合肥一中自主招生数学试卷(含答案[1]

合集下载

2009年合肥一中自主招生试题数学详解

2009年合肥一中自主招生试题数学详解

2009年合肥一中自主招生数学参考答案一、 选择题1、B 第一层最多可排5个,第二层最多可排4个第三层最多可排2个,共11个。

2、D 如图作M 点关于AC 的对称点M ’,连接M ’N 交AC 于P,此时MP+NP=M ’N 为最短。

过N 点作NE ⊥AC 交AC 于E,连接MN 、BP 、MM ’。

∵M 、N 为AB 、BC 的中点∴MN ∥AC ∵MD ⊥AC NE ⊥AC ∴MDEN 为矩形。

∴MD=NE ∵MD=M ’D ∴M ’D=NE 在△DPM ’和△EPN 中∠PDM ’=∠PEN; ∠DPM ’=∠EPN; M ’D=NE ∴△DPM ’≌△EPN ∴DP=EP; ∴PM ’=PN=1在△ACM 和△CEN 中∠A=∠C=300∠ADM=∠CEN;MD=NE; ∴△ACM ≌△CEN ∴AC=CE; ∴AP=CP ∵AB=CB ∴BP ⊥AC; ∵N 为BC 中点∴BC=2;∵∠C=300;BP ⊥AC ∴PC=3∴AC=23△ABC 的周长为4+233、A 如图在Rt △ABC 中∠A=30BC=2 ∴OB=2 HC=3BH=7∵∠A 1BC 1=600∴∠DBD 1=1200S 阴影HOO 1H 1=S HOO 1D 1+S O 1H 1D 1= S HOO 1D 1+S OHD =S DOO1D 1=S 扇形DBD 1-S 扇形OBO 1=0360120π(7)2-0360120π22=π4、D 如图连接OE 、OF 、OD ;设DC=a;BE=b ∵DE 切⊙O 于F ∴OF ⊥DE(第2题图)(第3题图)111A(第4题图)E DA∵DC ⊥OC ∴DC 切⊙O 于C ∴DC=OF=a OF=21a ∠FOD=∠COD 同理可得:BE=EF=b ∠BOE=∠FOE ∴∠FOE+∠FOD=90∵∠FOD+∠FDO=90∴∠FOE=∠FDO ∠EFO=∠OFD=900∴△EOF ∽△ODF ∴DFOF =OFEF 即OF 2=DF 〃EF (21a)2=a 〃b a=4b C △AED =AD+AE+ED= AD+(AB-EB)+(EF+FD)=a+a-b+b+a=3a=12bC 梯形BCDE =BE+BC+CD+DE= BE+BC+CD+(EF+DF)=b+a+a+b+a=3a+2b=14bBCDEAED C C 梯形△=bb 1412=6︰75、C二、填空题 6、317、C(-1-2,363 )过C 、A 点分别作x 轴的垂线,交x 轴于E 、F 点。

安徽省合肥XX中学自主招生数学试卷(含答案解析)

安徽省合肥XX中学自主招生数学试卷(含答案解析)

