《高中数学》必会基础题型5—《平面向量》
高中数学《平面向量》知识点总结
![高中数学《平面向量》知识点总结](https://img.taocdn.com/s3/m/50cd7fff900ef12d2af90242a8956bec0975a500.png)
在直角坐标系内,我们分别取与 轴、 轴方向相同的两个单位向量 、 作为基底 任作一个向量 ,由平面向量基本定理知,有且只有一对实数 、 ,使得 .我们把 叫做向量 的(直角)坐标,记作 ,其中 叫做 在 轴上的坐标, 叫做 在 轴上的坐标.
(2)若 , ,则
一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标
2、两个向量平行的充要条件
向量共线定理:向量 与非零向量 共线的充要条件是:有且只有一个非零实数λ,使 =λ
∥ =
3、两个向量垂直的充要条件
设 , ,则
4、平面内两点间的距离公式
(1)设 ,则 或
(2)如果表示向量 的有向线段的起点和终点的坐标分别为A 、B ,那么 (平面内两点间的距离公式)
5、两向量夹角的余弦( )cos=
9、实数与向量的积:实数λ与向量 的积是一个向量,记作 ,它的长度与方向规定如下:
(Ⅰ) ;(Ⅱ)当 时, 的方向与 的方向相同;当 时, 的方向与 的方向相反;当 时, ,方 向是任意的
10、两个向量的数量积:
已知两个非零向量 与 ,它们的夹角为 ,则 叫做 与 的数量积(或内积) 规定
11、向量的投影
附:三角形的四个“心”
重心:三角形三条中线交点.
外心:三角形三边垂直平分线相交于一点.
内心:三角形三内角的平分线相交于一点.
垂心:三角形三边上的高相交于一点.
非零向量 与 有关系是: 是 方向上的单位向量
注意:(1)结合律不成立: ;
(2)消去律不成立 不能得到
(3) 不能得到 或
乘法公式成立:
6、线段的定比分点公式:设点 分有向线段 所成的比为 ,即 = ,则
高中平面向量知识点详细归纳总结(附带练习)
![高中平面向量知识点详细归纳总结(附带练习)](https://img.taocdn.com/s3/m/3ab31e69783e0912a2162aa2.png)
向量的概念一、高考要求:理解有向线段及向量的有关概念,掌握求向量和与差的三角形法则和平行四边形法则,掌握向量加法的交换律和结合律.二、知识要点:1. 有向线段:具有方向的线段叫做有向线段,在有向线段的终点处画上箭头表示它的方向.以A 为始点,B 为终点的有向线段记作AB ,注意:始点一定要写在前面,已知AB ,线段AB 的长度叫做有向线段AB 的长(或模),AB 的长度记作AB ||.有向线段包含三个要素:始点、方向和长度.2. 向量:具有大小和方向的量叫做向量,只有大小和方向的向量叫做自由向量.在本章中说到向量,如不特别说明,指的都是自由向量.一个向量可用有向线段来表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.用有向线段AB 表示向量时,我们就说向量AB .另外,在印刷时常用黑体小写字母a 、b 、c 、…等表示向量;手写时可写作带箭头的小写字母a 、b 、c 、…等.与向量有关的概念有:(1) 相等向量:同向且等长的有向线段表示同一向量或相等的向量.向量a 和b 同向且等长,即a 和b 相等,记作a =b .(2) 零向量:长度等于零的向量叫做零向量,记作0.零向量的方向不确定.(3) 位置向量:任给一定点O 和向量a ,过点O 作有向线段OA a =,则点A 相对于点O 的位置被向量a 所唯一确定,这时向量a 又常叫做点A 相对于点O 的位置向量.(4) 相反向量:与向量a 等长且方向相反的向量叫做向量a 的相反向量,记作a -.显然,()0a a +-=.(5) 单位向量:长度等于1的向量,叫做单位向量,记作e .与向量a 同方向的单位向量通常记作0a ,容易看出:0a a a =│ │. (6) 共线向量(平行向量):如果表示一些向量的有向线段所在的直线互相平行或重合,即这些向量的方向相同或相反,则称这些向量为共线向量(或平行向量).向量a 平行于向量b ,记作a ∥b .零向量与任一个向量共线(平行).三、典型例题:例:在四边形ABCD 中,如果AB DC =且AB BC =│ │ │ │ ,那么四边形ABCD 是哪种四边形? 四、归纳小结:1. 用位置向量可确定一点相对于另一点的位置,这是用向量研究几何的依据.2. 共线向量(平行向量)可能有下列情况: (1)有一个为零向量;(2)两个都为零向量;(3)方向相同,模相等(即相等向量);(4)方向相同,模不等;(5)方向相反,模相等;(6)方向相反,模不等.五、基础知识训练:(一)选择题:1. 下列命题中: (1)向量只含有大小和方向两个要素. (2)只有大小和方向而无特定的位置的向量叫自由向量. (3)同向且等长的有向线段表示同一向量或相等的向量. (4)点A 相对于点B 的位置向量是BA . 正确的个数是( )A.1个B.2个C.3个D.4个2. 设O 是正△ABC 的中心,则向量,,AO OB OC 是( )A.有相同起点的向量B.平行向量C.模相等的向量D.相等向量3. a b =的充要条件是( )A.a b =│ │ │ │ B.a b =│ │ │ │ 且a b ∥ []l C.a b ∥ D.a b =│ │ │ │ 且a 与b 同向 4. AA BB ''=是四边形ABB A ''是平行四边形的( )A.充分条件B.必要条件C.充要条件D.既非充分又非必要条件5. 依据下列条件,能判断四边形ABCD 是菱形的是( )A.AD BC =B.AD BC ∥且AB CD ∥C.AB DC =且AB AD =│ │ │ │ D.AB DC =且AD BC = 6. 下列关于零向量的说法中,错误的是( )A.零向量没有方向B.零向量的长度为0C.零向量与任一向量平行D.零向量的方向任意7. 设与已知向量a 等长且方向相反的向量为b ,则它们的和向量a b +等于( )A.0B.0C.2aD.2b(二)填空题:8. 下列说法中: (1)AB 与BA 的长度相等 (2)长度不等且方向相反的两个向量不一定共线 (3)两个有共同起点且相等的向量,终点必相同(4)长度相等的两个向量必共线。
《高中数学》必会基础题型5—《平面向量》
![《高中数学》必会基础题型5—《平面向量》](https://img.taocdn.com/s3/m/9b2e928baef8941ea76e059f.png)
《数学》必会基础题型——《平面向量》【基本概念与公式】 【任何时候写向量时都要带箭头】1.向量:既有大小又有方向的量。
记作:AB 或a 。
2.向量的模:向量的大小(或长度),记作:||AB 或||a 。
3.单位向量:长度为1的向量。
若e 是单位向量,则||1e =。
4.零向量:长度为0的向量。
记作:0。
【0方向是任意的,且与任意向量平行】5.平行向量(共线向量):方向相同或相反的向量。
6.相等向量:长度和方向都相同的向量。
7.相反向量:长度相等,方向相反的向量。
AB BA =-。
8.三角形法则:AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数)9.平行四边形法则:以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。
10.共线定理://a b a b λ=⇔。
当0λ>时,a b 与同向;当0λ<时,a b 与反向。
11.基底:任意不共线的两个向量称为一组基底。
12.向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a b a b +=+13.数量积与夹角公式:||||cos a b a b θ⋅=⋅; c o s ||||a b a b θ⋅=⋅ 14.平行与垂直:1221//a b a b x y x y λ⇔=⇔=;121200a b a b x x y y ⊥⇔⋅=⇔+= 题型1.基本概念判断正误:(1)共线向量就是在同一条直线上的向量。
(2)若两个向量不相等,则它们的终点不可能是同一点。
(3)与已知向量共线的单位向量是唯一的。
(4)四边形ABCD 是平行四边形的条件是AB CD =。
(5)若AB CD =,则A 、B 、C 、D 四点构成平行四边形。
(6)因为向量就是有向线段,所以数轴是向量。
(7)若a 与b 共线, b 与c 共线,则a 与c 共线。
(8)若ma mb =,则a b =。
高中数学必修二6.1《平面向量的概念》高频考点练习题目含答案解析
![高中数学必修二6.1《平面向量的概念》高频考点练习题目含答案解析](https://img.taocdn.com/s3/m/bdd9a25726284b73f242336c1eb91a37f011324a.png)
第六章平面向量及其应用6.1 平面向量的概念课后篇巩固提升必备知识基础练1.有下列物理量:①质量;②速度;③力;④加速度;⑤路程;⑥功.其中,不是向量的个数是( )A.1B.2C.3D.4,又有方向,所以它们是向量;而质量、路程和功只有大小,没有方向,所以它们不是向量,故不是向量的个数是3.2.在同一平面上,把向量所在直线平行于某一直线的一切向量的起点放在同一点,那么这些向量的终点所构成的图形是( ) A.一条线段 B.一条直线C.圆上一群孤立的点D.一个半径为1的圆,而向量所在直线平行于同一直线,所以随着向量模的变化,向量的终点构成的是一条直线.3.如图所示,在正三角形ABC 中,P ,Q ,R 分别是AB ,BC ,AC 的中点,则与向量PQ⃗⃗⃗⃗⃗ 相等的向量是( )A.PR ⃗⃗⃗⃗⃗ 与QR ⃗⃗⃗⃗⃗B.AR ⃗⃗⃗⃗⃗ 与RC⃗⃗⃗⃗⃗ C.RA ⃗⃗⃗⃗⃗ 与CR ⃗⃗⃗⃗⃗ D.PA ⃗⃗⃗⃗⃗ 与QR ⃗⃗⃗⃗⃗,方向相同,因此AR ⃗⃗⃗⃗⃗ 与RC ⃗⃗⃗⃗⃗ 都是和PQ ⃗⃗⃗⃗⃗ 相等的向量. 4.若|AB ⃗⃗⃗⃗⃗ |=|AD ⃗⃗⃗⃗⃗ |且BA ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ ,则四边形ABCD 的形状为 ( )A.正方形B.矩形C.菱形D.等腰梯形BA ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ 知,AB=CD 且AB ∥CD ,即四边形ABCD 为平行四边形.又因为|AB ⃗⃗⃗⃗⃗ |=|AD ⃗⃗⃗⃗⃗ |,所以四边形ABCD 为菱形.5.(多选题)(2021福建福清期中)下列说法正确的是( )A.若|AB ⃗⃗⃗⃗⃗ |=|AD ⃗⃗⃗⃗⃗ |且BA ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ ,则四边形ABCD 是菱形B.在平行四边形ABCD 中,一定有AB ⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗C.若a =b ,b =c ,则a =cD.若a ∥b ,b ∥c ,则a ∥cA,由BA ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ ,知AB=CD 且AB ∥CD ,即四边形ABCD 为平行四边形,又因为|AB ⃗⃗⃗⃗⃗ |=|AD ⃗⃗⃗⃗⃗ |,所以四边形ABCD 为菱形,故A 正确;对于B,在平行四边形ABCD 中,对边平行且相等,AB ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ 的方向相同,所以AB ⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ ,故B 正确;对于C,由向量相等的定义知,当a =b ,b =c 时,有a =c ,故C 正确;对于D,当b =0时不成立,故D 错误.故选ABC .6.(多选题)设点O 是正方形ABCD 的中心,则下列结论正确的是( ) A.AO ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ B.BO ⃗⃗⃗⃗⃗ ∥DB⃗⃗⃗⃗⃗⃗ C.AB ⃗⃗⃗⃗⃗ 与CD ⃗⃗⃗⃗⃗ 共线 D.AO ⃗⃗⃗⃗⃗ =BO⃗⃗⃗⃗⃗图,∵AO ⃗⃗⃗⃗⃗ 与OC⃗⃗⃗⃗⃗ 方向相同,长度相等,∴选项A 正确; ∵BO ⃗⃗⃗⃗⃗ 与DB ⃗⃗⃗⃗⃗⃗ 的方向相反, ∴BO ⃗⃗⃗⃗⃗ ∥DB ⃗⃗⃗⃗⃗⃗ ,选项B 正确; ∵AB ∥CD ,∴AB⃗⃗⃗⃗⃗ 与CD ⃗⃗⃗⃗⃗ 共线, ∴选项C 正确; ∵AO ⃗⃗⃗⃗⃗ 与BO ⃗⃗⃗⃗⃗ 方向不同,∴AO ⃗⃗⃗⃗⃗ ≠BO⃗⃗⃗⃗⃗ ,∴选项D 错误. 7.如图,四边形ABCD ,CEFG ,CGHD 都是全等的菱形,HE 与CG 相交于点M ,则下列关系不一定成立的是( )A.|AB ⃗⃗⃗⃗⃗ |=|EF ⃗⃗⃗⃗⃗ |B.AB ⃗⃗⃗⃗⃗ 与FH ⃗⃗⃗⃗⃗ 共线C.BD ⃗⃗⃗⃗⃗⃗ 与EH ⃗⃗⃗⃗⃗⃗ 共线D.DC ⃗⃗⃗⃗⃗ 与EC⃗⃗⃗⃗⃗ 共线,直线BD 与EH 不一定平行,因此BD ⃗⃗⃗⃗⃗⃗ 不一定与EH ⃗⃗⃗⃗⃗⃗ 共线,C 项错误. 8.如图所示,4×3的矩形(每个小方格的边长均为1),在起点和终点都在小方格的顶点处的向量中,试问: (1)与AB⃗⃗⃗⃗⃗ 相等的向量共有几个? (2)与AB⃗⃗⃗⃗⃗ 平行且模为√2的向量共有几个? (3)与AB⃗⃗⃗⃗⃗ 方向相同且模为3√2的向量共有几个?与向量AB⃗⃗⃗⃗⃗ 相等的向量共有5个(不包括AB ⃗⃗⃗⃗⃗ 本身). (2)与向量AB⃗⃗⃗⃗⃗ 平行且模为√2的向量共有24个. (3)与向量AB⃗⃗⃗⃗⃗ 方向相同且模为3√2的向量共有2个. 关键能力提升练9.已知a 为单位向量,下列说法正确的是( ) A.a 的长度为一个单位长度 B.a 与0不平行C.与a 共线的单位向量只有一个(不包括a 本身)D.a 与0不是平行向量已知a 为单位向量,∴a 的长度为一个单位长度,故A 正确;a 与0平行,故B 错误;与a 共线的单位向量有无数个,故C 错误;零向量与任何向量都是平行向量,故D 错误. 10.(多选题)如图,在菱形ABCD 中,∠DAB=120°,则以下说法正确的是( )A.与AB⃗⃗⃗⃗⃗ 相等的向量只有一个(不包括AB ⃗⃗⃗⃗⃗ 本身) B.与AB⃗⃗⃗⃗⃗ 的模相等的向量有9个(不包括AB ⃗⃗⃗⃗⃗ 本身) C.BD ⃗⃗⃗⃗⃗⃗ 的模为DA ⃗⃗⃗⃗⃗ 模的√3倍 D.CB ⃗⃗⃗⃗⃗ 与DA ⃗⃗⃗⃗⃗ 不共线项,由相等向量的定义知,与AB⃗⃗⃗⃗⃗ 相等的向量只有DC ⃗⃗⃗⃗⃗ ,故A 正确;B 项,因为AB=BC=CD=DA=AC ,所以与AB ⃗⃗⃗⃗⃗ 的模相等的向量除AB ⃗⃗⃗⃗⃗ 外有9个,故B 正确;C 项,在Rt △ADO 中,∠DAO=60°,则DO=√32DA ,所以BD=√3DA ,故C 正确;D 项,因为四边形ABCD 是菱形,所以CB ⃗⃗⃗⃗⃗ 与DA ⃗⃗⃗⃗⃗ 共线,故D 错误.11.给出下列四个条件:①a =b ;②|a |=|b |;③a 与b 方向相反;④|a |=0或|b |=0.其中能使a ∥b 成立的条件是 .(填序号)a =b ,则a 与b 大小相等且方向相同,所以a ∥b ;若|a |=|b |,则a 与b 的大小相等,而方向不确定,因此不一定有a ∥b ;方向相同或相反的向量都是平行向量,因此若a 与b 方向相反,则有a ∥b ;零向量与任意向量平行,所以若|a |=0或|b |=0,则a ∥b .12.如图,四边形ABCD 和ABDE 都是边长为1的菱形,已知下列说法: ①AE ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ ,CB ⃗⃗⃗⃗⃗ ,DE ⃗⃗⃗⃗⃗ 都是单位向量; ②AB ⃗⃗⃗⃗⃗ ∥DE ⃗⃗⃗⃗⃗ ,DE ⃗⃗⃗⃗⃗ ∥DC ⃗⃗⃗⃗⃗ ; ③与AB⃗⃗⃗⃗⃗ 相等的向量有3个(不包括AB ⃗⃗⃗⃗⃗ 本身); ④与AE ⃗⃗⃗⃗⃗ 共线的向量有3个(不包括AE⃗⃗⃗⃗⃗ 本身); ⑤与向量DC⃗⃗⃗⃗⃗ 大小相等、方向相反的向量为DE ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ ,BA ⃗⃗⃗⃗⃗ . 其中正确的是 .(填序号)由两菱形的边长都为1,故①正确;②正确;③与AB ⃗⃗⃗⃗⃗ 相等的向量是ED ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,故③错误;④与AE ⃗⃗⃗⃗⃗ 共线的向量是EA ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ ,DB⃗⃗⃗⃗⃗⃗ ,故④正确;⑤正确.13.已知在四边形ABCD 中,AB⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ ,且|AB ⃗⃗⃗⃗⃗ |=|AC ⃗⃗⃗⃗⃗ |,tan D=√3,判断四边形ABCD 的形状.在四边形ABCD 中,AB⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ , ∴AB DC ,∴四边形ABCD 是平行四边形. ∵tan D=√3,∴∠B=∠D=60°.又|AB⃗⃗⃗⃗⃗ |=|AC ⃗⃗⃗⃗⃗ |,∴△ABC 是等边三角形. ∴AB=BC ,故四边形ABCD 是菱形.学科素养创新练14.如图所示的方格纸由若干个边长为1的小正方形组成,方格纸中有两个定点A ,B ,点C 为小正方形的顶点,且|AC⃗⃗⃗⃗⃗ |=√5.(1)画出所有的向量AC⃗⃗⃗⃗⃗ ;⃗⃗⃗⃗⃗ |的最大值与最小值.(2)求|BC⃗⃗⃗⃗⃗ 如图所示.(2)由(1)所画的图知,⃗⃗⃗⃗⃗ |取得最小值√12+22=√5;①当点C位于点C1或C2时,|BC⃗⃗⃗⃗⃗ |取得最大值√42+52=√41.②当点C位于点C5或C6时,|BC⃗⃗⃗⃗⃗ |的最大值为√41,最小值为√5.∴|BC。
平面向量知识点及常考题型
![平面向量知识点及常考题型](https://img.taocdn.com/s3/m/356b609148649b6648d7c1c708a1284ac9500561.png)
平面向量知识点及常考题型1. 引言在数学中,平面向量是向量的一种,它具有大小和方向。
它在几何学、物理学和工程学等领域中非常重要。
本文将介绍平面向量的基本概念、运算法则以及一些常见的考题类型。
2. 平面向量的定义平面向量是由一个起点和一个终点确定的有向线段。
我们通常用字母加箭头表示向量,例如AB→表示从点A指向点B的向量。
向量的长度被称为模,用||AB→|| 表示。
3. 平面向量的表示平面向量可以使用坐标表示,也可以使用分量表示。
设点A的坐标为(x1, y1),点B的坐标为 (x2, y2),那么向量AB→的坐标表示为 (x2-x1, y2-y1)。
向量的分量表示为[AB→ = (x2-x1, y2-y1)]。
4. 平面向量的运算法则平面向量的运算包括加法、减法和数量乘法。
