析:设“碰到甲班同学”为事件A ,“碰到甲班女同学”为事件B ,则P (A )=37,P (AB )=1537014=,所以P (B |A )=()1()2P AB P A =. 5答案:D 解析:令“第二次取得一等品”为事件A ,“第一次取得二等品”为事件B ,则P (AB )=11241165C C 4C C 15⋅=⋅,P (A )=111143241165C C +C C 2C C 3⋅⋅=⋅, 所以P (B |A )=()432()1525P AB P A =⨯=.6答案:13 解析:由已知P (AB )=16,P (B |A )=12,∴P (A )=1()161(|)32P AB P B A ==. 7答案:47解析:设“取出的两个元素中有一个是12”为事件A ,“取出的两个元素构成可约分数”为事件B .则n (A )=7,n (AB )=4,所以P (B |A )=()4()7n AB n A =.8答案:15解析:甲排在第一道记为A ,乙排在第二道记为B .则P (A )=5566A 1A 6=,P (AB )=4466A 1A 30=.∴P (B |A )=1()1301()56P AB P A ==.9答案:解:设“先摸出1个白球不放回”为事件A ,“再摸出1个白球”为事件B ,则“先后两次摸到白球”为事件AB ,先摸出一球不放回,再摸出一球共有4×3种结果.∴P (A )=231432⨯=⨯,P (AB )=211436⨯=⨯.∴P (B |A )=1()161()32P AB P A ==. ∴先摸出一个白球不放回,再摸出一个白球的概率为13.答案:设“先摸出1个白球放回”为事件A 1,“再摸出1个白球"为事件B 1,则“两次都摸到白球”为事件A 1B 1.P (A 1)=241442⨯=⨯,P (A 1B 1)=221444⨯=⨯,∴P (B 1|A 1)=1111()141()22P A B P A ==. ∴先摸出1个白球后放回,再摸出1个白球的概率为12.10答案:解:设第1次抽到舞蹈节目为事件A ,第2次抽到舞蹈节目为事件B ,则第1次和第2次都抽到舞蹈节目为事件AB .(1)从6个节目中不放回地依次抽取2个的事件数为n (Ω)=26A =30,根据分步计数原理n (A )=1145A A =20,于是P (A )=()202()303n A n ==Ω.答案:因为n (AB )=24A =12, 于是P (AB )=()122()305n AB n Ω==.答案:方法一:由(1)(2)可得,在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率为P (B |A )=2()352()53P AB P A ==.方法二:因为n (AB )=12,n (A )=20, 所以P (B |A )=()123()205n AB n A ==.。