安徽省合肥XX中学自主招生数学试卷一、选择题(本大提共8小题,每小题5分,共40分)1.(5分)已知a=,b=,则二次根式的值是()A.6B.7C.8D.92.(5分)已知有9张卡片,分别写有1到9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为()A.B.C.D.3.(5分)已知一次函数y=kx+b(k≠0)的图象经过点A(1,3),且与坐标轴围成面积为6的三角形,则满足条件的函数有()A.2个B.3个C.4个D.5个4.(5分)若实数a≠b,且a,b满足a2﹣8a+5=0,b2﹣8b+5=0,则代数式的值为()A.﹣20B.2C.2或﹣20D.2或205.(5分)对于每个非零自然数n,抛物线y=x2﹣x+与x轴交于A n,B n 以|A n B n|表示这两点间的距离,则|A1B1|+|A2B2|+…+|AB|的值是()A.B.C.D.6.(5分)已知a,b,c是△ABC的三边,则下列式子一定正确的是()A.a2+b2+c2≥ab+bc+ac B.<C.D.a3+b3<c37.(5分)如图,从△ABC各顶点作平行线AD∥EB∥FC,各与其对边或其延长线相交于D,E,F.若△ABC的面积为1,则△DEF的面积为()A.3B.C.D.28.(5分)半径为2.5的圆O中,直径AB的不同侧有定点C和动点P,已知BC:CA=4:3,点P在弧AB上运动,过点C作CP的垂线,与PB的延长线交于点Q,则CQ的最大值为()A.B.C.D.二、填空题(本大提共7题,每小题5分,共35)9.(5分)若分式方程=a无解,则a的值为.10.(5分)已知一列数a1,a2,a3,…满足a1=,a2=,a3=,a4=,…,依此类推,则a1,a2,…,a,这个数的积为.11.(5分)某公司加工252个零件,计划若干天完成,加工了2天后,由于改进新技术,每天可多加工9个零件,因此提前1天完成任务,则原计划完成任务的天数为.12.(5分)已知函数y=x2﹣2mx+4(m是实数)与x轴两交点的横坐标为x1,x2,当1<x1<2,1<x2<3时,则m的范围是.13.(5分)如图,已知四边形ABCD是矩形,BC=2AB,A,B两点的坐标分别是(﹣1,0),(0,1),C,D两点在反比例函数y=(x<0)的图象上,则k的值等于.14.(5分)如图,在等腰直角三角形ABC中,∠C=90°,内取一点P,且AP=AC=a,BP=CP=b(b<a),则=.15.(5分)足球运动员在足球场上,常需要带球跑到一定位置后,再进行射门,这个位置为射门点,射门点与球门边框两端的夹角是射门角.如果点A,B表示球门边框(不考虑球门的高度)的两端点,点C表示射门点,连接AC,BC,则∠ABC就是射门角,在不考虑其他因素的情况下,一般地,射门角越大,射门进球的可能性越大,如图(1)(2)(3)是运动员带球跑动的三种常见路线(用直线L表示),则下列说法:①如图(1),AB∥L,当运动员在线段AB的垂直平分线与L的交点C处射门时,进球的可能性最大;②如图(2)AB⊥L垂足为D,设AB=2a,BD=b,当运动员在离底线AB的距离为的点C处(即CD=)射门时,进球可能性最大.③如图(3),AB与L交于点Q,设AB中点为O,当点C满足OQ=CQ时,运动员在点C处射门时,进球的可能性最大.④如图(3),过点C作直线L的垂线与线段AB的垂直平分线交于点M,当M恰好是△ABC的外心时,运动员在点C处射门时,进球可能性最大.其中正确的序号是(写出所有正确的序号)三、解答题(本大题共5小题,共75分)16.(12分)若,求的值.17.(13分)某学校在大课间举行跳绳活动,为此学校准备购置长、中、短三种跳绳若干,要求中跳绳的条数是长跳绳的2倍,且短跳绳的条数不超过长跳绳的6倍.已知长跳绳单价是20元,中跳绳的单价是15元,短跳绳的单价是8元.(1)若学校准备用不超过2300元的现金购买200条长、中、短跳绳,问学校有几种购买方案可供选择?(2)若学校准备恰好用3000元的现金购买n条长、中、短跳绳.求n的最大值.18.(13分)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE×CA.(1)求证:BC=CD(2)分别延长AB,DC交于点P,若PB=OB,CD=2,求⊙O的半径.19.(13分)如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C的坐标为(0,﹣),点M 是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求m的值.20.(14分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).安徽省合肥168中自主招生数学试卷参考答案与试题解析一、选择题(本大提共8小题,每小题5分,共40分)1.(5分)已知a=,b=,则二次根式的值是()A.6B.7C.8D.9【解答】解:∵a==(﹣)2=4﹣,b===4+,∴ab=(4+)(4﹣)=1,∴======9.故选:D.2.(5分)已知有9张卡片,分别写有1到9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为()A.B.C.D.【解答】解:因为关于x的不等式组有解,可得:,所以得出a>5,因为a取≤9的整数,可得a的可能值为6,7,8,9,共4种可能性,所以使关于x的不等式组有解的概率为,故选:C.3.(5分)已知一次函数y=kx+b(k≠0)的图象经过点A(1,3),且与坐标轴围成面积为6的三角形,则满足条件的函数有()A.2个B.3个C.4个D.5个【解答】解:把A(1,3)代入y=kx+b中,得3=k+b,∴b=3﹣k,∴一次函数的解析式为:y=kx+3﹣k,∴一次函数图象与坐标轴的交点为(0,3﹣k),(,0),∵一次函数y=kx+b(k≠0)的图象与坐标轴围成三角形的面积为6,∴,解得,k=﹣3,或k=9,∴k的值有3个,∴满足条件的函数有3个.故选:B.4.(5分)若实数a≠b,且a,b满足a2﹣8a+5=0,b2﹣8b+5=0,则代数式的值为()A.﹣20B.2C.2或﹣20D.2或20【解答】解:∵a,b满足a2﹣8a+5=0,b2﹣8b+5=0,∴a,b可看着方程x2﹣8x+5=0的两根,∴a+b=8,ab=5,====﹣20.故选:A.5.(5分)对于每个非零自然数n,抛物线y=x2﹣x+与x轴交于A n,B n 以|A n B n|表示这两点间的距离,则|A1B1|+|A2B2|+…+|AB|的值是()A.B.C.D.【解答】解:y=x2﹣x+=(x﹣)(x﹣),∴A n(,0),B n(,0),∴|A n B n|=﹣,∴|A1B1|+|A2B2|+…+|AB|=+++…+=1﹣=,故选:C.6.(5分)已知a,b,c是△ABC的三边,则下列式子一定正确的是()A.a2+b2+c2≥ab+bc+ac B.<C.D.a3+b3<c3【解答】解:A、由三角形三边关系可得:(a﹣b)2+(b﹣c)2+(a﹣c)2≥0,可得:2(a2+b2+c2)≥2(ab+bc+ac),可得:(a﹣b)2+(b﹣c)2+(a﹣c)2≥0,故选项正确;B、由三角形三边关系不一定得出a+b>c,<,可得<,>,选项错误;C、由三角形三边关系不一定得出a>b>c,由,可得:a>b>c,选项错误;D、由三角形三边关系不一定得出a3+b3<c3,选项错误;故选:A.7.(5分)如图,从△ABC各顶点作平行线AD∥EB∥FC,各与其对边或其延长线相交于D,E,F.若△ABC的面积为1,则△DEF的面积为()A.3B.C.D.2【解答】证明:∵AD∥BE,AD∥FC,FC∥BE,∴△ADE和△ABD在底边AD上的高相等,△ADF和△ADC在底边AD上的高相等,△BEF和△BEC在底边BE上的高相等,∴S△ADF=S△ADC,S△BEF=S△BEC,S△AEF=S△BEF﹣S△ABE=S△BEC﹣S△ABE=S△ABC∴S△DEF=S△ADE+S△ADF+S△AEF=S△ABD+S△ADC+S△ABC=2S△ABC.即S△DEF=2S△ABC.∵S△ABC=1,∴S△DEF=2,故选:D.8.(5分)半径为2.5的圆O中,直径AB的不同侧有定点C和动点P,已知BC:CA=4:3,点P在弧AB上运动,过点C作CP的垂线,与PB的延长线交于点Q,则CQ的最大值为()A.B.C.D.【解答】解:∵AB是直径,∴AB=5,∠ACB=90°,∴AB2=AC2+BC2,且BC:CA=4:3,∴BC=4,AC=3,∵∠A=∠P,∠ACB=∠PCQ=90°,∴△ACB∽△PCQ,∴,∴CQ=,∴当PC最大时,CQ有最大值,∴PC是直径时,CQ的最大值=×5=,故选:B.二、填空题(本大提共7题,每小题5分,共35)9.(5分)若分式方程=a无解,则a的值为1或﹣1.【解答】解:去分母得:x﹣a=ax+a,即(a﹣1)x=﹣2a,显然a=1时,方程无解;由分式方程无解,得到x+1=0,即x=﹣1,把x=﹣1代入整式方程得:﹣a+1=﹣2a,解得:a=﹣1,综上,a的值为1或﹣1,故答案为:1或﹣110.(5分)已知一列数a1,a2,a3,…满足a1=,a2=,a3=,a4=,…,依此类推,则a1,a2,…,a,这个数的积为.【解答】解:a1=,a2=,=2,a3==﹣1,a4==,…,依此类推,发现每3个数为一组一个循环,前3个数的乘积为:2×(﹣1)=﹣1,所以÷3=672…1,则a1,a2,…,a,这个数的积为(﹣1)672×=.故答案为:.11.