4.1. 加法设向量AB→的坐标表示为 (x1, y1),向量CD→的坐标表示为 (x2, y2),那么向量AB→加上向量CD→的结果为 (x1+x2, y1+y2)。
4.2. 减法设向量EF→的坐标表示为 (x1, y1),向量GH→的坐标表示为 (x2, y2),那么向量EF→减去向量GH→的结果为 (x1-x2, y1-y2)。
4.3. 数量乘法设向量PQ→的坐标表示为 (x, y),实数k为一个常数,那么向量PQ→乘以k的结果为 (kx, ky)。
5. 平面向量的常考题型在考试中,常见的平面向量题型包括平面向量的加法、减法、数量乘法,以及向量的模、共线和垂直等性质。
5.1. 题型一:向量的加法和减法考题示例:已知向量AB→的坐标为 (3, 2),向量CD→的坐标为 (1, 4),求向量AB→加上向量CD→的结果和向量AB→减去向量CD→的结果。
解析:根据加法和减法的运算法则,将向量的坐标相应相加或相减即可得到结果。
向量AB→加上向量CD→的结果为 (3+1, 2+4) = (4, 6);向量AB→减去向量CD→的结果为 (3-1, 2-4) = (2, -2)。
(完整word版)高一数学必修四平面向量知识与题型归类
![(完整word版)高一数学必修四平面向量知识与题型归类](https://img.taocdn.com/s3/m/b1bc39906294dd88d0d26bee.png)
高一数学必修四《平面向量》基础知识与题型归类(1)一.向量有关概念:1、向量的概念:既有大小又有方向的量,2、零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向不确定;3、①单位向量:长度为一个单位长度的向量叫做单位向量;②a 的单位向量:与a 同方向且长度等于1的向量,记作0a u u r 并且0aa a =ru u r r ;③与a 共线的单位向量:与a 方向相同或相反且长度等于1的向量,可表示为aa±r r 。
4、相等向量:长度相等且方向相同的两个向量叫相等向量;5、平行向量(也叫共线向量):向量的基线平行或重合,称为向量共线或平行,记作:a ∥b ; 即共线的向量方向相同或相反;规定:零向量和任意向量平行。
6、相反向量:长度相等方向相反的向量叫做相反向量。
a 的相反向量是-a 。
二.向量的表示方法:1.几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后; 2.符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,j 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+=r r r,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。
如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。
三.向量的运算: 1.几何运算:(1)向量加法运算:①三角形法则的特点:首尾相连. ②平行四边形法则的特点:共起点.(2)向量的减法:三角形法则的特点:共起点,方向指向被减向量2、向量的数乘运算:实数λ与向量a 的积是一个向量,记作λa ,它的长度和方向规定如下:①,a a λλ=r r②当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反,当λ=0时,0a λ=r r,3、向量的坐标运算:设1122(,),(,)a x y b x y ==r r,则: ①向量的加减法运算:12(a b x x ±=±r r,12)y y ±。
高考平面向量题型归纳总结
![高考平面向量题型归纳总结](https://img.taocdn.com/s3/m/0d5b0440e97101f69e3143323968011ca300f737.png)
高考平面向量题型归纳总结在高考数学考试中,平面向量是一个常见的考点,也是学生普遍认为较为困难的部分之一。
平面向量题型包括向量的加减、数量积、向量方向等。
本文将对高考平面向量题型进行归纳总结,帮助学生更好地掌握此类题型。
一、向量的加减1. 向量的加法向量的加法满足交换律和结合律,即a + b = b + a,(a + b) + c = a + (b + c)。
在解题过程中,可以利用向量的平移性质,将向量平移至同一起点,再连接终点得到新的向量。
2. 向量的减法向量的减法可以转化为加法进行处理,即a - b = a + (-b)。
其中,-b表示b的反向量,即方向相反的向量,模长相等。
二、数量积数量积又称为内积或点积,记作a·b。
1. 定义对于两个向量a(x₁, y₁)和b(x₂, y₂),它们的数量积a·b = x₁x₂ +y₁y₂。
另外,数量积还可以表示为向量模长和夹角的乘积,即a·b =|a| · |b| · cosθ,其中θ为a与b的夹角。
2. 性质(1) 交换律:a·b = b·a(2) 分配律:a·(b + c) = a·b + a·c(3) 结合律:k(a·b) = (ka)·b = a·(kb),其中k为实数(4) 若a·b = 0,则a与b垂直或其中一个为零向量(5) 若a·b > 0,则夹角θ为锐角;若a·b < 0,则夹角θ为钝角。
三、向量方向向量的方向可以用两种方式来表示:1. 向量的方向角:向量a(x, y)的方向角为与x轴正方向之间的夹角α,其中-π < α ≤ π。
2. 方向余弦:向量a(x, y)的方向余弦为与x轴的夹角的余弦值cosα,与y轴的夹角的余弦值cosβ。
在解决平面向量题型时,可以利用这两种方式来确定向量的方向。
05-第三节 平面向量基本定理及坐标表示-课时1 平面向量基本定理高中数学必修第二册人教版
![05-第三节 平面向量基本定理及坐标表示-课时1 平面向量基本定理高中数学必修第二册人教版](https://img.taocdn.com/s3/m/0509506878563c1ec5da50e2524de518974bd344.png)
1
,与相交于点.
3
(1)用和分别表示和;
【解析】 = + = −
因为 =
1
,所以
3
1
+ .
2
= + = − +
1
.
3
(2)若 = + = + ,求实数 和 的值.
【解析】 = + = + (− +
= + = + (− +
1
)
3
,
3
=
1
)
2
3
1− =
=
由平面向量基本定理,得൞
解得൞
= 1 − ,
=
2
= (1 − ) +
+ (1 − ).
4
,
5
3
.
5
,
2
第三节 平面向量基本定理及坐标
表示
课时1 平面向量基本定理
过能力 学科关键能力构建
2
的中点,为线段上一点,且满足
=
2
A.
3
7
9
+ ,则实数 =( A )
1
B.
3
1
C.−
3
2
D.−
3
【解析】 由题意,得 =
1
,
3
=
1
,且存在实数
2
使得
.
= + (1 − ) = ( + ) + (1 − )( + ) = ( +
4
1
1
高中数学竞赛试题汇编五《平面向量》
![高中数学竞赛试题汇编五《平面向量》](https://img.taocdn.com/s3/m/3f827d0aeff9aef8941e06c4.png)
高中数学竞赛试题汇编五《平面向量》1. 在ABC ∆中,BC BA CB CA ⋅=⋅ ,则ABC ∆是A.等腰三角形B.直角三角形C.等腰直角三角形D.以上均不对答案:1.利用cos cos c B b C =,2.利用()0BC AB AC ⋅+= ,选A 2. 在直角坐标系xoy 中,已知三点(,1),(2,),(3,4)A a B b C ,若向量,OA OB 在OC 上的投影相同,则34a b -=答案:方法1:OA OC OB OC ⋅=⋅ ,方法2:AB OC ⊥ ,342a b -=3. 设,a b 是非零向量,且2a = ,22a b += ,则a b b ++ 的最大值是答案: 22,利用几何意义.【2012湖南】已知()()375a b a b +⊥- ,且()()472a b a b -⊥- ,则a b 与的夹角是 答案:22=2a b a b =⋅ ,3a b π= ,.4. 在ABC ∆中,点O 为BC 的中点,过点O的直线分别交直线AB 、AC 于不同的两 点M 、N ,若AB mAM = ,AC nAN = ,则m n +的值为答案:()1222m n AO AB AC AM AN =+=+ ,MON 三点共线. 2m n +=. 5. 在ABC ∆中3,5,6AB BC CA ===,则AB BC BC CA CA AB ⋅+⋅+⋅= 答案:余弦定理,35-.6. 在ABC ∆中,若321AB BC BC CA CA AB ⋅⋅⋅== ,则tan A = 答案:余弦定理得,222::5:3:4a b c =,1cos 23A =,tan 11A = A B CM O N7. 已知O 是ABC ∆的外接圆,8,6AC AB ==,则AO BC ⋅=答案:14AO BC ⋅=8. 已知ABC ∆的外接圆圆心P 满足()25AP AB AC =+ ,则cos BAC ∠= 答案:1cos 4BAC ∠= 9. 在△ABC 中,AB=BC=2,CA=3.①求AB AC ⋅ ;②设△ABC 的内心为O ,求满足AO=pAB+qAC 的实数p 、q 的值.10. 在ABC ∆中,AB 与BC 的夹角为150°,2AC = ,则AB 的取值范围是 答案:sin sin 30AB ACC = ,4sin AB C = ,0°<C<150°,(0,4]AB ∈ .11. P 是ABC ∆所在平面内的一点,满足PA PB PC BC --= ,则ABP ABCS S ∆∆= 答案:共起点,2PA PC = ,2:112. 已知O 是ABC ∆内一点,且432AO AB BC CA =++ ,则ABC OBCS S ∆∆= 答案:共起点,2,AD AO D shi BC dezhongdian = ,213. O 是ABC ∆内一点,且1134AO AB AC =+ ,则OAB OBC S S ∆∆= 答案:共起点,5430OA OB OC ++= ,5OA OA '= ,4OB OB '= ,3OC OC '= ,则0OA OB OC '''++= ,O 是A B C '''∆的重心,所以OA B OB C OC A S S S ''''''∆∆∆==, 120OAB OA B S OA OB S OA OB ∆''∆=⋅='',112OBC OB C S OC OB S OC OB ∆''∆=⋅='',35OAB OBC S S ∆∆=.。
高中数学平面向量知识点总结及常见题型
![高中数学平面向量知识点总结及常见题型](https://img.taocdn.com/s3/m/d33a998268dc5022aaea998fcc22bcd126ff42a3.png)
高中数学平面向量知识点总结及常见题型平面向量一、向量的基本概念与基本运算1.向量的概念:向量是既有大小又有方向的量。
向量一般用a、b、c等字母来表示,或用有向线段的起点与终点的大写字母表示,如:AB(几何表示法)或a(坐标表示法)。
向量的大小即向量的模(长度),记作|AB|或|a|。
向量不能比较大小,但向量的模可以比较大小。
②零向量:长度为0的向量,记为0,其方向是任意的,与任意向量平行。
③单位向量:模为1个单位长度的向量。
向量a为单位向量|a|=1.④平行向量(共线向量):方向相同或相反的非零向量。
任意一组平行向量都可以移到同一直线上。
方向相同或相反的向量,称为平行向量,记作a∥b。
由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。
⑤相等向量:长度相等且方向相同的向量。
相等向量经过平移后总可以重合,记为a b。
大小相等,方向相同(x1,y1)(x2,y2)x1x2,y1y2.2.向量加法求两个向量和的运算叫做向量的加法。
设AB a,BC b,则a+b=AB BC=AC。
1)0+a=a;(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。
2)三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点。
当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则。
向量加法的三角形法则可推广至多个向量相加:AB BC CD…+PQ QR AR,但这时必须“首尾相连”。
3.向量的减法①相反向量:与a长度相等、方向相反的向量,叫做a的相反向量,记作a。
零向量的相反向量仍是零向量。
关于相反向量有:(i)(a)=a;(ii) a+(a)=(a)+a=0.iii) 若向量a、b互为相反向量,则a=-b,b=-a,a+b=0.向量减法:向量a加上b的相反向量叫做a与b的差,记作a-b=a+(-b),求两个向量差的运算,叫做向量的减法。
高中数学平面向量知识及注意事项
![高中数学平面向量知识及注意事项](https://img.taocdn.com/s3/m/5344b50e763231126edb1195.png)
高中数学平面向量知识及注意事项一、向量基础知识1、实数与向量的积的运算律:设λ、μ为实数,那么(1)结合律:λ(μa )=(λμ) a ;(2)第一分配律:(λ+μ) a =λa +μa ;(3)第二分配律:λ(a +b)=λa +λb .2、向量的数量积的运算律:(1) a ·b = b ·a(交换律);注:c b a c b a )()(∙≠∙(2)(λa )·b = λ(a ·b )=λa ·b = a ·(λb );(3)(a +b )·c = a ·c +b ·c .3、平面向量基本定理:如果1e 、2e是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a =λ11e +λ22e .不共线的向量1e 、2e 叫做表示这一平面内所有向量的一组基底.4、投影:向量b 在向量a方向上的投影为|b |cos θ。
5、a 与b 的数量积(或内积):a ·b =|a ||b |cos θ.6、a ·b 的几何意义:数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b |cos θ的乘积.7、平面向量的坐标运算:(1)设a =11(,)x y ,b =22(,)x y ,则a +b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a -b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa =(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212x x y y +.8、两向量的夹角公式:121222221122cos x x y y x y x y θ+=+⋅+(a=11(,)x y ,b =22(,)x y ).9、向量的模与平面两点间的距离公式:|a |22x y =+,A B d =||AB AB AB =⋅ 222121()()x x y y =-+-(A 11(,)x y ,B 22(,)x y ).10、两个非零向量的共线与垂直的充要条件:设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a ∥b ⇔b =λa12210x y x y ⇔-=.a ⊥b (a ≠0 )⇔a ·b=012120x x y y ⇔+=.11、三角形的重心坐标公式:△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC的重心的坐标是123123(,)33x x x y y y G ++++.G G GC 0A B++= 二、向量中需要注意的问题1、向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.2、几个概念:零向量、单位向量(与AB 共线的单位向量是||ABAB ± ,平行(共线)向量(无传递性,是因为有0 )、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(a 在b上的投影是cos ,a ba ab b⋅=<>=∈R).3、两非零向量....共线的充要条件://a b a b λ⇔= cos ,1a b ⇔<>=± 12210x y x y ⇔-=. 两个非零向量....垂直的充要条件:0||||a b a b a b a b ⊥⇔⋅=⇔+=- 12120x x y y ⇔+=. 特别:零向量和任何向量共线和垂直. b a λ=是向量平行的充分不必要条件!4、三点A B C 、、共线⇔ AB AC 、共线;向量 PA PB PC、、中三终点A B C 、、共线⇔存在实数αβ、使得:PA PB PC αβ=+且1αβ+=.5、向量的数量积:22||()a a a a ==⋅ ,1212||||cos a b a b x x y y θ⋅==+,121222221122cos ||||x x y y a b a b x y x y θ+⋅==++ ,12122222||cos ,||x x y y a b a b a a b b x y +⋅=<>==+在上的投影. 注意:,a b <> 为锐角⇔0a b ⋅> 且 a b 、不同向;,a b <>为直角⇔0a b ⋅= 且 0a b ≠ 、; ,a b <> 为钝角⇔0a b ⋅< 且 a b 、不反向,0a b ⋅< 是,a b <> 为钝角的必要非充分条件.6、一个重要的不等式:||||||||||||a b a b a b -≤±≤+注意: a b 、同向或有0⇔||||||a b a b +=+ ≥||||||||a b a b -=- ; a b 、反向或有0 ⇔||||||a b a b -=+ ≥||||||||a b a b -=+; a b、不共线⇔||||||||||||a b a b a b -<±<+ .(这些和实数集中类似)7、中点坐标公式1212,22x x y y x y ++==,122MP MP MP P +=⇔为12PP 的中点.。
2025届高中数学一轮复习课件《平面向量基本定理及坐标表示》ppt
![2025届高中数学一轮复习课件《平面向量基本定理及坐标表示》ppt](https://img.taocdn.com/s3/m/b3c1b6714531b90d6c85ec3a87c24028905f856a.png)
)
高考一轮总复习•数学
第10页
2.已知平面向量 a=(1,1),b=(1,-1),则向量12a-32b=( )
A.(-2,-1) B.(-2,1)
C.(-1,0)
D.(-1,2)
解析:因为 a=(1,1),b=(1,-1),所以12a-32b=12(1,1)-32(1,-1)=12,12-32,-32 =(-1,2).
