高中数学 1.3.2“杨辉三角”与二项式系数的性质教案 新人教版选修2-3

合集下载

高中数学选修2-3课件1.3.2《“杨辉三角”与二项式系数的性质》课件

高中数学选修2-3课件1.3.2《“杨辉三角”与二项式系数的性质》课件
2.在(a+b)20展开式中,与第五项二项式系数 相同的项是 A.第15项 B.第16项 C.第17项 D.第18项
2.在(a+b)n展开式中,与第k项二项式系数 相同的项是
A. 第n-k项
B. 第n-k-1项
C. 第n-k+1项 C. 第n-k+2项
观察杨辉三角
(a b)1
1.增减性?
(a b)2
C
1 n
x1
C
2 n
x
2
Cnk x k
C
n n
x
n
问题1:此展开式二项式系数之和
_______________________________.
问题2:此展开式系数之和 赋值法求 _____________________________系__数. 和
(a+x)n的二项式展开各项的系数和求 法:只要令自变量为1即可。
C0n
C1n
C
2 n
Cnn
2n
这就是说,(a b)n的展开式的各二项式系
数的和等于:2n
同时由于C
0 n
1,上式还可以写成:
C1n
C2n
C3n
C
n n
2n
1
这是组合总数公式.
一般地,(a b)n 展开式的二项式系数
Cn0 ,Cn1,Cnn 有如下性质:
(1)
Cnm
C nm n
(2)
左增右减
(a b)3 (a b)4
2.在何处取得最大值?(a b)5
11 12 1 13 3 1 14 6 4 1 1 5 10 10 5 1
性质2:
当n是偶数时,展开式有n+1项( n+1是奇数),中间项

人教高中数学 --1.3.2“杨辉三角”与二项式系数的性质教案 新人教版选修2-3

人教高中数学 --1.3.2“杨辉三角”与二项式系数的性质教案 新人教版选修2-3

§1.3.2“杨辉三角”与二项式系数的性质教学目标:知识与技能:掌握二项式系数的四个性质。

过程与方法:培养观察发现,抽象概括及分析解决问题的能力。

情感、态度与价值观:要启发学生认真分析书本图1-5-1提供的信息,从特殊到一般,归纳猜想,合情推理得到二项式系数的性质再给出严格的证明。

教学重点:如何灵活运用展开式、通项公式、二项式系数的性质解题教学难点:如何灵活运用展开式、通项公式、二项式系数的性质解题授课类型:新授课课时安排:2课时教学过程:一、复习引入:1.二项式定理及其特例:(1)01()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈,(2)1(1)1n r r n n n x C x C x x +=+++++.2.二项展开式的通项公式:1r n r r r n T C a b -+=3.求常数项、有理项和系数最大的项时,要根据通项公式讨论对r 的限制;求有理项时要注意到指数及项数的整数性二、讲解新课:1二项式系数表(杨辉三角)()n a b +展开式的二项式系数,当n 依次取1,2,3…时,二项式系数表,表中每行两端都是1,除1以外的每一个数都等于它肩上两个数的和2.二项式系数的性质:()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成以r 为自变量的函数()f r定义域是{0,1,2,,}n ,例当6n =时,其图象是7个孤立的点(如图)(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵m n m n n C C -=).直线2n r =是图象的对称轴. (2)增减性与最大值.∵1(1)(2)(1)1!k k n n n n n n k n k C C k k ----+-+==⋅, ∴k n C 相对于1k n C -的增减情况由1n k k -+决定,1112n k n k k -++>⇔<, 当12n k +<时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值; 当n 是偶数时,中间一项2nn C 取得最大值;当n 是奇数时,中间两项12n n C-,12n n C +取得最大值. (3)各二项式系数和:∵1(1)1n r r n n n x C x C x x +=+++++,令1x =,则0122n r n n n n n n C C C C C =++++++三、讲解范例:例1.在()na b +的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和 证明:在展开式01()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈中,令1,1a b ==-,则0123(11)(1)n n n n n n n n C C C C C -=-+-++-, 即02130()()n n n n C C C C =++-++,∴0213n n n n C C C C ++=++,即在()n a b +的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和.说明:由性质(3)及例1知021312n n n n n C C C C -++=++=.例2.已知7270127(12)x a a x a x a x -=++++,求:(1)127a a a +++; (2)1357a a a a +++; (3)017||||||a a a +++. 解:(1)当1x =时,77(12)(12)1x -=-=-,展开式右边为 0127a a a a ++++∴0127a a a a ++++1=-,当0x =时,01a =,∴127112a a a +++=--=-,(2)令1x =, 0127a a a a ++++1=- ① 令1x =-,7012345673a a a a a a a a -+-+-+-= ②①-② 得:713572()13a a a a +++=--,∴ 1357a a a a +++=7132+-.(3)由展开式知:1357,,,a a a a 均为负,0248,,,a a a a 均为正, ∴由(2)中①+② 得:702462()13a a a a +++=-+,∴ 70246132a a a a -++++=,∴017||||||a a a +++=01234567a a a a a a a a -+-+-+- 702461357()()3a a a a a a a a =+++-+++=例3.求(1+x)+(1+x)2+…+(1+x)10展开式中x 3的系数解:)x 1(1])x 1(1)[x 1(x 1)x 1()x 1(10102+-+-+=+++++)(=x x x )1()1(11+-+,。

人教版高中数学选修2-3教案:1.3.2 “杨辉三角”与二项式系数的性质

人教版高中数学选修2-3教案:1.3.2 “杨辉三角”与二项式系数的性质

§1.3.2 “杨辉三角”与二项式系数的性质【教学目标】1. 使学生建立“杨辉三角”与二项式系数之间的直觉,并探索其中的规律;2.能运用函数观点分析处理二项式系数的性质;3. 理解和掌握二项式系数的性质,并会简单的应用。

【教学重难点】教学重点:二项式系数的性质及其应用;教学难点:杨辉三角的基本性质的探索和发现。

【教学过程】一、复习引入1、二项式定理:________________________________________________; 二项式系数:______________________________________________;2、( 1+x) n =________________________________________________;二、杨辉三角的来历及规律 练一练:把( a+b) n (n=1,2,3,4,5,6)展开式的二项式系数填入课本P 37的表格,为了方便,可将上表改写成如下形式:(a+b)1 …………………………………………………1 1(a+b)2…………………………………………………1 2 1(a+b)3………………………………………………1 3 3 1(a+b)4……………………………………………1 4 6 4 1(a+b)5…………………………………………1 5 10 10 5 1 (a+b)6………………………………………1 6 15 20 15 6 1…………………………… 爱国教育,杨辉三角 因上图形如三角形,南宋的杨辉对其有过深入研究,所以我们称它为杨辉三角。

杨辉,我国南宋末年数学家,数学教育家.著作甚多。

“杨辉三角”出现在杨辉编著的《详解九章算法》一书中,此书还说明表内除“一”以外的每一个数都等于它肩上两个数的和。

杨辉指出这个方法出于《释锁》算书,且我国北宋数学家贾宪(约公元11世纪)已经用过它,这表明我国发现这个表不晚于11世纪。

高二数学 1.3.2“杨辉三角”与二项式系数的性质学案 新人教A版选修2-3

高二数学   1.3.2“杨辉三角”与二项式系数的性质学案 新人教A版选修2-3

高中数学 1.3.2“杨辉三角”与二项式系数的性质学案基础梳理1.杨辉三角的特点(1)在同一行中,每行两端都是1,与这两个1等距离的项的系数相等;(2)在相邻的两行中,除1以外的每一个数都等于它“肩上”两个数的和,即C r n+1=C r-1n+C r n.2.二项式系数的性质3.赋值法的应用.设f(x)=a0+a1x+a2x2+a3x3+…+a n x n.(1)a0+a1+a2+a3+…+a n=f(1).(2)a0-a1+a2-a3+…+(-1)n a n=f(-1).(3)a0+a2+a4+a6+…=f(1)+f(-1)2.(4)a1+a3+a5+a7+…=f(1)-f(-1)2.(5)a0=f(0).☞想一想:设(2-x)8=a0+a1x+a2x2+…+a8x8,则a0+a1+a2+…+a8的值为1.自测自评1.1+(1+x)+(1+x)2+…+(1+x)100的展开式的各项系数之和为(C)A.199 B.2100-1 C.2101-1 D.21002.在(1+x)n(n∈N+)的二项展开式中,若只有x5的系数最大,则n=(C)A.8 B.9 C.10 D.11解析:由题意(1+x)n展开式中,x5的系数就是第6项的二项式系数,因为只有它是二项式系数中最大的,所以n=10. 故选C.3.设(x+2)(2x+3)10=a0+a1(x+2)+a2(x+2)2+…+a11(x+2)11,则a0+a1+a2+…+a11的值为(B)A.0 B.1 C.6 D.15解析:令x=-1,则1=a0+a1+a2+…+a11,故选B.对二项式定理理解不透致误【典例】设n∈N*,则C1n+C2n6+C3n62+…+C n n6n-1=________.解析:原式=16(C1n6+C2n62+C3n63+…+C n n6n)=16(C0n+C1n6+C2n62+C3n63+…+C n n6n-1)=16[(1+6)n-1]=16(7n-1).【易错剖析】由于对二项式定理理解不透,误认为C1n+C2n6+C3n62+…+C n n6n-1=(1+6)n-1=7n-1,导致结果错误.基础巩固1.(1+x)2n+1的展开式中,二项式系数最大的项所在的项数是(C)A.n,n+1B.n-1,nC.n+1,n+2D.n+2,n+32.已知(1+x)+(1+x)2+…+(1+x)n=a0+a1x+a2x2+…+a n x n(n∈N*),若a0+a1+…+a n =30,则n等于(C)A.5 B.3 C.4 D.7解析:令x=1得a0+a1+…+a n=2+22+…+2n=30得n=4.3.关于(a-b)10的说法,错误的是(C)A.展开式中的二项式系数之和是1 024B.展开式的第6项的二项式系数最大C.展开式的第5项或第7项的二项式系数最大D.展开式中第6项的系数最小解析:由二项式系数的性质知,C010+C110+C210+…+C1010=210=1 024.∴A正确.又二项式系数最大的项为C 510,是展开式的第6项.∴B 正确.又由通项T r +1=C r 10a10-r (-b )r =(-1)r C r 10a10-rb r 知,第6项的系数-C 510最小.∴D 正确.4.下图是一个类似杨辉三角的递推式,则第n 行的首尾两个数均为________.1 3 3 5 6 5 7 11 11 7 9 18 22 18 9 … … … … … …解析:由1,3,5,7,9,…,可知它们成等差数列,所以a n =2n -1. 答案:2n -1 能力提升5.若(1+a )+(1+a )2+(1+a )3+… +(1+a )n =b 0+b 1a +b 2a 2+… +b n a n,且b 0+b 1+b 2+… +b n =30,则自然数n 的值为(C )A .6B .5C .4D .3解析:令a =1,得b 0+b 1+b 2+…+b n =2+22+ (2)=2(2n-1)2-1=2n +1-2,又b 0+b 1+b 2+…+b n =30,∴2n +1-2=30,解得n =4.6.设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b ,若13a =7b ,则m =(B )A .5B .6C .7D .8解析:由题知a =C m 2m ,b =C m +12m +1,所以13C m 2m =7C m +12m +1,即=13×(2m )!m !m !=7×(2m +1)!(m +1)!m !,解得m =6,故选B.7.若⎝ ⎛⎭⎪⎫2x -1x n 的展开式中所有二项式系数之和为64,则展开式的常数项为________. 解析:∵⎝ ⎛⎭⎪⎫2x -1x n 的展开式的二项式的二项系数之和为64,∴2n=64,∴n =6,由二项式定理的通项公式可知,Tr +1=C r n·(2x )6-r·⎝ ⎛⎭⎪⎫1x r =26-r (-1)r ·C r 6·x3-r. 当r =3时,展开式的常数项23(-1)3·C 36=-160.8.若⎝⎛⎭⎫x 2+1x 3n展开式的各项系数之和为32,则n =________,其展开式中的常数项为________(用数字作答).解析:依题意得2n=32,∴n =5, ∵T r +1=C r5(x 2)5-r·⎝⎛⎭⎫1x 3r=C r 5x 10-5x.令10-5r=0,得r=2,∴常数项为T3=C25=10.答案:5 109.已知(1+3x)n的展开式中,末三项的二项式系数的和等于121,求展开式中二项式系数最大的项.解析:由题意知,C n n+C n-1n+C n-2n=121,即C0n+C1n+C2n=121,所以1+n+n(n-1)2=121,即n2+n-240=0,解得:n=15或-16(舍去).所以在(1+3x)n展开式中二项式系数最大的项是第8、9两项,且T8=C715(3x)7=C71537x7,T9=C815(3x)8=C81538x8.10.(1)求证:1+2+22+…+25n-1能被31整除(n∈N*);(2)求S=C127+C227+…+C2727除以9的余数.(1)证明:1+2+22+…+25n-1=25n-12-1=25n-1=32n-1=(31+1)n-1=C0n×31n+C1n31n-1+…+C n-1n×31+C nn-1=31(C0n×31n-1+C1n×31n-2+…+C n-1n),显然上式括号内为整数,故原式能被31整除.(2)解析:S=C127+C227+…+C2727=227-1=89-1=(9-1)9-1=C09×99-C19×98+…+C89×9-C99-1=9(C09×98-C19×97+…+C89)-2=9(C09×98-C19×97+…+C89-1)+7,显然上式括号内的数是正整数.故S除以9的余数是7.。