(5分)某公司加工252个零件,计划若干天完成,加工了2天后,由于改进新技术,每天可多加工9个零件,因此提前1天完成任务,则原计划完成任务的天数为7.【解答】解:设原计划每天加工x个零件.由题意得:+2+1=,整理得:x2+27x﹣2268=0.解得:x1=36,x2=﹣63(不合题意舍去).经检验:x=36是原方程的解.当x=36时,=7,即原计划7天完成,故答案为:7.12.(5分)已知函数y=x2﹣2mx+4(m是实数)与x轴两交点的横坐标为x1,x2,当1<x1<2,1<x2<3时,则m的范围是2<m<.【解答】解:由题意得:△=b2﹣4ac=(﹣2m)2﹣4×4>0,解得:m>2或m<﹣2①,函数的对称轴为x=﹣=﹣=m,当1<x1<2,1<x2<3时,1<(x1+x2)<,而x=﹣=﹣=m=(x1+x2),即1<m<②,联立①②并解得:2<m<,故答案为:2<m<.13.(5分)如图,已知四边形ABCD是矩形,BC=2AB,A,B两点的坐标分别是(﹣1,0),(0,1),C,D两点在反比例函数y=(x<0)的图象上,则k的值等于﹣6.【解答】解:过点C作CE⊥y轴,垂足为E,∵A,B两点的坐标分别是(﹣1,0),(0,1),∴OA=OB=1,∠OAB=∠OBA=45°,∵ABCD是矩形,∴∠ABC=90°,∴∠CBE=180°﹣90°﹣45°=45°=∠BCE,∴△AOB∽△BEC,∴==,又∵BC=2AB,∴BE=CE=2,OE=OB+BE=1+2=3,∴点C(﹣2,3),代入反比例函数关系式得,k=﹣2×3=﹣6,故答案为:﹣6.14.(5分)如图,在等腰直角三角形ABC中,∠C=90°,内取一点P,且AP=AC=a,BP=CP=b(b<a),则=.【解答】解:如图:过点P作PD⊥BC与点D,作PE⊥AC于点E,可得矩形PDCE,有PD=EC,PE=CD,∵PC=PB,PD⊥BC,∴DC=DB=BC=AC=a,∴PE=CD=a,Rt△AEP中,AP=AC=a,PE=a,∴AE=a,∴EC=AC﹣AE=a﹣a=a.∴PD=EC=a,Rt△CDP中,PD2+CD2=CP2,∴(a)2+()2=b2,∴a2+a2=b2,∴a2=b2,∴(2﹣)a2=b2.∴=2﹣,∴===.故答案是:.15.(5分)足球运动员在足球场上,常需要带球跑到一定位置后,再进行射门,这个位置为射门点,射门点与球门边框两端的夹角是射门角.如果点A,B表示球门边框(不考虑球门的高度)的两端点,点C表示射门点,连接AC,BC,则∠ABC就是射门角,在不考虑其他因素的情况下,一般地,射门角越大,射门进球的可能性越大,如图(1)(2)(3)是运动员带球跑动的三种常见路线(用直线L表示),则下列说法:①如图(1),AB∥L,当运动员在线段AB的垂直平分线与L的交点C处射门时,进球的可能性最大;②如图(2)AB⊥L垂足为D,设AB=2a,BD=b,当运动员在离底线AB的距离为的点C处(即CD=)射门时,进球可能性最大.③如图(3),AB与L交于点Q,设AB中点为O,当点C满足OQ=CQ时,运动员在点C处射门时,进球的可能性最大.④如图(3),过点C作直线L的垂线与线段AB的垂直平分线交于点M,当M恰好是△ABC的外心时,运动员在点C处射门时,进球可能性最大.其中正确的序号是①②④(写出所有正确的序号)【解答】解:①作△ABC的外接圆圆O,过C作圆O的切线,由圆的切线性质可得,当△ABC等腰三角形的时候,∠ACB最大,所以正确;②当△DBC∽△DAC时,∠ACB最大,此时,CD2=BD•AD=b(2a+b)=2ab+b2,CD=,所以正确;③④过点C作l的垂线,交AB垂直平分线于M,当M恰好是△ABC的外心时,∠ACB最大,所以③错误,④正确.故答案为:①②④.三、解答题(本大题共5小题,共75分)16.(12分)若,求的值.【解答】解:∵=﹣,∴x=a+﹣2,∵x≥0,∴≥,∴a≥1,≤1,原式=,=,=,=,当a≥时,原式==a2;当a<时与a≥1,≤1相矛盾.综上所述,原二次根式的值为:a2.故答案为:a2.17.(13分)某学校在大课间举行跳绳活动,为此学校准备购置长、中、短三种跳绳若干,要求中跳绳的条数是长跳绳的2倍,且短跳绳的条数不超过长跳绳的6倍.已知长跳绳单价是20元,中跳绳的单价是15元,短跳绳的单价是8元.(1)若学校准备用不超过2300元的现金购买200条长、中、短跳绳,问学校有几种购买方案可供选择?(2)若学校准备恰好用3000元的现金购买n条长、中、短跳绳.求n的最大值.【解答】解:(1)设购进x条长跳绳,则购进2x条中跳绳,(200﹣x﹣2x)条短跳绳,依题意,得:,解得:22≤x≤26.∵x为正整数,∴x=23,24,25,26,∴学校共有4种购买方案可供选择.(2)设可以购买a条长跳绳,则购进2a条中跳绳,(n﹣a﹣2a)条短跳绳,依题意,得:,化简,得:,∴13a=4(375﹣n),∴a为4的倍数,设a=4k,则n=375﹣13k,∴375﹣13k≤36k,∴k≥7,∴k的最小值为8,n的最大值为271.18.(13分)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE×CA.(1)求证:BC=CD(2)分别延长AB,DC交于点P,若PB=OB,CD=2,求⊙O的半径.【解答】(1)证明:∵DC2=CE•CA,∴,而∠ACD=∠DCE,∴△CAD∽△CDE,∴∠CAD=∠CDE,∵∠CAD=∠CBD,∴∠CDB=∠CBD,∴BC=DC;(2)解:连接OC,如图,设⊙O的半径为r,∵CD=CB,∴=,∴∠BOC=∠BAD,∴OC∥AD,∴,∴PC=2CD=4,∵∠PCB=∠P AD,∠CPB=∠APD,∴△PCB∽△P AD,∴,即,∴r=4,即⊙O的半径为4.19.(13分)如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C的坐标为(0,﹣),点M 是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求m的值.【解答】解:(1)y=mx2﹣2mx﹣3m=m(x﹣3)(x+1),∵m≠0,∴当y=0时,x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)设C1:y=ax2+bx+c,将A、B、C三点的坐标代入得:,解得,故C1:y=x2﹣x﹣.如图:过点P作PQ∥y轴,交BC于Q,由B、C的坐标可得直线BC的解析式为:y=x﹣,设P(x,x2﹣x﹣),则Q(x,x﹣),PQ=x﹣﹣(x2﹣x﹣)=﹣x2+x,S△PBC=S△PCQ+S△PBQ=PQ•OB=×(﹣x2+x)×3=﹣(x﹣)2+,当x=时,S△PBC有最大值,Smax=,×()2﹣﹣=﹣,P(,﹣);(3)y=mx2﹣2mx﹣3m=m(x﹣1)2﹣4m,顶点M坐标(1,﹣4m),当x=0时,y=﹣3m,∴D(0,﹣3m),B(3,0),∴DM2=(0﹣1)2+(﹣3m+4m)2=m2+1,MB2=(3﹣1)2+(0+4m)2=16m2+4,BD2=(3﹣0)2+(0+3m)2=9m2+9,当△BDM为Rt△时有:DM2+BD2=MB2或DM2+MB2=BD2.①DM2+BD2=MB2时有:m2+1+9m2+9=16m2+4,解得m=﹣1(∵m<0,∴m=1舍去);②DM2+MB2=BD2时有:m2+1+16m2+4=9m2+9,解得m=﹣(m=舍去).综上,m=﹣1或﹣时,△BDM为直角三角形.20.(14分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).【解答】解:(Ⅰ)根据题意,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=2,t2=﹣2(舍去).∴点P的坐标为(,6).(Ⅱ)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,∴△OB′P≌△OBP,△QC′P≌△QCP,∴∠OPB′=∠OPB,∠QPC′=∠QPC,∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°,∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ.又∵∠OBP=∠C=90°,∴△OBP∽△PCQ,∴,由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11﹣t,CQ=6﹣m.∴.∴m=(0<t<11).(Ⅲ)过点P作PE⊥OA于E,∴∠PEA=∠QAC′=90°,∴∠PC′E+∠EPC′=90°,∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A,∴△PC′E∽△C′QA,∴,∵PC′=PC=11﹣t,PE=OB=6,AQ=m,C′Q=CQ=6﹣m,∴AC′==,∴,∴,∴3(6﹣m)2=(3﹣m)(11﹣t)2,∵m=,∴3(﹣t2+t)2=(3﹣t2+t﹣6)(11﹣t)2,∴t2(11﹣t)2=(﹣t2+t﹣3)(11﹣t)2,∴t2=﹣t2+t﹣3,∴3t2﹣22t+36=0,解得:t1=,t2=,点P的坐标为(,6)或(,6).法二:∵∠BPO=∠OPC′=∠POC′,∴OC′=PC′=PC=11﹣t,过点P作PE⊥OA于点E,则PE=BO=6,OE=BP=t,∴EC′=11﹣2t,在Rt△PEC′中,PE2+EC′2=PC′2,即(11﹣t)2=62+(11﹣2t)2,解得:t1=,t2=.点P的坐标为(,6)或(,6).。