条件概率练习题

条件概率练习题

条件概率练习题一、基本概念题1. 设事件A和事件B相互独立,P(A) = 0.4,P(B) = 0.6,求P(A|B)。

2. 已知P(A) = 0.5,P(B) = 0.7,P(A ∩ B) = 0.3,求P(A|B)和P(B|A)。

3. 在一个袋子里有5个红球和3个蓝球,随机取出一个球,求取出红球的条件下,取出第二个球也是红球的概率。

4. 某班级有50名学生,其中30名喜欢篮球,20名喜欢足球,10名既喜欢篮球又喜欢足球。

随机选取一名学生,求该学生喜欢篮球的条件下,也喜欢足球的概率。

二、应用题1. 一批产品中有10%的次品,现随机抽取10件产品,求恰好有2件次品的概率。

3. 抛掷一枚硬币3次,求恰好出现2次正面的概率。

4. 从一副52张的扑克牌中随机抽取4张,求抽到的都是红桃的概率。

三、综合题1. 甲、乙、丙三人独立解同一道数学题,甲解出的概率为0.4,乙解出的概率为0.5,丙解出的概率为0.3。

求至少有两人解出这道题的概率。

2. 一批产品中有20%的次品,现随机抽取5件产品,求恰好有1件次品且第2件是正品的概率。

3. 抛掷一枚均匀的骰子,求出现偶数点数的条件下,再次抛掷出现奇数点数的概率。

4. 从一副52张的扑克牌中随机抽取5张,求抽到的牌中至少有一张是红桃的概率。

四、拓展题1. 设事件A和事件B互斥,P(A) = 0.3,P(B) = 0.4,求P(A|B)。

2. 已知P(A) = 0.6,P(B|A) = 0.8,P(B|非A) = 0.4,求P(A∩ B)。

3. 某班级有60名学生,其中40名喜欢数学,30名喜欢英语,20名既喜欢数学又喜欢英语。

随机选取一名学生,求该学生喜欢数学的条件下,也喜欢英语的概率。

4. 抛掷一枚硬币和一枚骰子,求硬币出现正面且骰子出现6点的概率。

五、逻辑推理题1. 在一个家庭中,有两个孩子,已知至少有一个是女孩,求两个孩子都是女孩的概率。

2. 有三个箱子,分别装有苹果、橘子和苹果橘子混合。

条件概率专题练习及答案都

条件概率专题练习及答案都

条件概率专题练习一、选择题1.下列式子成立的是( )A .P (A |B )=P (B |A ) B .0<P (B |A )<1C .P (AB )=P (A )·P (B |A )D .P (A ∩B |A )=P (B ) [答案] C [解析] 由P (B |A )=P (AB )P (A )得P (AB )=P (B |A )·P (A ). 2.在10个形状大小均相同的球中有6个红球和4个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸到红球的概率为( )A.35B.25C.110D.59[答案] D [解析] 设第一次摸到的是红球(第二次无限制)为事件A ,则P (A )=6×910×9=35,第一次摸得红球,第二次也摸得红球为事件B ,则P (B )=6×510×9=13,故在第一次摸得红球的条件下第二次也摸得红球的概率为P =P (B )P (A )=59,选D.3.已知P (B |A )=13,P (A )=25,则P (AB )等于( )A.56B.910C.215D.115[答案] C [解析] 本题主要考查由条件概率公式变形得到的乘法公式,P (AB )=P (B |A )·P (A )=13×25=215,故答案选C.4.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( ) A.14B.13C.12D.35[答案] B [解析] 抛掷红、黄两颗骰子共有6×6=36个基本事件,其中红色骰子的点数为4或6的有12个基本事件,两颗骰子点数之积包含4×6,6×4,6×5,6×6共4个基本事件.所以其概率为4361236=13.5.一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是( )A.56B.34C.23D.13[答案] C6.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为830.则在吹东风的条件下下雨的概率为( )A.911B.811C.25D.89[答案] D [解析] 设事件A 表示“该地区四月份下雨”,B 表示“四月份吹东风”,则P (A )=1130,P (B )=930,P (AB )=830,从而吹东风的条件下下雨的概率为P (A |B )=P (AB )P (B )=830930=89. 