1.3.2“杨辉三角”与二项式系数的性质 课件(人教A版选修2-3)

1.3.2“杨辉三角”与二项式系数的性质 课件(人教A版选修2-3)
Cr ·320- r·2r≥Cr+1·319- r·2r+ 1, 20 20 r - - 20- r r- C20·3 ·2r≥C20 1·321 r·2r 1, 3(r+1)≥2(20-r), 化简得 2(21-r)≥3r,
2 2 解得 7 ≤r≤8 (r∈N), 5 5 所以 r=8, 8 即 T9=C20312·28·x12y8 是系数绝对值最大的项. (3)由于系数为正的项为奇数项,故可设第 2r-1 项系数最大, 于是
如:求(a+x)n=a0+a1x+a2x2+…+anxn展开式中各项系 数和,可令x=1,即得各项系数和a0+a1+a2+…+an.若 要求奇数项的系数之和或偶数项的系数之和,可分别令x =-1,x=1,两等式相加或相减即可求出结果.
题型一
与杨辉三角有关的问题
【例1】 如图在“杨辉三角”中,斜线AB的 上方,从1开始箭头所示的数组成一 个锯齿形数列:1,2,3,3,6,4,
2
(2分)
(4分)
由于n=5为奇数,所以展开式中二项式系数最大的项为中
T3=C2(x3)3(3x2)2=90x6, 5
2 22
T4=C3(x3)2(3x2)3=270x 3 . 5
(6 分)
(2)展开式的通项公式为 假设
2 + r r Tr+1=C53 ·x3(5 2r).
Cr 3r≥Cr-1·3r-1, 5 5 r r Tr+1 项系数最大,则有 + + C53 ≥Cr 1·3r 1, 5
10,5,…,记其前n项和为Sn,求S19
的值. [思路探索] 本题关键是观察数列的特征,数列的每一项在 杨辉三角中的位置,把各项还原为二项展开式的二项式系 数,再利用组合数求解.
解 由图知,数列中的首项是 C2,第 2 项是 C1,第 3 项是 2 2 2 C2,第 4 项是 C1,„,第 17 项是 C10,第 18 项是 C1 ,第 19 3 3 10 2 项是 C11. 1 2 1 ∴S19=(C2+C2)+(C1+C3 )+(C4+C2)+„+(C1 +C2 )+C2 2 3 4 10 10 11 1 2 = (C 1 + C 3 + C 1 + „ + C 1 ) + (C 2 + C 2 + „ + C 11 ) = 2 4 10 2 3 (2+10)×9 +C3 =274. 12 2 规律方法 解决与杨辉三角有关的问题的一般思路是:通

高中数学选修2-3精品教案3:1.3.2 杨辉三角与二项式系数的性质教学设计

高中数学选修2-3精品教案3:1.3.2 杨辉三角与二项式系数的性质教学设计

1.3.2 “杨辉三角”与二项式系数的性质教学目标:1、德育渗透:介绍杨辉三角,加强爱国主义教育.2、知识目标:掌握二项式系数的性质,进一步认识组合数、组合数的性质.会应用二项式系数的性质解决一些简单问题.运用函数观点分析处理二项式系数的性质.3、能力目标:通过对问题的尝试、探究加强对学生观察、归纳、发现能力的在培养.教学重点:二项式系数的性质教学难点:二项式系数的性质2教学过程:教师的教学及活动学生的思维与活动媒体应用一、设疑(提出问题)提问:请同学观察这个图表的结果,有哪些规律?1 11 2 11 3 3 11 4 6 4 11 5 10 10 5 11 6 15 20 15 6 1……提问:为什么会有这些性质?介绍:这个图表我们把它叫做二项式系数表.在我国它又被叫做杨辉三角.这里还流传一个美丽动人的故事.在国外,这个表被称为帕斯卡三角.认为是法国数学家帕斯卡在17 世纪最早发现这一规律的.而在我国,早在13 世纪,杨辉在他的《详解九章算法》中就不仅有了这个的图表,还清楚地写着‘贾宪用此术’.贾宪是我国11 世学生思考后总结:(学生可以讨论、研究无须顺序总结)1)两边的数都是1.2)具有对称性.3)除1以外每个数都是肩上两个数的和.4)中间数最大.学生讨论后得出结论:这些数都是前面讲过的二项式系数.由学生翻阅材料介绍(通过古中国数学成就的介绍,加强对学生的爱国主义教育.)多媒体给出图表,显示学生的总结(可以设计跳转)纪的数学家,这就是说,杨辉三角的发现要比欧洲早五百年,也说明了古代中华民族就在数学上有着辉煌的成就.但是,杨辉,贾宪的成就只有《详解九章算法》中有记载而此书早已失传,仅在《永乐大典》中抄录了部分内容,这是证明杨、贾两人成就的唯一证据.《永乐大典》是极其珍贵的国宝,然而1900 年,八年联军侵占北京,把翰林院中的《永乐大典》残本掠走,运往英国.后来,中国数学家李俨的外国朋友在英国见到《永乐大典》残本,拍下了记载‘杨辉三角’内容的文字,并把照片寄给李俨,这段历史才得以证实,我们今天的数学课本中也才能堂堂正正地写上‘杨辉三角’.但是可惜的是,《永乐大典》的残本至今未能回到祖国的怀抱.二、尝试:(提出问题尝试解决)杨辉三角既然是二项式系数表我们就可以用杨辉三角来研究二项式系数的性质.提问:还可以用什么方法研究它的性质.提问:如何来做图象.提问:观察图象有何性质?为什么会有这种性质. 学生预习得出:函数图象可以形象,直观反应性质,我们还可以用函数图象来研究二项式的系数.学生讨论后回答:C n r可以看成以r为自变量的函数f(r),其定义域是{0,1,···,n}.观察图表及图象得出:对称性.这是二项式系数的性质1.学生总结:生:在二项展开式中,与首末两端“等距”的两项的二项式系数相等.学生证明:有组合数性质C n r=C n n-r得到.回答:它的值先增后减.回答:有,中间位置可能最大学生活动:(这里让学生讨论研究,尝试证明.让学板演,可以多种方法证明,让学生充分体会成功的喜悦.教师还可以让学生对不完善多媒体给出有关介绍及图片多媒体给出图象提问:能否用语言总结一下?提问:能否证明?提问:下面我们继续观察图象,还可以发现哪些问题?提问:有最大值吗?提问:能再具体一些吗?是哪些项二项式系数最大提问:目前我们已经发现了二项式系数的两个性质,二项式系数还有没有其它规律呢?我们看杨辉三角:1 1 21 2 1 221 3 3 1 231 4 6 4 1 241 5 10 10 5 1 251 6 15 20 15 6 1 26 ……提问:可以发现什么规律呢?提问:如何来证明呢?定义:这种方法我们叫赋值法,是解决与二项展开系数有关问题的重要手段.提问:我们已经发现并证明了二项式系数的三个性质,可以发现什么规律呢的证明加以补充.)(学生未必一下能说清楚,尽量鼓励学生说,积极参与)n为偶数时,中间一项二项式系数最大,中间一项是第12n+项;n为奇数是,中间两项二项式系数最大,中间两项是第23n,21n++项.(学生语言未必简捷,只要正确就要鼓励他往下说,以免打消学生的积极性)思考得出:(计算每行和)二项式系数和为2n(学生讨论,尝试证明并板演)可以多种方法.如(1+x)n中令x=1,或(a+b)n中令a=1,b=1.思考得出:奇数项二项式系数和等于偶数给出学生的确定函数的过程.多媒体给出图表多媒体给出图象奇数项和为偶数项和为1 11 12 1 2 1 222 1 33 1 2223 14 64 1 2324 1 5 10 10 5 1 2425 1 6 15 20 15 6 1 25 ……提问:如何来证明呢?强调:我们得到了奇数项的二项式系数和与偶数项的二项式系数和相等,但这并不意味着等号两边的个数相同.当n为偶数时,奇数项的二项式系数多一个;当n为奇数时,奇数项的二项式系数与偶数项的二项式系数个数才相同.提问:可有没有发现其他规律呢?1 7 21 35 21 7 11 8 28 56 56 28 8 1.......定义:这种方法我们叫递推法,我们可以无限得到下面的行的结果.三、归纳:时间关系,我们今天这堂课就研究到这里.本节课关键是利用杨辉三角形直观性发现并证明二项式系数的性质.教师归纳:我们可以把第一个性质简记为二项式系数对称规律,性质2简记为最大二项式系数规律,3、4两个性质所采取的方法——赋值法.性质5项二项式系数和为2n—1.既C n)+C n2+C n4+……=C n1+C n3+C n5……学生证明:(由于有例1的铺垫,学生很容易想到赋值法)(1+x)n中令x=-1,或(a+b)n中令a=1,b=-1.思考得出:由两边的数都是1.及除1以外每个数都是肩上两个数的和.可以向下接着写出下一行.1、7、21、35、21、7、1.学生总结:(由学生叙述这五个性质)多媒体给出图表,动画显示每行最大值多媒体闪烁指明最大值,并指出其项数.用了递推法.赋值法解决与二项展开系数有关问题的重要手段.递推法是我们数学归纳法的基本思想.四、反馈发现了这些性质对解题的帮助体现在哪儿呢?我们来看几组练习:(一)基础练习:1、(a+b)6展开式中的倒数第三项的二项式系数.2、若(a+b)n的展开式中,第三项的二项式系数与第五项的二项式系数相等,则n=?3、分别指出(a+b)20与(x+5y)15的展开式中哪些项的二项式系数最大,并分别求出其最大的二项式系数.(用组合数表示)4、已知(a+b)n的展开式中第十项和第十一项的二项式系数最大,求n的值.5.求(a+b)10的展开式中的各项的二项式系数和及奇数项的二项式系数和.(二)作业:P 111 4、8、五、板书设计:10.4 二项式定理(3)性质1 对称性性质2证明性质2 先增后减性质3证明性质3 二项式系数和2n性质4 奇数项二项式系数和等于偶数项二项式系数和为2n—1.性质5 递推法学生练习:(可以请一些基础较差的学生回答,使他们也体会成功的喜悦,完成基本教学要求.也可以分组抢答,激发学生的学习兴趣)学生讨论研究练习:(这两道题难度较大,给基础较好的学生一个提高的机会,体现了分层教学的思想)多媒体给出图表在学生计算过程中有动画效果多媒体给出图表在学生计算过程中有动画效果多媒体给出图表,并补充下面行的内容。