∴54<k<32.即 k 的取值范围为54,32.
高考一轮总复习•数学
第23页
题型
平面向量的坐标运算
典例 2(1)已知 A(-2,5),B(10,-3),点 P 在直线 AB 上,且 P→A =-13P→B ,则点 P 的
由线性关系,转化到坐标运算.
坐标是( )
A.(-8,9)
B.(1,3)
C.(-1,-3) D.(8,-9)
高考一轮总复习•数学
第3页
01 理清教材 强基固本 02 重难题型 全线突破 03 限时跟踪检测
高考一轮总复习•数学
第4页
理清教材 强基固本
高考一轮总复习•数学
第5页
一 平面向量基本定理 如果 e1,e2 是同一平面内的两个不共线向量,那么对这一平面内的任一向量 a,有且只 有一对实数 λ1,λ2,使 a=λ1e1+λ2e2,若 e1,e2 不共线,我们把{e1,e2}叫做表示这一平面内 所有向量的一个基底.若 e1,e2 互相垂直,则称这个基底为正交基底;若 e1,e2 分别为与 x 轴、y 轴方向相同的两个单位向量,则称这个基底为单位正交基底.
高考一轮总复习•数学
第22页
解析:如图,分别取 BD,AE 的中点 G,N,连接 GN 交 EF 于 H,
含解析高中数学《平面向量》专题训练30题(精)
![含解析高中数学《平面向量》专题训练30题(精)](https://img.taocdn.com/s3/m/f1202b245b8102d276a20029bd64783e09127d0f.png)
含解析高中数学《平面向量》专题训练30题(精)含解析高中数学《平面向量》专题训练30题(精)1.已知向量.(1)若,求x的值;(2)记,求函数y=f(x)的最大值和最小值及对应的x的值.【答案】(1)(2)时,取到最大值3;时,取到最小值.【解析】【分析】(1)根据,利用向量平行的充要条件建立等式,即可求x的值.(2)根据求解求函数y=f(x)解析式,化简,结合三角函数的性质即可求解最大值和最小值及对应的x的值.【详解】解:(1)∵向量.由,可得:,即,∵x∈[0,π]∴.(2)由∵x∈[0,π],∴∴当时,即x=0时f(x)max=3;当,即时.【点睛】本题主要考查向量的坐标运用以及三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.2.已知中,点在线段上,且,延长到,使.设.(1)用表示向量;(2)若向量与共线,求的值.【答案】(1),;(2)【解析】【分析】(1)由向量的线性运算,即可得出结果;(2)先由(1)得,再由与共线,设,列出方程组求解即可.【详解】解:(1)为BC的中点,,可得,而(2)由(1)得,与共线,设即,根据平面向量基本定理,得解之得,.【点睛】本题主要考查向量的线性运算,以及平面向量的基本定理,熟记定理即可,属于常考题型.3.(1)已知平面向量、,其中,若,且,求向量的坐标表示;(2)已知平面向量、满足,,与的夹角为,且(+)(),求的值.【答案】(1)或;(2)【解析】【分析】(1)设,根据题意可得出关于实数、的方程组,可求得这两个未知数的值,由此可得出平面向量的坐标;(2)利用向量数量积为零表示向量垂直,化简并代入求值,可解得的值.【详解】(1)设,由,可得,由题意可得,解得或.因此,或;(2),化简得,即,解得4.已知向量,向量.(1)求向量的坐标;(2)当为何值时,向量与向量共线.【答案】(1)(2)【解析】【详解】试题分析:(1)根据向量坐标运算公式计算;(2)求出的坐标,根据向量共线与坐标的关系列方程解出k;试题解析:(1)(2),∵与共线,∴∴5.已知向量与的夹角,且,.(1)求,;(2)求与的夹角的余弦值.【答案】(1),;(2).【解析】【分析】(1)利用平面向量数量积的定义可计算得出的值,利用平面向量数量积的运算性质计算得出的值;(2)计算出的值,利用平面向量夹角的余弦公式可求得与的夹角的余弦值.【详解】(1)由已知,得,;(2)设与的夹角为,则,因此,与的夹角的余弦值为.6.设向量,,记(1)求函数的单调递减区间;(2)求函数在上的值域.【答案】(1);(2).【解析】【详解】分析:(1)利用向量的数量积的坐标运算式,求得函数解析式,利用整体角的思维求得对应的函数的单调减区间;(2)结合题中所给的自变量的取值范围,求得整体角的取值范围,结合三角函数的性质求得结果.详解:(1)依题意,得.由,解得故函数的单调递减区间是.(2)由(1)知,当时,得,所以,所以,所以在上的值域为.点睛:该题考查的是有关向量的数量积的坐标运算式,三角函数的单调区间,三角函数在给定区间上的值域问题,在解题的过程中一是需要正确使用公式,二是用到整体角思维.7.在中,内角,,的对边分别是,,,已知,点是的中点.(Ⅰ)求的值;(Ⅱ)若,求中线的最大值.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(1)由正弦定理,已知条件等式化边为角,结合两角和的正弦公式,可求解;(2)根据余弦定理求出边的不等量关系,再用余弦定理把用表示,即可求解;或用向量关系把用表示,转化为求的最值.【详解】(Ⅰ)由已知及正弦定理得.又,且,∴,即.(Ⅱ)方法一:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴在和中,由余弦定理得,,①.②由①②,得,当且仅当时,取最大值.方法二:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴,两边平方得,∴,当且仅当时,取最大值.【点睛】本题考查正弦定理、余弦定理在三角形中应用,考查基本不等式和向量的模长公式的灵活运用,是一道综合题.8.已知平面向量,.(1)若,求的值;(2)若,与共线,求实数m的值.【答案】(1);(2)4.【解析】(1)求出,即可由坐标计算出模;(2)求出,再由共线列出式子即可计算.【详解】(1),所以;(2),因为与共线,所以,解得m=4.9.已知向量.(Ⅰ)若,求的值;(Ⅱ)若,求向量与夹角的大小.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)首先求出的坐标,再根据,可得,即可求出,再根据向量模的坐标表示计算可得;(Ⅱ)首先求出的坐标,再根据计算可得;【详解】解:(Ⅰ)因为,所以,由,可得,即,解得,即,所以;(Ⅱ)依题意,可得,即,所以,因为,所以与的夹角大小是.10.如图,在中,,,,,.(1)求的长;(2)求的值.【答案】(1);(2).【解析】(1)将用和表示,利用平面向量数量积的运算律和定义计算出的值,即可得出的长;(2)将利用和表示,然后利用平面向量数量积的运算律和定义计算出的值.【详解】(1),,,,,,.;(2),,,.【点睛】本题考查平面向量模与数量积的计算,解题的关键就是选择合适的基底将题中所涉及的向量表示出来,考查计算能力,属于中等题.11.如图所示,在中,,,,分别为线段,上一点,且,,和相交于点.(1)用向量,表示;(2)假设,用向量,表示并求出的值.【答案】(1);(2),.【解析】【分析】(1)把放在中,利用向量加法的三角形法则即可;(2)把,作为基底,表示出,利用求出.【详解】解:由题意得,,所以,(1)因为,,所以.(2)由(1)知,而而因为与不共线,由平面向量基本定理得解得所以,即为所求.【点睛】在几何图形中进行向量运算:(1)构造向量加、减法的三角形法则和平行四边形法则;(2)树立“基底”意识,利用基向量进行线性运算.12.已知向量与的夹角为,且,.(1)若与共线,求k;(2)求,;(3)求与的夹角的余弦值【答案】(1);(2),;(3).【解析】【分析】(1)利用向量共线定理即可求解.(2)利用向量数量积的定义:可得数量积,再将平方可求模.(3)利用向量数量积即可夹角余弦值.【详解】(1)若与共线,则存在,使得即,又因为向量与不共线,所以,解得,所以.(2),,(3).13.已知.(1)当为何值时,与共线(2)当为何值时,与垂直?(3)当为何值时,与的夹角为锐角?【答案】(1);(2);(3)且.【解析】【分析】(1)利用向量共线的坐标表示:即可求解.(2)利用向量垂直的坐标表示:即可求解.(3)利用向量数量积的坐标表示,只需且不共线即可求解.【详解】解:(1).与平行,,解得.(2)与垂直,,即,(3)由题意可得且不共线,解得且.14.如图,在菱形ABCD中,,.(1)若,求的值;(2)若,,求.(3)若菱形ABCD的边长为6,求的取值范围.【答案】(1);(2);(3).【解析】【分析】(1)由向量线性运算即可求得值;(2)先化,再结合(1)中关系即可求解;(3)由于,,即可得,根据余弦值范围即可求得结果.【详解】解:(1)因为,,所以,所以,,故.(2)∵,∴∵ABCD为菱形∴∴,即.(3)因为,所以∴的取值范围:.【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算;(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.15.已知,,与夹角是.(1)求的值及的值;(2)当为何值时,?【答案】(1);(2)【解析】【分析】(1)利用数量积定义及其向量的运算性质,即可求解;(2)由于,可得,利用向量的数量积的运算公式,即可求解.【详解】(1)由向量的数量积的运算公式,可得,.(2)因为,所以,整理得,解得.即当值时,.【点睛】本题主要考查了数量积定义及其运算性质、向量垂直与数量积的关系,其中解答中熟记向量的数量积的运算公式,以及向量垂直的坐标运算是解答的关键,着重考查了推理能力与计算能力,属于中档题.16.设向量(I)若(II)设函数【答案】(I)(II)【解析】【详解】(1)由=(sinx)2+(sinx)2=4sin2x,=(cosx)2+(sinx)2=1,及,得4sin2x=1.又x∈,从而sinx=,所以x=.(2)sinx·cosx+sin2x=sin2x-cos2x+=sin+,当x∈时,-≤2x-≤π,∴当2x-=时,即x=时,sin取最大值 1.所以f(x)的最大值为.17.化简.(1).(2).【答案】(1);(2).【解析】(1)利用平面向量加法的三角形法则化简可得所求代数式的结果;(2)利用平面向量加法的三角形法则化简可得所求代数式的结果.【详解】(1);(2).18.已知点,,,是原点.(1)若点三点共线,求与满足的关系式;(2)若的面积等于3,且,求向量.【答案】(1)(2)或【解析】【分析】(1)由题意结合三点共线的充分必要条件确定m,n满足的关系式即可;(2)由题意首先求得n的值,然后求解m的值即可确定向量的坐标.【详解】(1),,由点A,B,C三点共线,知∥,所以,即;(2)由△AOC的面积是3,得,,由,得,所以,即,当时,,?解得或,当时,,方程没有实数根,所以或.【点睛】本题主要考查三点共线的充分必要条件,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.19.如图,在直角梯形中,为上靠近B的三等分点,交于为线段上的一个动点.(1)用和表示;(2)求;(3)设,求的取值范围.【答案】(1);(2)3;(3).【解析】【分析】(1)根据给定条件及几何图形,利用平面向量的线性运算求解而得;(2)选定一组基向量,将由这一组基向量的唯一表示出而得解;(3)由动点P设出,结合平面向量基本定理,建立为x的函数求解.【详解】(1)依题意,,,;(2)因交于D,由(1)知,由共起点的三向量终点共线的充要条件知,,则,,;(3)由已知,因P是线段BC上动点,则令,,又不共线,则有,,在上递增,所以,故的取值范围是.【点睛】由不共线的两个向量为一组基底,用该基底把相关条件和结论表示成向量的形式,再通过向量的运算来解决.20.设向量满足,且.(1)求与的夹角;(2)求的大小.【答案】(1);(2)【解析】【分析】(1)由已知得,展开求得,结合夹角公式即可求解;(2)由化简即可求解.【详解】(1)设与的夹角为θ由已知得,即,因此,得,于是,故θ=,即与的夹角为;(2)由.21.已知,,(t∈R),O是坐标原点.(1)若点A,B,M三点共线,求t的值;(2)当t取何值时,取到最小值?并求出最小值.【答案】(1)t;(2)当t时,?的最小值为.【解析】【分析】(1)求出向量的坐标,由三点共线知与共线,即可求解t的值.(2)运用坐标求数量积,转化为函数求最值.【详解】(1),,∵A,B,M三点共线,∴与共线,即,∴,解得:t.(2),,,∴当t时,?取得最小值.【点睛】关键点点睛:(1)由三点共线,则由它们中任意两点构成的向量都共线,求参数值.(2)利用向量的数量积的坐标公式得到关于参数的函数,即可求最值及对应参数值.22.设向量,,.(1)求;(2)若,,求的值;(3)若,,,求证:A,,三点共线.【答案】(1) 1(2)2(3)证明见解析【解析】【分析】(1)先求,进而求;(2)列出方程组,求出,进而求出;(3)求出,从而得到,得到结果.(1),;(2),所以,解得:,所以;(3)因为,所以,所以A,,三点共线.23.在平面直角坐标系中,已知,.(Ⅰ)若,求实数的值;(Ⅱ)若,求实数的值.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)求出向量和的坐标,然后利用共线向量的坐标表示得出关于的方程,解出即可;(Ⅱ)由得出,利用向量数量积的坐标运算可得出关于实数的方程,解出即可.【详解】(Ⅰ),,,,,,解得;(Ⅱ),,,解得.【点睛】本题考查平面向量的坐标运算,考查利用共线向量和向量垂直求参数,考查计算能力,属于基础题.24.在中,,,,点,在边上且,.(1)若,求的长;(2)若,求的值.【答案】(1);(2).【解析】【分析】(1)先设,,根据题意,求出,,再由向量模的计算公式,即可得出结果;(2)先由题意,得到,,再由向量数量积的运算法则,以及题中条件,得到,即可求出结果.【详解】(1)设,,则,,因此,所以,,(2)因为,所以,同理可得,,所以,∴,即,同除以可得,.【点睛】本题主要考查用向量的方法求线段长,考查由向量数量积求参数,熟记平面向量基本定理,以及向量数量积的运算法则即可,属于常考题型.25.已知向量,,,且.(1)求,;(2)求与的夹角及与的夹角.【答案】(1),;(2),.【解析】【分析】(1)由、,结合平面向量数量积的运算即可得解;(2)记与的夹角为,与的夹角为,由平面向量数量积的定义可得、,即可得解.【详解】(1)因为向量,,,且,所以,所以,又,所以;(2)记与的夹角为,与的夹角为,则,所以.,所以.【点睛】本题考查了平面向量数量积的运算与应用,考查了运算求解能力,属于基础题.26.平面内给定三个向量,,.(1)求满足的实数,;(2)若,求实数的值.【答案】(1),;(2).【解析】【分析】(1)依题意求出的坐标,再根据向量相等得到方程组,解得即可;(2)首先求出与的坐标,再根据向量共线的坐标表示计算可得;【详解】解:(1)因为,,,且,,,,.,解得,.(2),,,.,,,.,解得.27.如图,已知中,为的中点,,交于点,设,.(1)用分别表示向量,;(2)若,求实数t的值.【答案】(1),;(2).【解析】(1)根据向量线性运算,结合线段关系,即可用分别表示向量,;(2)用分别表示向量,,由平面向量共线基本定理,即可求得t的值.【详解】(1)由题意,为的中点,,可得,,.∵,∴,∴(2)∵,∴∵,,共线,由平面向量共线基本定理可知满足,解得.【点睛】本题考查了平面向量的线性运算,平面向量共线基本定理的应用,属于基础题.28.已知,向量,.(1)若向量与平行,求k的值;(2)若向量与的夹角为钝角,求k的取值范围【答案】(1)或;(2).【解析】(1)利用向量平行的坐标表示列式计算即得结果;(2)利用,且不共线,列式计算即得结果.【详解】解:(1)依题意,,,又,得,即解得或;(2)与的夹角为钝角,则,即,即,解得或.由(1)知,当时,与平行,舍去,所以.【点睛】思路点睛:两向量夹角为锐角(或钝角)的等价条件:(1)两向量夹角为锐角,等价于,且不共线;(2)两向量夹角为钝角,等价于,且不共线.29.已知.(1)若,求的值;(2)若,求向量在向量方向上的投影.【答案】(1)(2)【解析】【分析】(1)先得到,根据可得,即可求出m;(2)根据求出m=2,再根据求在向量方向上的投影.【详解】;;;;;;;在向量方向上的投影为.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题.30.平面内给定三个向量.(1)求;(2)求满足的实数m和n;(3)若,求实数k.【答案】(1)6;(2);(3).【解析】(1)利用向量加法的坐标运算得到,再求模长即可;(2)先写的坐标,再根据使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可.【详解】解:(1)由,得,;(2),,,,故,解得;(3),,,,,,即,解得.【点睛】结论点睛:若,则等价于;等价于.试卷第1页,共3页试卷第1页,共3页。