安徽省院校自主招生试题及答案(全)

安徽省院校自主招生试题及答案(全)

省内院校自主招生试题及答案合肥一中2010物理合肥一中2010数学蚌埠二中2010数学一、选择题(每小题5分,共30分。

每小题均给出了A、B、C、D的四个选项,其中有且只有[来源:学科网] 一个选项是正确的,不填、多填或错填均得0分)1、有一正方体,六个面上分别写有数字1、2、3、4、5、6,有三个人从不同的角度观察的ODCBA结果如图所示。

如果记6的对面的数字为a ,2的对面的数字为b ,那么b a +的值为A .3B .7C .8D .112、右图是某条公共汽车线路收支差额y 与乘客量x 的图像(收支差额=车票收入-支出费用) 由于目前本条线路亏损,公司有关人员提出两条建议:建议(1)是不改变车 票价格,减少支出费用;建议(2)是不改变支出费用,提高车票价格。

下面A .①反映了建议(2),③反映了建议(1) B .①反映了建议(1),③反映了建议(2) C .②反映了建议(1),④反映了建议(2) D .④反映了建议(1),②反映了建议(2)3、已知函数))((3n x m x y ---=,并且b a ,是方程0))((3=---n x m x 的两个根,则 实数b a n m ,,,的大小关系可能是A .n b a m <<<B .b n a m <<<C .n b m a <<<D .b n m a <<< 4、记n S =n a a a +++ 21,令12nn S S S T n+++=,称n T 为1a ,2a ,……,n a 这列数的“理想数”。

已知1a ,2a ,……,500a 的“理想数”为2004,那么8,1a ,2a ,……,500a 的“理想数”为A .2004B .2006C .2008D .20105、以半圆的一条弦BC (非直径)为对称轴将弧BC 折叠后 与直径AB 交于点D ,若32=DBAD ,且10=AB ,则CB 的长为A . 54B .34C . 24D .46、某汽车维修公司的维修点环形分布如图。

合肥一中自主招生试题

合肥一中自主招生试题

合肥一中自主招生试题自主招生试题一:数学1. 已知函数 f(x) = x^2 - 3x + 2,求以下方程的解:a) f(x) = 0b) f(x) = 12. 对于等差数列 {an},已知 a1 = 2,d = 3,求前 n 项和 Sn = a1 + a2 + ... + an。

自主招生试题二:物理1. 一个质量为 1 kg 的物体在重力作用下从 10 米的高度自由落下,求它落地时的动能和重力势能之和。

2. 一个光滑的水平面上有一个单位质点,质点的速度是 4 m/s,质量为 2 kg,求质点具有的动量。

自主招生试题三:英语阅读理解:阅读下面的短文,然后根据短文内容回答问题。

We can see birds flying in the sky, but it’s not easy to know how they are able to fly. Birds have special bodies that help them to fly. First, they have light bones. These bones help them to be lighter, so it is easier for them to fly. They also have feathers. These feathers make them more aerodynamic. They can change the shape of their wings to fly in different ways. Finally,birds have powerful muscles. They use these muscles to lift their wings and fly.Questions:1. What helps birds to be lighter?2. What makes birds more aerodynamic?3. How do birds use their muscles?自主招生试题四:化学1. 对于以下化学反应:Na + Cl2 → NaCl,根据化学方程式回答以下问题:a) 反应中的氧化剂是什么?b) 反应中的还原剂是什么?2. 请写出以下几种物质的化学式:a) 氯气b) 水c) 乙酸以上是合肥一中自主招生试题的部分内容。

安徽省合肥市第一中学2025届高三上学期第二次教学检测数学试卷(含解析)

安徽省合肥市第一中学2025届高三上学期第二次教学检测数学试卷(含解析)