高中数学 第一章1.3 二项式定理 1.3.2“杨辉三角”与二项式系数的性质学案 新人教A版选修2-3

高中数学 第一章1.3 二项式定理 1.3.2“杨辉三角”与二项式系数的性质学案 新人教A版选修2-3

亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……学 习 资 料 专 题1.3.2 “杨辉三角”与二项式系数的性质学习目标:1.了解杨辉三角各行数字的特点及其与组合数性质、二项展开式系数性质间的关系,培养学生的观察力和归纳推理能力.(重点)2.理解和掌握二项式系数的性质,并会简单应用.(难点)3.理解和初步掌握赋值法及其应用.(重点)[自 主 预 习·探 新 知]1.杨辉三角的特点(1)在同一行中,每行两端都是1,与这两个1等距离的项的系数相等.(2)在相邻的两行中,除1以外的每一个数都等于它“肩上”两个数的和,即C r n +1=C r -1n+C rn .2.二项式系数的性质(1)对称性:在(a +b )n的展开式中,与首末两端“等距离”的两个二项式系数相等,即C 0n =C n n ,C 1n =C n -1n ,…,C r n =C n -rn .(2)增减性与最大值:当k <n +12时,二项式系数是逐渐增大的.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值.当n 是偶数时,中间一项的二项式系数C n 2n 取得最大值;当n 是奇数时,中间两项的二项式系数C n -12n与C n +12n相等,且同时取得最大值.3.各二项式系数的和 (1)C 0n +C 1n +C 2n +…+C n n =2n; (2)C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1.[基础自测]1.判断(正确的打“√”,错误的打“×”) (1)杨辉三角的每一斜行数字的差成一个等差数列. ( ) (2)二项展开式的二项式系数和为C 1n +C 2n +…+C nn . ( ) (3)二项展开式中系数最大项与二项式系数最大项相同.( )[解析] (1)√ 由杨辉三角可知每一斜行数字的差成一个等差数列,故正确. (2)× 二项展开式的二项式系数的和应为C 0n +C 1n +C 2n +…+C n n =2n.(3)× 二项式系数最大项不一定是二项式系数最大的项,只有当二项式系数与各项系数相等时,二者才一致.[答案](1)√(2)×(3)×2.(1-2x)15的展开式中的各项系数和是( )【导学号:95032084】A.1 B.-1C.215D.315B[令x=1即得各项系数和,∴和为-1.]3.在(a+b)10二项展开式中与第3项二项式系数相同的项是( )A.第8项B.第7项C.第9项D.第10项C[由二项式展开式的性质与首末等距离的两项的二项式系数相等.]4.(1-x)4的展开式中各项的二项式系数分别是( )【导学号:95032085】A.1,4,6,4,1B.1,-4,6,-4,1C.(-1)r C r4(r=0,1,2,3)D.(-1)r C r4(r=0,1,2,3,4)A[杨辉三角第4行的数字即为二项式系数.][合作探究·攻重难]个锯齿形数列:1,2,3,3,6,4,10,5,….记其前n项和为S n,求S19的值.图1­3­1[思路探究]由图知,数列中的首项是C22,第2项是C12,第3项是C23,第4项是C13,…,第17项是C210,第18项是C110,第19项是C211.[解]S19=(C22+C12)+(C23+C13)+(C24+C14)+…+(C210+C110)+C211=(C12+C13+C14+…+C110)+(C22+C23+…+C210+C211)=(2+3+4+…+10)+C312=+2+220=274.1.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15……按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为________.n 2-n +62[前n -1行共有正整数[1+2+…+(n -1)]个,即n 2-n2个,因此第n 行第3个数是全体正整数中第⎝ ⎛⎭⎪⎫n 2-n 2+3个,即为n 2-n +62.]012 2 018(1)求a 0+a 1+a 2+…+a 2 018的值; (2)求a 1+a 3+a 5+…+a 2 017的值; (3)求|a 0|+|a 1|+|a 2|+…+|a 2 018|的值.【导学号:95032086】[思路探究] 先观察所求式子与展开式各项的特点,利用赋值法求解. [解] (1)令x =1,得a 0+a 1+a 2+…+a 2 018=(-1)2 018=1.①(2)令x =-1,得a 0-a 1+a 2-…-a 2 017+a 2 018=32 018. ②①-②得2(a 1+a 3+…+a 2 017)=1-32 018, ∴a 1+a 3+a 5+…+a 2 017=1-32 0182.(3)∵T r +1=C r2 018(-2x )r=(-1)r·C r2 018·(2x )r, ∴a 2k -1<0(k ∈N *),a 2k >0(k ∈N ). ∴|a 0|+|a 1|+|a 2|+|a 3|+…+|a 2 017| =a 0-a 1+a 2-a 3+…-a 2 017+a 2018=32 018.,(ax 2+bx +c )m (a ,b ,c ∈R ,m ,n ∈N *)的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对(ax +by )n (a ,b ∈R ,n x =y =1即可.+-2,--2.2.已知(2x -3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,求: (1)a 0+a 1+a 2+a 3+a 4; (2)(a 0+a 2+a 4)2-(a 1+a 3)2.[解] (1)由(2x -3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4, 令x =1得(2-3)4=a 0+a 1+a 2+a 3+a 4, 所以a 0+a 1+a 2+a 3+a 4=1.(2)在(2x -3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4中, 令x =1得(2-3)4=a 0+a 1+a 2+a 3+a 4, ① 令x =-1得(-2-3)4=a 0-a 1+a 2-a 3+a 4. ②所以(a 0+a 2+a 4)2-(a 1+a 3)2=(a 0-a 1+a 2-a 3+a 4)(a 0+a 1+a 2+a 3+a 4) =(-2-3)4(2-3)4=(2+3)4(2-3)4=625.1.根据杨辉三角的特点,在杨辉三角同一行中与两个1等距离的项的系数相等,你可以得到二项式系数的什么性质?[提示] 对称性,因为C mn =C n -mn ,也可以从f (r )=C rn 的图象中得到. 2.计算C knC k -1n ,并说明你得到的结论.[提示] C k n C k -1n =n -k +1k.当k <n +12时,C knC k -1n >1,说明二项式系数逐渐增大;同理,当k >n +12时,二项式系数逐渐减小.3.二项式系数何时取得最大值?[提示] 当n 是偶数时,中间的一项取得最大值;当n 是奇数时,中间的两项C n -12n,C n +12n相等,且同时取得最大值.已知f (x )=(3x 2+3x 2)n展开式中各项的系数和比各项的二项式系数和大992. (1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.【导学号:95032087】[思路探究] 求二项式系数最大的项,利用性质知展开式中中间项(或中间两项)是二项式系数最大的项;求展开式中系数最大的项,必须将x ,y 的系数均考虑进去,包括“+”“-”号.[解] 令x =1,则二项式各项系数的和为f (1)=(1+3)n =4n,又展开式中各项的二项式系数之和为2n .由题意知,4n -2n=992.∴(2n )2-2n-992=0, ∴(2n +31)(2n-32)=0,∴2n =-31(舍去)或2n=32,∴n =5.(1)由于n =5为奇数,∴展开式中二项式系数最大的项为中间两项,它们分别是 T 3=C 25(x 23)3(3x 2)2=90x 6,T 4=C 35(x 23)2(3x 2)3=270x 223.(2)展开式的通项公式为T r +1=C r 53r·x 23(5+2r ). 假设T r +1项系数最大, 则有{ C r 53r≥C r -15·3r -1,r 53r ≥C r +15·3r +1,∴⎩⎪⎨⎪⎧5!-r !r !×3≥5!-r !r -!,5!-r !r !≥5!-r !r +!×3,∴⎩⎪⎨⎪⎧3r ≥16-r ,15-r ≥3r +1.∴72≤r ≤92,∵r ∈N ,∴r =4. ∴展开式中系数最大的项为T 5=C 45x 23(3x 2)4=405x 263.3.(1+2x )n的展开式中第6项和第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项.[解] T 6=C 5n (2x )5,T 7=C 6n (2x )6, 依题意有C 5n 25=C 6n ·26⇒n =8,∴(1+2x )8的展开式中,二项式系数最大的项为T 5=C 48·(2x )4=1 120x 4.设第r +1项系数最大,则有∵r ∈{0,1,2,…,8},∴r=5或r=6.∴系数最大的项为T6=1 792x5,T7=1 792x6.[当堂达标·固双基]1.已知(a+b)n展开式中只有第5项的二项式系数最大,则n等于( )A.11 B.10C.9 D.8D[第5项的二项式系数最大,故展开式为9项,∴n=8.]2.在(x+y)n展开式中第4项与第8项的系数相等,则展开式中系数最大的项是( )【导学号:95032088】A.第6项B.第5项C.第5、6项D.第6、7项A[因为C3n=C7n,所以n=10,系数最大的项即为二项式系数最大的项.]3.若(x+3y)n的展开式中各项系数的和等于(7a+b)10的展开式中二项式系数的和,则n的值为________.5[(7a+b)10的展开式中二项式系数的和为C010+C110+…+C1010=210,令(x+3y)n中x=y =1,则由题设知,4n=210,即22n=210,解得n=5.]4.(2x-1)6展开式中各项系数的和为________;各项的二项式系数和为________.【导学号:95032089】1 64[在二项式中,令x=1,得各项系数和为1;各项的二项式系数之和为26=64.]5.已知(a-x)5=a0+a1x+a2x2+…+a5x5,若a2=80,求a0+a1+a2+…+a5的值.[解](a-x)5展开式的通项为T k+1=(-1)k C k5a5-k x k,令k=2,得a2=(-1)2C25a3=80,解得a=2,即(2-x)5=a0+a1x+a2x2+…+a5x5,令x=1,得a0+a1+a2+…+a5=1.所以a0+a1+a2+…+a5=1.。

高中数学 人教B版选修2-3 1.3.2杨辉三角教学设计

高中数学 人教B版选修2-3 1.3.2杨辉三角教学设计

《杨辉三角》教学设计一、教材分析《杨辉三角》是高中数学新课标人教B版选修2-3教材第1.3.2节的内容。

本节课是在学生学习了两个计数原理、组合及组合数的性质后,又具体学习了二项式定理、二项式系数等概念的基础上进行的。

“杨辉三角”的内涵实际上就是二项式系数的性质,其内容丰富,值得学生深入探讨。

对于杨辉三角所蕴含的规律,学生不难发现,而难点就在于如何把学生通过观察发现的规律进行归纳,进而推理论证,揭示其数学本质。

本节课利用了转化和化归的数学思想,把对观察得到的规律的证明化归为组合数性质的应用上。

从知识发生发展过程的角度上看,学生可以从直观上很好地观察发现杨辉三角中蕴含的数字规律,但对于高二的学生,他们思考问题的思维已经不仅仅满足于“知其然”,他们更渴望的是“知其所以然”,在老师适当的点拨下,学生能很自然地联系到上位知识,即组合数的性质与二项式系数的联系,通过师生合作完成知识发展过程的探究,这符合学生的认知规律,也体现了互助学习的价值观教育。

二、学情分析对于高二的学生来说,他们已经具备了比较理性的思考,对发现的规律能够尝试证明。

同时学生已掌握了组合及组合数的性质,这是突破本节课难点的基础。

本节课授课班级为普通班,在数学科的学习特点是个体存在较大差距,但学习积极性都很高。

另外,该班设有合作基层小组①,即小组内拥有稳定的成员,他们之间相互支持、鼓励和帮助,小组内部及小组之间有了一定的解决问题的能力,但对于本节课的难点——证明规律,学生还需要在老师的指导下共同完成。

三、教学目标:本节课让学生掌握二项展开式中的二项式系数的基本性质及其推导方法;通过对杨辉三角中蕴含的数字规律的初步探究,培养学生发现问题、提出问题、经过分析——猜想——证明以后解决问题的能力,激励学生自主创新;通过从不同的角度观察杨辉三角,培养学生要从多角度看问题的意识,提高学生解决实际问题的能力,在学习中鼓励学生在学习中学会交流、合作,培养学生团结协作的精神,同时,通过杨辉三角,了解中华优秀传统文化中的数学成就,体会其中的数学文化,培养学生的爱国情感。