高中数学基础知识大筛查(5)-平面向量
![高中数学基础知识大筛查(5)-平面向量](https://img.taocdn.com/s3/m/ecd6b7353968011ca30091ea.png)
基础知识大筛查-平面向量概念与定理1、有关概念(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。
向量常用有向线段来表示 (2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的;(3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB共线的单位向量是||AB AB ±); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;(5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行。
提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0 );④三点A B C 、、共线⇔ AB AC、共线;(6)相反向量:长度相等方向相反的向量叫做相反向量。
的相反向量是-。
2.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。
3、实数与向量的积:实数λ与向量的积是一个向量,记作λ,它的长度和方向规定如下:()()1,2a a λλ= 当λ>0时,λ的方向与的方向相同,当λ<0时,λ的方向与的方向相反,当λ=0时,0a λ=,注意:λ≠0。
4、平面向量的数量积:(1)两个向量的夹角:对于非零向量a ,b ,作,OA a OB b ==,AOB θ∠=()0θπ≤≤称为向量,的夹角,当θ=0时,,同向,当θ=π时,,反向,当θ=2π时,,垂直。
(2)平面向量的数量积:如果两个非零向量,,它们的夹角为θ,我们把数量||||cos a b θ叫做与的数量积(或内积或点积),记作:a ∙b ,即a ∙b =cos a b θ。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。
《平面向量》优秀说课稿(通用3篇)
![《平面向量》优秀说课稿(通用3篇)](https://img.taocdn.com/s3/m/814e39820129bd64783e0912a216147917117eed.png)
《平面向量》优秀说课稿(通用3篇)作为一位不辞辛劳的人民教师,就不得不需要编写说课稿,通过说课稿可以很好地改正讲课缺点。
那么什么样的说课稿才是好的呢?下面是小编为大家整理的《平面向量》优秀说课稿(通用3篇),希望对大家有所帮助。
《平面向量》说课稿1一、说教材平面向量的数量积是两向量之间的乘法,而平面向量的坐标表示把向量之间的运算转化为数之间的运算。
本节内容是在平面向量的坐标表示以及平面向量的数量积及其运算律的基础上,介绍了平面向量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。
为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。
本节内容也是全章重要内容之一。
二、说学习目标和要求通过本节的学习,要让学生掌握(1):平面向量数量积的坐标表示。
(2):平面两点间的距离公式。
(3):向量垂直的坐标表示的充要条件。
以及它们的一些简单应用,以上三点也是本节课的重点,本节课的难点是向量垂直的坐标表示的充要条件以及它的灵活应用。
三、说教法在教学过程中,我主要采用了以下几种教学方法:(1)启发式教学法因为本节课重点的坐标表示公式的推导相对比较容易,所以这节课我准备让学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论:如模的计算公式,平面两点间的距离公式,向量垂直的坐标表示的充要条件。
(2)讲解式教学法主要是讲清概念,解除学生在概念理解上的疑惑感;例题讲解时,演示解题过程!主要辅助教学的手段(powerpoint)(3)讨论式教学法主要是通过学生之间的相互交流来加深对较难问题的理解,提高学生的自学能力和发现、分析、解决问题以及创新能力。
四、说学法学生是课堂的主体,一切教学活动都要围绕学生展开,借以诱发学生的学习兴趣,增强课堂上和学生的交流,从而达到及时发现问题,解决问题的目的。
通过精讲多练,充分调动学生自主学习的积极性。
如让学生自己动手推导两个向量数量积的坐标公式,引导学生推导4个重要的结论!并在具体的问题中,让学生建立方程的思想,更好的解决问题!五、说教学过程这节课我准备这样进行:首先提出问题:要算出两个非零向量的数量积,我们需要知道哪些量?继续提出问题:假如知道两个非零向量的坐标,是不是可以用这两个向量的坐标来表示这两个向量的数量积呢?引导学生自己推导平面向量数量积的坐标表示公式,在此公式基础上还可以引导学生得到以下几个重要结论:(1)模的计算公式(2)平面两点间的距离公式。
高中数学平面向量专题复习(知识要点+六大考试题型详解)
![高中数学平面向量专题复习(知识要点+六大考试题型详解)](https://img.taocdn.com/s3/m/41f7dbc2767f5acfa0c7cd6b.png)
平面向量六大题型知识点:1.向量的有关概念(1)定义:即有大小,又有方向的量叫做向量. (2)表示:a AB(,)OA x y =2121(,)AB x x y y =--(3)向量的长度(模):a 或AB 的模记作||a 或||AB . (4)几种特殊向量: 定义备注0,方向任意||aa 即为单位向量记为ab ∥,规定0与任意向量共线a b =,相等一定平行,平行不一定相等a b =-,AB BA =-2.向量的运算 运算几何表示字母表示坐标表示加法a b AB BC AC +=+=三角形法则 类比“位移之和”首尾相连,首位连11(,)a x y =,22(,)b x y = 1212(,)a b x x y y +=++a b AB AD AC +=+= 平行四边形法则 类比“力的合成” 共起点,对角线减法a b AB AC CB -=-= 共起点,后指前11(,)a x y =,22(,)b x y = 1212(,)a b x x y y -=--数乘长度变为||λ倍0λ>,方向相同0λ<,方向相反 0λ=,0a λ=11(,)a x y =12(,)a x x λλλ=数量积||||cos a b a b θ⋅=11(,)a x y =,22(,)b x y =1212a b x x y y ⋅=+3.其他概念(1)平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ,2λ,使1122a e e λλ=+,我们把不共线的向量1e ,2e 叫做表示这一平面内所有向量的一组基底.(2)投影:||cos (||cos )a b θθ叫做向量a 在b 方向上(b 在a 方向上)的投影.常用投影计算公式:||cos ||||||a b a a a b θ⋅==||a bb ⋅. (3)向量不等式:||||||||||||a b a b a b -≤±≤+(等号在向量a ,b 共线时取得).4.重要结论ABC 中,的中点ABC 的重心(1)PC PA PB λλ=+-1()2AD AB AC =+GB GC ++5.常用性质设向量a 与b 夹角为θ,11(,)a x y =,22(,)b x y =.a b λ= ||||cos 0a b a b θ⋅==12a b x x ⋅=+2||a a = 21||a x y =+cos ||||a ba b θ⋅=122211cos x x x yθ+=+重要考试题型:题型一:向量概念1给出如下命题: ①若||||a b =,则a b =;②若A ,B ,C ,D 是不共线的四点,则AB DC =是四边形ABCD 为平行四边形的充要条件; ③若a b =,b c =,则a c =; ④a b =的充要条件是||||a b =且a b ∥; ⑤若a b ∥,b c ∥,则a c ∥. 其中正确的命题的序号是______.解析:①两向量模相等,方向不一定相同,所以a b =不正确;②AB DC =说明AB 和DC 两条边即平行又相等,可以推出四边形为平行四边形,反之也成立,是充要条件,正确;③两个向量相等说明它们大小相等,方向相同,故满足此条件的都是相等向量,正确; ④两向量模相等,且平行,不能说明它们方向相同,故错误;⑤若0b =,根据0与任意向量平行的性质,则a b ∥且b c ∥,但a 与c 之间不一定平行,不排除0时,向量之间没有平行的传递性,故错误;主要考察向量定义,表示、以及特殊向量,属于基础题型,需要注意的是: (1)向量二要素(大小、方向)(2)加模后变为实数,去掉了方向的要素,可以比较大小 (3)0与任意向量共线(没有平行传递性) (4)共线向量方向相同或相反 (5)相反向量长度相等AD BC =;AB DC =且||||AB AD =.AD BC =说明AD 和BC 两条边相等且平行,所以为平行四边形;AB DC =说明AB 和DC 相等且平行,为平行四边形,|||AB AD =说明两临边相等,为菱形.答案:(1)平行四边形 (2给出如下命题:①向量AB 的长度与向量BA 的长度相等;a 与b 平行,则a 与b 的方向相同或相反;③两个有公共起点而且相等的向量,其终点必相同;④两个公共终点的向量,一定是共线向量;AB 与向量CD 是共线向量,则点其中正确的命题个数是( B .2 C .3AB 和BA 长度相等,方向相反,正确;②当为零向量时,不满足条件,错误;③起点相同,长度和方向也相同,终点一定相同,正确;④终点相同,起点未必相同,不一定是共线向量,错误;⑤共线向量即平行向量,它们的起点和终点不一定在同一直线上,错误;答案:C题型二:向量四则运算1如图:正六边形ABCDEF 中,BA CD EF ++=( ) A .0 B .BE C .AD D .CF解析:由于BA DE =,故BA CD EF CD DE EF CF ++=++=. 答案:D2根如图所示,已知正六边形ABCDEF ,O 是它的中心,若BA =a ,BC =b ,试用a ,b 将向量OE ,BF ,BD ,FD 表示出来.解析:OE BO a b ==+;2BF BA AF BA BO a b =+=+=+;2BD BC CD BC BO a b =+=+=+;FD AC BC BA b a ==-=-.答案: a b +,2a b +,2a b +,b a -3AB AC BC --=( )A .2BCB .0C .2BC -D .2AC主要考察向量的加法、减法、数乘、数量积四种运算法则,包含纯字母运算、纯坐标运算、字母结合图形运算、坐标结合图形运算等形式,属于基础题型,需要注意: (1)向量没有位置概念,相等向量的有向线段等价 (2)熟练掌握加减法的口诀,可以直接计算的就不必画图 (3)注意数形结合思想的运用,加减法的对角线性质 (4)字母运算和坐标运算自成一体,也可相互转化AC AB BD CD --+=( A .0 B .DA BC AB 0AC AB BD CD BC BD CD DC CD --+=-+=+=. A OA OC OB CO --+-=_____.解析:原式等于 ()()OB OA CO CO AB -+-=. AB如图,D ,E ,F 分别是ABC 的边AB ,BC ,CA 的中点,则( ) A .0AD BE CF ++= B .0BD CF DF -+= C .0AD CE CF +-= D .0BD BE FC --=AD FE =,BE EC =,则0AD BE CF FE EC CF ++=++=,A 正确.A在ABCD 中,BC CD BA -+=( ) A .BC B .AD C .AB D .AC在平行四边形中,BA 和CD 是相反向,则0CD BA -+=,故0BC BC +=.答案:A8若O 是ABC 所在平面内一点,且满足||2|OB OC OB OC OA -=+-,则的形状为_______.2()()OB OC OA OB OA OC OA AB AC +-=-+-=+,ABC为直角三角(2,4)a=,(1,1)b=-,则a b-=()B.(5,9).(3,7)D(4,8)(1,1)(5,7)a b-=--=.已知四边形ABCD2BC AD=,则顶点D的坐标为((,AD x=2(24)(4,3)BC AD x y==-=,即72y=.(1,3)a=-,(2,4)b=-,若表示向量a,32b a-,c的有向线段首尾相接能构成三角形,则向量c为(1)-.(1,1)-4,6)D.(4,6)-(,)c x y=,能构成三角432230a b a c a b c+-+=++=,即2,4)(,6)(6,12)(4,6)(0,0)x y x y-+-+--++=,即40x-+=,,解得4x=,(2,3)BA=(4,7)CA=BC=(2,4)-B.(3,4)C.(6,10)(4,7)AC=--,(2,3)(4,BC BA AC=+=+-ABC 中,|5BC =,|8CA =,BC CA ⋅.解析:设BC 和CA 的夹角为θ,则120θ=︒,因为||5BC =,|8CA =,则||||cos 58cos120BC CA BC CA θ⋅==⨯答案:20-14已知a ,b 为单位向量,其夹角为)a b b -⋅=( ) A .1- B D .2 221)22||||cos60||2102a b b a b b a b b -⋅=⋅-=︒-=⨯-=.已知两个单位向量a ,b 夹角为60︒,(1)c ta t b =+-,若0b c ⋅=,则2(1)cos6010b c ta b t b t t ⋅=⋅+-=︒+-=,解得2t =. 2设(1,2)a =-,(3,4)b =-,(3,2)c =,则(2)a b c +⋅=( ) A .(15,12)- B .0 C . D .11- 2(1,2)2(3,4)5,6)a b +=-+-=-,(2)(5,6)(3,2)a b c +⋅=-⋅C已知两个单位向量1e ,2e 的夹角为3π,若向量1122b e e =-,21234b e e =+,则12b b ⋅=______.2212121211221(2)(34)32832862b b e e e e e e e e ⋅=-⋅+=-⋅-=-⨯-=-. 6-题型三:平面向量基本定理1在ABCD 中,AB a =,AD b =,3AN NC =,M 为BC 的中点,则MN =_____.解析:33()44AN AC a b ==+,1122AM AB BM AB AD a b =+=+=+, 所以1144MN AN AM a b =-=-+.答案:1144a b -+2如图,在平行四边形ABCD 中,M ,N 分别为DC ,BC 的中点,已知AM c =,AN d =,试用c ,d 表示AB ,AD .解析:设AB a =,AD b =,则1212c AM AD DM b a d AN AB BN a b⎧==+=+⎪⎪⎨⎪==+=+⎪⎩,解得2(2)32(2)3a d c b c d ⎧=-⎪⎪⎨⎪=-⎪⎩,所以4233AB d c =-,4233AD c d =-. 