合肥一中2024~2025学年度高三第二次教学质量检测数学试题(考试时间:120分钟 满分:150分)注意事项:1.答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位.2.答题时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答题时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卷规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效.4.考试结束,务必将答题卡和答题卷一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合,,则图中阴影部分所表示的集合是( )A .B .C .D .2.命题“,使”的否定是( )A .,使B .不存在,使C .,使D .,使3.函数的部分图象大致为( )A .B.{}2,1,0,1,2M =--(){}22log 1N y y x ==+{}2,1--{}2,1,0--{}0,1,2{}1,0-x ∃∈R 210x x +-≠x ∃∈R 210x x +-=x ∈R 210x x +-≠x ∀∉R 210x x +-=x ∀∈R 210x x +-=()3sin 1x x f x x =+C .D .4.“曲线恒在直线的下方”的一个充分不必要条件是( )A .B .C .D .5.当阳光射入海水后,海水中的光照强度随着深度增加而减弱,可用表示其总衰减规律,其中是消光系数,(单位:米)是海水深度,(单位:坎德拉)和(单位:坎德拉)分别表示在深度处和海面的光强.已知某海域6米深处的光强是海面光强的,则该海域消光系数的值约为( )(参考数据:,)A .0.2B .0.18C .0.15D .0.146.在中,内角,,的对边分别为,,,已知,,则外接圆的面积为( )A .B .C .D .7.已知函数的图象关于直线对称,且在上没有最小值,则的值为( )A .B .4C .D .8.已知是内一点,且,点在内(不含边界),若,则的取值范围是( )A .B .C .D .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.已知平面向量,,且,则( )ln y x =y x b =+1b >-1e b -<<-10b -<<0b <0e KD D I I -=K D D I 0I D 40%K ln 20.7≈ln 5 1.6≈ABC △A B C a bc a =()(()sin sin sin sin A B b c B C -+=+ABC △π3π4π5π()()πsin 04f x x ωω⎛⎫=+> ⎪⎝⎭π6x =()f x π0,4⎛⎫ ⎪⎝⎭ω3292152O ABC △0OA OB OC ++= M OBC △AM xAB y AC =+ 2x y +1,12⎛⎫ ⎪⎝⎭2,13⎛⎫ ⎪⎝⎭()1,251,2⎛⎫ ⎪⎝⎭()2,a m = ()1,1b =- 22a b a b +=-A .B .C .D .10.已知,若对任意的,不等式恒成立,则( )A .B .C .的最小值为32D .的最小值为11.已知函数的定义域为,函数为偶函数,函数为奇函数,则下列说法正确的是( )A .函数的一个对称中心为B .C .函数为周期函数,且一个周期为4D .三、填空题:本题共3小题,每小题5分,共15分.12.已知,则______.13.已知函数,方程有四个不同根,,,,且满足,则的最大值为______.14.定义表示实数,中的较大者,若,,是正实数,则的最小值是______.四、解答题:本题共5小题,第15题满分13分,第16题、第17题满分15分,第18题、第19题满分17分,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)的内角,,的对边分别为,,,已知.(1)若,,求的面积;2m =π,3a b = a b ⊥ a =1b >()1,x ∈+∞32440ax x abx b +--≤0a <216a b =216a b +24a ab a b +++8-()f x R ()()()11F x f x x =+-+()()231G x f x =+-()f x ()2,1()01f =-()f x ()()()()()012345f f f f f ++++=π4tan 43α⎛⎫+=- ⎪⎝⎭cos 2α=()22log ,012,04x x f x x x x ⎧>⎪=⎨++≤⎪⎩()f x a =1x 2x 3x 4x 1234x x x x <<<()2312432x x x x x +-{}max ,x y x y a b c 123max ,max ,max ,a b c b c a ⎧⎫⎧⎫⎧⎫++⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭ABC △A B C a b c ()2222cos 02a b c c b A b+--+=4a =8b c +=ABC △(2)若角为钝角,求的取值范围.16.(15分)已知函数.(Ⅰ)当时,关于的方程在区间内有两个不相等的实数根,求实数的取值范围;(Ⅱ)求函数在区间上的最小值.17.(15分)摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色.如图,某摩天轮最高点距离地面高度为120m ,转盘直径为110m ,设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周大约需要30min .(1)游客甲坐上摩天轮的座舱,开始转动后距离地面的高度为,求在转动一周的过程中,关于的函数解析式;(2)若甲、乙两人分别坐在两个相邻的座舱里,在运行一周的过程中,求两人距离地面的高度差(单位:m )关于的函数解析式,并求高度差的最大值(精确到0.1m ).参考公式:.参考数据:,.18.(17分)已知函数.(1)当时,,求实数的取值范围;(2)若,求证:;(3)若,,为正实数,且,求证:.19.(17分)已知实数集,定义:(与可以相同).记为集合C c b()()()ln 1f x x x a x a R =+-∈0a =x ()f x m =1,32⎡⎤⎢⎥⎣⎦m ()f x 1,e e⎡⎤⎢⎥⎣⎦min t m H H t h t sin sin 2sincos 22θϕθϕθϕ+-+=πsin 0.207915≈πsin 0.065448≈()sin f x x =0x ≥()f x ax ≤a π02αβ<<<()()()cos f f βαβαα-<-*n ∈N 00a =12,,,n a a a 121n a a a +++= 1π12n i =≤<{}12,,,n X x x x = {},i j i j X X x x x x X ⊗=∈i x j x X中的元素个数.(1)若,请直接给出和;(2)若均为正数,且,求的最小值;(3)若,求证:.合肥一中2024~2025学年度高三第二次教学质量检测数学参考试卷1.A【详解】,所以阴影部分.故选:A .2.D【详解】命题“,使”的否定是,使.故选:D .3.A【详解】易知函数的定义域为,故可排除C ,D ;又,,所以可排除B ,故选:A .4.C【详解】由曲线恒在直线下方,可得,恒成立,即所以“曲线恒在直线的下方”的充要条件是,故选:C .5.C 【详解】依题意得,,化成对数式,,解得,.故选:C .6.C【详解】因为,且,所以,由正弦定理,可得,即,X {}1,2,3,6X =X X ⊗X X ⊗12,,,n x x x 300X X ⊗=X 11X =17X X ⊗≥{}0N y y =≥(){}2,1M N =--R ðx ∃∈R 210x x +-≠x ∀∈R 210x x +-=()3sin 1x x f x x =+{}1x x ≠-π14->-3ππsin π4404ππ1144f ⎛⎫-- ⎪⎛⎫⎝⎭-==> ⎪⎝⎭⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭ln y x =y x b =+ln x x b <+ln b x x >-1b >-ln y x =y x b =+1b >-6040%e K D I I -==26ln ln 2ln 50.95K -==-≈-0.15K ≈a =()(()sin sin sin sin A B b c B C -+=+()()()sin sin sin sin A B a b c B C -+=+()()()a b a b c b c -+=+222a b c bc =++所以,又因,所以,所以外接圆的半径为..故选:C .7.A【详解】由的图象关于直线对称可得,,解得或,,由于在上没有最小值,所以,所以,故选:A .8.C【详解】因为内一点,,所以为的重心,又在内(不含边界),且当与重合时,最小,此时所以,即,当与重合时,最大,此时,所以,,即,因为在内且不含边界,所以取开区间,即,故选:C .二.多选题9.ACD【详解】由,,可得,,2221cos 22b c a A bc +-==-()0,πA ∈2π3A =ABC △22sin a A ==2π24πS =⋅=()()πsin 04f x x ωω⎛⎫=+> ⎪⎝⎭π6x =ππππ642k ω+=±+k ∈Z 362k ω=+962k ω=-+k ∈Z ()f x π0,4⎛⎫ ⎪⎝⎭π5π0544ωω≤⇒<≤32ω=ABC △0OA OB OC ++= O ABC △M OBC △M O 2x y +()21113233AM AB AC AB AC AB AC λμ⎡⎤=+=⨯+=+⎢⎥⎣⎦ 13x y ==21x y +=M C 2x y +AM AC = 0x =1y =22x y +=M OBC △()21,2x y +∈()2,a m = ()1,1b =- ()24,2a b m +=- ()20,2a b m -=+由,可得,解得,故A 正确;由,可得,故D 正确;又,则,,故B 错误,C 正确.故选:ACD .10.ABD【详解】因为,即恒成立,又因为,,所以当,当时,,因为对任意的,不等式恒成立,所以当时,,当时,,所以对于函数,必有,单调递减,且零点为,所以,所以,所以A 正确,B 正确;对于C ,因为,所以所以,当且仅当,即时取等号,与条件不符,所以C 错误;对于D ,,令,当且仅当时,等号成立.则原式,22a b a b +=- ()()221622m m +-=+2m =()2,2a = a == cos ,0a b a b a b ⋅=== π,2a b = a b ⊥ 32440ax x abx b +--≤()()240ax x b +-≤1b >1x >1x <<20x b -<x >20x b ->()1,x ∈+∞32440ax x abx b +--≤0x <<40ax +≥x >40ax +≤4y ax =+0a <x =40+=216a b =40=a =216161632a b b b +=+≥=1616b b=1b =216164a ab a b b b b b ⎛⎛⎫+++=-=+- ⎪ ⎝⎭⎝216448b b ⎛⎫=+-=-- ⎪⎝⎭m =4m ≥4b =()2484m m m =--≥由二次函数的性质可得的最小值为,此时,,所以D 正确,故选:ABD .11.ABD【详解】对于A ,因为为奇函数,所以,即,所以,所以,所以函数的图象关于点对称,所以A 正确,对于B ,在中,令,得,得,因为函数为偶函数,所以,所以,所以,令,则,所以,得,所以B 正确,对于C ,因为函数的图象关于点对称,,所以,所以,所以4不是的周期,所以C 错误,对于D ,在中令,则,令,则,因为,所以,因为,所以,所以D 正确,故选:ABD .