7.一个口袋中装有2个白球和3个黑球,则先摸出一个白球后放回,再摸出一个白球的概率是( ) A.23B.14C.25D.15[答案] C [解析] 设A i 表示第i 次(i =1,2)取到白球的事件,因为P (A 1)=25,P (A 1A 2)=25×25=425,在放回取球的情况P (A 2|A 1)=25×2525=25.8.把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概率为( ) A .1B.12C.13D.14[答案] B [解析] 设A i 表示第i 次(i =1,2)抛出偶数点,则P (A 1)=1836,P (A 1A 2)=1836×918,故在第一次抛出偶数点的概率为P (A 2|A 1)=P (A 1A 2)P (A 1)=1836×9181836=12,故选B.二、填空题9.某人提出一个问题,甲先答,答对的概率为0.4,如果甲答错,由乙答,答对的概率为0.5,则问题由乙答对的概率为________.[答案] 0.310.100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第一次抽出的是次品,则第2次抽出正品的概率为________.[答案] 9599[解析] 设“第一次抽到次品”为事件A ,“第二次抽到正品”为事件B ,则P (A )=5100,P (AB )=5100×9599,所以P (B |A )=P (AB )P (A )=9599.准确区分事件B |A 与事件AB 的意义是关键. 11.一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,则这时另一个小孩是男孩的概率是________.[答案] 12 [解析] 一个家庭的两个小孩只有3种可能:{两个都是男孩},{一个是女孩,另一个是男孩},{两个都是女孩},由题目假定可知这3个基本事件的发生是等可能的.12.从1~100这100个整数中,任取一数,已知取出的一数是不大于50的数,则它是2或3的倍数的概率为________.[答案]3350[解析] 根据题意可知取出的一个数是不大于50的数,则这样的数共有50个,其中是2或3的倍数共有33个,故所求概率为3350.三、解答题13.把一枚硬币任意掷两次,事件A =“第一次出现正面”,事件B =“第二次出现正面”,求P (B |A ). [解析] P (B )=P (A )=12,P (AB )=14, P (B |A )=P (AB )P (A )=1412=12.14.盒中有25个球,其中10个白的、5个黄的、10个黑的,从盒子中任意取出一个球,已知它不是黑球,试求它是黄球的概率.[解析] 解法一:设“取出的是白球”为事件A ,“取出的是黄球”为事件B ,“取出的是黑球”为事件C ,则P (C )=1025=25,∴P (C )=1-25=35,P (B C )=P (B )=525=15∴P (B |C )=P (B C )P (C )=13.解法二:已知取出的球不是黑球,则它是黄球的概率P =55+10=13.15.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少? (2)从2号箱取出红球的概率是多少?[解析] 记事件A :最后从2号箱中取出的是红球;事件B :从1号箱中取出的是红球.P (B )=42+4=23,P (B -)=1-P (B )=13. (1)P (A |B )=3+18+1=49.(2)∵P (A |B -)=38+1=13, ∴P (A )=P (A ∩B )+P (A ∩B -)=P (A |B )P (B )+P (A |B -)P (B -)=49×23+13×13=1127.16.某校高三(1)班有学生40人,其中共青团员15人.全班分成4个小组,第一组有学生10人,共青团员4人.从该班任选一个作学生代表.(1)求选到的是第一组的学生的概率; (2)已知选到的是共青团员,求他是第一组学生的概率. [解析] 设事件A 表示“选到第一组学生”,事件B 表示“选到共青团员”. (1)由题意,P (A )=1040=14.(2)要求的是在事件B 发生的条件下,事件A 发生的条件概率P (A |B ).不难理解,在事件B 发生的条件下(即以所选到的学生是共青团员为前提),有15种不同的选择,其中属于第一组的有4种选择.因此,P (A |B )=415。