高中数学 第一章 计数原理 1.3.2“杨辉三角”与二项式系数的性质教案 新人教A版选修2-3-新人

高中数学 第一章 计数原理 1.3.2“杨辉三角”与二项式系数的性质教案 新人教A版选修2-3-新人

1.3.2 “杨辉三角〞与二项式系数的性质●三维目标1.知识与技能(1)能认识杨辉三角,并能利用它解决实际问题.(2)记住二项式系数的性质,并能解决相关问题.2.过程与方法通过观察、分析杨辉三角数表的特点,掌握二项式系数的性质.3.情感、态度与价值观通过“杨辉三角〞的学习,了解中华民族的历史,增强爱国主义意识.●重点、难点重点:二项式系数的性质.难点:杨辉三角的结构.第一课时[问题导思](1)观察“杨辉三角〞发现规律①第一行中各数之和为多少?第二、三、四、五行呢?由此你能得出怎样的结论?②观察第3行中2与第2行各数之间什么关系?第4行中3与第2行各数之间什么关系?第5行中的4、6与第4行各数之间有什么关系?由此你能得出怎样的结论?[提示] (1)①20,21,22,23,24,第n行各数之和为2n-1.②2=1+1,3=2+1,4=1+3,6=3+3,相邻两行中,除1外的每一个数都等于它“肩上〞两个数的和,设C r n+1表示任一不为1的数,那么它“肩上〞两数分别为C r-1,C r n,所以C r n+1=nC r -1n +C r n .1.杨辉三角的特点(1)在同一行中,每行两端都是1,与这两个1等距离的项的系数相等.(2)在相邻的两行中,除1以外的每一个数都等于它“肩上〞两个数的和,即C r n +1=C r -1n +C rn .2.二项式系数的性质(1)对称性:在(a +b )n 的展开式中,与首末两端“等距离〞的两个二项式系数相等,即C 0n =C n n ,C 1n =C n -1n ,…,C r n =C n -rn .(2)增减性与最大值:当k <n +12时,二项式系数是逐渐增大的.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值.当n 是偶数时,中间一项的二项式系数C n2n 取得最大值;当n 是奇数时,中间两项的二项式系数C n -12n,C n +12n相等,且同时取得最大值.3.二项式系数的和(1)C 0n +C 1n +C 2n +…+C n n =2n .(2)C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1.图1-3-1例1 如图1-3-1所示,在“杨辉三角〞中,从1开始箭头所指的数组成一个锯齿形数列:1,2,3,3,6,4,10,5,…,记其前n 项和为S n ,求S 16的值.[思路探究] 观察数列的特点、它在杨辉三角中的位置,或者联系二项式系数的性质,直接对数列求和即可.[自主解答] 由题意及杨辉三角的特点可得:S 16=(1+2)+(3+3)+(6+4)+(10+5)+…+(36+9)=(C 22+C 12)+(C 23+C 13)+(C 24+C 14)+…+(C 29+C 19)=(C 22+C 23+C 24+...+C 29)+(2+3+ (9)=C 310+8×2+92=164.解决与杨辉三角有关的问题的一般思路:(1)观察:对题目进行多角度观察,找出每一行的数与数之间,行与行之间的数的规律. (2)表达:将发现的规律用数学式子表达. (3)结论:由数学表达式得出结论.本例条件不变,假设改为求S 21,那么结果如何? [解] S 21=(1+2)+(3+3)+(6+4)+…+(55+11)+66=(C 22+C 12)+(C 23+C 13)+(C 24+C 14)+…+(C 211+C 111)+C 212=(C 22+C 23+C 24+……C 212)+(2+3+…+11) =C 313+2+11×102=286+65 =351.第二课时例1:设(1-2x )2 012=a 0+a 1x +a 2x 2+…+a 2 012·x 2 012(x ∈R ). (1)求a 0+a 1+a 2+…+a 2 012的值. (2)求a 1+a 3+a 5+…+a 2 011的值. (3)求|a 0|+|a 1|+|a 2|+…+|a 2 012|的值.[思路探究] 先观察所要求的式子与展开式各项的特点,用赋值法求解. [自主解答] (1)令x =1,得a 0+a 1+a 2+…+a 2 012=(-1)2 012=1.①(2)令x =-1,得a 0-a 1+a 2-…+a 2 012=32 012.② ①-②得2(a 1+a 3+…+a 2 011)=1-32 012, ∴a 1+a 3+a 5+…+a 2 011=1-32 0122.(3)∵T r +1=C r 2012(-2x )r =(-1)r ·C r 2 012·(2x )r,∴a 2k -1<0(k ∈N *),a 2k >0(k ∈N ). ∴|a 0|+|a 1|+|a 2|+|a 3|+…+|a 2 012| =a 0-a 1+a 2-a 3+…+a 2 012=32 012.1.此题根据问题恒等式的特点采用“特殊值〞法即“赋值法〞,这是一种重要的方法,适用于恒等式.2.“赋值法〞是解决二项展开式中项的系数常用的方法,根据题目要求,灵活赋给字母不同值.一般地,要使展开式中项的关系变为系数的关系,令x=0可得常数项,令x=1可得所有项系数之和,令x=-1可得偶次项系数之和与奇次项系数之和的差.例2:(1-2x)7=a0+a1x+a2x2+…+a7x7,求(1)a1+a2+…+a7;(2)a1+a3+a5+a7,a0+a2+a4+a6.[解] (1)∵(1-2x)7=a0+a1x+a2x2+…+a7x7,令x=1,得a0+a1+a2+…+a7=-1,①令x=0,得a0=1,∴a1+a2+…+a7=-2.(2)令x=-1,得a0-a1+a2-a3+…+a6-a7=37=2187,②由①、②得a1+a3+a5+a7=-1 094,a0+a2+a4+a6=1 093.例3f(x)=(3x2+3x2)n展开式中各项的系数和比各项的二项式系数和大992.(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项.[思路探究] 求二项式系数最大的项,利用性质知展开式中中间项(或中间两项)是二项式系数最大的项;求展开式中系数最大的项,必须将x,y的系数均考虑进去,包括“+〞、“-〞号.[自主解答] 令x=1,那么二项式各项系数的和为f(1)=(1+3)n=4n,又展开式中各项的二项式系数之和为2n.由题意知,4n-2n=992.∴(2n)2-2n-992=0,∴(2n+31)(2n-32)=0,∴2n=-31(舍去),或2n=32,∴n=5.(1)由于n=5为奇数,所以展开式中二项式系数最大的项为中间两项,它们分别是假设T r +1项系数最大,那么有⎩⎪⎨⎪⎧C r 53r≥C r -15·3r -1,C r 53r ≥C r +15·3r +1,∴⎩⎪⎨⎪⎧5!5-r !r !×3≥5!6-r !r -1!,5!5-r !r !≥5!4-r !r +1!×3,∴⎩⎪⎨⎪⎧3r ≥16-r ,15-r ≥3r +1.∴72≤r ≤92,∵r ∈N ,∴r =4.小结:1.求二项式系数最大的项,根据二项式系数的性质,当n 为奇数时,中间两项的二项式系数最大;当n 为偶数时,中间一项的二项式系数最大.2.求展开式中系数最大项与求二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式组,解不等式的方法求得.练习:求(1+2x )7的展开式中的二项式系数最大项与系数最大项.[解] 在二项式系数C 07,C 17,C 27,…,C 77中,最大的是C 37与C 47,故二项式系数最大项是第4项与第5项,即T 4=C 37(2x )3=280x 3与T 5=C 47(2x )4=560x 4.设第r +1项的系数最大,那么由⎩⎪⎨⎪⎧T r +1≥T r ,T r +1≥T r +2⇒⎩⎪⎨⎪⎧C r 72r ≥C r -172r -1,C r 72r≥C r +172r +1⇒⎩⎪⎨⎪⎧3r ≤16,3r ≥13,由于r 是整数,故r =5,所以系数最大的是第6项,即T 6=C 57(2x )5=672x 5.第三课时例4 (2x -1)n 二项展开式中,奇次项系数的和比偶次项系数的和小38,那么C 1n +C 2n +C 3n+…+C n n的值为( )A.28B.28-1 C.27D.27-1[错解] 设(2x-1)n=a0+a1x+a2x2+…+a n x n,令A=a1+a3+a5+…,B=a0+a2+a4+…,由题意知B-A=38.令x=-1得a0-a1+a2-a3+…+a n(-1)n=(-3)n,∴(a0+a2+…)-(a1+a3+…)=(-3)n∴B-A=(-3)n=38,∴n=8.由二项式系数性质可得,a1n+a2n+…+C n n=2n=28[答案] A[错因分析] 误将C1n+C2n+…+C n n看作是二项展开式各项二项式系数和,忽略了C0n.[防X措施] (1)解答此题应认真审题,搞清条件以及所要求的结论,避免失误.(2)解决此类问题时,要对二项式系数的性质熟练把握,尤其是赋值法,要根据题目的要求,灵活赋给字母所取的不同值.[正解] 设(2x-1)n=a0+a1x+a2x2+…+a n x n,且奇次项的系数和为A,偶次项的系数和为B.那么A=a1+a3+a5+…,B=a0+a2+a4+a6+….由可知:B-A=38.令x=-1,得:a0-a1+a2-a3+…+a n(-1)n=(-3)n,即:(a0+a2+a4+a6+…)- (a1+a3+a5+a7+…)=(-3)n,即:B-A=(-3)n.∴(-3)n=38=(-3)8,∴n=8.由二项式系数性质可得:C1n+C2n+C3n+…+C n n=2n-C0n=28-1.[答案] B二项式系数的有关性质的形成过程表达了观察——归纳——猜想——证明的数学方法,并且在归纳证明的过程中应用了函数、方程等数学思想,大致对应如下:对称性应用了组合数的性质增减性与最大值应用了组合数公式、分类讨论思想等系数和应用了赋值法、方程思想1.(a+b)7的各二项式系数的最大值为( )A.21 B.35 C.34 D.70[答案] B2.在(a-b)20的二项展开式中,二项式系数与第6项二项式系数相同的项是( ) A.第15项B.第16项C.第17项D.第18项[解析] 由二项式系数的性质知与第6项系数相等的项应为倒数第6项,即第16项.[答案] B3.(1+2x)2n的展开式中,二项式系数最大的项所在的项数是第________项.[解析] (1+2x)2n的展开式中共有2n+1项,中间一项的系数最大,即第n+1项.[答案] n+14.(1-2x+3x2)7=a0+a1x+a2x2+…+a13x13+a14x14,试求:(1)a0+a1+a2+…+a14;(2)a1+a3+a5+…+a13.[解] (1)在等式中令x=1,那么得:a0+a1+a2+…+a13+a14=27=128.①(2)在等式中令x=-1,那么得:a0-a1+a2-a3+…-a13+a14=67.②①-②得:2(a1+a3+a5+…+a13)=27-67=-279 808.因此,a1+a3+a5+…+a13=-139 904.。

数学人教A版选修2-3教案:1.3.2“杨辉三角”与二项式系数的性质含解析

数学人教A版选修2-3教案:1.3.2“杨辉三角”与二项式系数的性质含解析

1.3.2“杨辉三角"与二项式系数的性质教学目标知识与技能1.利用二项式定理得出二项式系数的一些性质;2.能运用二项式系数的性质解决一些简单问题.过程与方法1.熟知二项式系数的对称性、单调性、最大项及所有二项式系数之和等结论;2.熟练运用赋值法求一些代数式的值.情感、态度与价值观1.培养学生观察、归纳、发现的能力以及分析问题与解决问题的能力.2.通过学习“杨辉三角”的有关知识,了解我们国家悠久的文化传统,陶冶学生的爱国主义情操,进一步提升学生学好数学用好数学的决心和勇气,提升学生学习数学的兴趣.重点难点教学重点:了解“杨辉三角"的结构与规律,掌握二项式系数的一些性质,掌握赋值法.教学难点:二项式系数性质的得到和证明,利用二项式系数的性质解决有关问题.错误!错误!前面我们学习了二项式定理,请回顾:(1)(a+b)n=__________________(n∈N*),这个公式表示的定理叫做二项式定理,公式右边的多项式叫做(a+b)n的__________________,其中C错误!(r=0,1,2,…,n)叫做____________,通项是指展开式的第________________项,展开式共有______________项.(2)什么是二项式系数?什么是系数?活动设计:学生先独立回忆,然后独立发言,其他同学进行补充,必要时可以看书.活动结果:(答案展示)(1)(a+b)n=C0n a n+C错误!a n-1b+C错误!a n-2b2+…+C错误!a n-r b r +…+C n n b n(n∈N)、展开式、二项式系数、r+1、n+1。

(2)二项式系数是C错误!,系数是变量前的常数.设计意图:通过复习二项式定理的有关知识,为发现杨辉三角的有关性质打下基础,形成知识储备,引出本节课要研究的内容.提出问题:计算(a+b)n展开式的二项式系数并填入下表n展开式的二项式系数1234567活动设计:通过学案或者投影展示表格,学生填空,学生之间可以交流,教师指导.。

数学:1.3.2《“杨辉三角”与二项式系数的性质》课件(新人教A版选修2-3)

数学:1.3.2《“杨辉三角”与二项式系数的性质》课件(新人教A版选修2-3)
1 1
8
1 1 1 1 1 1 1 7
28 6 3
1 2
3 6
1 1 4 1
4
5 10
15 21 35 56
10 5 1 20 15 6 1 35 70
图2
21 7
56 28 8
1 1
除了这几个数的排列规 , 你还能再找出其他一些 律 数的 排列规律吗? 与同学交流一下 !
作业:P37(A组7—8和B组)
n 0 n n 1 n 1 n 2 n2 2 n
C C C , 1 3 5 偶数项二项式系数的和 Cn Cn Cn , 为
0 n 2 n 4 n
n n n
0 2 C b 中, 令a 1, b 1, 则得 1 1 Cn C1 Cn n 0 2 3 n n 3 即 0 Cn Cn C1 Cn , n Cn 1 Cn , n n n n

对于a b 展开式的二项
n
f r
20 15 10
式系数 C , C , C , , C , 我们还可以从函数角度 来
0 n 1 n 2 n n n r n
分析它们.C 可看成是以r 为自变量的函数f r , 其定 o 1 2 3 4 5 6 图1.3 2 义域是 0,1 2, , n .对于确 , 定的n, 我们还可以画出它的图 .例如n 6, 象 其图象是7个孤立点图1.3 2). (
1.3 二项式定理
1.3.2 " 杨辉三角 与二项式系数的性质 "
探究 用计算器计算 a b 展开式的二项 式系数并填入下表 .
n
n
1 2 3 4 5 6