答案:4233AB d c =-,4233AD c d =-主要考察用两个不共线向量表示一个向量,即12a e e λμ=+,大部分是围绕求基底的系数出题,属简单题型,但考查方式较为灵活,需要注意:(1)有些目标向量用已知基底不太好构造,可以用相对熟悉的基底(例如平行四边形的临边)来表示已知基底,再用熟悉的基底来表示目标向量(2)有些题目会用到几何图形比例问题,注意观察图形中的三角形相似 (3)在求一些长度问题时,可能会用到解三角形内容在梯形ABCD 中,AB CD ∥,2AB CD =,M ,N 分别为CD ,BC 的中点,若AB AM AN λμ=+,则λμ+=______.2AB AN NB AN CN AN CA AN AN CM MA =+=+=++=++=14AN AB AM --,所以8455AB AN AM =-,即45λ=-,85μ=,故λ+答案:454在ABC 中,AB c =,AC b =,若点D 满足2BD DC =,则AD =( A .2133b c + B .5233c b - C .13b c - D .1233b c + 22221()()()33333AD AB BD AB BC AB AC AB c b c b c =+=+=+-=+-=+.答案:A在平行四边形ABCD 中,AC 与DB 相交于点O ,E 是线段OD 的中点,AE 延长线与CD 交于F ,若AC a =,BD b =,则AF =( ) A .1142a b + B .2133a b +C .1124a b + D .1233a b +AD AB aAD AB b+=-=,解得1()2AD a b =+,1()2AB a b =-,EDFEBA ,DE 13=,故11121()()23233AF AD DF a b a b a b =+=++⨯-=+.B如图,平面内有三个向量OA ,OB ,OC ,OA 与OB 夹角为120︒,OA 与OC 夹角为30︒,且||||1OA OB ==,||23OC =,若OC OA OB λμ=+,则λμ+的值为_____.解析:作平行四边形ODCE ,则OC OD OE OA OB λμ=+=+,4cos30OCOD ==︒,2tan30OCOE ==︒,即4λ=,2μ=,6λμ+=. 答案:6(1,1)a =,(1,1)b =-,(4,2)c =,则c =( )a b + B .3a b - C .3a b + D .3a b +(,)(,)(,)(4,2)c a b λμλλμμλμλμ=+=+-=-+=,所以4λμ-=,λ+3,1μ=-,则3c a b =-.如图:向量a b -=( ) A .1224e e -- B .1242e e -- C .123e e - D .123e e -+解析:由图可知12()3a b a b e e -=+-=-+. 答案:D向量a b c ++可表示为( ) A .1232e e - B .1233e e -- C .1232e e + D .1223e e +解析:a b c ++在图上画出来,可知1232a b c e e ++=+.答案:C10向量a ,b ,c 在正方形网格中的位置如图所示,若c a b λμ=+,则λμ=______. 解析:如图所示建立平面直角坐标系,可得(1,1)a =--,(6,2)b =,(1,3)c =--,则(,)(6,2)c a b λμλλμμ=+=-+=(6,2)(1,3)μλλμ-+=--,解得2λ=-,12μ=-,则4λμ=. 答案:4题型四:共线、中点、重心问题1设1e ,2e 是不共线向量,若向量1235a e e =+与向量123b me e =-共线,则m 的值等于( )A .95-B .53-C .35-D .59-解析,a 与b 共线,则满足b a λ=,即12123(35)me e e e λ-=+,则335m λλ=⎧⎨-=⎩,解得95m =-.答案:A主要考察一些常用结论,即本学案知识点第4点的内容,属中下难度题型,再强调一下:(1)(0)a b a b b λ⇔=≠∥,1221x y x y =(2)(1),,PC PA PB A B C λλ=+-⇔三点共线,P A 和PB 系数和为0(3)D 为BC 中点,1()2AD AB AC =+,即平行四边形对角线的一半(4)G 为ABC 重心,0GA GB GC ++=a b λ+与(2)b a --共线((2))a b b a λμ+=--,即2a b a b λμμ+=-,12μλμ=⎧⎨=-⎩,解得λ答案:D3已知(1,0)a =,(2,1)b =,ka b -与2a b +共线;(23AB a b =+,BC a mb =+,且A 三点共线,求m 的值.1)(,0)(2,1)(2,1)ka b k k -=-=--2(1,0)(4,2)(5,2)a b +=+=,两者共线,2)(1)5=-⨯,解得12k =-.,B ,C 三点共线,则AB BC λ=,即23()a b a mb λ+=+,则23=⎧⎨=⎩32m = (2,2),(,0)B a ,(0,)C b (0)ab ≠共线,则1a b(AB a =-(2,AC =-AB AC ∥,2)(2)=-⨯,化简得2ab a -,得1112a b +=BC ,已知点(A -AB DC =,设D (8,8)AB =(8DC =-0=,2y =-,故.答案:(0,6已知向量a ,b ,且2AB a b =+,56BC a b =-+,72CD a b =-,则一定共线的三点是( )363AD AB BC CD a b AB =++=+=,所以AD AB ∥,A ,AABC 中,12AM AC =,29AD mAB AC =+,则m =______.12(1)(1)29AD AB AM AB AC mAB AC λλλλ=+-=+-=+,则12,则59m λ==.59设D ,E ,F 分别为ABC 的三边BC ,CA ,AB ,的中点,则EB FC +=( )A .ADB .12ADC .BC D .12BC 11()()()22EB FC BE CF BA BC CA CB AB AC AD +=-+=-+++=+=.A已知O 是ABC 所在平面内一点,D 为BC 边中点,且20OA OB OC ++=,那么( )AO OD = 2AO OD = 3AO OD = D .2AO OD =是中点,则有2OB OC OD +=,原式变为220OA OD +=,即OA OD =-,故AO OD =.答案:A10设M 是ABC 所在平面上的一点,且33022MB MA MC ++=,D 是AC 中点,则||||MD BM 的值为( A .13 B .12D .23)232MA MC MD MD BM +=⋅==,即MD 与BM 共线,则||13||MD BM =.ABC 和点M满足0MA MB MC ++=,若存在实数m 使得AB AC mAM +=成立,则m =_____.解析:由0MA MB MC ++=可知M 为ABC 的重心,则2211[()]()3323AM AD AB AC AB AC ==+=+,即3AB AC AM +=,则3m =. 答案:312如图,在ABC 中,点O 是B C 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB mAM =,AC nAN =,则m n +的值为______.1()222m n AO AB AC AM AN =+=+,因为,O ,N 三点共线,m n2n =. 2在ABC 中,已知D 是AB 边上的一点,2AD DB =,13CD CA CB λ=+,则λ ) .23 3D .23- 解析:因为A ,D ,13CD CA CB λ=+,则113λ+=,23λ=.三点在同一条直线l 上,O 为直线l 外一点,0pOA qOB rOC ++= ,0pOA qOB rOC ++=变形得q rOA OB OC p p=--,因,B ,C 三点共线,则有0=,化简得p q r ++=答案:015已知点G 是ABC 的重心,点P 是GBC 内一点,若AP AB AC λμ=+,则λμ+的取值范围是( )A .1(,1)2 B .2(,1)3 C .3(1,)2D .(1,2)解析:P 是GBC 内一点,则1λμ+<,当且仅当P 在线段BC 上时,λμ+最大等于1,当P 和G 重合时,λμ+最小,此时1()3AP AG AB AC ==+,即23λμ+=,故213λμ<+<. 答案:B 16在ABC 中,2AB =,3AC =,D 是边B C 的中点,则AD BC ⋅=______.解析:1()2AD AB AC =+,BC AC AB =-,则221()2AD BC AC AB ⋅=-15(94)22=-=.答案:52题型五:面积比问题1在ABC 所在平面内有一点P ,如果2PA PC AB PB +=-,那么PBC 与ABC 的面积之比是( ) A .34 B .12 C .13D .23 主要考察用向量性质来研究三角形的关系,掌握了原理后较为简单,大体有3种形式:(1)高相同,底不同,向量线性计算得出底的比例关系(2)高不同,底相同,高的比转换为相似三角形的比,再转化为向量基底的长度比 (3)三角形店内一点与三个顶点的连线把三角形分成三个小三角,它们的面积比问题,把题目给出的向量前面的系数标到对应线段上,与每一个线段所对的三角形面积比就是它们的系数比解析:2PA PC AB PB +=-化简可得3PC AP =,即P 在AC 上,两个三角形高相等,则34S PBC PC S ABC AC ==.答案:A如图,设P ,Q 为ABC 内的两点,且2155AP AB AC =+,2134AQ AB AC =+,则ABP 与ABQ 的面积之比为______.解析:如图作辅助线,EF ,GH 分别为两个三角形的高,15AE AC =,14AG AC =,则45S ABP EF AE S ABQ GH AG ===.答案:45已知O 是正三角形ABC 内部一点,230OA OB OC ++=,则OAC 与OAB 的面23 D .13解析:画图,把向量前面的系数标到对应线段上,与每一个线段所对的三角形面积比就是它们的系数比,则OAC 与OAB 的面积比为2:3. 答案:BABC 内一点且满足320PA PB PC ++=,则PBC ,PAC ,PAB 的面积比为( )4:3:2 2:3:4 C .1:1:1 D .3:4:6 解析:画图,把向量前面的系数标到对应线段上,与每一个线段所对的三角形面积比就是它们的系数比,则面积比为4:3:2. 答案:A题型六:垂直、求模、求角、投影问题1已知向量(,3)a k =,(1,4)b =,(2,1)c =,且(23)a b c -⊥,则k =( ) A .92- B .0 C .3 D .152解析:23(2,6)(3,12)(23,6)a b k k -=-=--,由题意知(23)0a b c -⋅=,则(23,6)(2,1)2(23)60k k --⋅=--=,解得3k =.答案:C2设向量a ,b 满足||10a b +=,||6a b -=,则a b ⋅=( ) A .1 B .2 C .3 D .5解析:由||10a b +=两边平方得22210a b a b ++⋅=,由||6a b -=两边平方得2226a b a b +-⋅=,两式相减得1a b ⋅=.答案:A 3已知向量a ,b 满足(2)()6a b a b +⋅-=-,且||1a =,||2b =,则a 与b 的夹角为主要考察数量积的性质,即本学案知识点第5点的内容,利用数量积的字母公式或坐标公式进行带入计算,由于是本章最后一节,题目融合程度可以比较高,需要记住一些常见题型和结论,大量的练习,高考出题大部分是考察这里,题目难度较低,但也可以出一些中等难度题型,需要注意的是:(1)两个向量的夹角一定要看准,向量的夹角不是线段的夹角,是方向的夹角 (2)0a b a b ⊥⇔⋅=,此乃五星级考点(3)求模公式2||a a =和2211||a x y =+一定要熟练运用,给你带模的条件很多时候都需要平方后再使用(4)求角公式就是数量积公式反过来用 (5)投影有简化公式||a bb ⋅,考察方式比较多样,涉及数量积最值的投影问题,通常需要作图来看,数形结合22222)()21226a b a b a b a b a b +⋅-=-+⋅=-⨯+⋅=-,解1a b ⋅=,11cos 122||||a b a b ⋅==⨯,3πθ=.答案:3π4已知点1,1)-,(1,2)B AB 在CD 方向上的投影为(2,1)AB =(5,5)CD = ,||52CD =10510||||552AB CD AB CD ⋅+==⨯ ,投影为3103|cos 510AB θ⨯=322如图,在平行四边形ABCD 中,AP BD ⊥,垂足为P ,且3AP =,则AP AC ⋅=_____.22||||cos AP AC AP AO AP AO ⋅=⋅=∠Rt APO 中,|cos ||AO PAC AP ∠=,所以22||218AP AC AP ⋅==⨯.答案:186在平行四边形ABCD 中,1AD =,60BAD ∠=为CD 的中点,1AC BE ⋅=,则AB 的长为_____.AB a =,AD b =,AC a b =+,12BE b a=-,222111111()()||||11222222AC BE a b b a a b a b a a ⋅=+⋅-=⋅-+=⨯-+=,解得||0()a =舍去或1||2=a .答案:127已知1e ,2e 是夹角为2π的两个单位向量,122a e e =-,12b ke e =+,若a ⋅则实数k 的值为______a ,b 不共线,且|||a b =,则下列结论中正确的是(a b +与a b -垂直 B .a b +与a b -共线 a b +与a 垂直 D .a b +与a 共线|||a b =可得22||||a b =,即2222||||()()0a b a b a b a b -=-=+⋅-=,A 项很明显都不正确.答案:A 设向量a ,b 满足||||1a b ==,12a b ⋅=-,则|2|a b +=( ) B .3 C .5 D .72222|(2)441423a b a b a b a b +=+=++⋅=+-=.B若(1,3)OA =-,||||OA OB =,0OA OB ⋅=,则||AB =______解析:设||(,)OB x y =,由两个条件可知2221330x y x y ⎧+=+⎪⎨-=⎪⎩,解得(3,1)(3,OB =-或,则(2,4)2)AB OB OA =-=-或,22||=AB 答案:2511设向量a ,b 满足||10a b +=,||6a b -=,则a b ⋅=( )A .B .2C .3D .5解析:条件中两式分别平方得22210a a b b +⋅+=,2226a a b b -⋅+=,两式相减得4a b ⋅=,1a b ⋅=.答案:Aa b ∥ a b ⊥ |||a b = a b a b +=-解析:法一:根据向量加法和减法法则,||a b +和||a b -分别代表以a ,b 为临边的平行四边形的对角线长度,两对角线长度一样,说明四边形为矩形.故有a b ⊥;可得222222a a b b a a b b +⋅+=-⋅+,即40a b ⋅=,则a b ⊥.(2,4)a =,(1,2)b =-,若()c a a b b =-⋅,则||c =_____. ()(2,4)(28)(1,2)(8,8)c a a b b =-⋅=--+-=-,22||8(8)82c =+-=.82(,1)a x =,(1,)b y =,(2,4)c =-a c ⊥,b c ∥,则||a b +=( A .5 B .10 .25 D .10a c ⊥,则240a c x ⋅=-=,得2x =,bc ∥,则42y -=,(2,1)(1,2)(3,1)a b +=+-=-,故|9110a b +=+=.答案:B15已知(1,1)m λ=+,(2,2)n λ=+,若()()m n m n +⊥-,则λA .4- .3- C .2- D .1-(2m n λ+=+(1,m n -=--()()(2m n m n λ+⋅-=-.B单位向量1e 与2e 的夹角为α,且13=,向量1232a e e =-与123b e e =-的夹,则cos β=_____1212(32)(3)8a b e e e e ⋅=-⋅-=,212|(32)3a e e =-=,212||(3)8b e e =-=,8||||38a b a b ⋅==2 已知向量a ,b 满足(2)()6a b a b +⋅-=-,|1a =,||2b =,则a 与b 的夹角为222)()2186a b a b a b a b a b +⋅-=-+⋅=-+⋅=-,所以1a b ⋅=,故11122||||a b a b ⋅==⨯,60θ=︒. 