三.填空题(共1小题)12..【详解】因为,所以,可得,则.故答案为:.()2484y m m m =--≥8-4b =2a =-()()231G x f x =+-()()G x G x -=-()()231231f x f x ⎡⎤--=-+-⎣⎦()()23232f x f x -++=()()222f x f x -++=()f x ()2,1()()222f x f x -++=0x =()222f =()21f =()()()11F x f x x =+-+()()F x F x -=()()()()1111f x x f x x ---=+-+()()112f x f x x +--=1x =()()202f f -=()102f -=()01f =-()f x ()2,1()01f =-()43f =()()04f f ≠()f x ()()222f x f x -++=1x =()()132f f +=2x =()()042f f +=()01f =-()43f =()21f =()()()()()012345f f f f f ++++=2425-π4tan 43α⎛⎫+=- ⎪⎝⎭tan 141tan 3αα+=--tan 7α=22222222cos sin 1tan 1724cos 2cos sin 1tan 1725ααααααα---====-+++2425-13..【详解】作出函数图像可得,从而得,且,从而得,原式,令,,,令,则,,在单调递增,,最大值为.14.【详解】按和分类:记,当时,当且仅当,,时,等号成立;当时,,12981222x x +=-2324log log x x -=341x x =(]23log 1,2x -∈(]312,4x ∈∴()23122322331122x x x x x x +=-=+ 232312y x x =+(]312,4x ∈ (]2314,16x ∴∈231t x =()2f t t t=+(]4,16t ∈()f t )+∞()9129,28f t ⎛⎤∴∈ ⎥⎝⎦∴12983c a ≤3c a ≥123max ,max ,max ,M a b c b c a ⎧⎫⎧⎫⎧⎫=++⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭3c a ≤23235333a a M a a c a a a ≥++≥++=+≥=a =b =c =3c a ≥2325M a c c c c c c c ≥++≥++=+≥=当且仅当,,时,等号成立.综上所述,的最小值是四.解答题15.(13分)【详解】(1)由和正弦定理得,,因,则有,因,,则,又,故.由余弦定理,,代入得,,因,则有,即得,故的面积(2)由正弦定理,可得,因,代入化简得:.因为钝角,故由可得,则,即,故的取值范围是.16.(15分)【详解】(Ⅰ)当时,,,由,,故可列表:a =b =c =M ()2cos cos 0c b A a C -+=()sin 2sin cos sin cos 0C B A A C -+=()()sin cos sin cos sin sin πsin C A A C A C B B +=+=-=()sin 12cos 0B A -=0πB <<sin 0B >1cos 2A =0πA <<π3A =2222cos a b c bc A =+-2216b c bc +-=8b c +=()2316b c bc +-=16bc =ABC △11sin 1622S bc A ==⨯=sin sin b c B C =sin sin c C b B =2π3C B =-2πsin sin 13sin sin 2B cC b B B ⎛⎫- ⎪⎝⎭====C π022ππ32B B ⎧<<⎪⎪⎨⎪->⎪⎩π06B <<0tan B <<32>2c b >c b ()2,+∞0a =()ln f x x x x =-()ln 11ln f x x x =+-='∴()0132f x x ⎧>⎪⎨≤≤⎪⎩'ln 013132x x x >⎧⎪⇔⇔<≤⎨≤≤⎪⎩()0111232f x x x ⎧'<⎪⇔≤<⎨≤≤⎪⎩13,关于的方程在区间内有两个不相等的实数根时;(Ⅱ),由得.①当,即时,,在上为增函数,;②当,即时,在上,为减函数,在上,为增函数,;③当,即时,,在上为减函数,.综上所述,.17.【详解】如图,设座舱距离地面最近的位置为点,以轴心为原点,与地面平行的直线为轴建立直角坐标系.x121,12⎛⎫ ⎪⎝⎭()1,3y '-+y11ln222--]1-Z3ln33-11ln 203ln 3322--<<- ∴x ()f x m =1,32⎡⎤⎢⎥⎣⎦111ln 222m -<≤--()()ln 0f x x a x =+>'()0f x '=ax e -=1aee -<1a >()0f x '>()f x 1,e e ⎡⎤⎢⎥⎣⎦()min 12a f x f e e -⎛⎫== ⎪⎝⎭1a e e e -≤≤11a -≤≤1,a e e -⎡⎤⎢⎥⎣⎦()0f x '<()f x ,a e e -⎡⎤⎣⎦()0f x '>()f x ()()mina af x f e e --==-aee ->1a <-()0f x '<()f x 1,e e ⎡⎤⎢⎥⎣⎦()()min e f x f ea ==()min2,1,11,1a a a e f x e a ea a --⎧>⎪⎪=--≤≤⎨⎪<-⎪⎩P O x(1)设时,游客甲位于点,以为终边的角为;根据摩天轮转一周大约需要30min ,可知座舱转动的角速度约,由题意可得,.(2)如图,甲、乙两人的位置分别用点,表示,则.经过后甲距离地面的高度为,点相对于点始终落后,此时乙距离地面的高度为.则甲、乙距离地面的高度差,利用,可得,.当(或),即(或22.8)时,的最大值为.所以,甲、乙两人距离地面的高度差的最大值约为7.2m .18.(17分)【详解】(1)首先,,故,设,则,,由,可知当时,,在区间上单调递增,故,满足;当时,由在区间上单调递增,且,,故存在,使得,且时,,单调递减,此时,,与题设矛盾.综上所述,实数的取值范围.0min t =()0,55P -OP π2-πrad min 15ππ55sin 65152H t ⎛⎫=-+⎪⎝⎭030t ≤≤A B 2ππ4824AOB ∠==min t 1ππ55sin 65152H t ⎛⎫=-+⎪⎝⎭B A πrad 242π13π55sin 651524H t ⎛⎫=-+ ⎪⎝⎭12πππ13πππ13ππ55sin sin 55sin sin 15215241522415h H H t t t t ⎛⎫⎛⎫⎛⎫⎛⎫=-=---=-+- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭sin sin 2sincos22θϕθϕθϕ+-+=πππ110sinsin 481548h t ⎛⎫=- ⎪⎝⎭030t ≤≤πππ15482t -=3π27.8t ≈h π110sin 7.248≈ππ122f a ⎛⎫=≤⎪⎝⎭2πa ≥()sin g x ax x =-0x ∀≥()0g x ≥()cos g x a x =-'1a ≥()0g x '≥()g x []0,+∞()()00g x g ≥=21πa ≤<()g x 'π0,2⎛⎫ ⎪⎝⎭()010g a =-<'π02g a ⎛⎫=> ⎪⎝⎭'0π0,2x ⎛⎫∈ ⎪⎝⎭()00g x '=()00,x x ∈()0g x '<()g x ()()00g x g <=a [)1,+∞(2)由,可知,即故只要证设,,则,在区间上单调递增,即,,故原不等式成立.(3)一方面,由于,故可令,其中,,结合第(2)问的结论,,另一方面,()()()()()cos cos cos f f f f βαβααββαααα-<-⇔-<-π02αβ<<<cos cos βαββ>()()cos cos f f ββαβββ-<-()()cos cos f f βββααα-<-()()cos g x f x x x =-π0,2x ⎛⎫∈ ⎪⎝⎭()()cos cos sin sin 0g x x x x x x x =--=>'()g x π0,2⎛⎫⎪⎝⎭()()g g αβ<()()cos cos f f βββααα-<-01121201n a a a a a a a =<<+<<+++= 012π02n θθθθ=<<<<= 12sin i i a a a θ=+++ 1,2,,i n =1ni =1ni ==111sin sin cos ni i i i θθθ-=--=∑()()1110111cos πcos 2nni i i i i n i i i θθθθθθθθ---==--<=-=-=∑∑1ni =()()1011112nii i i i n a a a a a a a =-+≥++++++++∑1011121nii i i i na a a a a a a =-+=++++++++∑,综上可得,.19.(17分)【详解】(1),;(2)一方面,积有个,另一方面,积有个,故,当中所有元素互素时,等号成立.要使得时,最小,可令中所有元素互素,此时,,解得:,故的最小值为24;(3)考虑集合中所有元素变为原来的相反数时,集合不改变,不妨设中正数个数不少于负数个数.①当中元素均为非负数时,设,于是,,此时,集合中至少有,,,…,,,,…,这18个元素,即;②当中元素至少有一个为负数时,设是中全体元素,且,于是,.由是中的个元素,且非正数;又是中的7个元素,且为正数,故中元素不少于17个,即;另外,当时,满足,11ni i a ===∑1π12i n=≤<{}1,2,3,4,6,9,12,18,36X X ⊗=9X X ⊗=i i x x ⋅n ()i j i j x x x x ⋅≠()21C 2nn n -=()()1122n n n n X X n -+⊗≤+=X 300X X ⊗=X X ()13002n n +=24n =X X X X ⊗X X 12110x x x ≤<<< 1223242113111011x x x x x x x x x x x x <<<<<<< X X ⊗12x x 23x x 24x x 211x x 311x x 411x x 1011x x 18X X ⊗≥X 11120l l k z z z y y y -<<<<<<< …X ()11k l k l +=≥6k ≥1112123k k k l k z y z y z y z y z y z y >>>>>>> X X ⊗110k l +-=23242526364656y y y y y y y y y y y y y y <<<<<<X X ⊗X X ⊗17X X ⊗≥{}2340,1,2,2,2,2X =±±±±±{}23456780,1,2,2,2,2,2,2,2,2X X ⊗=-±±±±±±±-17X X ⊗=故.17X X ⊗≥。