高中数学选修2-3精品教案5:1.3.2 “杨辉三角”与二项式系数的性质 教学设计

高中数学选修2-3精品教案5:1.3.2 “杨辉三角”与二项式系数的性质 教学设计

1.3.2“杨辉三角”与二项式系数的性质知识目标:进一步探索杨辉三角的基本性质及二项式系数的性质,形成知识网络;能力目标:培养学生发现问题、提出问题、解决问题的能力,重点培养创新能力;情感目标:了解我国古今数学的伟大成就,增强爱国情感.教学重点:杨辉三角的基本性质及数字排列规律的探求.教学难点:杨辉三角的基本性质及数字排列规律的探求.教学方法:引导探究教学过程一、课题引入1.引言: 为什么要研究杨辉三角?▲教学意图研究杨辉三角的意义(1)在学习了排列组合概率和数学归纳法等知识后,继续研究杨辉三角的性质,进一步探索杨辉三角的基本性质及其中蕴含的数量关系,培养发现问题、分析问题、解决问题的能力.同时复习巩固所学知识,发现知识间的联系.(2)通过探究杨辉三角,不断培养创新能力.(创新是发展的不竭动力)(3)了解古今数学家的伟大成就,进行爱国主义教育;2.什么是杨辉三角?教学意图复习杨辉三角二项式(a+b)n展开式的二项式系数,当n依次取1,2,3...时,列出的一张表,叫做二项式系数表,因它形如三角形,南宋的杨辉对其有过深入研究,所以我们又称它为杨辉三角.(如图)3.介绍杨辉——古代数学家的杰出代表Array▲教学意图了解数学家杨辉及其成就, 增强民族自豪感杨辉,杭州钱塘人.中国南宋末年数学家,数学教育家.著作甚多,他编著的数学书共五种二十一卷,著有《详解九章算法》十二卷(1261年)、《日用算法》二卷、《乘除通变本末》三卷、《田亩比类乘除算法》二卷、《续古摘奇算法》二卷.其中后三种合称《杨辉算法》,朝鲜、日本等国均有译本出版,流传世界.“杨辉三角”出现在杨辉编著的《详解九章算法》一书中,此书还说明表内除“一”以外的每一个数都等于它肩上两个数的和.杨辉指出这个方法出于《释锁》算书,且我国北宋数学家贾宪(约公元11世纪)已经用过它,这表明我国发现这个表不晚于11世纪.在欧洲,这个表被认为是法国数学家物理学家帕斯卡首先发现的(Blaise Pascal, 1623年~1662年),他们把这个表叫做帕斯卡三角.这就是说,杨辉三角的发现要比欧洲早500年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的.二、问题研究观察杨辉三角所蕴含的数量关系11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 11 6 15 20 15 6 11 7 21 35 35 21 7 11 8 28 56 70 56 28 8 11 9 36 84 126 126 84 36 9 11 10 45 120 210 252 210 120 45 10 11 11 55 165 330 462 462 330 165 55 11 11 12 66 220 495 792 924 792 495 220 66 12 11 13 78 286 715 1284 1716 1716 1284 715 286 78 13 1三、讲解新课:1.二项式系数的性质:()n a b +展开式的二项式系数是0C n ,1C n ,2C n ,…,C n n .C r n 可以看成以r 为自变量的函数()f r 定义域是{0,1,2,,}n ,例当6n =时,其图象是7个孤立的点(如图)(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵C C m n mn n -=).直线2nr =是图象的对称轴. (2)增减性与最大值.∵1(1)(2)(1)1C C !k k n n n n n n k n k k k----+-+==⋅, ∴C k n 相对于1C k n -的增减情况由1n k k -+决定,1112n k n k k -++>⇔<, 当12n k +<时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值;当n 是偶数时,中间一项2C nn 取得最大值;当n 是奇数时,中间两项12C n n -,12Cn n+取得最大值.(3)各二项式系数和: ∵1(1)1C C nr rn n n x x x x +=+++++,令1x =,则0122C C C C C nr nn n n n n =++++++四、讲解范例: 问题导学一、与杨辉三角有关的问题 活动与探究1如图所示,在杨辉三角中,斜线AB 上方箭头所示的数组成一个锯齿形的数列:1,2,3,3,6,4,10,…,记这个数列的前n 项和为S (n ),则S (16)等于( )A .144B .146C .164D .461 迁移与应用下列是杨辉三角的一部分.(1)你能发现组成它的相邻两行数有什么关系吗? (2)从图中的虚线上的数字你能发现什么规律?解决与杨辉三角有关的问题的一般思路是:通过观察找出每一行数据间的相互联系以及行与行间数据的相互联系.然后将数据间的这种联系用数学式子表达出来,使问题得解.注意观察方向:横看、竖看、斜看、连续看、隔行看,从多角度观察. 二、二项式系数的性质 活动与探究2(1+2x )n 的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项. 迁移与应用1.⎝⎛⎭⎫x -1x 10的展开式中,系数最大的项为( ) A .第六项 B .第三项 C .第三项和第六项 D .第五项和第七项2.若⎝⎛⎭⎫x 3+1x 2n (n ∈N *)的展开式中只有第6项系数最大,则该展开式中的常数项为( ) A .462 B .252 C .210 D .10(1)求二项式系数最大的项,根据二项式系数的性质,当n 为奇数时,中间两项的二项式系数最大;当n 为偶数时,中间一项的二项式系数最大.(2)求展开式中系数最大项与求二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式组、解不等式的方法求得. 三、二项式系数、展开式系数的求和 活动与探究31.设1132(3)nx x +的二项展开式中各项系数之和为t ,二项式系数和为h ,若h +t =272,则二项展开式含x 2项的系数为__________.2.设函数f (x ,y )=⎝⎛⎭⎫1+m y x (m >0,y >0).若f (4,y )=a 0+a 1y +a 2y 2+a 3y 3+a 4y 4,且a 0+a 1+a 2+a 3+a 4=81,则a 0+a 2+a 4=__________. 迁移与应用1.若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为( ) A .1 B .-1 C .0 D .22.已知(2x -1)n =a 0+a 1x +a 2x 2+…+a n x n 展开式中偶数项的二项式系数和为32,若偶数次项的系数和为h ,奇数次项的系数和为t ,则h 2-t 2=__________.赋值法是求二项展开式系数及有关问题的常用方法,注意取值要有利于问题的解决,可以取一个值或几个值,也可以取几组值,解决问题时要避免漏项.一般地,对于多项式f (x )=a 0+a 1x +a 2x 2+…+a n x n ,各项系数和为f (1),奇次项系数和为12[f (1)-f (-1)],偶次项系数和为12[f (1)+f (-1)],a 0=f (0).课前·预习导学活动与探究1 思路分析:该数列从第3项开始每隔一项等于前两项的和.解答本题可观察数列的各项在杨辉三角中的位置,把各项还原为各二项展开式的二项式系数,然后利用组合数的性质求和.【解析】由题图知,数列中的首项是C 22,第2项是C 12,第3项是C 23,第4项是C 13,…,第15项是C 29,第16项是C 19.∴S (16)=C 12+C 22+C 13+C 23+…+C 19+C 29 =(C 12+C 13+…+C 19)+(C 22+C 23+…+C 29) =(C 22+C 12+C 13+…+C 19-C 22)+(C 33+C 23+…+C 29) =C 210+C 310-1=164. 【答案】C迁移与应用 解:(1)杨辉三角的两条腰都是由数字1组成的,其余的数都等于它肩上的两个数之和.(2)设a 1=1,a 2=3,a 3=6,a 4=10,…,若令b n =a n +1-a n ,则b 1=2,b 2=3,b 3=4,所以可得{b n }是等差数列,从而得出其每一斜行数字的差组成一个等差数列.活动与探究2 思路分析:求(a +bx )n 的展开式中系数最大的项,通常用待定系数法,即先设展开式中的系数分别为A 1,A 2,…,A n +1,再设第k +1项系数最大,则由不等式组⎩⎪⎨⎪⎧A k +1≥A k ,A k +1≥A k +2确定k 的值. 解:T 6=C 5n (2x )5,T 7=C 6n (2x )6,依题意有C 5n 25=C 6n 26⇒n =8.∴(1+2x )8的展开式中,二项式系数最大的项为 T 5=C 48·(2x )4=1 120x 4. 设第k +1项系数最大,则有⎩⎪⎨⎪⎧ C k 8·2k ≥C k -18·2k -1C k 8·2k ≥C k +18·2k +1⇒5≤k ≤6.∴k =5或k =6(∵k ∈{0,1,2,…,8}). ∴系数最大的项为T 6=1 792x 5,T 7=1 792x 6. 迁移与应用1.【解析】由二项式定理可知,展开式中,二项式系数与对应的项的系数的绝对值相等.由于二项式系数的最大项为T 6,且T 6=C 510x 5·⎝⎛⎭⎫-1x 5=-C 510中的二项式系数等于项的系数的相反数,此时T 6的系数最小.而T 5=C 410·x 6·⎝⎛⎭⎫-1x 4=C 410x 2,T 7=C 610x 4·⎝⎛⎭⎫-1x 6=C 610·x -2,且C 410=C 610, ∴系数最大的项为第五项和第七项. 【答案】D2.【解析】由于展开式中只有第6项的系数最大,且其系数等于其二项式系数,所以展开式项数为11,从而n =10,于是得其常数项为C 610=210. 【答案】C活动与探究3 思路分析:本题主要考查二项式系数与各项系数的区别,用赋值法求各项系数和,利用公式求二项式系数和.1.【解析】由已知令x =1,则展开式各项系数和t =(3+1)n =4n ,二项式系数和h =C 0n +C 1n +…+C n n =2n,∴h +t =4n +2n =272,解得n =4. ∴(3x 13+x 12)n =(3 x 13+x 12)4.则展开式的通项公式为T r +1=C r 4·(3x 13)4-r ·(x 12)r =34-r C r 4x 43+r6, 令43+r6=2,则r =4. ∴含x 2项的系数为1. 【答案】12.思路分析:由a 0+a 1+a 2+a 3+a 4=81表示的为各项系数和,可令y =1求得m 值.a 0+a 2+a 4为奇数项系数和,可令y =-1,结合已知求出. 【解析】f (4,y )=a 0+a 1y +a 2y 2+a 3y 3+a 4y 4=⎝⎛⎭⎫1+m y 4, 令y =1,得a 0+a 1+a 2+a 3+a 4=(1+m )4=81, 又m >0,∴m =2.令y =-1,得a 0-a 1+a 2-a 3+a 4=(1-m )4=1. 两式相加得2(a 0+a 2+a 4)=82, ∴a 0+a 2+a 4=41. 【答案】41迁移与应用 1.【解析】令x =1,得a 0+a 1+a 2+a 3+a 4=(2+3)4,令x =-1,得a 0-a 1+a 2-a 3+a 4=(3-2)4.∴(a 0+a 2+a 4)2-(a 1+a 3)2=(a 0+a 1+a 2+a 3+a 4)·(a 0-a 1+a 2-a 3+a 4) =(2+3)4·(-2+3)4=[(3+2)(3-2)]4=1. 【答案】12.【解析】由已知2n -1=32,∴n =6.∴(2x -1)6=a 0+a 1x +a 2x 2+…+a 6x 6. 令x =1,得a 0+a 1+a 2+…+a 6=1,令x =-1,得a 0-a 1+a 2-a 3+a 4-a 5+a 6=(-3)6. 而h =a 0+a 2+a 4+a 6,t =a 1+a 3+a 5, ∴h 2-t 2=(h +t )(h -t )=36=729. 【答案】729当堂检测1.111x x ⎛⎫- ⎪⎝⎭的展开式中二项式系数最大的项是( )A .第6项B .第8项C .第5,6项D .第6,7项 【解析】由n =11为奇数,则展开式中第1112+项和第11112++项,即第6项和第7项的二项式系数相等,且最大. 【答案】D2.已知(a -x )5=a 0+a 1x +a 2x 2+…+a 5x 5,若a 2=80,则a 0+a 1+a 2+…+a 5=( )A .32B .1C .-243D .1或-243【解析】展开式的通项为T r +1=(-1)r 5C r·a 5-r ·x r ,令r =2,则a 2=(-1)225C ·a 3=80,∴a =2.∴(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,令x =1,得a 0+a 1+…+a 5=1. 【答案】B3.设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( )A .5B .6C .7D .8【解析】由题意可知,2C mm a =,21C mm b +=,又∵13a =7b ,∴(2)!(21)137!!!(1)!m m m m m m +⋅=⋅+, 即132171m m +=+.解得m =6. 【答案】B4.已知21nx x ⎛⎫+ ⎪⎝⎭的二项展开式中奇数项的二项式系数和为16,则二项展开式中x 的系数为__________.【解析】由已知2n -1=16,n =5,∴521x x ⎛⎫+ ⎪⎝⎭展开式的通项为T r +1=5C r ·(x 2)5-r ·1rx ⎛⎫ ⎪⎝⎭=5C r ·x 10-3r , 令10-3r =1,则r =3,∴含x 项的系数为35C 10=. 【答案】105.在822x x ⎛⎫- ⎪⎝⎭的展开式中,(1)系数的绝对值最大的项是第几项? 解:T r +1=8822C ()rr rx x -⎛⎫⋅- ⎪⎝⎭=(-1)r ·8C r ·2r ·542rx -. (1)设第r +1项系数的绝对值最大,则11881188C 2C 2C 2C 2.r r r r r r r r ++--⎧⋅≥⋅⎪⎨⋅≥⋅⎪⎩,∴12,8121.9r r r r⎧≥⎪⎪-+⎨⎪≥⎪-⎩故系数绝对值最大的项是第6项和第7项. (2)求二项式系数最大的项.解:二项式系数最大的项为中间项,即为第5项.∴T 5=48C ·24·2042x -=1 120x -6.(3)求系数最大的项.解:由(1)知,展开式中的第6项和第7项系数的绝对值最大,而第6项的系数为负,第7项的系数为正.则系数最大的项为T 7=68C ·26·x -11=1 792x-11.(4)求系数最小的项.解:系数最小的项为T 6=(-1)558C·25172x-=-1 792172x-.提示:用最精练的语言把你当堂掌握的核心知识的精华部分和基本技能的要领部分写下来并进行识记.课堂练习1.()()4511x x +-展开式中4x 的系数为,各项系数之和为2.多项式12233()C (1)C (1)C (1)C (1)nn n n n n f x x x x x =-+-+-++-(6n >)的展开式中,6x 的系数为 3.若二项式231(3)2n x x-(N n *∈)的展开式中含有常数项,则n 的最小值为() A.4 B.5 C.6 D.84.某企业欲实现在今后10年内年产值翻一番的目标,那么该企业年产值的年平均增长率最低应()A.低于5%B.在5%~6%之间C.在6%~8%之间D.在8%以上5.在(1)n x +的展开式中,奇数项之和为p ,偶数项之和为q ,则2(1)nx -等于()A.0B.pqC.22p q +D.22p q -6.求和:()2341012311111C C C C 1C 11111n nnn n n n n a a a a a a a a aa+------+-++------7.求()102x +的展开式中系数最大的项【答案】1. 45, 0 2. 0.提示:()()16nf x x n =->3. B4. C5.D6.()11n a a ---7.33115360T x +=小结:二项式定理体现了二项式的正整数幂的展开式的指数、项数、二项式系数等方面的内在联系,涉及到二项展开式中的项和系数的综合问题,只需运用通项公式和二项式系数的性质对条件进行逐个节破,对于与组合数有关的和的问题,赋值法是常用且重要的方法,同时注意二项式定理的逆用. 板书设计(略) 教学反思:二项展开式中的二项式系数都是一些特殊的组合数,它有三条性质,要理解和掌握好,同时要注意“系数”与“二项式系数”的区别,不能混淆,只有二项式系数最大的才是中间项,而系数最大的不一定是中间项,尤其要理解和掌握“取特值”法,它是解决有关二项展开式系数的问题的重要手段.二项式定理概念的引入,我们已经学过(a +b )2=a 2+2ab +b 2,(a +b )3=a 3+3a 2b +3ab 2+b 3,那么对一般情况;(a +b )n 展开后应有什么规律,这里n ∈N ,这就是我们这节课“二项式定理”要研究的内容.选择实验归纳的研究方式,对(a +b )n 一般形式的研究与求数列{a n }的通项公式有些类似,大家想想,求a n 时我们用了什么方法,学生:先写出前n 项,再观察规律,猜测其表达式,最后用数学归纳法证明,老师:大家说得很正确,现在我们用同样的方式来研究(a +b )4的展人教版高中数学选修2-3教学设计11 开,因(a +b )4=(a +b )3(a +b ),我们可以用(a +b )3展开的结论计算(a +b )4(由学生板演完成,体会计算规律)然后老师把计算过程总结为如下形式:(a +b )4=(a +b )3(a +b )=(a 3+3a 2b +3ab 2+b 3)(a +b )=a 4+3a 3b 2+ab 3+3a 2b 2+3ab 3+b 4=a 4+4a 3b +6a 2b 2 +4ab 3+b 4.对计算的化算:对(a +b )n 展开式中的项,字母指数的变化规律是十分明显的,大家能说出它们的规律吗?学生:a 的指数从n 逐次降到0,b 的指数从0逐次升到n ,老师:大家说的很对,这样一来展开式的项数就是从0到n 的(n +1)项了,但唯独系数规律还是“犹抱琵琶半遮面”使我们难以发现,但我们仍可用nn n n a a a 10,来表示,它这样一来(a +b )n 的展开形式就可写成(a +b )n =n n n r r n r n n n n n b a b a a b a a a a +++-- 110现在的问题就是要找r n a 的表达形式,为此 我们要采用抽象分析法来化简计算.。