60︒若向量(1,2)a =,(1,1)b =-,则a b +与a b -的夹角等于(A .4π- B .6π 4π D .34π (3,3)a b +=,(0,3)a b -=,)()9a b a b +⋅-=,|2|32a b +=,922||||323a b a b ⋅===⨯,夹角为4π.设向量a ,b 夹角为θ(3,3)a =,(1,1)b a -=-(,)b x y =,2(23,23)(1,1)b a x y -=---,得(1,2)b =,9a b ⋅=,||32a =,|5b =,9310cos 10||||325a b a b θ⋅===⨯. 答案:31010已知i ,j 为互相垂直的单位向量,2a i j =+,i j +,且a 与a b λ+的夹角为锐角,则实数λ5(,0)(0,)3-+∞ 3 C .5[,0)(0,)3-+∞ D .5(,0)3- 由题意知(1,2)a =,(1,1)b =,(1,2)a b λλλ+=++,夹角为锐角,即cos 0θ>|||||sin a b a b θ⨯=,a 与b 的夹角,若(3,a =--(1,3)b =|a b ⨯=( )A .3B .23C .2D .432||||a b a b ⋅-=⨯|||||sin a b a b θ⨯==已知点(1,1)A -(3,4),则向量AB 在CD 方向上的投影为( )D .3152- (2,1)AB =(5,5)CD =15AB CD ⋅=,|5AB =,|52CD =151010||||552a b a b θ⋅===⨯,投影为2||cos AB θ=. A (,1)A a ,(2,B 为平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为(.543a b -= D .5414a b +=OA 与OB 在OC 方向上的投影相同,则有OA OC OB OC ⋅=⋅,带入坐标,则有85b =+,即45a b -=.A向量a 的模为1,且a ,b 满足||4a b -=,||2a b +=,则b 在a 方向上的投影等|4a b -=两22216a b a b +-⋅=,|2a b +=两2224a b a b ++⋅=,两式相减得3a b ⋅=-,则投影为3||a b a ⋅=-. 答案:3- 25 在矩形ABCD 中,2,1BC =,的中点,若界)任意一点,则AE AF ⋅的最大值为(2.4 C .2解析:如图,建立坐标系,设AE 与AF 夹角为θ,则||||cos AE AF AE AF θ⋅==2212()||cos 2AF θ+,||cos AF θ为AF 在AE 方向上的投影,由投影定义可知,只有点F 取点C 时,投影有最大值,此时19(2,)(2,1)22AE AF ⋅=⋅=. 答案:C如图,在等腰直角三角形ABC 中,90A ∠=︒,22BC =,G 是ABC 的重心,P 是ABC 内的任意一点(含边界),则BG BP ⋅的最大值为_____.解析:如图所示,2222225||413333BG BD AB AD ==+=+=, 25||||cos ||cos 3BG BP BG BP BP θθ⋅==,则BG BP ⋅的最大值即||cos BP θ最大,由投影定义可知,当P 与C 重合时,有最大值,由余弦定理得222581310cos 2102522BD BC CD BD BC θ+-+-===⋅⨯,则最大值25310||||cos 224310BG BP BG BC θ⋅==⨯⨯=.数学浪子整理制作,侵权必究。
高中数学《平面向量基本定理》逐字稿
![高中数学《平面向量基本定理》逐字稿](https://img.taocdn.com/s3/m/a9428529a55177232f60ddccda38376baf1fe0fb.png)
高中数学《平面向量基本定理》逐字稿在高中数学的学习过程中,平面向量基本定理是一个非常重要的知识点。
它是向量运算中的一个基础,对于理解向量的运算和性质,以及解决相关问题都有着重要的作用。
平面向量基本定理可以概括为“平面向量的加法和数乘可以用坐标运算来表达”。
简单来说,就是在平面直角坐标系中,如果已知向量的坐标式,就可以方便地进行加法和数乘运算。
一、平面向量的加法平面向量的加法可以用向量的坐标和平面直角坐标系中的坐标运算来表达。
假设已知向量 $\overrightarrow{a}=(x_1, y_1)$ 和$\overrightarrow{b}=(x_2, y_2)$,则两个向量的和为$\overrightarrow{a}+\overrightarrow{b}=(x_1+x_2,y_1+y_2)$。
例如,对于向量 $\overrightarrow{a}=(1,2)$ 和$\overrightarrow{b}=(3,-1)$,它们的和为$\overrightarrow{a}+\overrightarrow{b}=(4,1)$。
这个结果可以在平面直角坐标系中直接进行验证。
二、平面向量的数乘平面向量的数乘也可以用向量的坐标和平面直角坐标系中的坐标运算来表达。
假设已知向量 $\overrightarrow{a}=(x,y)$,则它与实数$k$ 的积为 $k\overrightarrow{a}=(kx,ky)$。
例如,对于向量 $\overrightarrow{a}=(2,-3)$,它与实数 $k=-2$ 的积为 $k\overrightarrow{a}=(-4,6)$。
同样可以在平面直角坐标系中进行验证。
三、平面向量基本定理的应用平面向量基本定理的应用非常广泛,特别是在向量组合运算和向量方程的解法中。
以解一个向量方程为例,假设要求解方程$\overrightarrow{a}+k\overrightarrow{b}=\overrightarrow{c}$ 的解集,其中 $\overrightarrow{a}$、$\overrightarrow{b}$ 和$\overrightarrow{c}$ 都为已知向量,$k$ 为实数。
(完整版)高中数学-平面向量专题
![(完整版)高中数学-平面向量专题](https://img.taocdn.com/s3/m/b7ab74c383c4bb4cf7ecd1f3.png)
第一部分:平面向量的看法及线性运算一.基础知识自主学习1.向量的相关看法名称定义备注向量既有又有的量;向量的大小叫做向量平面向量是自由向量的(或称)零向量长度为的向量;其方向是任意的记作 0单位向量长度等于的非零向量 a 的单位向量为±a 向量|a|平行向量方向或的非零向量0 与任向来量或共线共线向量的非零向量又叫做共线向量相等向量长度且方向的向量两向量只有相等或不等,不能够比较大小相反向量长度且方向的向量0 的相反向量为 0 2.向量的线性运算向量运算定义法规 (或几何运算律意义 )加法求两个向量和的运算求 a 与 b 的相反向量-b 减法的和的运算叫做 a 与 b的差(1)交换律:a+ b= b+ a.(2)结合律:(a+ b)+ c= a+ (b+c).a- b= a+ (- b)法规求实数λ与向量 a 的积的(1)|λa|= |λ||a|.;λ(μa)=λμa;数乘(2)当λ>0 时,λa 的方向与 a 的方向运算当λ<0 时,λa 的方向与 a 的方向;当λ (λ+μ)a=λa+μa;=0 时,λa= 0.λ(a+ b)=λa+λb.3.共线向量定理向量 a(a≠0)与 b 共线的条件是存在唯一一个实数λ,使得 b=λa.二.难点正本疑点清源1.向量的两要素向量拥有大小和方向两个要素.用有向线段表示向量时,与有向线段起点的地址没相关系.同向且等长的有向线段都表示同向来量.也许说长度相等、方向相同的向量是相等的.向量只有相等或不等,而没有谁大谁小之说,即向量不能够比较大小.2.向量平行与直线平行的差异向量平行包括向量共线 (或重合 )的情况,而直线平行不包括共线的情况.所以要利用向量平行证明向量所在直线平行,必定说明这两条直线不重合.三.基础自测→→→→1.化简 OP- QP+ MS-MQ 的结果等于 ________.2.以下命题:①平行向量必然相等;②不相等的向量必然不平行;③平行于同一个向量的两个向量是共线向量;④相等向量必然共线.其中不正确命题的序号是_______.→→→→→3.在△ ABC 中, AB= c, AC= b.若点 D 满足 BD= 2DC ,则 AD = ________(用 b、 c 表示 ).4.如图,向量a- b 等于 ()A .- 4e1- 2e2B .- 2e1-4e2C. e1- 3e2 D . 3e1- e2→→→() 5.已知向量 a, b,且 AB= a+ 2b, BC=- 5a+ 6b,CD = 7a- 2b,则必然共线的三点是A . A、 B、DB .A、 B、CC. B、 C、D D .A、 C、 D四.题型分类深度剖析题型一平面向量的相关看法例 1给出以下命题:→→①若 |a|= |b|,则 a= b;②若 A,B,C,D 是不共线的四点,则AB= DC是四边形ABCD 为平行四边形的充要条件;③若 a= b,b= c,则 a= c;④ a= b 的充要条件是|a|= |b|且a∥ b;⑤若 a∥ b,b∥c,则 a∥ c.其中正确的序号是________.变式训练1判断以下命题可否正确,不正确的请说明原由.(1)若向量 a 与 b 同向,且 |a|= |b|,则 a>b ;(2)若 |a|= |b|,则 a 与 b 的长度相等且方向相同或相反;(3)若 |a|= |b|,且 a 与 b 方向相同,则 a= b;(4)由于零向量的方向不确定,故零向量不与任意向量平行;(5)若向量 a 与向量 b 平行,则向量 a 与 b 的方向相同或相反;→→(6)若向量 AB与向量 CD是共线向量,则 A, B, C, D 四点在一条直线上;(7)起点不相同,但方向相同且模相等的几个向量是相等向量;(8)任向来量与它的相反向量不相等题型二平面向量的线性运算例 2→→→ 1→→ 1→如图,以向量 OA= a, OB= b 为边作 ?OADB , BM=BC, CN=CD,用33→→→a、 b 表示 OM 、 ON、 MN.变式训练→ 2→→→2 △ABC 中, AD= AB,DE ∥BC 交 AC 于 E, BC 边上的中线 AM 交 DE 于 N.设 AB= a,AC= b,用 a、b3→ → → →→→表示向量 AE、 BC、 DE 、 DN、 AM、 AN.题型三平面向量的共线问题例 3设 e1 2→= 2e1→= e12→= 2e1是两个不共线向量,已知 AB2, CD2, e- 8e, CB+ 3e-e .(1)求证: A、B、 D 三点共线;→(2)若 BF = 3e1- ke2,且 B、D 、 F 三点共线,求 k 的值.变式训练3设两个非零向量 a 与 b 不共线,→→→(1)若 AB= a+ b, BC= 2a+8b, CD = 3(a-b).求证: A、 B、D 三点共线;(2)试确定实数 k,使 ka+b 和 a+ kb 共线.五.思想与方法5.用方程思想解决平面向量的线性运算问题试题:以下列图,在△→ 1→→ 1→→→ABO 中, OC= OA, OD = OB, AD 与 BC 订交于点 M,设 OA= a,OB= b.试用 a 和 b 42→表示向量 OM .六.思想方法感悟提高方法与技巧1.将向量用其他向量(特别是基向量)线性表示,是十分重要的技术,也是向量坐标形式的基础.→→→→2.能够运用向量共线证明线段平行或三点共线问题.如 AB∥ CD且 AB 与 CD 不共线,则 AB ∥CD ;若 AB∥ BC,则 A、B、C 三点共线.失误与防范1.解决向量的看法问题要注意两点:一是不但要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量可否也满足条件.要特别注意零向量的特别性.2.在利用向量减法时,易弄错两向量的序次,从而求得所求向量的相反向量,以致错误.七.课后练习1.给出以下命题:①两个拥有公共终点的向量,必然是共线向量;②两个向量不能够比较大小,但它们的模能比较大小;③ λa = 0 (λ为实数 ),则 λ必为零;④ λ, μ为实数,若 λa = μb ,则 a 与 b 共线.其中错误命题的个数为 ()A . 1B . 2C .3D .42.若 A 、B 、C 、D 是平面内任意四点,给出以下式子: → → →AD ;③ AC -AB + CD = BC + DA ;② AC + BD = BC→ → ) BD = DC + AB .其中正确的有 (A . 0 个B . 1 个C .2 个D . 3 个3. 已知 O 、 A 、 B 是平面上的三个点,直线AB 上有一点 C ,满足 2 AC CB =0,则 OC 等于 ()A. 2OA → →- OB B. OA + 2OB2 OA - 1 → D. 1 2 →C. 3OB 3OA + 3OB31→→→→4.以下列图, 在△ ABC 中, BD =DC ,AE = 3ED ,若 AB = a , AC =b ,则 BE 等于 ()21 11 1A. 3a +3bB .- 2a + 4b1 11 1 C.2a + 4b D .- 3a + 3b→,则四边形 ABCD 的形状是 (5. 在四边形 ABCD 中, AB =a + 2b, BC =- 4a -b , CD =- 5a - 3b A .矩形 B .平行四边形 C .梯形 uuur D .以上都不对uuur uuur6. AB =8, AC = 5,则 BC 的取值范围是 __________.7.给出以下命题:①向量 AB 的长度与向量 →→BA 的长度与向量 BA 的长度相等; ②向量 a 与 b 平行,则 a 与 b 的方向相同或相反; ③两个有共同起点而且相等的向量,其终点必相同;④两个有公共终点的向量,必然是共线向量;→ → ⑤向量 AB 与向量 CD 与向量 CD 是共线向量,则点 A 、 B 、 C 、 D 必在同一条直线上.其中不正确的个数为 ____________ .8.如图,在△ ABC 中,点 O 是 BC 的中点 .过点 O 的直线分别交直线AB 、AC 于不相同的两点 M 、→AB = mAM ,→AC = nAN ,则 m + n 的值为 ________. 9.设 a 与 b 是两个不共线向量,且向量 a +λb 与- (b -2a)共线,则 λ= ________.→ →10.在正六边形 ABCDEF 中, AB = a , AF = b ,求 AC, AD ,AE.11.以下列图,△ ABC 中,点 M 是 BC 的中点,点 N 在边 AC 上,且 AN =2NC , AM 与 BN 订交于点的值.12.已知点 G 是△ ABO 的重心, M 是 AB 边的中点 .→ →( 1)求 GA +GB +GO ;→→→ 11)N. 若P ,求 AP ∶ PM第二部分:平面向量的基本定理及坐标表示一.基础知识自主学习1.两个向量的夹角定义→→已知两个向量 a,b,作 OA= a,OB =b,则∠ AOB =θ叫做向量 a 与 b 的夹角 (如图 )范围向量夹角θ的范围是,当θ=时,两向量共线,当θ=时,两向量垂直,记作a⊥b.2.平面向量基本定理及坐标表示(1)平面向量基本定理若是 e1,e2是同一平面内的两个向量,那么关于这一平面内的任意向量a,一对实数λ1,λ2,使 a=.其中,不共线的向量e1, e2叫做表示这一平面内所有向量的一组.(2)平面向量的正交分解及坐标表示把一个向量分解为两个的向量,叫做把向量正交分解.(3)平面向量的坐标表示①在平面直角坐标系中,分别取与x 轴、 y 轴方向相同的两个单位向量i,j 作为基底,关于平面内的一个向量a,由平面向量基本定理可知,有且只有一对实数x,y,使 a=xi + yj,这样,平面内的任向来量 a 都可由 x,y 唯一确定,把有序数对叫做向量 a 的坐标,记作a=,其中叫做a在x轴上的坐标,叫做a在y轴上的坐标.→→→②设 OA= xi +yj,则向量 OA的坐标 (x, y)就是的坐标,即若OA=(x,y),则A点坐标为,反之亦成立. (O 是坐标原点 )3.平面向量坐标运算(1)向量加法、减法、数乘向量及向量的模设 a= (x1, y1) ,b= (x2, y2),则a+ b=,a-b=,λa=,|a|=.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设 A(x1 1→→22=, |AB., y ), B(x, y),则 AB|=4.