合肥一中 2024 届高三最后一卷数学答案修改

合肥一中 2024 届高三最后一卷数学答案修改

合肥一中2024届高三最后一卷数学参考答案1 2 3 4 5 6 7 D A C D B A C 8 9 10 11 12 1314 C ADBDACD0或11x =或34110x y +−=(5)1.选D【答案解析】2(2,3)(2,6)(4,3),25a b a b −=−−=−−=,选D 2. 选A【答案解析】2131312222i z i z i i −==−=++,,∴选A 3.选C【答案解析】22223,9,927,197x y a a b c a =====−=+=,选C4.选D【答案解析】由3S =14,3a =2,12q ∴=或41,3q a =−∴=23−或1,∴选D 5.选B【答案解析】sin2α= B 6.选A【答案解析】先考虑甲乙不相邻的不同排列方式数,再减去甲站在一端且甲乙不相邻的排列方式数,所以总数为321133423336A A A A A −=种,选A7.选C.【答案解析】如图,2OE FG AE ===,222221323R OE AE ∴=+=+=, 25243S R ππ∴==,故选C. 8.选C【答案解析】如图设00(,)N x y ,则AB l 为00()x xp y y =+且过(0,)M p ,0y p ∴=−且, 又设'2tan pk x β==−,'2k k ∴=− , tan tan tan()1tan tan αβαβαβ−∴−=+, 当且仅当k ==”成立,故选C 9. 选AD【答案解析】30.14.37y ==,A 正确; 21.9610.490.010.250.812.567.081.277s ++++++==≠,B 错误;70.75 5.25×=,所以上四分位数为5.2,C 错误; 0.5 4.30.54 2.3ay x =−=−×=,D 正确; 故选AD 10.选BD【答案解析】1()sin(2)62f x x πω=+− 对于A ,当2ω=时,1()sin(4)62f xx π=+−,51()242f π=−, 0tanx k pα==''2()()1k k k k k k−==−+−≥+524x π∴= 不是()y f x =的一条对称轴,对于B ,由题意知,2T π=,对于C ,11()sin(2())sin(2)662362g x x x ππωππωω=++−=++−, 若()g x 为偶函数,则362k ωππππ+=+,∴,矛盾对于D ,令t =2[,2]666x πππωωπ+∈+,由题意知,2529[,)66ππ∈7[2,)3ω∴∈故选BD11.选ACD 【答案解析】对于A ,由()g x ax ≥得,令,则'2ln 1()x h x x−= ∴ ()y h x =在(0,)e 单调递减,(,)e +∞单调递增,∴min 1()()a h x h e e≤==−对于B ,设切点为00(,)xP x e ,则切线方程为000()xxy e e x x −=−,即000(1)x x y e x e x =+−,又1y ax =−,000(1)1x x e ae x = ∴ −=− ,(1ln )1()a a ∴−=−∗ 2a e = 不满足式,∴B 错,对于C ,易知当1a =时()y f x ax =−和()y g x ax =+有相同最小值1,对于D ,令()()x h x f x x e x =−=−,令()()ln x g x x x x ϕ=+=−,则(),()h x x ϕ的图象大致如下:12ω∴=13k ω=+26πωπ+ln x a x ≤−ln ()x h x x =−()∗的设交点为(,())M m h m ,易知01m <<,由图象知,当直线y a =与曲线()y h x =和曲线()y x ϕ=共有三个不同的交点时,直线y a =必经过点(())M m h m ,,即().a h m =因为()()h m m ϕ=,所以ln m e m m m −=−,即2ln 0m e m m −+=.令()()()h x x a h m ϕ===,得x m ln e x x x e m −=−=−,解得m x m x e ==或.由01m <<得1m m e <<.所以当直线y a =与曲线()y h x =和()y x ϕ=共有三个不同的交点时, 从左到右的三个交点的横坐标依次为ln m ,m ,m e .因为2+ln =0m e m m −,即+ln =2m e m m ,所以ln m ,m ,m e 成等差数列, 故选ACD12.【答案解析】{0,1,2}A =,{,1}B a a =+,由B A ⊆得0a =或1a =13.【答案解析】当斜率不存在时1x =满足题意;当斜率存在时,设直线l :2(1)y k x −=−,由题意知圆心到直线的距离为1得34k =−∴1x =或34110x y +−=14.【答案解析】222222222222222222222222222,2,cos cos ()cos 2cos ()cos ,cos ()(1cos )0,0,cos cos ()cos 2cos ,,2a a b c b c bc A A a b c A bc A b c A b c a Aa abc A b c A Aa b c A bc A b c a b c a a =+=++=++=+++−+−+=+−==+>=+−+>>15.【答案解析】(1)证明:由题,1DD ⊥面1111A B C D ,四边形1111A B C D 为正方形,所以1111111,A C B D A C DD ⊥⊥,而111111,B D DD D B D ∩=⊂面11BDD B ,1DD ⊂面11BDD B ,所以11AC ⊥面11BDD B ,而11AC ⊂面11A BC ,所以平面11BDD B ⊥平面11A BC .…………………………………………………………………………6分(2)设1B 在面11A BC 上的射影点为E ,连接1,EP EB ,11A BC S ∆=, 111111B A BC B A B C V V −−=,即1111222332EB ×=××××,得1EB =设1PB 与平面11A BC 所成的角的大小为θ,则11sin EB PB θ==,所以1PB =,在1BPB ∆中,由余弦定理得,2221112cos4PB BB PB BB PB π=+−××,即224PB =+−,解得PB =.…………………………………………13分16.【答案解析】(1)()0.20.20.20.80.20.80.20.20.104P A =×+××+××=, 所以()0.20.20.820.20.2()23 2.615 2.60.1040.104E X ××××=×+×≈≈.………………7分 (2)设00.2p =,则2112131402000300040005000223400000()[(1)][(1)][(1)][(1)][12(1)3(1)4(1)5(1)]0.048.6160.34464.P A p C p p p C p p p C p p p C p p p p p p p p =+−+−+−+−=+−+−+−+−=×=……………………………………………………………………………………………15分17. 【答案解析】(1)()x af x e −′=,所以00000()0x a x ae f x e x −−−′==−,所以01x =;………………5分(2)即()sin 00x aex x −−≥∀≥,令()sin x a g x e x −=−,若0a ≤,则0,1,()sin 1sin 0,x a x a x a e g x e x x −−−≥≥=−≥−≥合题;…………7分若0,()cos ,x a a g x e x −′>=− 令()(),h x g x ′=则()sin ,x a h x e x −′=+当0x π≤≤时,()0,()h x g x ′′>递增,而2(0)10,()0,2aag e g e ππ−−′′=−<=>所以,存在唯一的0(0,)[0,],2x ππ∈⊆使得000()cos 0,x a g x e x −′=−= 所以,当00x x <<时,()0,()g x g x ′<递减,当0x x π<<时,()0,()g x g x ′>递增,故00000()()sin cos sin 0,x ag x g x ex x x −==−=−≥极小所以00,4x π<≤此时,00ln cos ,x a x −=故00ln cos 4a x x π=−≤−即ln 2042a π<≤+; ……………………………………………………………………………………………11分当x π>时,ln 2142()sin 1110x x ax ag x e x eee π−−−−=−≥−≥−≥−>,因而ln 2042a π<≤+合题; 综上所述,a 的取值范围是求ln 2(,].42π−∞+………………………………………15分 18.【答案解析】(1)由题,222ac a b c b==+=,解得2242a b ==,,所以C 的方程为221.42y x −=…………………………………………………………4分(2)(方法一)设11222(,),(,),:3P x y Q x y PQ y kx =+,代入22142y x −=,化简整理得22432(2)039k x kx −+−=,有222122016324(2)0990k k k x x −≠∆=−−−>>,解得21629k <<, 112:2y AP yx x +=−,令23y =得11836M x x y =+,同理22836N x x y =+, 12121212121221212128864||||36369(2)(2)6464168649(2)(2)99()39x x x x BM BN y y y y x x x x y y k x x k x x =×=++++===+++++,2216||||(2),||||||||,339BO BA BO BA BM BN =×+==所以,,,M N O A 四点共圆.……………………………………………………………………………………12分(2)(方法二)设,OM AN 的倾斜角分别为,αβ.由对称性,不妨设PQ 的斜率0k >,此时,αβ均为锐角,所以,,,M N O A 四点共圆AOM ANM π⇔∠+∠=()2παβπ⇔++=,,(0,)22ππαβαβ⇔+=∈tan tan 1αβ⇔=1OM AN k k ⇔=设11222(,),(,),:3P x y Q x y PQ y kx =+,代入22142y x −=,化简整理得 22432(2)039k x kx −+−=,有222122016324(2)0990k k k x x −≠∆=−−−>>,解得21629k <<, 122329(2)x x k =−−,12243(2)kx x k +=−−, 112:2y AP yx x +=−,令23y =得11836M x x y =+,同理22836N x x y =+, 1124OM y k x +=,222AN AQy k k x +==, 1212121288()()223344OM AN kx kx y y k k x x x x ++++== 2121212864()3914k x x k x x x x +++==, 所以,,,M N O A 四点共圆.……………………………………………………………12分(3)设圆心为T ,则121212121212212121,444882363633382()438643()39T M N T y x x x x x x x y y kx kx kx x x x k k x x k x x =−+==+=+++++++=+++(,1),5(3T k r ∴−=…………………………………………………………17分19.【答案解析】(1)()2312(),()0,(0,1)(1)1f x f x x x x ′′′==>∈−−,所以()f x 在(0,1)上为凸函数.…………………………………………………………………………………………4分(2)(1,2,,)ii x y i n T == 为正数,11111n n n i i i i i i x y x T T ======∑∑∑,即11ni i y ==∑, 由11n i n i i n x x T x T x −==−−∑,得11,11inn i n i x x TT x x T T−==−−∑ 即1111n i ni i n y y y y −==−−∑,所以11111111111111()(1)()(1)111111111n in n n n ii n i i n n i i i n ii i y y y y n f y n f y n y y y n y n n −−−−=−====−−==≥−=−=−−−−−−−−∑∑∑∑∑, 01(1,2,,)i y i n <<= ,所以111111111nn n n n y y n y y y n −−−−≤=−−−−, 即111111n n y y n −≤−−−,所以111111n n y y n −≤−−−.……………………………10分(3)11111nn n n n n n x x y T x T x y y T===−−−−−关于n y 在(0,1)递增, 由(2)解得min ()3)n y n =≥;当2n =时,12n y ≥.所以min 3)n n x n T x=≥−;当2n =时也成立.当3n ≥时,当且仅当12111nn y y y y n −−=====− 时取“=”;当2n =时,当且仅当1212y y ==时取“=”. 所以n n x T x −分。