高中数学 第一章“杨辉三角”与二项式系数的性质教案2 新人教A版选修2-3

高中数学 第一章“杨辉三角”与二项式系数的性质教案2 新人教A版选修2-3

高中数学选修2-3:第一章《“杨辉三角”与二项式系数的性质》教案2例4.在(x 2+3x+2)5的展开式中,求x 的系数 解:∵5552)2x ()1x ()2x 3x (++=++∴在(x+1)5展开式中,常数项为1,含x 的项为x 5C 15=,在(2+x)5展开式中,常数项为25=32,含x 的项为x 80x 2C 415= ∴展开式中含x 的项为 x 240)32(x 5)x 80(1=+⋅, ∴此展开式中x 的系数为240 例5.已知n2)x2x (-的展开式中,第五项与第三项的二项式系数之比为14;3,求展开式的常数项解:依题意2n 4n 2n 4n C 14C 33:14C :C =⇒=∴3n(n-1)(n-2)(n-3)/4!=4n(n-1)/2!⇒n=10设第r+1项为常数项,又 2r 510r 10r r 2r10r 101r x C )2()x2()x (C T --+-=-=令2r 02r510=⇒=-, .180)2(C T 221012=-=∴+此所求常数项为180例6. 设()()()()231111nx x x x ++++++++=2012n n a a x a x a x ++++,当012254n a a a a ++++=时,求n 的值解:令1x =得:230122222nn a a a a ++++=++++2(21)25421n -==-, ∴2128,7nn ==,点评:对于101()()()n n n f x a x a a x a a -=-+-++,令1,x a -=即1x a =+可得各项系数的和012n a a a a ++++的值;令1,x a -=-即1x a =-,可得奇数项系数和与偶数项和的关系例7.求证:1231232nn n n n n C C C nC n -++++=⋅.证(法一)倒序相加:设S =12323nn n n nC C C nC ++++ ① 又∵S =1221(1)(2)2n n n n n n n nnC n C n C C C --+-+-+++ ② ∵r n r n n C C -=,∴011,,n n n n n n C C C C -==,由①+②得:()0122nn n n n S n C C C C =++++,∴11222n n S n n -=⋅⋅=⋅,即1231232nn n n n n C C C nC n -++++=⋅.(法二):左边各组合数的通项为rnrC 11!(1)!!()!(1)!()!r n n n n r nC r n r r n r --⋅-=⋅==---,∴ ()1230121112123n n n n n n n n n n C C C nC n C C C C -----++++=++++12n n -=⋅. 例8.在10)32(y x -的展开式中,求: ①二项式系数的和; ②各项系数的和;③奇数项的二项式系数和与偶数项的二项式系数和; ④奇数项系数和与偶数项系数和; ⑤x 的奇次项系数和与x 的偶次项系数和.分析:因为二项式系数特指组合数rn C ,故在①,③中只需求组合数的和,而与二项式y x 32-中的系数无关.解:设10102829110010)32(y a y x a y x a x a y x ++++=- (*), 各项系数和即为1010a a a +++ ,奇数项系数和为0210a a a +++,偶数项系数和为9531a a a a ++++ ,x 的奇次项系数和为9531a a a a ++++ ,x 的偶次项系数和10420a a a a ++++ .由于(*)是恒等式,故可用“赋值法”求出相关的系数和.①二项式系数和为1010101100102=+++C C C .②令1==y x ,各项系数和为1)1()32(1010=-=-.③奇数项的二项式系数和为910102100102=+++C C C , 偶数项的二项式系数和为99103101102=+++C C C .④设10102829110010)32(y a y x a y x a x a y x ++++=- , 令1==y x ,得到110210=++++a a a a …(1),令1=x ,1-=y (或1-=x ,1=y )得101032105=++-+-a a a a a …(2) (1)+(2)得10102051)(2+=+++a a a , ∴奇数项的系数和为25110+;(1)-(2)得1093151)(2-=+++a a a , ∴偶数项的系数和为25110-.⑤x 的奇次项系数和为251109531-=++++a a a a ;x 的偶次项系数和为2511010420+=++++a a a a .点评:要把“二项式系数的和”与“各项系数和”,“奇(偶)数项系数和与奇(偶)次项系数和”严格地区别开来,“赋值法”是求系数和的常规方法之一.。