平面向量共线的坐标表示:设 a= (x1, y1), b= (x2, y2),其中 b≠ 0a.∥ b?.二.难点正本疑点清源1.基底的不唯一性只要两个向量不共线,就可以作为平面的一组基底,对基底的采用不唯一,平面内任意向量 a 都可被这个平面的一组基底 e1,e2线性表示,且在基底确定后,这样的表示是唯一的.2.向量坐标与点的坐标的差异→a 唯一确定,此时点 A 的坐标与 a 的坐在平面直角坐标系中,以原点为起点的向量OA= a,点 A 的地址被向量标一致为 (x,y),但应注意其表示形式的差异,如点→A(x, y),向量 a=OA= (x, y).→→→→→当平面向量 OA平行搬动到 O11时,向量不变即O1A 1=OA=(x,y),但O11的起点O1和终点1的坐标都发生了变A A A 化.三.基础自测1.已知向量a= (2,- 1), b=(- 1, m),c= (- 1,2),若 (a+b) ∥c,则 m= ________.2.已知向量a= (1,2), b= (- 3,2),若 ka+ b 与 b 平行,则k= ________.3.设向量 a= (1,- 3), b= (- 2,4), c=(- 1,- 2).若表示向量4a、 4b-2c、 2(a- c)、 d 的有向线段首尾相接能构成四边形,则向量 d= ____________.→→4.已知四边形 ABCD 的三个极点 A(0,2), B(- 1,- 2), C(3,1) ,且 BC= 2AD ,则极点 D 的坐标为()A. 2,7B. 2,-1 22C. (3,2)D. (1,3)5.已知平面向量 a= (x,1), b=(- x, x2) ,则向量 a+ b()A .平行于 y 轴B .平行于第一、三象限的角均分线C.平行于 x 轴 D .平行于第二、四象限的角均分线四.题型分类深度剖析题型一平面向量基本定理的应用例 1→→→ →如图,在平行四边形ABCD 中, M, N 分别为 DC,BC 的中点,已知 AM= c, AN= d,试用 c,d 表示 AB, AD.→→→→变式训练 1 如图, P 是△ ABC 内一点,且满足条件 AP+ 2BP+ 3CP= 0,设 Q 为 CP 的延长线与AB 的交点,令CP= p,→试用 p 表示 CQ.题型二向量坐标的基本运算→→→→→例2 已知 A(-2,4), B(3,- 1), C(- 3,- 4).设 AB= a,BC= b, CA= c,且 CM = 3c,CN=- 2b,→(1) 求 3a+ b- 3c;(2) 求满足 a= mb+ nc 的实数 m, n; (3) 求 M、 N 的坐标及向量 MN 的坐标.变式训练 2(1) 已知点 A、B、 C 的坐标分别为→→ 1→A(2,- 4)、 B(0,6) 、 C(- 8,10),求向量 AB+ 2BC- AC的坐标;211(2) 已知 a= (2,1) , b= (- 3,4),求:① 3a+4b;② a- 3b;③2a-4b.题型三平行向量的坐标运算例 3平面内给定三个向量a= (3,2), b=(-1,2), c= (4,1),请解答以下问题:(1) 求满足 a= mb+ nc 的实数 m, n; (2)若 (a+ kc)∥ (2b-a) ,求实数k;(3) 若 d 满足 (d- c)∥ (a+ b),且 |d- c|= 5,求 d.变式训练3已知a=(1,0),b=(2,1).(1)求 |a+ 3b|; (2)当 k 为何实数时, ka- b 与 a+ 3b 平行,平行时它们是同向还是反向?五.易错警示8.忽视平行四边形的多样性致误试题:已知平行四边形三个极点的坐标分别为(- 1,0),(3,0) ,(1,- 5),求第四个极点的坐标.六.思想方法感悟提高方法与技巧1.平面向量基本定理的实质是运用向量加法的平行四边形法规,将向量进行分解.2.向量的坐标表示的实质是向量的代数表示,其中坐标运算法规是运算的要点,经过坐标运算可将一些几何问题转变成代数问题办理,从而向量能够解决平面剖析几何中的好多相关问题.3.在向量的运算中要注意待定系数法、方程思想和数形结合思想的运用.失误与防范1.要区分点的坐标与向量坐标的不相同,尽管在形式上它们完满相同,但意义完满不相同,向量坐标中既有方向也有大小的信息.1122),则 a∥ b 的充要条件不能够表示成x1=y1,由于 x22有可能等于0,所以应表示为 1 22.若 a=( x,y ),b= (x ,y x2y2,y x y y = 0.同时, a∥ b 的充要条件也不能够错记为x x - y y = 0, x y- x y = 0 等.- x2 1 1 21 2 1 1 2 2七.课后练习1.已知向量 a =(1,- 2), b =(1+ m,1- m),若 a ∥ b ,则实数 m 的值为 ( )A .3B .- 3C . 2D .- 2 2.已知平面向量 a = (1,2), b =(- 2, m) ,且 a ∥ b ,则 2a + 3b 等于 ( )A .( -2,- 4)B . (- 3,- 6)C .(- 4,- 8)D . (- 5,- 10)3.设向量 a = (3, 3), b 为单位向量,且 a ∥ b ,则 b 等于 ( )3 1 3 1 3 1A.2 ,- 2 或 - 2 , 2B.2 , 2313 13 1C. - 2 ,- 2D. 2 , 2或- 2 ,- 24.已知向量 a = (1,- m),b = (m 2, m),则向量 a + b 所在的直线可能为 ()A . x 轴B .第一、三象限的角均分线C . y 轴D .第二、四象限的角均分线5.已知 A(7,1) 、B(1,4), 直线 y1 →ax 与线段 AB 交于 C,且 AC2CB ,则实数 a 等于 ()245A . 2B . 1C. 5D.31+ 1的值等于 ________.6.若三点 A(2,2) ,B(a,0), C(0, b) (ab ≠ 0)共线,则 ab7.已知向量 a =(1,2) ,b = (x,1), u = a +2b , v = 2a - b ,且 u ∥ v ,则实数 x 的值为 ________. 8.若向量 a ( x 3, x 2 3 x 4) 与 AB 相等,其中 A(1,2) , B(3 , 2) ,则 =x ________.9.若平面向量 a , b 满足 |a + b|= 1, a + b 平行于 y 轴, a = (2,- 1),则 b = ______________. 10. a = (1,2), b = (- 3,2),当 k 为何值时, ka +b 与 a - 3b 平行?平行时它们是同向还是反向?11.三角形的三内角 A , B , C 所对边的长分别为 a , b , c ,设向量 m = (3c - b , a - b), n = (3a + 3b , c), m ∥n.(1) 求 cos A 的值; (2) 求 sin(A +30°)的值.12.在△ ABC 中, a 、 b 、c 分别是角 A 、 B 、 C 的对边,已知向量 m = (a , b),向量 n =(cos A , cos B),向量 p = 2 2sinB +C , 2sin A ,若 m ∥ n , p 2= 9,求证:△ ABC 为等边三角形. 2第三部分:平面向量的数量积一.基础知识 自主学习1.平面向量的数量积已知两个非零向量a 和b ,它们的夹角为 θ,则数量 _______叫做 a 和 b 的数量积 (或内积 ),记作 ________________.规定:零向量与任向来量的数量积为____.两个非零向量 a 与 b 垂直的充要条件是,两个非零向量 a 与 b 平行的充要条件是.2.平面向量数量积的几何意义数量积 a ·b 等于 a 的长度 |a|与 b 在 a 的方向上的投影 _________的乘积.3.平面向量数量积的重要性质(1)e ·a = a ·e =;(2) 非零向量 a , b ,a ⊥ b? ;(3) 当 a 与 b 同向时, a ·b =;当 a 与 b 反向时, a ·b =, a ·a = a 2,|a|=a ·a;a ·b (4)cos θ=;|a||b|(5)|a ·b|____|a|| b|.4.平面向量数量积满足的运算律(1) a ·b=(交换律 );(2)( λa )·b = =(λ为实数 );(3)( a + b) ·c =.5.平面向量数量积相关性质的坐标表示设向量 a = (x 1, y 1), b = (x 2 , y 2),则 a ·b=,由此获取(1) 若 a = (x , y),则 |a|2=或|a|=.(2) 设 A (x 1uuur.,y 1) ,B(x 2,y 2),则 A 、 B 两点间的距离 |AB|= AB =(3) 设两个非零向量 a , b , a = ( x , y ), b = (x , y ),则 a ⊥b?.1122二.难点正本 疑点清源1.向量的数量积是一个实数两个向量的数量积是一个数量, 这个数量的大小与两个向量的长度及其夹角的余弦值相关, 在运用向量的数量积解题时,必然要注意两向量夹角的范围.2.数量积的运算只适合交换律、 加乘分配律及数乘结合律, 但不满足向量间的结合律, 即 (a ·b)c 不用然等于a(b ·c).这是由于 (a ·b)c 表示一个与 c 共线的向量,而 a(b ·c)表示一个与 a 共线的向量,而 c 与 a 不用然共线.三.基础自测1.已知向量 a 和向量 b 的夹角为 30°, |a|= 2, |b|= 3,则向量 a 和向量 b 的数量积 a ·b=________.2.在△ ABC 中, AB =3, AC=2, BC=10 ,则 AB ·AC = ______.- 94.已知 |a|= 6, |b|=3, a·b=- 12,则向量 a 在向量 b 方向上的投影是()A .- 4B. 4C.- 2 D .25.已知向量a=(1,- 1), b=(1,2) ,向量 c 满足 (c+ b)⊥ a, (c- a)∥ b,则 c 等于()A . (2,1)B .(1,0)31C. 2,2D. (0,- 1)四.题型分类深度剖析题型一求两向量的数量积例1 (1) 在 Rt△ ABC 中,∠ C= 90°, AB= 5, AC=4,求AB·BC;(2)若 a= (3,- 4) ,b= (2,1),试求 (a-2b) · (2a+3b).变式训练 1 (1)若向量 a 的方向是正南方向,向量 b 的方向是正东方向,且|a|= |b|= 1,则 (- 3a) ·(a+ b)=______.uuur→ uuur(2) 如图,在△ ABC 中, AD ⊥ AB,BC= 3 BD, | AD |= 1,则AC·AD等于 ()33A . 2 3B. 2 C. 3 D.3题型二求向量的模例2 已知向量 a 与 b 的夹角为 120°,且 |a|= 4, |b|= 2,求: (1)|a+ b|; (2)|3a- 4b|; (3)(a- 2b) ·(a+b).π变式训练 2 设向量 a, b 满足 |a- b|= 2,|a|= 2,且 a- b 与 a 的夹角为3,则 |b|= ________.题型三利用向量的数量积解决夹角问题例 3已知a与b是两个非零向量,且|a|= |b|= |a- b|,求 a 与 a+ b 的夹角.变式训练 3 设 n 和 m 是两个单位向量,其夹角是60°,求向量a= 2m+ n 与 b= 2n-3m 的夹角.题型四平面向量的垂直问题例 4 已知 a= (cos α, sin α), b= (cos β, sin β)(0< α<β<π).(1)求证: a+ b 与 a- b 互相垂直;(2) 若 ka+ b 与 a- kb 的模相等,求β-α.(其中k为非零实数)uuur→uuur→→变式训练 4 已知平面内A、B、C 三点在同一条直线上,OA =(-2,m),OB=(n,1),OC=(5,-1),且OA⊥OB,求实数 m, n 的值.五.答题规范5.思想要慎重,解答要规范试题:设两向量 e1、e2满足 |e1 |= 2,|e2|= 1,e1、e2的夹角为60°,若向量 2te1+7e2与向量 e1+te2的夹角为钝角,求实数 t 的取值范围.六.思想方法感悟提高方法与技巧1.向量的数量积的运算法规不具备结合律,但运算律和实数运算律近似.如(a+ b)2=a2+2a·b+b2;22(λa+μb) ·(sa+ tb)=λs a+(λt+μs)a·b+μt b(λ,μ, s, t∈ R).2.求向量模的常用方法:利用公式|a|2= a2,将模的运算转变成向量的数量积的运算.3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法技巧.失误与防范1. (1)0 与实数 0 的差异: 0a=0≠0, a+( -a)=0≠0,a·0=0≠0;(2)0 的方向是任意的,其实不是没有方向,0 与任何向量平行,我们只定义了非零向量的垂直关系.2. a·b=0 不能够推出 a= 0 或 b= 0,由于 a·b=0 时,有可能 a⊥ b.3.一般地, (a · b)c ≠ (b即·乘c)a法的结合律不行立.因a·b是一个数量,所以(a · b)c表示一个与 c 共线的向量,同理右边 (b ·c)a表示一个与 a 共线的向量,而 a 与 c 不用然共线,故一般情况下(a ·b)c ≠(b ·c)a. 4. a·b=a· c(a ≠不0)能推出 b= c.即消去律不行立.uuur uuur5.向量夹角的看法要意会,比方正三角形ABC 中,〈AB,BC〉应为 120°,而不是 60°.- 11七.课后练习1 1()1.设向量 a = (1,0), b =( , ),则以下结论中正确的选项是22A . |a|= |b|B . a ·b= 22 C . a ∥ b D .a - b 与 b 垂直 2.若向量 a = (1,1), b = (2,5), c = (3, x),满足条件 (8a - b)·c = 30,则 x 等于 ( )A . 6B .5C . 4D . 33.已知向量 a ,b 的夹角为 60°,且 |a|=2, |b|= 1,则向量 a 与 a + 2b 的夹角等于 ()A . 150 °B . 90°C . 60°D . 30°uuur uuur4.平行四边形 ABCD 中, AC 为一条对角线,若 AB = (2,4), AC = (1,3),则 AD BD 等于 ()A . 6B .8C .- 8D .- 6πa = 2e 1)1 2的单位向量,且向量2 1 25.若 e 、e 是夹角为 3+ e ,向量 b =- 3e +2e ,则 a ·b等于 (7 7A . 1B .- 4C .- 2D.2π6.若向量 a , b 满足 |a|=1 ,|b|= 2 且 a 与 b 的夹角为 3,则 |a + b|= ________.7.已知向量 a ,b 满足 |a|= 3,|b|= 2, a 与 b 的夹角为 60°,则 a ·b=________,若 (a -mb)⊥ a ,则实数 m = ________. 8.设 a 、 b 、 c 是单位向量,且 a + b = c ,则 a ·c 的值为 ________. 9.(O 是平面上一点, A 、 B 、C 是平面上不共线的三点 .平面内的动点 P 满足 OPOA (AB AC),uuuruuur uuur若 λ=1时, PA (PBPC ) 的值为 ______.210.不共线向量 a , b 的夹角为小于 120 °的角,且 |a|= 1, |b|=2,已知向量 c = a + 2b ,求 |c|的取值范围.11.已知平面向量 a = (1, x), b = (2x +3,- x), x ∈ R.(1) 若 a ⊥ b ,求 x 的值; (2)若 a ∥b ,求 |a -b|.12.向量 a = (cos 23 ,°cos 67 °),向量 b = (cos 68 ,°cos 22 °).(1) 求 a ·b;(2)若向量 b 与向量 m 共线, u = a +m ,求 u 的模的最小值.第四部分:平面向量应用举例一.基础知识自主学习1.向量在平面几何中的应用平面向量在平面几何中的应用主若是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相似、长度、夹角等问题.(1)证明线段平行或点共线问题,包括相似问题,常用共线向量定理:a∥ b??.(2)证明垂直问题,常用数量积的运算性质a⊥ b??.