07年合肥一中自主招生试题数学详解

07年合肥一中自主招生试题数学详解

2007年合肥一中自主招生数学参考答案一、选择题:1.D如图:F 为∠OPN 的角平分线与y 轴的交点 ∵PN ⊥x 轴 ∴PN ∥y 轴 ∴∠NPF=∠OFP ∵∠OPF=∠NPF ∴∠OPF =∠OFP ∴OP=OF=1 ∴F(0,-1) 2、A(7a 2-14a+m )(3b 2-6b-7)=8[7(a 2-2a+1)-7+m][3(b 2-2b+1)-3-7]=8 [7(a-1)2-7+m][3(b-1)2-10]=8 ∵a=1+2∴a-1=2∵b=1-2∴b-1=-2[7(2)2-7+m][3(-2)2-10]=8(7+m)〃(-4)=8 m=-93、(题目可能有错误)将原图形进行变换,使四个半圆成此图形状.由图可知,阴影部分的面积为大圆面积减去小圆面积。

由原图形可知:大圆直径为长方形的宽,即等于b,则大圆的半径为2b 小的直径为长方形的长减去大圆的直径,即a-b ,则小圆半径为2b a -。

阴影部分的面积为:π(2b )2-π(2b a -)2=41π(2ab-a 2)4、C我们不妨把正方形的边长看成5个单位(用字母也可以,只是计算麻烦),把甲的速度看成是每单位时间走1个单位长度,则乙的速度是每单位时间走4个单位长度。

当甲在A 点,乙在C 点时,两者相距10个单位。

这样他们将在离A 点2个单位长度的地方第一次相遇。

接下来他们还要相遇2006次,并且他们每共走一周就相遇一次,即二者每共走20个单位就相遇一次,也就是每4个单位时间就相遇一次,即20÷(1+4)=4,也就是甲每走4个单位就与乙相遇一次,还要相遇2007-1=2006次,则甲还要走4×2006=8024个单位,所以甲从A 点出发要走8024+2=8026个单位长度,才能与乙相遇2007次。

每圈20个单位,8026÷20=401……6也就是甲要走401圈后再走6个单位长度,所以此时甲在CD 上。

5、B第n 次变换后它的边数为3×4n,所以第4次变换后边数为3×44。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

合肥一中自主招生数学试卷(含答案[1]
2011年合肥一中自主招生《科学素养》测试数学试题
(满分:150分)
一、选择题:(本大题共4小题,每小题8分,共32分.在每小题给出的四个选项中,有且只有一项是正确的.)
1.如图一张圆桌旁有四个座位,A,B,C,D 四人随机坐在四个座位上,A 则D 与相邻的概率是( )
2.3A B. 12 C. 14 D. 2
9 2. 小明将一张正方形包装纸,剪成图1所示形状,用它包在一个棱长为10的正方体的表面(不考虑接缝),如图2所示.小明所用正方形包装纸的边长至少为( )
A .40
B .30+22
C .20
2
D .10+102
3.在平面直角坐标系中,第一个正方形ABCD 的位置如图所示,点A 的坐标为(1,0), 点D 的坐标为(1,0),延长CB 交x 轴与A 1,作作第二个正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作第二个正方形 A 2B 2C 2C 1•••,按这样的规律进行下去,第2010个正方形的面积为( )
A. 2009
35()2 B. 2008
95()4 C. 4018
3
5()2
D. 2010
9
5()4
若该县常住居民共24万人,则估计该县常住居民中,利用“五·一”期间出游采集发展信息的人数约为
万人。

6.已知点P(x,y)位于第二象限,并且y ≤x+4,x,y 为整数,符合上述条件的点P 共有 个。

7. 如图,已知菱形OABC,点C 在直线y=x 经过点A ,菱形OABC 的面积是2,若反比例函数的图象经过点B,则此反比例函数表达式为 。

(第7
题)
(第8题)
8.如图,已知梯形ABCD 中,AD ∥BC ,AB ⊥BC,,AD =2,将腰CD 以D 为中心逆时针旋转
90°至DE ,连结AE ,若△ADE 的面积是3,则BC 的长为_ ________.
9.如图,矩形ABCD 中,由8个面积均为1的小正方形组成的L 型模板如图放置,则矩形ABCD 的周长为 。

A
B
C
D E
(第9题)
三、解答题(本大题共有2小题,共68分)
10.(30分)甲车从A 地驶往 C地,在C 停留一段时间后,返回A地,乙车从B地经C地A驶往,两车同时出发,相向而行,同时到达C地,设乙车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系。

(1)A、B两地之间的距离为(km);
甲车的速度km/h; 乙车的速度km/h;
(2)点D的坐标为;请解释图中点D 的实际意义:
(3)在图中补全函数图象;
(4)求出所补的函数图象的关系式。

11.(38分)如图,射线AM平行于射线BN,AB⊥BN 且AB=3,C是射线BN上的一个动点,连接AC,作
AC,过C作CE⊥BN于点E,
CD⊥AC且CD=1
2
设BC长为t。

(1)AC长为,△ACD的面积是(用含有t的代数式表示);
(2)求点D到射线BN的距离(用含有t的代数式表示);
(3)是否存在点C ,使△ACE等腰三角形?若存在,请求出此时BC的长度;若不存在,请说明理由。

2011年合肥一中自主招生《科学素养》测试数学参考答案
1.A
2.C
3.C
4.B
5.1.89
6.点P 为(-1,1),(-1,2),(-1,3),(-1,4),(-2,1),(-2,2),共6个点
7. 12
y +=
8.5 9.10
10.
85
12.(1)960km ;100,60;乙行驶11小时
后被甲追上。

(2)y=40(x —11)=40x —440.
•••
11.(1)AC
长为
29
t CD +=,△ACD 的面积是
29
.4
t +
(2)2t
(3)存在,此时BC 的长度为32
和635+ACE 为等腰三角形。

相关文档
最新文档