2020版高中数学 第一章 1.3.2“杨辉三角”与二项式系数的性质学案 新人教A版选修2-3

2020版高中数学 第一章 1.3.2“杨辉三角”与二项式系数的性质学案 新人教A版选修2-3

1.3.2 “杨辉三角”与二项式系数的性质学习目标 1.了解杨辉三角,会用杨辉三角求二项式乘方次数不大时的各项的二项式系数.2.理解二项式系数的性质并灵活运用.知识点“杨辉三角”与二项式系数的性质(a+b)n的展开式的二项式系数,当n取正整数时可以表示成如下形式:思考1 从上面的表示形式可以直观地看出什么规律?答案在同一行中,每行两端都是1,与这两个1等距离的项的系数相等;在相邻的两行中,除1以外的每一个数都等于它“肩上”两个数的和.思考2 计算每一行的系数和,你又能看出什么规律?答案2,4,8,16,32,64,…,其系数和为2n.思考3 二项式系数的最大值有何规律?答案当n=2,4,6时,中间一项最大,当n=3,5时中间两项最大.梳理(1)杨辉三角的特点①在同一行中,每行两端都是1,与这两个1等距离的项的系数相等.②在相邻的两行中,除1以外的每一个数都等于它“肩上”两个数的和,即C k n+1=C k-1n+Ckn.(2)二项式系数的性质性质内容对称性C m n=C n-mn,即二项展开式中,与首末两端“等距离”的两个二项式系数相等增减性与最大值如果二项式的幂指数n是偶数,那么展开式中间一项12nT+的二项式系数最大如果n为奇数,那么其展开式中间两项12nT+与112nT++的二项式系数相等且同时取得最大值各二项式系数的和二项展开式中各二项式系数的和等于2n,即C0n+C1n+C2n+…+C n n=2n奇数项的二项式系数之和等于偶数项的二项式系数之和,都等于2n-1,即C1n+C3n+C5n+…=C2n+C4n+C6n+…=2n-11.杨辉三角的每一斜行数字的差成一个等差数列.( ×)2.二项式展开式的二项式系数和为C1n+C2n+…+C n n.( ×)3.二项式展开式中系数最大项与二项式系数最大项相同.( ×)类型一与杨辉三角有关的问题例1 (1)杨辉三角如图所示,杨辉三角中的第5行除去两端数字1以外,均能被5整除,则具有类似性质的行是( )A.第6行 B.第7行 C.第8行 D.第9行(2)如图,在杨辉三角中,斜线AB上方箭头所示的数组成一个锯齿形的数列:1,2,3,3,6,4,10,…,记这个数列的前n项和为S(n),则S(16)等于( )A.144 B.146 C.164 D.461考点二项式系数的性质题点与杨辉三角有关的问题答案(1)B (2)C解析(1)由题意,第6行为1,6,15,20,15,6,1,第7行为1,7,21,35,35,21,7,1,故第7行除去两端数字1以外,均能被7整除.(2)由题干图知,数列中的首项是C22,第2项是C12,第3项是C23,第4项是C13,…,第15项是C29,第16项是C19,所以S(16)=C12+C22+C13+C23+…+C19+C29=(C12+C13+…+C19)+(C22+C23+…+C29)=(C22+C12+C13+…+C19-C22)+(C33+C23+…+C29)=C210+C310-1=164.反思与感悟解决与杨辉三角有关的问题的一般思路跟踪训练1 如图所示,在由二项式系数所构成的杨辉三角中,第________行中从左至右的第14个数与第15个数的比为2∶3.考点二项式系数的性质题点与杨辉三角有关的问题答案34解析由题意设第n行的第14个数与第15个数的比为2∶3,它等于二项展开式的第14项和第15项的二项式系数的比,所以C13n∶C14n=2∶3,即14n-13=23,解得n=34,所以在第34行中,从左至右第14个数与第15个数的比是2∶3.类型二二项式系数和问题例2 已知(2x-1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5.求下列各式的值:(1)a0+a1+a2+…+a5;(2)|a0|+|a1|+|a2|+…+|a5|;(3)a1+a3+a5.考点展开式中系数的和问题题点二项展开式中系数的和问题解(1)令x=1,得a0+a1+a2+…+a5=1.(2)令x=-1,得-35=-a0+a1-a2+a3-a4+a5.由(2x-1)5的通项T k+1=C k5(-1)k·25-k·x5-k知a1,a3,a5为负值,所|a0|+|a1|+|a2|+…+|a5|=a0-a1+a2-a3+a4-a5=35=243.(3)由a0+a1+a2+…+a5=1,-a0+a1-a2+…+a5=-35,得2(a1+a3+a5)=1-35.所以a 1+a 3+a 5=1-352=-121.引申探究在本例条件下,求下列各式的值: (1)a 0+a 2+a 4; (2)a 1+a 2+a 3+a 4+a 5; (3)5a 0+4a 1+3a 2+2a 3+a 4.解 (1)因为a 0+a 1+a 2+…+a 5=1, -a 0+a 1-a 2+…+a 5=-35. 所以a 0+a 2+a 4=1+352=122.(2)因为a 0是(2x -1)5展开式中x 5的系数, 所以a 0=25=32.又a 0+a 1+a 2+…+a 5=1, 所以a 1+a 2+a 3+a 4+a 5=-31.(3)因为(2x -1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5.所以两边求导数得10(2x -1)4=5a 0x 4+4a 1x 3+3a 2x 2+2a 3x +a 4. 令x =1得5a 0+4a 1+3a 2+2a 3+a 4=10. 反思与感悟 二项展开式中系数和的求法(1)对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R ,m ,n ∈N *)的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对(ax +by )n (a ,b ∈R ,n ∈N *)的式子求其展开式各项系数之和,只需令x =y =1即可. (2)一般地,若f (x )=a 0+a 1x +a 2x 2+…+a n x n,则f (x )展开式中各项系数之和为f (1), 奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2, 偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.跟踪训练2 在二项式(2x -3y )9的展开式中,求: (1)二项式系数之和; (2)各项系数之和; (3)所有奇数项系数之和. 考点 展开式中系数的和问题 题点 二项展开式中系数的和问题解 设(2x -3y )9=a 0x 9+a 1x 8y +a 2x 7y 2+…+a 9y 9. (1)二项式系数之和为C 09+C 19+C 29+…+C 99=29. (2)各项系数之和为a 0+a 1+a 2+…+a 9, 令x =1,y =1,所以a 0+a 1+a 2+…+a 9=(2-3)9=-1.(3)令x =1,y =-1,可得a 0-a 1+a 2-…-a 9=59,又a 0+a 1+a 2+…+a 9=-1,将两式相加可得a 0+a 2+a 4+a 6+a 8=59-12,即所有奇数项系数之和为59-12.类型三 二项式系数性质的应用例3 已知f (x )=(3x 2+3x 2)n 展开式中各项的系数和比各项的二项式系数和大992. (1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项. 考点 展开式中系数最大(小)的项问题 题点 求展开式中系数最大(小)的项解 令x =1,则二项式各项系数的和为f (1)=(1+3)n=4n,又展开式中各项的二项式系数之和为2n.由题意知,4n-2n=992.∴(2n )2-2n-992=0, ∴(2n+31)(2n-32)=0,∴2n=-31(舍去)或2n=32,∴n =5.(1)由于n =5为奇数,∴展开式中二项式系数最大的项为中间的两项,它们分别为T 3=C 25323x ⎛⎫ ⎪⎝⎭·(3x 2)2=90x 6,T 4=C 35223x ⎛⎫ ⎪⎝⎭·(3x 2)3=270223x .(2)展开式的通项公式为T k +1=C k 5·3k·2(52)3k x +,假设T k +1项系数最大,则有⎩⎪⎨⎪⎧C k 53k≥C k -153k -1,C k 53k ≥C k +153k +1,∴⎩⎪⎨⎪⎧5!(5-k )!k !×3≥5!(6-k )!(k -1)!,5!(5-k )!k !≥5!(4-k )!(k +1)!×3,即⎩⎪⎨⎪⎧3k ≥16-k ,15-k ≥3k +1,∴72≤k ≤92,∵k ∈N ,∴k =4, ∴展开式中系数最大的项为T 5=C 4523x (3x 2)4=405263x .反思与感悟 (1)二项式系数的最大项的求法求二项式系数的最大项,根据二项式系数的性质对(a +b )n中的n 进行讨论. ①当n 为奇数时,中间两项的二项式系数最大. ②当n 为偶数时,中间一项的二项式系数最大. (2)展开式中系数的最大项的求法求展开式中系数的最大项与求二项式系数最大项是不同的,需要根据各项系数的正、负变化情况进行分析.如求(a +bx )n(a ,b ∈R )的展开式中系数的最大项,一般采用待定系数法.设展开式中各项系数分别为A 0,A 1,A 2,…,A n ,且第k +1项最大,应用⎩⎪⎨⎪⎧A k ≥A k -1,A k ≥A k +1,解出k ,即得出系数的最大项.跟踪训练3 写出(x -y )11的展开式中: (1)二项式系数最大的项; (2)项的系数绝对值最大的项; (3)项的系数最大的项和系数最小的项; (4)二项式系数的和; (5)各项系数的和.考点 展开式中系数的和问题 题点 二项展开式中系数的和问题 解 (1)二项式系数最大的项为中间两项:T 6=-C 511x 6y 5,T 7=C 611x 5y 6.(2)(x -y )11展开式的通项为T k +1=C k 11x11-k (-y )k =C k 11(-1)k x 11-k y k , ∴项的系数的绝对值为|C k 11·(-1)k |=C k11,∴项的系数的绝对值等于该项的二项式系数,其最大的项也是中间两项,T 6=-C 511x 6y 5,T 7=C 611x 5y 6. (3)由(2)知中间两项系数绝对值相等, 又∵第6项系数为负,第7项系数为正,故项的系数最大的项为T 7=C 611x 5y 6,项的系数最小的项为T 6=-C 511x 6y 5. (4)展开式中,二项式系数的和为C 011+C 111+C 211+…+C 1111=211.(5)令x =y =1,得展开式中各项的系数和为C 011-C 111+C 211-…-C 1111=(1-1)11=0.1.观察图中的数所成的规律,则a 所表示的数是( )A .8B .6C .4D .2考点 二项式系数的性质 题点 与杨辉三角有关的问题 答案 B解析 由题图知,下一行的数是其肩上两数的和,所以4+a =10,得a =6. 2.(1+x )2n +1的展开式中,二项式系数最大的项所在的项数是( )A .n ,n +1B .n -1,nC .n +1,n +2D .n +2,n +3考点 展开式中系数最大(小)的项问题 题点 求展开式中二项式系数最大(小)的项 答案 C解析 2n +1为奇数,展开式中中间两项的二项式系数最大,分别为第⎝ ⎛⎭⎪⎫2n +1-12+1项,第⎝ ⎛⎭⎪⎫2n +1+12+1项,即第n +1项与第n +2项,故选C.3.已知⎝⎛⎭⎪⎪⎫x +33x n 展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于( ) A .4 B .5 C .6D .7考点 二项式系数的性质 题点 二项式系数与项的系数问题 答案 C解析 令x =1,各项系数和为4n,二项式系数和为2n,故有4n2n =64,所以n =6.4.设(-3+2x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 1+a 2+a 3的值为________. 考点 展开式中系数的和问题 题点 二项展开式中系数的和问题 答案 -15解析 令x =1,得a 0+a 1+a 2+a 3+a 4=1.① 又T k +1=C k4(-3)4-k(2x )k,∴当k =4时,x 4的系数a 4=16.② 由①-②得a 0+a 1+a 2+a 3=-15.5.已知⎝ ⎛⎭⎪⎫14+2x n的展开式中前三项的二项式系数的和等于37,则展开式中二项式系数最大的项的系数为________.考点 展开式中系数的和问题 题点 多项展开式中系数的和问题 答案358解析 由C 0n +C 1n +C 2n =37,得1+n +12n (n -1)=37,解得n =8(负值舍去),则第5项的二项式系数最大,T 5=C 48×144×(2x )4=358x 4,该项的系数为358.1.二项式系数的性质可从杨辉三角中直观地看出.2.求展开式中的系数或展开式中的系数的和、差的关键是给字母赋值,赋值的选择则需根据所求的展开式系数和特征来确定.一般地对字母赋的值为0,1或-1,但在解决具体问题时要灵活掌握. 3.注意以下两点:(1)区分开二项式系数与项的系数.(2)求解有关系数最大时的不等式组时,注意其中k ∈{0,1,2,…,n }.一、选择题1.如图是与杨辉三角有类似性质的三角形数垒,a ,b 是某行的前两个数,当a =7时,b 等于( )A .20B .21C .22D .23 考点 二项式系数的性质 题点 与杨辉三角有关的问题 答案 C解析 根据观察可知,每一行除开始和末尾的数外,中间的数分别是上一行相邻两个数的和,当a =7时,上面一行的第一个数为6,第二个数为16,所以b =6+16=22.2.若⎝⎛⎭⎪⎫x 3+1x 2n (n ∈N *)的展开式中只有第6项系数最大,则该展开式中的常数项为( )A .210B .252C .462D .10考点 二项展开式中的特定项问题 题点 求二项展开式的特定项 答案 A解析 由于展开式中只有第6项的系数最大,且其系数等于其二项式系数,所以展开式项数为11,从而n =10,于是得其常数项为C 610=210.3.已知关于x 的二项式⎝⎛⎭⎪⎪⎫x +a 3x n 展开式的二项系数之和为32,常数项为80,则a 的值为( ) A .1 B .±1 C.2 D .±2考点 展开式中系数的和问题 题点 二项展开式中系数的和问题 答案 C解析 由条件知2n =32,即n =5,在通项公式T k +1=C k 5(x )5-k ⎝ ⎛⎭⎪⎪⎫a 3x k =C k 5a k 1556k x -中,令15-5k =0,得k =3.所以C 35a 3=80,解得a =2.4.(x -1)11的展开式中,x 的奇次幂的系数之和是( ) A .2 048 B .-1 023 C .-1 024 D .1 024 考点 展开式中系数的和问题 题点 二项展开式中系数的和问题 答案 D解析 (x -1)11=a 0x 11+a 1x 10+a 2x 9+…+a 11, 令x =-1,则-a 0+a 1-a 2+…+a 11=-211,① 令x =1,则a 0+a 1+a 2+…+a 11=0,② ②-①2=a 0+a 2+a 4+…+a 10=210=1 024. 5.若x 10=a 0+a 1(x -1)+a 2(x -1)2+…+a 10(x -1)10,则a 8的值为( ) A .10 B .45 C .-9 D .-45考点 二项式定理题点 逆用二项式定理求和、化简 答案 B解析 x 10=[1+(x -1)]10=a 0+a 1(x -1)+a 2(x -1)2+…+a 10(x -1)10,∴a 8=C 810=C 210=45. 6.设⎝⎛⎭⎪⎫5x -1x n的展开式的各项系数和为M ,二项式系数和为N ,若M -N =240,则展开式中x 的系数为( )A .-150B .150C .300D .-300 考点 二项展开式中的特定项问题 题点 求二项展开式特定项的系数 答案 B解析 由已知条件4n -2n=240,解得n =4,T k +1=C k4(5x )4-k·⎝⎛⎭⎪⎫-1x k =(-1)k 54-k C k4342k x -,令4-3k2=1,得k =2,所以展开式中x 的系数为(-1)2×52C 24=150.7.已知(2x -1)n 二项展开式中,奇次项系数的和比偶次项系数的和小38,则C 1n +C 2n +C 3n +…+C nn 的值为( ) A .28B .28-1C .27D .27-1考点 展开式中系数的和问题 题点 二项展开式中系数的和问题 答案 B解析 设(2x -1)n =a 0+a 1x +a 2x 2+…+a n x n,且奇次项的系数和为A ,偶次项的系数和为B . 则A =a 1+a 3+a 5+…,B =a 0+a 2+a 4+a 6+…. 由已知可知,B -A =38.令x =-1, 得,a 0-a 1+a 2-a 3+…+a n (-1)n =(-3)n,即(a 0+a 2+a 4+a 6+…)-(a 1+a 3+a 5+a 7+…)=(-3)n, 即B -A =(-3)n .∴(-3)n =38=(-3)8,∴n =8. 由二项式系数性质可得,C 1n +C 2n +C 3n +…+C n n =2n -C 0n =28-1.8.关于下列(a -b )10的说法,错误的是( ) A .展开式中的二项式系数之和是1 024 B .展开式的第6项的二项式系数最大 C .展开式的第5项或第7项的二项式系数最大 D .展开式中第6项的系数最小 考点 二项式系数的性质 题点 二项式系数与项的系数问题 答案 C解析 由二项式系数的性质知C 010+C 110+C 210+…+C 1010=210=1 024,故A 正确.二项式系数最大的项为C 510,是展开式的第6项,故B 正确.由展开式的通项为T k +1=C k 10a 10-k(-b )k =(-1)k C k 10a10-k b k知,第6项的系数-C 510最小,故D 正确. 二、填空题9.已知(1+x )10=a 1+a 2x +a 3x 2+…+a 11x 10,若数列a 1,a 2,a 3,…,a k (1≤k ≤11,k ∈Z )是一个单调递增数列,则k 的最大值是________. 考点 二项式系数的性质题点 利用二项式系数的性质进行计算 答案 6解析 (1+x )n 展开式的各项系数为其二项式系数,当n =10时,展开式的中间项第六项的二项式系数最大,故k 的最大值为6.10.在⎝⎛⎭⎪⎫1x+31x 3n 的展开式中,所有奇数项系数之和为1 024,则中间项系数是________.考点 二项展开式中的特定项问题 题点 求二项展开式特定项的系数 答案 462解析 ∵二项式的展开式中所有项的二项式系数和为2n ,而所有偶数项的二项式系数和与所有奇数项的二项式系数和相等,故由题意得2n -1=1 024,∴n =11,∴展开式共12项,中间项为第六项、第七项,其系数为C 511=C 611=462.11.若x 4(x +3)8=a 0+a 1(x +2)+a 2(x +2)2+…+a 12(x +2)12,则log 2(a 1+a 3+…+a 11)=_____.考点 展开式中系数的和问题题点 二项展开式中系数的和问题答案 7解析 令x =-1,∴28=a 0+a 1+a 2+…+a 11+a 12.令x =-3,∴0=a 0-a 1+a 2-…-a 11+a 12,∴28=2(a 1+a 3+…+a 11),∴a 1+a 3+…+a 11=27,∴log 2(a 1+a 3+…+a 11)=log 227=7.三、解答题12.设(2-3x )100=a 0+a 1x +a 2x 2+…+a 100·x 100,求下列各式的值.(1)求a 0;(2)a 1+a 2+a 3+a 4+…+a 100;(3)a 1+a 3+a 5+…+a 99;(4)(a 0+a 2+…+a 100)2-(a 1+a 3+…+a 99)2;(5)|a 0|+|a 1|+…+|a 100|.考点 展开式中系数的和问题题点 二项展开式中系数的和问题解 (1)令x =0,则展开式为a 0=2100.(2)令x =1,可得a 0+a 1+a 2+…+a 100=(2-3)100,①所以a 1+a 2+…+a 100=(2-3)100-2100.(3)令x =-1,可得a 0-a 1+a 2-a 3+…+a 100=(2+3)100.②与①式联立相减得a 1+a 3+…+a 99=(2-3)100-(2+3)1002. (4)由①②可得,(a 0+a 2+…+a 100)2-(a 1+a 3+…+a 99)2=(a 0+a 1+a 2+…+a 100)(a 0-a 1+a 2-…+a 100)=(2-3)100·(2+3)100=1.(5)|a 0|+|a 1|+…+|a 100|,即(2+3x )100的展开式中各项系数的和,在(2+3x )100的展开式中,令x =1,可得各项系数的和为(2+3)100.13.已知⎝ ⎛⎭⎪⎫x +m x n展开式的二项式系数之和为256. (1)求n ;(2)若展开式中常数项为358,求m 的值; (3)若(x +m )n 展开式中系数最大项只有第6项和第7项,求m 的取值情况.考点 二项展开式中的特定项问题题点 由特定项或特定项的系数求参数解 (1)二项式系数之和为2n=256,可得n =8.(2)设常数项为第k +1项,则T k +1=C k 8x 8-k ⎝ ⎛⎭⎪⎫m x k =C k8m k x 8-2k , 故8-2k =0,即k =4,则C 48m 4=358,解得m =±12. (3)易知m >0,设第k +1项系数最大.则⎩⎪⎨⎪⎧ C k 8m k ≥C k -18m k -1,C k 8m k ≥C k +18m k +1,化简可得8m -1m +1≤k ≤9m m +1. 由于只有第6项和第7项系数最大,所以⎩⎪⎨⎪⎧ 4<8m -1m +1≤5,6≤9m m +1<7,即⎩⎪⎨⎪⎧ 54<m ≤2,2≤m <72. 所以m 只能等于2.四、探究与拓展14.设(3x -2)6=a 0+a 1(2x -1)+a 2(2x -1)2+…+a 6(2x -1)6,则a 1+a 3+a 5a 0+a 2+a 4+a 6=________. 考点 展开式中系数的和问题题点 二项展开式中系数的和问题答案 -6365解析 令x =1,得a 0+a 1+a 2+…+a 6=1,令x =0,得a 0-a 1+a 2-…+a 6=64,两式相减得2(a 1+a 3+a 5)=-63,两式相加得2(a 0+a 2+a 4+a 6)=65,故a 1+a 3+a 5a 0+a 2+a 4+a 6=-6365. 15.已知(3x +x 2)2n 的展开式的系数和比(3x -1)n 的展开式的系数和大992,求⎝ ⎛⎭⎪⎫2x -1x 2n 的展开式中: (1)二项式系数最大的项;(2)系数的绝对值最大的项.考点 展开式中系数最大(小)的项问题题点 求展开式中系数最大(小)的项解 由题意得22n -2n =992,解得n =5.(1)⎝ ⎛⎭⎪⎫2x -1x 10的展开式中第6项的二项式系数最大,即T 6=C 510·(2x )5·⎝ ⎛⎭⎪⎫-1x 5=-8 064. (2)设第k +1项的系数的绝对值最大, 则T k +1=C k 10·(2x )10-k ·⎝ ⎛⎭⎪⎫-1x k =(-1)k ·C k 10·210-k ·x 10-2k . ∴⎩⎪⎨⎪⎧ C k 10·210-k ≥C k -110·210-k +1,C k 10·210-k ≥C k +110·210-k -1,得⎩⎪⎨⎪⎧ C k 10≥2C k -110,2C k 10≥C k +110, 即⎩⎪⎨⎪⎧ 11-k ≥2k ,2(k +1)≥10-k .∴83≤k ≤113,k ∈N ,∴k =3, 故系数的绝对值最大的是第4项T 4=(-1)3C 310·27·x 4=-15 360x 4.。