专升本条件概率练习题

专升本条件概率练习题

专升本条件概率练习题### 专升本条件概率练习题#### 一、选择题1. 题目:某次考试中,学生A通过的概率为0.7,学生B通过的概率为0.6。

如果学生A通过,学生B也通过的概率为0.5。

求学生B通过的概率,给定学生A通过了。

选项:A. 0.4B. 0.5C. 0.6D. 0.72. 题目:在一个班级中,有30%的学生是数学专业的,70%的学生是物理专业的。

如果一个学生是数学专业的,那么他/她通过概率论考试的概率是0.8;如果一个学生是物理专业的,那么他/她通过概率论考试的概率是0.6。

求一个学生通过概率论考试的概率。

选项:A. 0.66B. 0.69C. 0.72D. 0.75#### 二、计算题1. 题目:某公司有100名员工,其中20%的员工是高级职员,80%的员工是普通职员。

高级职员获得晋升的概率是0.5,普通职员获得晋升的概率是0.3。

求至少有一名员工获得晋升的概率。

2. 题目:在一个小镇上,有50%的居民拥有汽车,30%的居民拥有自行车。

同时拥有汽车和自行车的居民占10%。

如果随机选择一个居民,他/她拥有汽车的概率是多少,给定他/她拥有自行车。

#### 三、应用题1. 题目:某医院对一种疾病的检测准确率是99%,即如果患者有这种病,检测结果为阳性的概率是0.99;如果患者没有这种病,检测结果为阴性的概率是0.99。

然而,这种病在总人口中的发病率仅为0.01。

求一个检测结果为阳性的人实际上有这种病的概率。

2. 题目:在一个班级中,有60%的学生喜欢数学,40%的学生喜欢物理。

如果一个学生喜欢数学,那么他/她喜欢物理的概率是0.2;如果一个学生不喜欢数学,那么他/她喜欢物理的概率是0.8。

求一个学生喜欢物理的概率,给定他/她不喜欢数学。

#### 四、证明题1. 题目:证明条件概率公式 \( P(A|B) = \frac{P(A \cap B)}{P(B)} \)。

2. 题目:证明全概率公式 \( P(A) = \sum_{i=1}^{n}P(A|B_i)P(B_i) \),其中 \( B_1, B_2, ..., B_n \) 是一个完备事件组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修2-3 2.2.1 条件概率补充练习广水一中:邓文平一、选择题1.下列式子成立的是( )A .P (A |B )=P (B |A ) B .0<P (B |A )<1C .P (AB )=P (A )·P (B |A )D .P (A ∩B |A )=P (B ) 2.在10个形状大小均相同的球中有6个红球和4个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸到红球的概率为( )A.35B.25C.110D.593.已知P (B |A )=13,P (A )=25,则P (AB )等于( )A.56B.910C.215D.1154.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( )A.14B.13C.12D.355.一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是( )A.56B.34C.23D.136.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为830.则在吹东风的条件下下雨的概率为( )A.911B.811C.25D.897.一个口袋中装有2个白球和3个黑球,则先摸出一个白球后放回,再摸出一个白球的概率是( )A.23B.14C.25D.158.把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概率为( )A .1B.12C.13D.14二、填空题9.某人提出一个问题,甲先答,答对的概率为0.4,如果甲答错,由乙答,答对的概率为0.5,则问题由乙答对的概率为________.10.100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第一次抽出的是次品,则第2次抽出正品的概率为________.11.一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,则这时另一个小孩是男孩的概率是________.12.从1~100这100个整数中,任取一数,已知取出的一数是不大于50的数,则它是2或3的倍数的概率为________.三、解答题13.把一枚硬币任意掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,求P(B|A).14.盒中有25个球,其中10个白的、5个黄的、10个黑的,从盒子中任意取出一个球,已知它不是黑球,试求它是黄球的概率.15.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少?(2)从2号箱取出红球的概率是多少?16.某校高三(1)班有学生40人,其中共青团员15人.全班分成4个小组,第一组有学生10人,共青团员4人.从该班任选一个作学生代表.(1)求选到的是第一组的学生的概率;(2)已知选到的是共青团员,求他是第一组学生的概率.选修2-3 2.2.1 条件概率补充练习一、选择题1.下列式子成立的是( )A .P (A |B )=P (B |A ) B .0<P (B |A )<1C .P (AB )=P (A )·P (B |A )D .P (A ∩B |A )=P (B ) [答案] C[解析] 由P (B |A )=P (AB )P (A )得P (AB )=P (B |A )·P (A ). 2.在10个形状大小均相同的球中有6个红球和4个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸到红球的概率为( )A.35B.25C.110D.59[答案] D[解析] 设第一次摸到的是红球(第二次无限制)为事件A ,则P (A )=6×910×9=35,第一次摸得红球,第二次也摸得红球为事件B ,则P (B )=6×510×9=13,故在第一次摸得红球的条件下第二次也摸得红球的概率为P =P (B )P (A )=59,选D.3.