(3)求夹角问题,利用夹角公式cos θ=a·b =x1 x2+ y1y222 2 2 (θ为 a 与 b 的夹角 ).|a||b|x1+ y1x2+ y22.平面向量在物理中的应用(1)由于物理学中的力、速度、位移都是,它们的分解与合成与向量的相似,能够用向量的知识来解决.(2)物理学中的功是一个标量,这是力 F 与位移 s 的数量积.即W = F·s=|F|| s|cos θ(θ为 F 与 s 的夹角 ).3.平面向量与其他数学知识的交汇平面向量作为一种运算工具,经常与函数、不等式、三角函数、数列、剖析几何等知识结合,当平面向量给出的形式中含有未知数时,由向量平行或垂直的充要条件能够获取关于该未知数的关系式.在此基础上,能够求解相关函数、不等式、三角函数、数列的综合问题.此类问题的解题思路是转变成代数运算,其转变路子主要有两种:一是利用平面向量平行或垂直的充要条件;二是利用向量数量积的公式和性质.二.难点正本疑点清源1.向量兼具代数的抽象与慎重和几何的直观,向量自己是一个数形结合的产物.在利用向量解决问题时,要注意数与形的结合、代数与几何的结合、形象思想与逻辑思想的结合.2.要注意变换思想方式,能从不相同角度看问题,要善于应用向量的相关性质解题.三.基础自测1.在平面直角坐标系xOy 中,四边形ABCD 的边 AB∥ DC , AD∥ BC.已知 A(- 2,0),B(6,8), C(8,6).则D 点的坐标为 ________.2.已知平面向量α、β,|α|=1,|β|=2,α⊥ (α-2β),则|2α+β|的值是________.y uuur 3.平面上有三个点A( - 2, y), B 0,2, C( x, y),若ABuuur⊥ BC ,则动点C的轨迹方程为_______________.uuur5,AC·CB等于 () 4.已知 A、 B 是以 C 为圆心,半径为5的圆上两点,且 | AB |=5553A .-2 B.2C. 0D.25.某人先位移向量a : “向东走 3 km ”,接着再位移向量b : “向北走 3 km ”,则 a +b 表示()A .向东南走 3 2 kmB .向东北走 3 2 kmC .向东南走 33 kmD .向东北走 3 3 km四.题型分类 深度剖析题型一 向量在平面几何中的应用 例 1 如图,在等腰直角三角形 ABC 中,∠ ACB =90°, CA = CB , D 为 BC 的中点, E 是 AB 上的一点,且 AE = 2EB.求证: AD ⊥ CE.变式训练 1在平面直角坐标系 xOy 中,已知点 A(- 1,- 2),B(2,3), C(- 2,- 1).(1) 求以线段 AB 、 AC 为邻边的平行四边形的两条对角线的长;(2) →→ →设实数 t 满足 (AB - tOC) ·OC = 0,求 t 的值.题型二平面向量在剖析几何中的应用uuuuruuur →3 →例 2 已知点 P ( 0,-3),点 A 在 x 轴上,点 M 满足 PA AM =0 ,AM =-MQ ,当点 A 在 x 轴上搬动时,求动点 M2的轨迹方程.变式训练 2 已知圆 C : (x-3) 2+(y-3)2N 在线段 MA 的延长线上,=4 及点 A ( 1,1), M 是圆上的任意一点,点 uuur →且 MA = 2AN ,求点 N 的轨迹方程.题型三 平面向量与三角函数 例 3 已知向量 a = (sin x , cos x), b = (sin x , sin x) ,c = (- 1,0).π(1)若 x = 3,求向量 a 与 c 的夹角;3π π(2)若 x ∈ - 8 , 4 ,求函数 f(x) =a ·b 的最值;2 (3) 函数 f(x)的图象能够由函数y = 2 sin 2x (x ∈ R)的图象经过怎样的变换获取?变式训练 3已知 A(3,0) , B(0,3) , C(cos α, sin α).若 uuur uuur =- 1,求 sin α+ π的值; (2) uuur uuur = ,且 α∈ , π),求 → uuur (1) AC ·若 | OA+ OC | 13 OB 与 OC 的夹角.BC 4(0五.易错警示9.忽视对直角地址的谈论致误uuur uuur试题:已知平面上三点A 、B 、C ,向量 BC = (2- k,3), AC = (2,4).(1) 若三点 A 、B 、 C 不能够构成三角形,求实数 k 应满足的条件; (2)若△ ABC 为直角三角形,求k 的值.六.思想方法 感悟提高方法与技巧1. 向量的坐标运算将向量与代数有机结合起来,这就为向量和函数的结合供应了前提,运用向量的相关知识能够解决某些函数问题.2. 以向量为载体,求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.经过向量的坐标运算,将问题转变成解不等式或求函数值域,是解决这类问题的一般方法.3. 相关线段的长度或相等,能够用向量的线性运算与向量的模.4.用向量方法解决平面几何问题的步骤(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转变成向量问题;(2)经过向量运算,研究几何元素之间的关系;(3) 把运算结果 “翻译 ”成几何关系.5.向量的坐标表示,使向量成为解决剖析几何问题的有力工具,在证明垂直、求夹角、写直线方程时显示出了它的优越性,在办理剖析几何问题时,需要将向量用点的坐标表示,利用向量的相关法规、性质列出方程,从而使问 题解决.失误与防范1.向量关系与几何关系其实不完满相同,要注意差异.比方:向量2.加强平面向量的应企图识,自觉地用向量的思想和方法去思虑问题.uuurAB→∥ CD 其实不能够说明AB ∥CD .七.课后练习1.已知△ ABC ,AB AC ,则必然有()A .AB⊥ACB .AB = ACC. ( AB + AC)⊥ ( AB - AC)D.AB + AC= AB - AC2.点 P 在平面上做匀速直线运动,速度向量v= (4,- 3)( 即点 P 的运动方向与v 相同,且每秒搬动的距离为|v|个单位 ) .设开始时点 P 的坐标为 ( - 10,10),则 5 秒后质点 P 的坐标为 ()A . (- 2,4)B .( -30,25)C. (10,- 5)D. (5,- 10)uuur uuur uuur uuur uuur3.平面上有四个互异点)A、 B、 C、D ,已知 (DB DC2DA) (AB AC) 0 ,则△ ABC 的形状是 (A .直角三角形B .等腰三角形C.等腰直角三角形D.等边三角形uuur uuur4.如图,△ ABC 的外接圆的圆心为 O,AB=2,AC=3,BC=7 ,则AO BC等于()35A. 2B.2C. 2D. 35.平面上 O、 A、 B 三点不共线,设OA a,OB,则△ OAB 的面积等于 ()bA.|a|2|b|2- (a·b)2B.|a|2 |b|2+ (a·b)2122- (a·b)21 2 2+ (a·b)2C.2D.2|a| |b||a| |b|6.已知 |a|= 3, |b|=2,〈 a, b〉= 60°,则 |2a+ b|= ________.7.河水的流速为 2 m/s,一艘小船想以垂直于河岸方向10 m/s 的速度驶向对岸,则小船的静水速度大小为________.→→ →→8.已知△ ABO 三极点的坐标为A(1,0), B(0,2), O(0,0),P(x,y)是坐标平面内一点,且满足 AP·OA≤0,BP·OB≥0,则 OP·AB的最小值为 ________.uuur uuur 9.在△ ABC 中,角 A、B、 C 所对的边分别为a、 b、 c,若AB·AC=BA BC 10.如右图,在Rt△ABC 中,已知 BC=a,若长为 2a 的线段 PQ 以点 A 为中心,问的值最大?并求出这个最大值.1,那么c=________.→→PQ 与BC的夹角θ取何值时BP·CQ11.已知向量a= (sin θ, cos θ- 2sin θ), b= (1,2).(1)若 a∥ b,求 tan θ的值; (2) 若 |a|= |b|,0<θ<π,求θ的值.12.在△ ABC 中,角 A、B、 C 的对边分别为a、 b、 c,若AB·AC BA·BC =k (k∈R).(1) 判断△ ABC 的形状; (2)若 c=2,求 k 的值.- 16。
高中数学必修四平面向量知识归纳典型题型(经典)
![高中数学必修四平面向量知识归纳典型题型(经典)](https://img.taocdn.com/s3/m/7852fce227fff705cc1755270722192e453658f2.png)
高中数学必修四平面向量知识归纳典型题型(经典)1.向量重要结论1) 向量的数量积定义为:$a\cdot b=|a||b|\cos\theta$,规定$a\cdot a=a^2=|a|^2$。
2) 向量夹角公式为:若向量$a$和$b$夹角为$\theta$,则$\cos\theta=\frac{a\cdot b}{|a||b|}$。
3) 向量共线的充要条件为:向量$b$与非零向量$a$共线当且仅当存在唯一的$\lambda\in\mathbb{R}$,使$b=\lambda a$。
4) 两向量平行的充要条件为:向量$a=(x_1,y_1)$和$b=(x_2,y_2)$平行当且仅当$x_1y_2-x_2y_1=0$。
5) 两向量垂直的充要条件为:向量$a$和$b$垂直当且仅当$a\cdot b=0$,即$x_1x_2+y_1y_2=0$。
6) 向量不等式为:$|a|+|b|\geq|a+b|$,$|a||b|\geq|a\cdot b|$。
7) 向量的坐标运算为:若向量$a=(x_1,y_1)$和$b=(x_2,y_2)$,则$a\cdot b=x_1x_2+y_1y_2$。
8) 向量的投影为:设向量$b$在向量$a$方向上的投影为$p$,则$|p|=|b|\cos\theta$,其中$\theta$为$b$和$a$的夹角,$|a|$为向量$a$的模。
9) 向量既有大小又有方向,不能比较大小,但模可以比较大小。
相等向量长度相等且方向相同。
10) 零向量长度为0,记为$\vec{0}$,其方向是任意的,与任意向量平行。
11) 单位向量模为1的向量,向量$a$为单位向量当且仅当$|a|=1$。
12) 平行向量(共线向量)方向相同或相反的非零向量,任意一组平行向量都可以移到同一直线上。
1.已知A、B、C三点共线,且α+β=1,使OC=αOA+βOB。
求OP。
答:OP=OA+λOB,其中λ=β/(1-α)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题型6.向量的坐标运算
1.已知 , ,则点 的坐标是。
2.已知 , ,则点 的坐标是。
3.若物体受三个力 , , ,则合力的坐标为。
4.已知 , ,求 , , 。
5.已知 ,向量 与 相等,求 的值标原点, ,且 ,求 的坐标。
4.已知 , , ,请将用向量 表示向量 。
5.已知 , ,(1)若 与 的夹角为钝角,求 的范围;
(2)若 与 的夹角为锐角,求 的范围。
6.已知 , ,当 为何值时,(1) 与 的夹角为钝角(2) 与 的夹角为锐角
7.已知梯形 的顶点坐标分别为 , , ,且 , ,求点 的坐标。
8.已知平行四边形 的三个顶点的坐标分别为 , , ,求第四个顶点 的坐标。
9.一航船以5km/h的速度向垂直于对岸方向行驶,航船实际航行方向与水流方向成 角,求水流速度与船的实际速度。
10.【2007年广东卷】已知 三个顶点的坐标分别为 , , ,
(1)若 ,求 的值;(2)若 ,求 的值。
【备用】
1.已知 ,求 和向量 的夹角。
2.已知 , ,且 , ,求 的夹角的余弦。
题型7.判断两个向量能否作为一组基底
1.已知 是平面内的一组基底,判断下列每组向量是否能构成一组基底:
A. B. C. D.
2.已知 ,能与 构成基底的是( )
A. B. C. D.
题型8.结合三角函数求向量坐标
1.已知 是坐标原点,点 在第二象限, , ,求 的坐标。
2.已知 是原点,点 在第一象限, , ,求 的坐标。
3.已知 是非零向量, ,且 ,求证: 。
题型14.三点共线问题
1.已知 , , ,求证: 三点共线。
2.设 ,求证: 三点共线。
3.已知 ,则一定共线的三点是。
4.已知 , ,若点 在直线 上,求 的值。
5.已知四个点的坐标 , , , ,是否存在常数 ,使 成立
题型15.判断多边形的形状
1.若 , ,且 ,则四边形的形状是。
2.代入验证法
例:已知向量 ,则 ( D )
A. B. C. D.
变式:已知 ,请用 表示 。
解:设 ,则
即:
,即:
解得: ,
3.排除法
例:已知M是 的重心,则下列向量与 共线的是( D )
A. B. C. D.
解:观察前三个选项都不与 共线,所以选D。
2.已知 , , , ,证明四边形 是梯形。
3.已知 , , ,求证: 是直角三角形。
4.在平面直角坐标系内, ,求证: 是等腰直角三角形。
题型16.平面向量的综合应用
1.已知 , ,当 为何值时,向量 与 平行
2.已知 ,且 , ,求 的坐标。
3.已知 同向, ,则 ,求 的坐标。
3.已知 , , ,则 。
2.已知 ,求(1) ,(5) ,(6) 。
3.已知 , ,求 。
题型12.求单位向量 【与 平行的单位向量: 】
1.与 平行的单位向量是。
2.与 平行的单位向量是。
题型13.向量的平行与垂直
1.已知 , ,当 为何值时,(1) (2)
2.已知 , ,(1) 为何值时,向量 与 垂直
(2) 为何值时,向量 与 平行
(6)因为向量就是有向线段,所以数轴是向量。
(7)若 与 共线, 与 共线,则 与 共线。
(8)若 ,则 。 (9)若 ,则 。
(10)若 与 不共线,则 与 都不是零向量。
(11)若 ,则 。 (12)若 ,则 。
题型2.向量的加减运算
1.设 表示“向东走8km”, 表示“向北走6km”,则 。
2.化简 。
5.平行向量(共线向量):方向相同或相反的向量。
6.相等向量:长度和方向都相同的向量。
7.相反向量:长度相等,方向相反的向量。 。
8.三角形法则:
; ; (指向被减数)
9.平行四边形法则:
以 为临边的平行四边形的两条对角线分别为 , 。
10.共线定理: 。当 时, 同向;当 时, 反向。
11.基底:任意不共线的两个向量称为一组基底。
1.已知 ,则 65。
4.已知两向量 ,求当 垂直时的x的值。
5.已知两向量 , 的夹角 为锐角,求 的范围。
变式:若 , 的夹角 为钝角,求 的取值范围。
选择、填空题的特殊方法:
1.特例法
例:《全品》P27:4。因为M,N在AB,AC上的任意位置都成立,所以取特殊情况,即M,N与B,C重合时,可以得到 , 。
12.向量的模:若 ,则 , ,
13.数量积与夹角公式: ;
14.平行与垂直: ;
题型1.基本概念判断正误:(1)共线向量就是在同一条直线上的向量。
(2)若两个向量不相等,则它们的终点不可能是同一点。
(3)与已知向量共线的单位向量是唯一的。
(4)四边形ABCD是平行四边形的条件是 。
(5)若 ,则A、B、C、D四点构成平行四边形。
《数学》必会基础题型——《平面向量》
【基本概念与公式】【任何时候写向量时都要带箭头】
1.向量:既有大小又有方向的量。记作: 或 。
2.向量的模:向量的大小(或长度),记作: 或 。
3.单位向量:长度为1的向量。若 是单位向量,则 。
4.零向量:长度为0的向量。记作: 。【 方向是任意的,且与任意向量平行】
题型9.求数量积
1.已知 ,且 与 的夹角为 ,求(1) ,(2) ,
(3) ,(4) 。
2.已知 ,求(1) ,(2) ,(3) ,
(4) 。
题型10.求向量的夹角
1.已知 , ,求 与 的夹角。
2.已知 ,求 与 的夹角。
3.已知 , , ,求 。
题型11.求向量的模
1.已知 ,且 与 的夹角为 ,求(1) ,(2) 。
3.已知 , ,则 的最大值和最小值分别为、。
4.已知 的和向量,且 ,则 , 。
5.已知点C在线段AB上,且 ,则 , 。
题型3.向量的数乘运算
1.计算:(1) (2)
2.已知 ,则 。
题型4.作图法球向量的和
已知向量 ,如下图,请做出向量 和 。
题型5.根据图形由已知向量求未知向量
1.已知在 中, 是 的中点,请用向量 表示 。