2015高中数学1.3.2杨辉三角教学设计新人教B版选修2_3

2015高中数学1.3.2杨辉三角教学设计新人教B版选修2_3

2015高中数学 1.3.2杨辉三角教学设计新人教B版选修2-3教学目标:1.掌握二项展开式中的二项式系数的基本性质及其推导方法。

2.通过对杨辉三角中蕴含的数字规律的初步探究,培养学生发现问题、提出问题、经过分析——猜想——证明以后解决问题的能力,激励学生自主创新。

通过从不同的角度观察杨辉三角,培养学生要从多角度看问题的意识,提高学生解决实际问题的能力。

3.鼓励学生在学习中学会交流、合作,培养学生团结协作的精神。

同时,通过了解我国古代数学的伟大成就,培养学生的爱国情感。

教学重、难点:教学重点:掌握二项展开式中二项式系数性质,探讨“杨辉三角”中蕴含的数字规律,培养学生发现问题并运用所学的知识解决问题的能力。

教学难点:如何发现、证明规律。

通过本节课的学习,学生可以深刻地感知知识的形成过程,对于规律性的结论可以做出判断,并上升到理性的思考。

通过小组合作学习的方式,学生更加感受到在互助中学习,在竞争中学习的重要性,达到培养学生团结协作精神的目的。

教学过程教学内容、设计学生活动设计意图(一)温故知新1、二项式定理2、二项式系数3、组合数的两个性质学生回忆前面学过的相关知识,集体完成问题。

通过对学生已有的相关知识的调动,对本节课的学习起到承上启下的作用。

(二)探索新知【问题一】计算展开式的二项式系数并填入下表n展开式的二项式系数12345 学生独立完成问题一,主动发表自己的见解。

从学生已有二项式定理的知识及二项式系数的运算出发让学生通过填表发现二项式系数具有一定的规律。

同时也让学生发现,这样的表格不利于发现二项式系数的其6通过填表,你发现了什么规律?经过对表格中的数据整理后,我们得到一张形如三角形的非常优美的表。

这样的二项式系数表,早在我国南宋数学家杨辉1261年所著的《详解九章算法》一书里就出现了,我们把它叫做“杨辉三角”。

它性质,由此引发思考:如何对表格进一步整理,得到更方便观察二项式系数的数字规律的表格,由此自然引出“杨辉三角”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2) (1 x)n 1 Cn1x L Cnr xr L xn .
2.二项展开式的通项公式: T C a b r1
r nr r n
新疆 王新敞
奎屯
新疆 王新敞
奎屯
3.求常数项、有理项和系数最大的项时,要根据通项公式讨论对 r 的限制;求有理项时要注意到指数及
项数的整数性 新疆 王新敞 奎屯
二、讲解新课: 1 新疆 二项式系数表(杨辉三角)
§1.3.2“杨辉三角”与二项式系数的性质
教学目标: 知识与技能:掌握二项式系数的四个性质。 过程与方法:培养观察发现,抽象概括及分析解决问题的能力。 情感、态度与价值观:要启发学生认真分析书本图 1-5-1 提供的信息,从特殊到一般,归纳猜想,合 情推理得到二项式系数的性质再给出严格的证明。 教学重点:如何灵活运用展开式、通项公式、二项式系数的性质解题 新疆
即 0 (Cn0 Cn2 L ) (Cn1 Cn3 L ) , ∴ Cn0 Cn2 L Cn1 Cn3 L ,
即在 (a b)n 的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和.
说明:由性质(3)及例 1 知 Cn0 Cn2 L Cn1 Cn3 L 2n1 .
例 2.已知 (1 2x)7 a0 a1x a2 x2 L a7 x7 ,求: (1) a1 a2 L a7 ; (2) a1 a3 a5 a7 ; (3) | a0 | | a1 | L | a7 | . 解:(1)当 x 1 时, (1 2x)7 (1 2)7 1,展开式右边为

①②
得: 2(a1 a3 a5 a7 ) 1 37 ,∴
a1
a3
a5
a7
1 37 2
.
(3)由展开式知: a1, a3, a5 , a7 均为负, a0 , a2 , a4 , a8 均为正, ∴由(2)中①+② 得: 2(a0 a2 a4 a6 ) 1 37 ,

a0
a2
a0 a1 a2 L a7
∴ a0 a1 a2 L a7 1 ,
当 x 0 时, a0 1,∴ a1 a2 L a7 11 2 ,
(2)令 x 1 , a0 a1 a2 L a7 1

令 x 1 , a0 a1 a2 a3 a4 a5 a6 a7 37
a4
a6
1 37 2

∴| a0 | | a1 | L | a7 | a0 a1 a2 a3 a4 a5 a6 a7
(a0 a2 a4 a6 ) (a1 a3 a5 a7 ) 37
新疆 王新敞
奎屯
例 3.求(1+x)+(1+x)2+…+(1+x)10 展开式中 x3 的系数新疆 王新敞 奎屯 解: (1 x) (1 x)2 L(1 x)10 (1 x)[1 (1 x)10 ] 1 (1 x)
王新敞 奎屯
教学难点:如何灵活运用展开式、通项公式、二项式系数的性质解题 新疆 王新敞 奎屯
授课类型:新授课 新疆 王新敞 奎屯
课时安排:2 课时 新疆 王新敞 奎屯
教学过程: 一、复习引入: 1.二项式定理及其特例:
(1) (a b)n Cn0an Cn1anb L Cnr anrbr L Cnnbn (n N ) ,
例 5.已知 (
x2Biblioteka )n的展开式中,第五项与第三项的二项式系数之比为
14;3,求展开式的常数项 新疆 王新敞
x2
奎屯
解:依题意
C
4 n
:
C
2 n
14
:
3
3C
4 n
14C
2 n
∴3n(n-1)(n-2)(n-3)/4!=4n(n-1)/2!
n
k k
1


Cnk
相对于
C k 1 n
的增减情况由
n
k k
1
决定,
n
k k
1
1
k
n
1 2

当 k n 1 时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值; 2
n
n1
n1
当 n 是偶数时,中间一项 Cn2 取得最大值;当 n 是奇数时,中间两项 Cn 2 , Cn 2 取得最大值.
定义域是{0,1, 2,L , n} ,例当 n 6 时,其图象是 7 个孤立的点(如图)
(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵ Cnm Cnnm ).
直线 r n 是图象的对称轴. 2
(2)增减性与最大值.∵ Cnk
n(n 1)(n 2)L k!
(n
k
1)
C k 1 n
王新敞 奎屯
(a b)n 展开式的二项式系数,当 n 依次取1, 2, 3 …时,二项式系数表,表中每
行两端都是1,除1以外的每一个数都等于它肩上两个数的和
新疆 王新敞
奎屯
2.二项式系数的性质:
(a b)n 展开式的二项式系数是 Cn0 , Cn1 , Cn2 ,…, Cnn . Cnr 可以看成以 r 为自 变量的函数 f (r)
( x 1)11 ( x 1)
=

x
x x C ∴原式中 3 实为这分子中的
4 ,则所求系数为
7 11 新疆
王新敞 奎屯
例 4.在(x2+3x+2)5 的展开式中,求 x 的系数新疆 王新敞 奎屯 解:∵ (x 2 3x 2)5 (x 1)5 (x 2)5 ∴在(x+1)5 展开式中,常数项为 1,含 x 的项为 C15 5x , 在(2+x)5 展开式中,常数项为 25=32,含 x 的项为 C15 24 x 80x ∴展开式中含 x 的项为 1 (80x) 5x(32) 240x , ∴此展开式中 x 的系数为 240新疆 王新敞 奎屯
(3)各二项式系数和:
∵ (1 x)n 1 Cn1x L Cnr xr L xn ,
令 x 1 ,则 2n Cn0 Cn1 Cn2 L
Cnr L
Cnn
新疆 王新敞
奎屯
三、讲解范例:

1.在
(a
b)n
的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和 新疆 王新敞
奎屯
证明:在展开式 (a b)n Cn0an Cn1anb L Cnr anrbr L Cnnbn (n N ) 中,令 a 1, b 1 , 则 (11)n Cn0 Cn1 Cn2 Cn3 L (1)n Cnn ,
相关文档
最新文档