已知P (B |A )=13,P (A )=25,则P (AB )等于( )A.56B.910C.215D.115[答案] C[解析] 本题主要考查由条件概率公式变形得到的乘法公式,P (AB )=P (B |A )·P (A )=13×25=215,故答案选C. 4.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( )A.14B.13C.12D.35[答案] B[解析] 抛掷红、黄两颗骰子共有6×6=36个基本事件,其中红色骰子的点数为4或6的有12个基本事件,两颗骰子点数之积包含4×6,6×4,6×5,6×6共4个基本事件.所以其概率为4361236=13.5.一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是( )A.56B.34C.23D.13[答案] C6.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为830.则在吹东风的条件下下雨的概率为( )A.911B.811C.25D.89[答案] D[解析] 设事件A 表示“该地区四月份下雨”,B 表示“四月份吹东风”,则P (A )=1130,P (B )=930,P (AB )=830,从而吹东风的条件下下雨的概率为P (A |B )=P (AB )P (B )=830930=89.7.一个口袋中装有2个白球和3个黑球,则先摸出一个白球后放回,再摸出一个白球的概率是( )A.23B.14C.25D.15[答案] C[解析] 设A i 表示第i 次(i =1,2)取到白球的事件,因为P (A 1)=25,P (A 1A 2)=25×25=425,在放回取球的情况P (A 2|A 1)=25×2525=25.8.把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概率为( )A .1B.12C.13D.14[答案] B[解析] 设A i 表示第i 次(i =1,2)抛出偶数点,则P (A 1)=1836,P (A 1A 2)=1836×918,故在第一次抛出偶数点的概率为P (A 2|A 1)=P (A 1A 2)P (A 1)=1836×9181836=12,故选B.二、填空题9.某人提出一个问题,甲先答,答对的概率为0.4,如果甲答错,由乙答,答对的概率为0.5,则问题由乙答对的概率为________.[答案] 0.310.100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第一次抽出的是次品,则第2次抽出正品的概率为________.[答案]9599[解析] 设“第一次抽到次品”为事件A ,“第二次抽到正品”为事件B ,则P (A )=5100,P (AB )=5100×9599,所以P (B |A )=P (AB )P (A )=9599.准确区分事件B |A 与事件AB 的意义是关键.11.一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,则这时另一个小孩是男孩的概率是________.[答案] 12[解析] 一个家庭的两个小孩只有3种可能:{两个都是男孩},{一个是女孩,另一个是男孩},{两个都是女孩},由题目假定可知这3个基本事件的发生是等可能的.12.从1~100这100个整数中,任取一数,已知取出的一数是不大于50的数,则它是2或3的倍数的概率为________.[答案]3350[解析] 根据题意可知取出的一个数是不大于50的数,则这样的数共有50个,其中是2或3的倍数共有33个,故所求概率为3350.三、解答题13.把一枚硬币任意掷两次,事件A =“第一次出现正面”,事件B =“第二次出现正面”,求P (B |A ).[解析] P (B )=P (A )=12,P (AB )=14, P (B |A )=P (AB )P (A )=1412=12.14.盒中有25个球,其中10个白的、5个黄的、10个黑的,从盒子中任意取出一个球,已知它不是黑球,试求它是黄球的概率.[解析] 解法一:设“取出的是白球”为事件A ,“取出的是黄球”为事件B ,“取出的是黑球”为事件C ,则P (C )=1025=25,∴P (C )=1-25=35,P (B C )=P (B )=525=15∴P (B |C )=P (B C )P (C )=13. 解法二:已知取出的球不是黑球,则它是黄球的概率P =55+10=13.15.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少? (2)从2号箱取出红球的概率是多少?[解析] 记事件A :最后从2号箱中取出的是红球;事件B :从1号箱中取出的是红球. P (B )=42+4=23,P (B -)=1-P (B )=13. (1)P (A |B )=3+18+1=49.(2)∵P (A |B -)=38+1=13, ∴P (A )=P (A ∩B )+P (A ∩B -)=P (A |B )P (B )+P (A |B -)P (B -) =49×23+13×13=1127.16.某校高三(1)班有学生40人,其中共青团员15人.全班分成4个小组,第一组有学生10人,共青团员4人.从该班任选一个作学生代表.(1)求选到的是第一组的学生的概率;(2)已知选到的是共青团员,求他是第一组学生的概率. [解析] 设事件A 表示“选到第一组学生”, 事件B 表示“选到共青团员”. (1)由题意,P (A )=1040=14.(2)要求的是在事件B 发生的条件下,事件A 发生的条件概率P (A |B ).不难理解,在事件B 发生的条件下(即以所选到的学生是共青团员为前提),有15种不同的选择,其中属于第一组的有4种选择.因此,P (A |B )=415.《平行四边形的面积》说课稿各位评委:大家好。

今天我说课的内容是人教版五年级上册第五单元《平行四边形的面积》一、说教材本课教材平行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上,进行教学的。

本节课主要让学生初步运用转化的方法把平行四边形转化成为长方形从而推导出平行四边形面积公式,同时也为三角形、梯形的面积公式推导做了准备。

相关文档
最新文档